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ABSTRACT 20 

 21 

Metagenomics is a valuable tool for the study of microbial communities but has been 22 

limited by the difficulty of “binning” the resulting sequences into groups corresponding to 23 

the individual species and strains that constitute the community. Moreover, there are 24 

presently no methods to track the flow of mobile DNA elements such as plasmids 25 

through communities or to determine which of these are co-localized within the same 26 

cell. We address these limitations by applying Hi-C, a technology originally designed for 27 

the study of three-dimensional genome structure in eukaryotes, to measure the cellular 28 

co-localization of DNA sequences. We leveraged Hi-C data generated from a synthetic 29 

metagenome sample to accurately cluster metagenome assembly contigs into groups 30 

that contain nearly complete genomes of each species. The Hi-C data also reliably 31 

associated plasmids with the chromosomes of their host and with each other. We 32 

further demonstrated that Hi-C data provides a long-range signal of strain-specific 33 

genotypes, indicating such data may be useful for high-resolution genotyping of 34 

microbial populations. Our work demonstrates that Hi-C sequencing data provide 35 

valuable information for metagenome analyses that are not currently obtainable by other 36 

methods. This metagenomic Hi-C method could facilitate future studies of the fine-scale 37 

population structure of microbes, as well as studies of how antibiotic resistance 38 

plasmids (or other genetic elements) mobilize in microbial communities. The method is 39 

not limited to microbiology; the genetic architecture of other heterogeneous populations 40 

of cells could also be studied with this technique. 41 

 42 

INTRODUCTION 43 

 44 

Microbial ecology is the study of microbial communities in terms of their composition, 45 

functional diversity, interactions, stability, and emergent properties (Handelsman, 2004; 46 

Konopka, 2009). Knowledge of the roles microbes play in ecosystems is essential for 47 

understanding how these ecosystems function (Konopka, 2009). Readily-cultivated 48 
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organisms are estimated to constitute less than 1% of all microbial species, leading to 49 

the development of culture-independent methods for studying microbial communities 50 

(Gilbert & Dupont, 2011; Hugenholtz, 2002; Staley, 1985). These culture-independent 51 

methods allow communities to be characterized directly. 52 

Current sequencing-based metagenomic methods do not capture some of the 53 

most informative genetic information in microbial communities, in particular the long-54 

range sequence contiguity and associations of genetic material in individual cells. In 55 

nearly all metagenomic methods, cells from the microbial community are lysed en 56 

masse to obtain a bulk DNA sample. This results in DNA from many different cells being 57 

mixed together, so that the genotype and species identity of individual cells are lost. 58 

Chromosomal DNA is then fragmented into pieces (~500 bp to 40 kbp, depending on 59 

the sequencing strategy), further reducing contiguity. 60 

Improved sample-processing workflows might preserve this information and 61 

thereby yield greater insight into the genetic structure of microbial communities. High 62 

throughput single-cell genomics (e.g. applied to thousands of cells) offers an alternative 63 

to shotgun metagenomics that preserves information about cellular 64 

compartmentalization of genetic material. However, single-cell genomics currently has 65 

its own challenges associated with isolating individual cells from certain types of 66 

samples (requirement for specialized equipment, rarity of some cells within the sample) 67 

and amplifying DNA from single cells (which can introduce significant amplification bias 68 

and artifacts) to attain sufficient amounts of DNA for sequencing. This approach is also 69 

highly sensitive to contamination by foreign DNA. Long-read technologies, such as 70 

Pacific Biosciences (Eid et al., 2009) and nanopore (Maitra, Kim, & Dunbar, 2012) 71 

sequencing, may help address this challenge but are still constrained by the difficulty of 72 

preparing adequate amounts of very long DNA fragments.  73 

Computational methods have been developed to infer genomic contiguity from 74 

metagenomic data by binning metagenome assembly contigs by species. These binning 75 

procedures pose a significant analytical challenge. Several methods have been 76 

developed that can be divided into comparative, compositional, and assembly 77 

approaches. Comparative approaches use alignments to reference sequences to assign 78 

contigs to species within existing taxonomies (Droge & Mchardy, 2012). Comparative 79 

approaches are limited by their reliance on existing taxonomies. Compositional 80 

approaches form clusters of contigs that share similar oligomer (usually 4 bp to 8 bp) 81 

composition (Droge & Mchardy, 2012). Compositional approaches tend to be limited as 82 

well due to their underlying assumption that contigs with similar sequence composition 83 

belong together. Horizontal gene transfer complicates both of these analysis methods 84 

because it can introduce gene content from a taxonomically distant relative with unusual 85 

nucleotide composition. Thirdly, assembly approaches seek to infer correct groupings of 86 

assembly contigs by using paired- and long-read technologies to scaffold contigs 87 

according to their original genome order, consequentially placing these sequences 88 

within the same bin. These methods are limited by sequencing read lengths, which span 89 

only a small fraction of a bacterial genome in a single read or read pair. 90 

Binning seeks to address the challenge of determining which sequences were 91 

present within cells of the same species prior to DNA extraction. We reasoned that such 92 

co-localizations could be inferred from Hi-C data, a method originally developed for the 93 

study of three-dimensional genome structure in eukaryotes (Lieberman-Aiden et al., 94 
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2009). This method relies on cross-linking molecules in close physical proximity and 95 

consequently identifies both intra- and inter-chromosomal associations, reflecting the 96 

spatial arrangement of DNA at the time of cross-linking within intact nuclei or non-97 

nucleated cells (Umbarger et al., 2011). We predicted that sequences of DNA not 98 

present in the same cell at the time of cross-linking would not be cross-linked together 99 

and should not be associated by Hi-C reads (Supplementary Figure 1). Herein we 100 

demonstrate the utility of Hi-C as a tool for addressing metagenomic binning and related 101 

problems in microbial ecology. To do so we first constructed a synthetic microbial 102 

community by culturing and mixing five organisms with available reference genomes. 103 

We then performed a metagenome assembly on sequences that were simulated in 104 

silico from the genomes of these organisms. Our first objective was to group these 105 

metagenome assembly contigs according to species using Hi-C reads that were 106 

generated from the synthetic microbial community. We then sought to differentiate two 107 

closely related E. coli strains included within this mixture. To do so we constructed 108 

contig and variant graphs and analyzed those graphs to characterize the extent to which 109 

Hi-C data might resolve the genotypes of species and strains present in our synthetic 110 

community. 111 

 112 

MATERIALS AND METHODS 113 

 114 

Construction of a synthetic microbial community 115 

 116 

Pediococcus pentosaceus and Lactobacillus brevis were provided by the UC Davis 117 

Enology Culture Collection (http://wineserver.ucdavis.edu). Single colonies were used to 118 

start cultures in 5 ml liquid MRS broth. Escherichia coli BL21 (ATCC# PTA-5073), E. 119 

coli K12 DH10B (ATCC# 207214), and Burkholderia thailandensis (ATCC# 700388) 120 

were obtained as freeze-dried stocks from the American Type Culture Collection 121 

(ATCC). The E. coli strains were re-suspended in 5 ml of LB liquid medium (10g/L 122 

Tryptone, 10 g/L NaCl, 5 g/L Yeast Extract) and the B. thailandensis was re-suspended 123 

in 5 ml of Nutrient Broth (Peptone 15.0g/L, yeast extract 3g/L, sodium chloride 6g/L, 124 

D(+)glucose 1g/L). All were incubated, with shaking, overnight at 37oC to produce 125 

starter cultures. 126 

 A separate 50 ml culture for each organism was created by inoculation with 10 ul 127 

of the appropriate starter culture and grown, with shaking, at 37oC, for 24 hours. The 128 

cell density of each culture was estimated by measuring the OD600. The cultures were 129 

then mixed in quantities proportional to their optical density, seeking to have equal 130 

representation of each organism in the synthetic community. Glycerol was added to a 131 

final concentration of 7% and the final mixture was divided into 2 ml tubes and frozen at 132 

-80oC. 133 

 134 

Simulated metagenome assemblies 135 

 136 

We simulated Illumina paired-end sequencing of the synthetic microbial community to 137 

obtain metagenomic assemblies that we could subsequently attempt to bin using 138 

experimentally derived Hi-C reads. Reads were simulated using Grinder (Angly, Willner, 139 

Rohwer, Hugenholtz, & Tyson, 2012) v0.4.5, a tool for simulating metagenomic shotgun 140 
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sequence reads. Replicons were sampled assuming uniform abundance of species. A 141 

total of 61,063,000 million reads were simulated to cover the genomes at 500x. From 142 

this set, paired-end read datasets of varying levels of coverage (100, 50, and 5x) were 143 

formed. Read length was simulated to 165 bp and fragment size was simulated with a 144 

normal distribution around 550 bp with a standard deviation of 50 bp (“grinder -am 145 

uniform -cf $cov -rd 165 -id 550 normal 50 -rf $ref -fq 1 -ql 30 10 -bn 146 

grinder.dp$cov.$tag”). 147 

 Assembly from each of the simulated metagenomic read sets was performed 148 

using SOAPdenovo (Luo et al., 2012) with a k-mer length of 23, yielding assemblies of 149 

varying quality (Supplementary Table 1). Reads were aligned to the resulting assembly 150 

contigs using BWA MEM (Li, 2013). The rate of misassembly was determined by 151 

mapping contigs back to the reference assemblies and counting the number of contigs 152 

that joined sequences from different species. 153 

 154 

Application of Hi-C to the synthetic microbial community 155 

 156 

We performed Hi-C on the synthetic microbial community for the purpose of obtaining 157 

information that could be used to group (by species) the simulation-derived contigs 158 

described above, as well as to differentiate closely related strains present in our 159 

synthetic community. Hi-C was carried out by combining the cross-linking and cell wall 160 

digestion procedures described by (Umbarger et al., 2011) for bacterial 3-C experiments 161 

and the Hi-C protocol developed for mammalian cells (Lieberman-Aiden et al., 2009) 162 

with minor modifications. Cells were transferred into a 50 ml centrifuge tube and 163 

washed three times in 25 ml of TE buffer (pH= 8.0) by centrifugation for 5 minutes at 164 

4000 rpm at 4°C. Cells were re-suspended at an OD600 of 0.2 in TE and 37% 165 

formaldehyde was added to a final concentration of 1% to cross-link proteins in the cell. 166 

Cells were incubated at room temperature for 30 min and subsequently for another 30 167 

min on ice (Umbarger et al., 2011). The formaldehyde was quenched by adding glycine 168 

to a final concentration of 0.125 M and incubated on ice for 10 minutes. After 169 

centrifugation, cells were re-suspended in TE and lysozyme digestion was carried out 170 

as described to release the protein-DNA complexes (Umbarger et al., 2011). The 171 

samples were centrifuged and re-suspended in Hi-C lysis buffer and incubated on ice 172 

for 15 minutes (Lieberman-Aiden et al., 2009). From this step on the original Hi-C 173 

protocol employing HindIII (Lieberman-Aiden et al., 2009) was applied with some 174 

modifications. To summarize the Lieberman-Aiden et al. (2009) protocol, DNA in the 175 

cross-linked protein complexes is digested with HindIII endonuclease following cell lysis 176 

and free DNA ends are tagged with biotin. Blunt-ended DNA fragments are ligated 177 

under highly dilute conditions, resulting in preferential ligation of fragments that are 178 

within the same cross-linked DNA/protein complex. Next, crosslinks are removed, DNA 179 

is purified, biotin is eliminated from un-ligated ends, DNA is size-selected, and ligation 180 

products are selected for through a biotin pull-down. One modification we made to the 181 

published procedure was to reduce the concentration of biotin-14-dCTP (Life 182 

Technologies) by half. Also, ligation to Illumina-compatible sequencing adapters 183 

(Biooscientific) was carried out in solution before capture with streptavidin beads. The 184 

DNA sample was size selected after end-repair and before adapter ligation by gel 185 

extraction for fragment sizes ranging from 280 to 420 bp. The bead-captured Hi-C 186 
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library was amplified by 10 cycles of PCR before a final cleanup with Ampure XP beads 187 

(Agencourt). The library was sequenced in a single run on an Illumina Miseq machine 188 

using 160 bp paired-end reads. 189 

 190 

Sequence alignment and quality filtering 191 

 192 

Reference assembly sequences were obtained from the NCBI RefSeq database (Pruitt, 193 

Tatusova, Brown, & Maglott, 2012) with the following accession numbers for each of P. 194 

pentosaceus (NC_008525), L. brevis (NC_008497, NC_008498, NC_008499), E. coli 195 

BL21 (NC_012892), E. coli K12 DH10B (NC_010473), and B. thailandensis 196 

(NC_007651, NC_007650). These sequences were pooled into a single reference 197 

database for sequence alignment. No quality filtering was performed on raw reads, 198 

leaving this to be performed later using alignment quality scores. Split-read sequence 199 

alignment was performed (independently for each read in a pair) using BWA MEM (Li, 200 

2013; default parameters) against the pooled reference assemblies as well as 201 

(separately) against the metagenome assembly described above. Heat map 202 

visualizations and insert distribution plots were generated from unfiltered alignments 203 

using custom R (The R Core Development Team, 2010) scripts. 204 

 We investigated the effect of various alignment filtering parameters on the 205 

subsequent variant graph analysis (illustration of the concept of a variant graph can be 206 

found in Supplementary Figure 7). To this end, alignments of Hi-C reads to the 207 

reference genomes were filtered according to 24 parameter combinations, with three 208 

minimum mapping quality (0, 20, 60), two CIGAR filtering (none, CIGAR=160M), and 209 

four minimum insert filtering (0, 1kb, 10kb, 40kb) conditions. In the latter, Hi-C read 210 

pairs were excluded when their alignments within the reference assembly had an insert 211 

size below the specified minimum, including cases of alignments spanning the 212 

linearization points of these assemblies (e.g. for E. coli, near coordinates 0 and 213 

4686137). An open-source graph visualization tool, Gephi (0.8.2-beta), was used to 214 

visualize the Hi-C contig association network (Bastian et al., 2009). 215 

 216 

Contig clustering 217 

We inferred grouping of metagenome assembly contigs by applying the Markov 218 

Clustering Algorithm (MCL) to a matrix of contig association data (van Dongen, 2000). 219 

MCL is an unsupervised clustering algorithm which simulates flow and accumulation of 220 

edge weights within a given weighted graph structure. It has a computational complexity 221 

of O(Nk^2) given an implementation designed for sparse matrices. The matrix of edge 222 

weights provided to this algorithm was computed from contig association counts by 223 

normalizing edge weights according to the following formula, which corrects for the 224 

expected inflation of association between large contigs. Formally, given contig length 225 

set L, the raw contact count cij between each pair of contigs {i, j} was normalized by the 226 

ratio of the square of the maximum contig length and the lengths li and lj of contigs i and 227 

j, respectively. 228 

 229 
Prior to normalization, we filtered the contig association data for (1) contig associations 230 

greater than some minimum k, and (2) associations between contigs of size greater 231 

c
0

ij =
max(L)2

ci,j

lilj
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than L. We explored the (k,L) parameter space by performing normalization and MCL 232 

clustering for 205 parameter combinations, with 41 contig size minimums chosen evenly 233 

across [0,40000] and five contact minimums, {0,3,5,7,9}. For each of the 205 filtering 234 

parameter combinations, clustering was performed using 100 different MCL inflation 235 

values chosen to span the interval [1,2] in increments of 0.01. 236 

 237 

Assessment of clustering quality  238 

 239 

Each metagenome assembly contig was aligned to the reference assemblies to 240 

determine its species or strain of origin, allowing us to determine which strains were 241 

present in each cluster of contigs. A measure of clustering quality was computed by 242 

sampling random pairs of contigs (N=100,000 pairs) and comparing their cluster 243 

assignments to their species of origin. This random sampling was weighted according to 244 

the size of each contig such that the probability of sampling any contig from the set was 245 

equal to the size of that contig divided by the sum total of all contig sizes. Any contig not 246 

present in the clustering solution (but which was present as input for the clustering run 247 

that generated that solution) was added to the solution in a singleton cluster. For each 248 

sampled contig pair, if those contigs belonged to the same species and had been 249 

placed in the same cluster, they were counted as a true positive (“TP”). If they 250 

originated from the same species but had been placed in different clusters, they were 251 

counted as a false negative (“FN”). Likewise, contigs originating from different species 252 

that were placed in the same or different clusters were counted as false positives (“FP”) 253 

and true negatives (“TN”), respectively. The true positive rate (a.k.a. sensitivity, recall), 254 

false positive rate, positive predictive value (a.k.a. precision), and negative predictive 255 

value were calculated from these counts according to standard formulae. All clustering 256 

quality measures were computed in two ways, one treating the two E. coli strains as 257 

independent classes (strain-level) and another treating them as the same (species-258 

level).  259 

 260 

Analysis of SNP graph connectivity 261 

 262 

A SNP graph is an undirected graph wherein SNP sites are nodes and edges link pairs 263 

of SNP sites that were observed together in a sequence read pair. We expected SNP 264 

graphs that were constructed using Hi-C data to be more densely connected than SNP 265 

graphs that were constructed using mate-pair data because Hi-C read pairs can span 266 

entire chromosomes while reads from mate-pair libraries span no more than 40 kb +/- 5 267 

kb. In this way, Hi-C provides global information while that provided by mate pairs is 268 

locally constrained. To quantify this, SNP graphs were constructed for the Hi-C data and 269 

simulated mate-pair data and the shortest path between randomly chosen SNP pairs 270 

was plotted relative to the distance between the those variants within the reference 271 

assembly. These graphs were constructed from alignments of reads to the E. coli K12 272 

reference assembly after it had been masked at variant positions identified through 273 

pairwise sequence alignment of E. coli K12 and BL21 using progressiveMauve (Darling, 274 

Mau, & Perna, 2010). In this way, the masked K12 reference assembly was used as a 275 

scaffold for our analysis of Hi-C and mate-pair variant graphs. 276 
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Hi-C read datasets typically contain a mixture of reads derived from ligation and 277 

non-ligation products, the latter having short inserts. In our analysis of SNP graph 278 

connectivity we sought to understand the contribution of these non-ligation products on 279 

the connectivity gains seen with Hi-C reads over mate-pairs. For comparison to our Hi-C 280 

reads, mate-pair read sets were computationally simulated for a range of sizes (5 kb, 10 281 

kb, 20 kb, 40 kb). These were compared to three Hi-C read sets: the entire Hi-C 282 

dataset, Hi-C reads with inserts below 1kb, and Hi-C reads with inserts above 1 kb.  283 

SNP graph connectivity was analyzed using the simulated mate-pair read sets 284 

described above combined with Hi-C reads aligned and filtered for alignment qualities 285 

above or equal to 60 and for CIGAR encodings of 160M Read pairs with both ends 286 

aligning to SNP positions were identified and for each corresponding SNP pair an edge 287 

was formed. Shortest path lengths between sampled SNP positions were computed 288 

using a custom breadth-first search program, relying on the Boost Graph Library 289 

(http://boost.org). The program constructs a graph from a user-specified SNP edge list 290 

and performs a breadth-first search to identify the shortest path length between a user-291 

specified number of randomly selected SNP pairs. We calculated path lengths between 292 

10,000 randomly chosen SNP pairs. To aid in visualization, the full range of variant 293 

separation distances was divided into 20 kb segments and the average path length was 294 

computed for each segment. These data were smoothed using locally-weighted 295 

scatterplot smoothing (LOWESS). 296 

 297 

 298 

RESULTS 299 

 300 

The synthetic microbial community for metagenomic Hi-C 301 

 302 

Five microorganisms were chosen to test the metagenomic Hi-C approach: 303 

Lactobacillus brevis, Pediococcus pentosaceus, Burkholderia thailandensis, Escherichia 304 

coli K12 DH10B and E. coli BL21 (DE3). These were selected because high quality 305 

reference genomes are available. In addition, the multiple replicons of B. thailandensis 306 

and plasmids present in L. brevis allowed us to explore whether Hi-C might link 307 

separate replicons present in the same cell. We selected two strains of E. coli  (K12 and 308 

BL21) to evaluate whether Hi-C sequence data could be used to resolve inter-strain 309 

differences. Genome alignment of these two E. coli shows that 87.9% of their genomes 310 

can be aligned and that the average nucleotide identity across aligned regions is 99.5%. 311 

Finally, because differences in cell membrane structure and GC content could 312 

potentially lead to bias in DNA extraction and/or cross-linking efficiency, we selected 313 

two lactic acid bacteria (P. pentosaceus and L. brevis), which are low-GC, Gram-314 

positive organisms for which only 39.5% of their genomes can be aligned with 84.3% 315 

average nucleotide identity across aligned regions. 316 

 317 

Metagenome assembly 318 

 319 

We generated a metagenome assembly of the synthetic microbial community that we 320 

could use as input for our analysis of the utility of Hi-C for species clustering. Hi-C 321 

sequencing data is biased by the distribution of restriction sites for the restriction 322 
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enzyme used to construct the library as well as by other factors including GC content, 323 

restriction fragment length, and “mappability” (Yaffe & Tanay, 2011). Hi-C data contain 324 

numerous chimeric sequences and thus are not suitable for de novo contig assembly. 325 

Therefore, we simulated and assembled Illumina metagenomic sequence data at 326 

varying coverage levels to yield the assemblies summarized in (Supplementary Table 327 

1). The size (bp) of each of these assemblies was approximately 77% of the sum of the 328 

synthetic community reference genome sizes and this fraction did not change when 329 

increasing the quantity of input reads from 5x to 100x. Alignment of assembled contigs 330 

to the collection of reference genomes indicates that similar regions of the two E. coli 331 

genomes were co-assembled into single contigs (data not shown). The assembly on the 332 

lowest amount of input sequence (5x coverage) contained two misassembled contigs 333 

and three misassembled scaffolds. Assemblies at 50x and 100x coverage were free 334 

from misassembled contigs and scaffolds and were similar in terms of their contig 335 

counts, N50s, and total amounts of sequence assembled. We used the 100x coverage 336 

assembly (SOAP-3) for all further analysis. 337 

 338 

Hi-C Library Statistics 339 

 340 

A total of 20,623,187 read pairs were obtained from a single MiSeq run to yield ~6.4 Gb 341 

of raw sequence data. Of these, 98.25% could be aligned back to the reference 342 

genomes by BWA MEM. A total of 21,260,753 (51.55% of original and 52.46% of raw 343 

aligned reads) read pairs were retained after filtering for both reads in the pair aligning 344 

at high quality (MapQ>=60) and in full (CIGAR=160M). Due to either self-ligation or 345 

imperfect enrichment for ligation junctions, some of the reads present in the dataset 346 

represent local genomic DNA fragments. Therefore we classify read pairs mapping 347 

within 1,000 nt as fragment reads, while all other reads are considered to be Hi-C reads 348 

(3% of reads). The abundance of each replicon was estimated using filtered alignments 349 

and unfiltered alignments (Table 1), as well as by normalizing each unfiltered alignment 350 

count with the restriction site counts for each replicon (Supplementary Table 2). These 351 

figures can only be used as approximate measures of abundance because these values 352 

are affected by the frequency of restriction sites in each organism and a multitude of 353 

other confounding factors (Morgan, Darling, & Eisen, 2010). Insert distances derived 354 

from the alignment of Hi-C reads to the E. coli K12 genome were distributed in a similar 355 

manner as previously reported (Figure 1; Lieberman-Aiden et al., 2009). We observed a 356 

minor depletion of alignments spanning the linearization point of the E. coli K12 357 

assembly (e.g. near coordinates 0 and 4686137) due to edge effects induced by BWA 358 

treating the sequence as a linear chromosome rather than circular. 359 

 360 

Clustering contigs by species with Hi-C 361 

 362 

The experimentally derived Hi-C read pairs have a long tail in their insert 363 

distribution (Figure 1; Supplementary Figures 3-6) indicating that they provide 364 

information that can be used to link metagenome assembly contigs originating from 365 

distant parts of the same chromosome. We evaluated whether Hi-C reads could be 366 

used to group the simulated assembly contigs described above into clusters that 367 
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correspond with each species’ genome. We tested this process on the SOAP-3 368 

assembly, using only contigs with a length of at least 5 kbp. This threshold was applied 369 

to exclude short contigs that may not have a HindIII restriction site. As HindIII 370 

recognizes a 6bp motif, it cuts on average every 4,096bp. We note that >25% of a 4Mbp 371 

genome is expected to have inter-site distances > 10Kbp in simulations that treat 6-372 

cutter restriction sites as uniformly distributed (data not shown) suggesting that many of 373 

the contigs < 10Kbp may cluster poorly due to lack of restriction sites. The dataset was 374 

further reduced to exclude links among contig pairs which are associated by 5 or fewer 375 

read pairs.  376 

We tested Markov clustering (van Dongen, 2000) on these data over a range of 377 

inflation (affecting cluster solution granularity) parameters (Table 2). In the best case, 378 

Markov clustering produced four clusters, each of which correspond to the nearly 379 

complete genome of a species in our synthetic community. In this clustering, the two 380 

strains of E. coli appear in the same group. When using the default inflation parameter 381 

of 2.0 we find that the data is under-clustered, but there are no false positive 382 

associations among contigs for this choice of input. 383 

To further understand the sensitivity of MCL to choices of filtering and inflation 384 

parameters, we performed clustering across the 204 filtering and 100 inflation (total of 385 

20,400) conditions (see Methods: Contig Clustering) using MCL. A representative 386 

subset of all parameter combinations tested is shown in Supplementary Figure 2. These 387 

data suggest that once a sufficient contact and contig size minimums have been 388 

applied, cluster solutions vary primarily in terms of their granularity (as the inflation 389 

parameter varies), not their PPV (remaining close to 1) or FPR (remaining close to 0). 390 

Low inflation values, close to 1, give clustering solutions with the highest TPR’s, but this 391 

does not hold true without sufficient filtering. 392 

 393 

Association of species with metagenomic Hi-C data 394 

 395 

We next sought to quantify the cellular co-localization signal underlying the above-396 

described species clustering. For this analysis we studied Hi-C reads aligned directly to 397 

the reference assemblies of the members of our synthetic microbial community with the 398 

same alignment parameters as were used in the top ranked clustering (described 399 

above). We first counted the number of Hi-C reads associating each reference 400 

assembly replicon (Figure 2; Supplementary Table 3), observing that Hi-C data 401 

associated replicons within the same species (cell) orders of magnitude more frequently 402 

than it associated replicons from different species. The rate of within-species 403 

association was 98.8% when ignoring read pairs mapping less than 1,000 bp apart. 404 

Including read pairs < 1,000 bp inflated this figure to 99.97%. Figure 3 illustrates this by 405 

visualizing the graph of contigs and their associations. Similarly, for the two E. coli 406 

strains (K12, BL21) we observed the rate of within-strain association to be 96.36%. 407 

When evaluated on genes unique to each strain (where read mapping to each strain 408 

would be unambiguous), the self-association rate was observed to be >99%. 409 

 We observed that the rate of association of L. brevis plasmids 1 and 2 with each 410 

other and with the L. brevis chromosome was at least 100-fold higher than with the 411 

other constituents of the synthetic community (Figure 2). Chromosome and plasmid Hi-412 

C contact maps show that the plasmids associate with sequences throughout the L. 413 
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brevis chromosome (Figure 4; Supplementary Figures 3,4,5) and exhibit the expected 414 

enrichment near restriction sites. This demonstrates that metagenomic Hi-C can be 415 

used to associate plasmids to specific strains in microbial communities as well as to 416 

determine cell co-localization of plasmids with one another. 417 

 418 

Variant graph connectedness  419 

 420 

Algorithms that reconstruct single-molecule genotypes from samples containing two or 421 

more closely-related strains or chromosomal haplotypes depend on reads or read pairs 422 

that indicate whether pairs of variants coexist in the same DNA molecule. Such 423 

algorithms typically represent the reads and variant sites as a variant graph wherein 424 

variant sites are represented as nodes, and sequence reads define edges between 425 

variant sites observed in the same read (or read pair). We reasoned that variant graphs 426 

constructed from Hi-C data would have much greater connectivity (where connectivity is 427 

defined as the mean path length between randomly sampled variant positions) than 428 

graphs constructed from mate-pair sequencing data, simply because Hi-C inserts span 429 

megabase distances. Such connectivity should, in theory, enable more accurate 430 

reconstruction of single-molecule genotypes from smaller amounts of data. 431 

Furthermore, by linking distant sites with fewer intermediate nodes in the graph, 432 

estimates of linkage disequilibrium at distant sites (from a mixed population) are likely to 433 

have greater precision. 434 

To evaluate whether Hi-C produces more connected variant graphs we 435 

compared the connectivity of variant graphs constructed from Hi-C data to those 436 

constructed from simulated mate-pair data (with average inserts of 5 kb, 10 kb, 20 kb, 437 

and 40 kb). To exclude paired-end products from the analysis, Hi-C reads with inserts 438 

under 1 kb were excluded from the analysis. For each variant graph constructed from 439 

these inputs, 10,000 variant position pairs were sampled at random, with 94.75% and 440 

100% of these pairs belonging to the same connected graph component of the Hi-C and 441 

40 kb variant graphs, respectively. These rates fell to 6.21%, 16.6%, and 32.38% for the 442 

5 kb, 10 kb, and 20 kb mate-pair variant graphs, respectively (Table 3).  443 

Across conditions, variant graphs differed in terms of their connectivity, with Hi-C 444 

graphs showing the greatest connectivity. Despite having simulated an equal number of 445 

reads for each mate-pair distance, the numbers of variant positions linked by such 446 

reads was different across conditions. We observed that the variant graph derived from 447 

Hi-C data (>1 kb inserts, no alignment filtering), despite having the lowest number of 448 

variant links, had the lowest mean and maximum path length (5.47, 11; Table 3). Path 449 

length was not correlated with distance within Hi-C variant graphs, in contrast to the 450 

mate-pair conditions (Figure 5). The lengths of paths between variant pairs in the mate-451 

pair graphs did increase with distance, reaching maximums of 71, 96, 94, and 111 in the 452 

5 kb, 10 kb, 20 kb, and 40 kb cases, respectively. We further examined the effect of 453 

alignment quality and completeness filtering and observed that in the latter case such 454 

filtering vastly reduced the rate at which variant positions occur within the same 455 

connected graph component. 456 

 457 

DISCUSSION 458 

 459 
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This study demonstrates that Hi-C sequencing data provide valuable information 460 

for metagenome analyses that are not currently obtainable by other methods. By 461 

applying Hi-C to a synthetic microbial community we showed that genomic DNA was 462 

associated by Hi-C read pairs within strains orders of magnitude more frequently than 463 

between strains. Hi-C reads associated genomic regions at distances not achievable 464 

with mate-pair or long-read sequencing technologies. The long-range contiguity 465 

information provided by Hi-C reads enabled us to perform species-level clustering of 466 

metagenome assembly contigs with perfect precision and recall scores when the input 467 

had been filtered sufficiently. We performed an exploration of the clustering parameter 468 

space to understand the factors affecting clustering quality and identified a number of 469 

key filtering parameters. Optimal filtering involved retention of only contigs that are large 470 

enough to contain (or occur near) a HindIII restriction site and furthermore to remove 471 

low-frequency contig associations that constitute a form of “noise”. Additional work is 472 

needed to develop methods to identify and remove “noise” from Hi-C datasets. Lastly, 473 

we compared the connectivity of variant graphs constructed from mate-pair and Hi-C 474 

read datasets, observing much greater connectivity in the latter case, illustrating the 475 

global nature of the Hi-C signal.  476 

 We also observed orders of magnitude greater rates of association between 477 

plasmids and chromosomes of their hosts than between plasmids and the genomes of 478 

other species. This indicates Hi-C can be used to study horizontal gene transfer. Given 479 

a metagenome assembly, Hi-C provides a means to link plasmid sequences to 480 

chromosomes of the host strain, and may provide the means to detect cases where 481 

plasmids have been transferred among co-existing species of bacteria. We have thus 482 

far demonstrated that Hi-C provides a signal of cell co-localization for the two plasmids 483 

present within the L. brevis genome. Alternative methods do not allow identification of 484 

which cells in a microbial community harbor such mobile DNA elements. Hi-C data has 485 

the potential to help quantify the dynamics of horizontal gene transfer and help 486 

characterize the spread of antibiotic resistance and virulence factors. It remains to be 487 

determined whether this signal will be sufficient to localize small, low-copy, or highly 488 

variable mobile elements within the species that contain them.  489 

The resolving power of Hi-C and related methods such as ChIA-PET (Fullwood 490 

et al., 2009) when applied to complex natural microbial communities is as of yet 491 

undetermined. In principle, as the number of species and genotypes in a community 492 

grows the amount of sequence data required to resolve species and strains also grows. 493 

This challenge is common to all metagenomic approaches and is not specific to the Hi-494 

C method described. Improvements on metagenomic analysis of complex communities 495 

may require integration of Hi-C data with other information sources such as sequence 496 

composition, phylogeny, and measurements of abundance.  497 

The problems of differentiating contigs originating from different species is similar 498 

to that of differentiating contigs originating from different chromosomes of the same 499 

species. Recently a study reported the use of Hi-C to perform genome scaffolding of 500 

several individual eukaryotic genomes, first by inferring chromosomal groupings of 501 

contigs and then ordering sequences along the chromosome (Burton et al., 2013). 502 

Markov Clustering of Hi-C association data may be used to cluster contigs into 503 

chromosomal groups without specifying the number of chromosomes a priori. This may 504 

be important for samples where the number of chromosomes (e.g. tumor samples), 505 
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species, or species abundances (e.g. environmentally-isolated microbial communities) 506 

are not known. 507 

Hi-C analysis can be applied to communities other than environmentally-isolated 508 

microbial communities, such as pools of BAC clones. Heterogeneous tumor populations 509 

are analogous in some ways to microbial communities and Hi-C may be applied to 510 

identify sub-populations therein. The problem of resolving the membership of variants in 511 

closely related strains (between different cells) shares some common features with the 512 

problem of differentiating closely related haplotypes within polyploid eukaryotic 513 

genomes (within the same cells). Recent work has demonstrated that Hi-C data can be 514 

used to phase haplotypes in a diploid organism (Selvaraj, R Dixon, Bansal, & Ren, 515 

2013). Our analysis indicates that the average degree of separation between variants 516 

within a Hi-C variant graph is dramatically lower than that in mate-pair variant graphs. 517 

This is significant because as the degree of separation between distant graph regions 518 

grows, error is compounded and the reliability of inferences regarding the phase of 519 

these regions declines. Our analysis thus indicates that Hi-C data provide an 520 

informative signal for the analysis of haplotype and strain mixtures.  521 
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 615 

 616 

TABLES 617 

 618 

 619 

Sequence Alignment % of Total Filtered % of Aligned Length GC #R.S. 

Lac0 10603204 26.17% 10269562 96.85% 2291220 0.462 629 

Lac1 145718 0.36% 145478 99.84% 13413 0.386 3 

Lac2 691723 1.71% 665825 96.26% 35595 0.385 16 

Lac 11440645 28.23% 11080865 96.86% 2340228 0.46 648 

Ped 2084595 5.14% 2022870 97.04% 1832387 0.373 863 

BL21 12882177 31.79% 2676458 20.78% 4558953 0.508 508 

K12 9693726 23.92% 1218281 12.57% 4686137 0.507 568 

E. coli 22575903 55.71% 3894739 17.25% 9245090 0.51 1076 

Bur1 1886054 4.65% 1797745 95.32% 2914771 0.68 144 

Bur2 2536569 6.26% 2464534 97.16% 3809201 0.672 225 

Bur 4422623 10.91% 4262279 96.37% 6723972 0.68 369 

 620 

Table 1. Species alignment fractions. The number of reads aligning to each replicon 621 

present in the synthetic microbial community are shown before and after filtering, along 622 

with the percent of total constituted by each species. The GC content (“GC”) and 623 

restriction site counts (“#R.S.”) of each replicon, species, and strain are shown. Bur1: B. 624 

thailandensis chromosome 1. Bur2: B. thailandensis chromosome 2. Lac0: L. brevis 625 

chromosome, Lac1: L. brevis plasmid 1, Lac2: L. brevis plasmid 2, Ped: P. 626 

pentosaceus, K12: E. coli K12 DH10B, BL21: E. coli BL21. An expanded version of this 627 

table can be found in Supplementary Table 2. 628 

  629 
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 630 

Inflationठ⃚ Precisionठ⃚ Recallठ⃚ #ठ⃚clustersठ⃚

2.0ठ⃚ 1ठ⃚ 0.19ठ⃚ 33ठ⃚

1.3ठ⃚ 1ठ⃚ 0.33ठ⃚ 25ठ⃚

1.125ठ⃚ 1ठ⃚ 0.98ठ⃚ 5ठ⃚

1.1ठ⃚ 0.96ठ⃚ 0.98ठ⃚ 4ठ⃚

 631 

Table 2. Markov clustering of metagenome assembly contigs using Hi-C data. A range 632 

of inflation parameters were applied, and the precision and recall for the resulting 633 

clusters was calculated as described in the text. An inflation parameter of 1.1 produced 634 

a near perfect clustering of contigs by species. 635 

  636 
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 637 

 638 

ठ⃚
Num.ठ⃚readsठ⃚ Maxठ⃚ Avg.ठ⃚ %ठ⃚Sameठ⃚c.cठ⃚

5ठ⃚kb,ठ⃚MPठ⃚ 10287315ठ⃚ 71ठ⃚ 14.81ठ⃚ 6.21ठ⃚

10ठ⃚kb,ठ⃚MPठ⃚ 7681515ठ⃚ 96ठ⃚ 24.45ठ⃚ 16.6ठ⃚

20ठ⃚kb,ठ⃚MPठ⃚ 4871227ठ⃚ 94ठ⃚ 27.58ठ⃚ 32.38ठ⃚

40ठ⃚kb,ठ⃚MPठ⃚ 4257896ठ⃚ 111ठ⃚ 37.19ठ⃚ 100ठ⃚

Hiૐ퀐Cठ⃚(all)ठ⃚ 16429505ठ⃚ 10ठ⃚ 5.11ठ⃚ 97.77ठ⃚

Hiૐ퀐Cठ⃚(>1ठ⃚kb)ठ⃚ 111525ठ⃚ 11ठ⃚ 5.47ठ⃚ 94.75ठ⃚

 639 

Table 3. Variant graph statistics. Connectivity statistics are shown for variant graphs 640 

constructed from various simulated mate-pair (# kb, MP) and Hi-C read datasets. Graph 641 

constructed from all Hi-C data are compared to those constructed using only Hi-C read 642 

pairs with inserts over 1 kb. The Hi-C variant graphs are highly connected in contrast to 643 

the mate-pair graphs that have both lower connectedness and lower rates of variants 644 

occurring in the same connected components.  645 

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.260v1 | CC-BY 4.0 Open Access | received: 28 Feb 2014, published: 28 Feb 2014

P
re
P
ri
n
ts



(Running head) Deconvolution of a synthetic metagenome with Hi-C 

 

 

18 

FIGURES 646 

 647 

 648 

 649 

Figure 1. Hi-C insert distribution. The distribution of genomic distances between Hi-C 650 

read pairs is shown for read pairs mapping to each chromosome. For each read pair the 651 

minimum path length on the circular chromosome was calculated and read pairs 652 

separated by less than 1000 bp were discarded. The 2.5 Mb range was divided into 100 653 

bins of equal size and the number of read pairs in each bin was recorded for each 654 

chromosome. Bin values for each chromosome were normalized to sum to 1 and 655 

plotted. 656 

  657 

0 500000 1000000 1500000 2000000 2500000

Hi2C read pair insert distributions

Insert distance in nucleotides

L. brevis ATCC367

P. pentosaceus ATCC25745

E. coli K12 DH10B

E. coli BL21(DE3)

B. thailandensis E264 chrI

B. thailandensis E264 chrII

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.260v1 | CC-BY 4.0 Open Access | received: 28 Feb 2014, published: 28 Feb 2014

P
re
P
ri
n
ts



(Running head) Deconvolution of a synthetic metagenome with Hi-C 

 

 

19 

 658 

 659 

Figure 2. Metagenomic Hi-C associations. The log-scaled, normalized number of Hi-C 660 

read pairs associating each genomic replicon in the synthetic community is shown as a 661 

heat map (see color scale, blue to yellow: low to high normalized, log scaled association 662 

rates). Bur1: B. thailandensis chromosome 1. Bur2: B. thailandensis chromosome 2. 663 

Lac0: L. brevis chromosome, Lac1: L. brevis plasmid 1, Lac2: L. brevis plasmid 2, Ped: 664 

P. pentosaceus, K12: E. coli K12 DH10B, BL21: E. coli BL21. 665 
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 667 

 668 

Figure 3. Contigs associated by Hi-C reads. A graph is drawn with nodes depicting 669 

contigs and edges depicting associations between contigs as indicated by aligned Hi-C 670 

read pairs, with the count thereof depicted by the weight of edges. Nodes are colored to 671 

reflect the species to which they belong (see legend) with node size reflecting contig 672 

size. Contigs below 5kb and edges with weights less than 5 were excluded. Contig 673 

associations were normalized for variation in contig size.  674 
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 676 

 677 

Figure 4. Hi-C contact maps for replicons of Lactobacillus brevis. Contact maps show 678 

the number of Hi-C read pairs associating each region of the L. brevis genome. The L. 679 

brevis chromosome (Lac0, a, Spearman rank correlation) and plasmids (Lac1, b; Lac2, 680 

c) show enrichment for local associations (bright diagonal band). Interactions between 681 

Lac1 and Lac0 (d) and Lac2 and Lac0 (e) are shown. All except Lac0 are log-scaled. 682 

Circularity of Lac0 became apparent after transforming data with the Spearman rank 683 

correlation (computed for each matrix element between the row and column sharing that 684 

element) in place of log transformation (a) indicated by the high number of contacts 685 

between the ends of the sequence. In all plots, pixels are sized to represent interactions 686 

between blocks sized at 1% of the interacting genomes. The number of HindIII 687 

restriction sites in each region of sequence is shown as a histogram on the left and top 688 

of each panel. 689 
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 691 

 692 

Figure 5. Relationship of distance to degree of separation in Hi-C and mate-pair variant 693 

graphs. The length of paths between random pairs of SNP sites in a SNP graph 694 

constructed from both Hi-C and mate-pair libraries of varying sizes (left; 5 kb, 10 kb, 20 695 

kb, 40 kb), smoothed using locally-weighted regression. 696 
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SUPPLEMENT 697 

 698 

Supplementary Tables 699 

 700 

 Cov. Contigs (scaff.) Bp assem. N50 (scaff.) N90 (scaf) Max. len.  
Contig. 
error 

Scaff. 
error 

Pct. 
assem. 

SOAP-1 5 11609 (1594) 15,512,802 14136 3427 160684  2 3  77.01 
SOAP-2 50 7687 (561) 15,606,703 87595 9083 379938  0 0 77.48 
SOAP-3 100 7687 (557) 15,577,164 87634 8552 379623  0 0 77.37 

 701 

Supplementary Table 1. SOAPdenovo assembly results. Statistics are shown for three 702 

assemblies, including the simulated coverage and the number of contigs (and scaffolds) 703 

present in the assembly. Assembly quality is reflected in the count of misassembled 704 

contigs and scaffolds (“contig error” and “scaffold error”). The percent of the total 705 

reference sequence size constituted by each assembly is also shown. 706 
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 708 

 709 

 Align. % of 
Total 

Filtered % of 
Align. 

Length GC #R.S. RE site 
% of tot. 

Align. / 
RE count 

A/R % 

Lac0 10603204 26.17% 10269562 96.85% 2291220 0.462 629 21.28% 16857.24 9.48% 
Lac1 145718 0.36% 145478 99.84% 13413 0.386 3 0.10% 48572.67 27.31% 
Lac2 691723 1.71% 665825 96.26% 35595 0.385 16 0.54% 43232.69 24.31% 
Lac 11440645 28.23% 11080865 96.86% 2340228 0.46 648 21.92% 17655.32 61.09% 
Ped 2084595 5.14% 2022870 97.04% 1832387 0.373 863 29.19% 2415.52 1.36% 
BL21 12882177 31.79% 2676458 20.78% 4558953 0.508 508 17.19% 25358.62 14.26% 
K12 9693726 23.92% 1218281 12.57% 4686137 0.507 568 19.22% 17066.42 9.59% 
E. coli 22575903 55.71% 3894739 17.25% 9245090 0.51 1076 36.40% 20981.32 23.85% 
Bur1 1886054 4.65% 1797745 95.32% 2914771 0.68 144 4.87% 13097.60 7.36% 
Bur2 2536569 6.26% 2464534 97.16% 3809201 0.672 225 7.61% 11273.64 6.34% 
Bur 4422623 10.91% 4262279 96.37% 6723972 0.68 369 12.48% 11985.43 13.70% 

 710 

Supplementary Table 2. Species alignment fractions (expanded table). The number of 711 

reads aligning to each replicon present in the synthetic microbial community are shown 712 

before and after alignment filtering, along with the percent of total constituted by each 713 

species. The GC content and restriction site (R.S.) counts of each replicon, species, 714 

and strain are shown. Total and fractional raw alignment counts adjusted by R.S. counts 715 

are also shown, constituting our best approximation of relative abundances of synthetic 716 

community members. Bur1: B. thailandensis chromosome 1. Bur2: B. thailandensis 717 

chromosome 2. Lac0: L. brevis chromosome, Lac1: L. brevis plasmid 1, Lac2: L. brevis 718 

plasmid 2, Ped: P. pentosaceus, K12: E. coli K12 DH10B, BL21: E. coli BL21. 719 
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 721 

 Bur2 Bur1 K12 BL21 Lac0 Lac1 Lac2 Ped 

Bur2 239305 4908 111 199 517 16 84 385 
Bur1 4908 161432 74 127 396 14 49 264 
K12 111 74 160137 244 252 5 26 222 

BL21 199 127 244 348021 497 7 61 458 
Lac0 517 396 252 497 2302389 10816 57786 1501 
Lac1 16 14 5 7 10816 31659 1085 28 
Lac2 84 49 26 61 57786 1085 138921 111 
Ped 385 264 222 458 1501 28 111 547694 

 722 

Supplementary Table 3. Raw metagenomic Hi-C association counts. The number of Hi-723 

C read pairs associating each genomic replicon in the mock community is shown 724 

without normalization. These data with normalization applied can be found in 725 

Supplementary Table 4. 726 
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 728 

 Bur2 Bur1 K12 BL21 Lac0 Lac1 Lac2 Ped 

Bur2 22375775 673634 15820 13067 4999 8418 9733 16050 
Bur1 673634 32523886 15482 12241 5620 10813 8334 16155 
K12 15820 15482 34791627 24423 3714 4010 4592 14108 

BL21 13067 12241 24423 16048911 3375 2586 4963 13409 
Lac0 4999 5620 3714 3375 2302389 588559 692463 6471 
Lac1 8418 10813 4010 2586 588559 93744228 707501 6569 
Lac2 9733 8334 4592 4963 692463 707501 19948758 5734 
Ped 16050 16155 14108 13409 6471 6569 5734 10180848 

 729 

Supplementary Table 4. Normalized association counts. Shown are the counts of Hi-C 730 

read pairs associating each pair of replicons included in the synthetic community, 731 

normalized as described in the methods. These data without normalization applied can 732 

be found in Supplementary Table 3. 733 
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 735 

 736 

Supplementary Figures 737 

 738 

 739 

 740 

Supplementary Figure 1. Illustration of the metagenome binning signal provided by Hi-741 

C. Two bacterial cells are illustrated, each containing a single circular chromosome. For 742 

one genomic region in each of the two species, examples of associations that are likely 743 

(green; red is “not likely”) to be derived from Hi-C are illustrated.  744 

  745 

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.260v1 | CC-BY 4.0 Open Access | received: 28 Feb 2014, published: 28 Feb 2014

P
re
P
ri
n
ts



(Running head) Deconvolution of a synthetic metagenome with Hi-C 

 

 

28 

 746 

 747 

 748 

Supplementary Figure 2. Visualization of the impact of parameter choice on the quality 749 

of clustering solutions. A small-multiples plot is showing 5x5 combinations of contact 750 

minimum (top to bottom; 0, 3, 5, 7, 9) and contig size minimum (left to right; 1,000, 751 

8,000, 15,000, 22,000, 29,000) thresholds. For each parameter combination, line plots 752 

show the quality (y-axis) of clustering solutions performed for inflation values in the 753 

interval [1,2]. The quality of clustering solutions is measured in terms their true-positive 754 

rate (red), false-positive rate (green), positive predictive value (blue), and negative 755 

predictive value (black) are shown. 756 
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 758 
Supplementary Figure 3. Hi-C contact frequency within L. brevis genome. Contact 759 

frequency is visualized as a heat map, after normalization and application of the 760 

spearman rank correlation (matrix elements are the spearman correlation of the row and 761 

column of which they are the intersection). Circularity is apparent in the elevated contact 762 

between either end of the reference assembly sequence. 763 
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 765 

 766 

Supplementary Figure 4. Hi-C contact map for Lactobacillus brevis plasmid 1. Contact 767 

maps show the number of Hi-C read pairs associating each region of the L. brevis 768 

plasmid 1. Contact values are Spearman rank correlation transformed following 769 

normalization. Pixels are sized to represent interactions between blocks sized at 1% of 770 

the interacting sequence. A minimal signal of circularity is apparent with enrichment for 771 

contact between the minimum and maximum positions within the reference assembly. 772 
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 774 

 775 
Supplementary Figure 5. Hi-C contact map for Lactobacillus brevis plasmid 2. Contact 776 

maps show the number of Hi-C read pairs associating each region of the L. brevis 777 

plasmid 2. Contact values are Spearman rank correlation transformed following 778 

normalization. Pixels are sized to represent interactions between blocks sized at 1% of 779 

the interacting sequence. A signal indicative of circularity is not apparent. 780 
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 782 

 783 

Supplementary Figure 6. Hi-C contact frequency within P. pentosaceus genome. 784 

Contact frequency is visualized as a heat map, after normalization and application of the 785 

spearman rank correlation (matrix elements are the spearman correlation of the row and 786 

column of which they are the intersection). Circularity is apparent in the elevated contact 787 

between either end of the reference assembly sequence. 788 
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 790 

 791 
 792 

Supplementary Figure 7. Variant graph illustration. Two examples of variant graphs 793 

(non-data illustration). Variant nodes (circles) are linked by edges (light grey lines) 794 

derived from read pair data with small and medium (Graph I) or small, medium, and 795 

large (Graph 2) inserts. A path between two nodes (start, end) is illustrated and this 796 

path is shorter in the graph representing the dataset that includes larger-insert reads. 797 
 798 
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