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Abstract

Sparse coding is an effective operating principle for the brain, one that can guide the discovery
of features and support the learning of assocations. Here we show how spiking neurons with
discrete dendrites can learn sparse codes via an online, nonlinear Hebbian rule based on the
concept of somato-dendritic mismatch. The rule gives lateral inhibition direct control over the
selectivity of dendritic receptive fields, without the need for a sliding threshold. The network
discovers independent components that are similar to the features learned by a sparse autoen-
coder. This improves the linear decodability of the input: combined with a linear readout, our
single-layer network performs as well as a deeper multi-layer Perceptron on the MNIST dataset.
It can also produce topographic feature maps when the lateral connections are organised in a

center-surround pattern, although this does not improve the quality of the encoding.

1. Introduction

There is much that animals have to learn from experience: the way the world behaves, the value
of things, how to act and how to react. These forms of learning work in different ways, but they
all rely, at some level, on the ability to make associations: across time, between sensorimotor
modalities, between events and rewards.

This is no simple task, as we discover when we try to build machines capable of the same

feats. Learning these associations is learning to perceive the world in a way that reveals some of
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its implicit structure — the entities it is made of, the mechanisms that couple them, the regularities
that matter in the agent’s ecological niche. The body and peripheral nervous system already go
some way towards organising perception (Lettvin et al., 1959). But the nervous activity induced
by the senses still does not tell much, at first sight, about what caused it: cochlear neurons respond
to their preferred frequency regardless of the nature of the sound; all sorts of visual scenes cause
the same retinal cell to fire.

To make sense of sensory stimulation, the brain must discover patterns in it. That is the task
of the central nervous system, the cortex in particular, and the process involves the construction
of a neural code.

The coding strategies available to the brain are diverse. At one end of the spectrum are dense
distributed codes, where every neuron participates in the encoding of every input. At the other
end are local codes, where each neuron codes single-handedly for an entire input pattern. Neither
of these two extremes are ideal for associative learning. Dense codes make it hard to distinguish
situations or percepts that call for different responses. Purely local codes make it hard to gener-
alise, because similar percepts may be encoded as entirely distinct patterns of activity.

Associative learning requires a middle ground: a transformation through which percepts that
are similar in some ways, and distinct in other ways, are encoded as partially overlapping patterns.
The overlap will support general associations, while other subsets of the code may be used for
specific ones.

Such a transformation results in what is known as sparse codes (Olshausen and Field, 2004;
Foldiak, 2013): codes that are distributed (each stimulus is encoded over several units), but nei-
ther dense (because each unit responds only to a specific feature) nor local (because each unit

participates in coding different stimuli).

From suspicious coincidences to interesting projections

Learning these sparse codes is an unsupervised problem. There is no a priori definition of which

features should be used to encode a given set of stimuli, and not all types of features are equally
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useful; some are trivial in the sense that they encode the input well in information-theoretic
terms, but do not reveal any ecologically-relevant structure. Barlow (1987) suggested that the
cortex might be looking for suspicious coincidences: patterns of activity that occur more often than
one would expect if the coincidence was due to pure chance. This links the discovery of features
to the concept of independent components' in statistical learning (Linsker, 1988; A. J. Bell and
Sejnowski, 1995).

How can a neural network discover these suspicious coincidences? In the classical framework
of artificial neural networks, each unit computes a projection y = ¢(w - Z) of its inputs & onto
its weight vector . The hunt for suspicious coincidences becomes a search for unusual projec-
tions. And since most random projections of high-dimensional data tend towards the Gaussian
distribution (Diaconis and Freedman, 1984), it turns out that there is an effective heuristic: find
those that deviate the most from Gaussianity.

That heuristic is used in Projection Pursuit and in BCM theory: a stochastic gradient descent
rule tunes the weights of the neuron so as to maximise the tails of the output distribution (the
third and fourth moments, skewness and kurtosis). This yields receptive fields that encode, for
instance, the orientation of edges in natural images (Bienenstock et al., 1982; Cooper et al., 2004).

But Hebbian learning in its simplest, linear form Aw o zy is not guaranteed to discover non-
Gaussian projections. In many cases it will only find projections that maximise variance, such
as principal components (Olshausen and Field, 1996; Cooper et al., 2004). To discover suspicious
events requires a form of nonlinear Hebbian learning (Brito and Gerstner, 2016), so that inputs
that are correlated with the tail of the activity distribution are potentiated preferentially.

One way to achieve this is to use a nonlinear Hebbian term of the form Aw o z (y), where
() is a non-monotonic function </~ of the post-synaptic activity. An example is the the y(y — 6)z
term in the BCM rule (Cooper et al., 2004), or the relationship between intracellular calcium levels

and the direction of plasticity in biological neurons (Shouval et al., 2002).

! Although complete independence is neither likely nor required; it is enough if the mutual information between the patterns is lower than
between their constituent dimensions. As pointed out by Graham and Field (2007), Independent Component Analysis is unlikely to find perfectly
independent components in natural data.
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The same result can be obtained with a linear Hebbian term through the effect of the output
nonlinearity ¢, provided that it has a suitable shape. This is the mechanism used by Foldiak (1990),
Triesch (2007), Savin et al. (2010) and Zylberberg et al. (2011), among others.

In both cases, the nonlinearity must also be kept aligned with the activity distribution. This is
usually done with an adaptive threshold that controls the inflexion points of the €2 or ¢ function.

The work of Brito and Gerstner (2016) sheds light on the reasons why such diverse models can
produce similar results: individual neurons become selective feature detectors either because they
define an explicit {2 term governing synaptic plasticity, or because the interaction of the plasticity
rule with the somatic response introduces an implicit €2 relationship that constitutes the effective

Hebbian nonlinearity of the model.

Competition

Nonlinear Hebbian learning explains how a single neuron can become a selective feature detector.
A sparse coding network, however, needs to learn not just one feature detector, but a set of feature
detectors that work together to encode the input. It is no use if all units learn the same feature;
we need a mechanism that lets each neuron know whether it is sufficiently different from the
others. One way is to have the neurons compete to respond, a paradigm known as Competitive
Learning (Rumelhart and Zipser, 1985).

The simplest form of competition is to select a fixed number of winning neurons for each
stimulus. This winner-take-all scheme is used, for instance, in the self-organising map (Koho-
nen, 1982). For a sparse coding network, it has the unwanted side-effect of fixing the number of
features that encode each stimulus.

Instead, in the networks of Marshall (1990), Intrator (1990), Foldiak (1990), and later models
that use continuous (Falconbridge et al., 2006) or spiking neurons (Savin et al., 2010; Zylberberg
et al,, 2011; King et al., 2013), competition is implemented by recurrent inhibitory connections

between the output units, also called lateral inhibition. These connections learn in a Hebbian
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fashion? and since they are inhibitory, they act to decorrelate the activities of the output neurons.
Initially similar receptive fields will drift apart — either they become narrower until they no longer

overlap, or one of the cells picks up a different feature.

Discrete dendrites

The models mentioned so far mix the recurrent inhibition with the feedforward input before the
output y is computed. The learning rule has no way to distinguish the two; it is only through
deviations from mean activity — as measured by the adaptive threshold — that competition can
shape the development of receptive fields.

There is, however, no reason why the feedforward input and the recurrent inhibition could
not be counted separately, and used to control the learning in different ways.

The idea is biologically plausible. The majority of excitatory inputs reach the dendrites, whereas
several studies have found a greater density of inhibitory synapses on the soma and axon (An-
dersen and Eccles, 1964; Spruston, 2008). The situation is in fact more complex than a simple di-
chotomy. The many classes of cortical inhibitory neurons target different locations on pyramidal
cells, including the dendrites (Kubota et al., 2016). Nevertheless there are classes of interneurons
that inhibit the somas specifically — basket cells are one example.

Our hypothesis is that some types of recurrent inhibition could therefore suppress somatic
spikes without affecting the dendritic potentials. By comparing its own activity with the back-
propagating action potentials it receives from the soma, a dendrite could thus estimate the amount
of somatic inhibition and guess how many other cells are competing to respond to the same in-
put — an information which could modulate learning in the dendrite: we know that inhibitory
inputs can act as a switch for excitatory plasticity and that their effects depend on the location
of inhibition (Bloss et al., 2016; Wilmes et al., 2016).

The idea, nonetheless, calls for a move away from point neurons, so that the feedforward and

recurrent inputs can be distinguished. Kérding and Konig (2000) proposed one such model, where

% Sometimes called anti-Hebbian because the connection is inhibitory. Nonetheless the magnitude of the weight changes according to the same
law that governs excitatory plasticity in Hebbian theory. We prefer to reserve the term anti-Hebbian for cases where the more neurons A and B
fire together, the less A influences the firing of B — as happens for instance in the cerebellum (C. C. Bell et al., 1997).
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the blockage of backpropagating action potentials by lateral inhibition can switch the direction of
plasticity at the dendritic synapses. More recently, Urbanczik and Senn (2014) described a two-
compartment model based on the notion that the dendrite attempts to predict somatic spikes.
Direct inputs to the soma are not seen by the dendrite, and this generates a prediction error that
is used as a teaching signal for synaptic plasticity.

Here we apply this principle of dendritic predictions to a sparse coding network, and let the
effective Hebbian nonlinearity emerge from somato-dendritic prediction errors caused by lateral
connections. This puts lateral inhibition in direct control of the sparseness of the receptive fields,
and competition can therefore decorrelate the activity of the neurons without the mediation of a

sliding threshold.

2. Neural Model

Our network is a single layer of N neurons with separate dendrites (rate-based) and somas (spik-
ing). Dendrites receive the feedforward input and function as feature detectors. Somas mediate
the competition to respond: each soma receives the output of its respective dendrite and also
receives direct inhibition and excitation from all the other neurons. Thus the feedforward input
and the recurrent inhibition are spatially segregated: the first targets the dendrites, the other
targets the somas.

Input vectors of length M are presented to the dendrites on a 50 ms clock. The resulting
dendritic activation is kept constant while somas compete to respond over the 50 ms period.
During that time spikes propagate through the recurrent pathway and evoke varying currents at
the somatic synapses. At the end of the competition period, we count the spikes emitted by each
neuron and apply the learning rules for both the feedforward and the recurrent synapses. Then
the next input pattern is presented, etc.

We integrate all differential equations with the Euler method. The spike-based models (somas

and somatic synapses) use a timestep dt = 0.5 ms.
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Figure 1. Structure of the network. O excitatory synapse; @ inhibitory synapse; © non-plastic excitatory synapse;
fffeedforward pathway; rc recurrent pathway.

While it is common for spiking neuron models to be defined with units and quantities that
match experimental data (mV / pS / nA) and to have a negative resting potential, here we follow
the conventions of artificial neural networks: variables are dimensionless (except time) and the

resting potential is set to 0.

Dendrites

In our model, the dendrites function like the neurons of a Perceptron-type network. They com-
pute a projection of the feedforward input vector & onto their weight vector wy; giving the den-
dritic activation g = wy - 7. Weights may take positive or negative values, corresponding to
feedforward excitation and feedforward inhibition, respectively.

The dendritic output y is a nonlinear, non-negative function _ of the activation:

0 ifg<o, (a)
y=0(9) = (1)
Yo+ yi(g—0,) ifg>0, (b

7
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The choice of that nonlinear transfer function aims to capture several aspects of dendritic re-
sponses in biological neurons, summarised in Antic et al. (2010).

First (eq. 1a), weak excitatory potentials propagate passively and attenuate before they reach
the soma. Dendritic inhibition does not affect the somatic membrane potential either (Kubota et
al., 2016).

Second (eq. 1b), inputs that reach a threshold trigger regenerative events, known as dendritic
spikes or plateau potentials, which are able to elicit somatic spikes reliably.

Although plateau potentials have a constant, saturating peak amplitude (Polsky et al., 2004),
their duration, and therefore the number of post-synaptic spikes evoked by the event, scales with
the magnitude of the suprathreshold input (Milojkovic et al., 2005, fig. 2G). The variable y aims
to capture that relationship, despite the fact that our model enforces a constant duration of 50 ms
for plateau potentials: it models not the amplitude of dendritic spikes but rather the integral of
the currents evoked by a stimulus.

As aresult ¢ takes the form of a step-linear transfer function, capturing both the binary thresh-
old effect and the proportional suprathreshold response. In practice we set the offset y, slightly
above the rheobase of the soma so that at least one spike is elicited when g = 0, (in the absence
of somatic inputs), and the slope y; so that peak somatic responses consist of a burst of around
five spikes.

The parameter ¢, controls the response threshold and can be set to zero to model a scenario
where excitation and inhibition are in balance, and slight deviations from equilibrium are suffi-
cient to trigger dendritic spikes. Higher values of 0, yield sharper receptive fields.

Note that the initial distribution of the feedforward weights must be set so that naive dendrites
can already respond to some patterns. This is because our model does not include the kind of
developmental or homeostatic mechanisms that would ensure that all dendrites get sufficient

inputs to bootstrap receptive field formation.
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Somas

We use a leaky integrate-and-fire (LIF) model for the somas. The membrane potential u varies as
follows:
du

Saiagy S 2
Tdt d+ U (2)

and decays to zero in the absence of inputs. /; and I are the currents coming from the dendrites
and from the somatic synapses, respectively. Each neuron has a single dendrite in the present
model, therefore the total dendritic current is simply /; = y.

A spike is emitted whenever u > 6,. This triggers a reset of the membrane potential: u <+ p.
A hard refractory period follows, and integration of the membrane potential is suspended for a
duration ¢, = 4ms, during which ‘2—? = 0. Another reset happens before each new input: the
membrane potential © and any pending refractoriness are set to 0.

The somatic output z computed over each competition period ¢, — ¢; is a sum of the spikes
emitted by the soma, weighted such that a spike that occurs at the start of the window contributes
1 to the total and a spike that arrives at the end of the window contributes 0:

t1
z:/ Slto. 1) 4y (3)
to tl - 2fO

where S(t¢, t) is the number of spikes emitted between the times ¢y and ¢. This provides a continu-
ous measure of somatic activity despite the quantization inherent to all-or-none action potentials.
Feedforward Synaptic Plasticity

Our feedforward plasticity rule is based on dendritic predictions of somatic activity, as in Ur-
banczik and Senn (2014). Before the competition, each dendrite computes a prediction 2’ of the

somatic activity z that should result from the dendritic activation g, using a logarithmic approx-
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imation of the LIF somas’s response curve (I-f, or rather I-z in our model):

Z2oln (1421 (g —0,)) ifg>0,
7= (4)

0 otherwise
We set the parameters 2 and 2; so that the dendritic prediction is fairly accurate in the absence of
somatic inputs and at typical activity levels (g — 0, < 3). At the end of the competition period, the
dendritic expectation is compared with the actual somatic activity z and the difference €2 governs

the direction of synaptic plasticity in the dendrite:

Q=2z—7 (5)

The weight wy of each feedforward synapse is updated according to three different terms:

Apepy = 82 nonlinear Hebbian term

W = W+ N Depy

Agee = kwymax(€2,0) decay term
(6)
W <— W — 77ffAdec

Aree = A gmax(€2,0) regularisation term
wyy 4= wyy — sign(wygy) min (1 Ay, abs(wy))

The Hebbian term is post-synaptically gated by (2. The decay term keeps the weights bounded,
and the regularisation term makes them sparse; these two terms are only applied when the den-
drite is being potentiated ({2 > 0). The learning rate is given by 7, and the relative weighting of
the decay and regularisation terms compared to the Hebbian term is set by x and A, respectively.

The three updates are applied one after the other, because the regularisation term requires
special care to avoid overshooting zero: the sign and magnitude of the weight must therefore be

measured after applying the Hebbian and decay terms.
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A standard choice for a regularisation term that encourages sparseness would be to penalise
the /1 norm of the weight vector. That would correspond to a biological mechanism based on
the metabolic cost of keeping synapses functional. Since the norm of the weight vector is not
readily available in our implementation, we use the activation g instead. That may correspond to
one of several activity-induced mechanisms (such as NMDA receptor activation) known to exert

a negative feedback on synaptic potentiation (Abraham, 2008).

Recurrent Synapses

Recurrent excitation and inhibition are conveyed by lumped conductance-based synapses. Each
synapse has its own weight w,., but a single state variable 7,. models the total active conductance
of all the synapses of the same class (excitatory/inhibitory) in each soma. The dynamics of r,. are

as follows:

d

Tre—Tre = —Tpe exponential decay

dt (7)

Tre <= Tpe + Wye(pre) on spike from neuron pre

The active conductance is reset to zero before every new input: r,. <— 0. The synaptic current /,,

varies according to a scaling factor g,., the somatic potential u and the reversal potential F,.:

Gre = grc Tre
(8)
]rc = .grc(Erc - ’LL)

inh
re

For inhibitory synapses, E" = 0. For excitatory synapses, £ > 6,. The total current flow

from somatic synapses into the soma is I, = [%° + [,

Recurrent somatic inhibition

Recurrent inhibition follows a global, all-to-all connection pattern with the exception of self-
connections, which are not allowed. For the sake of simplicity these are direct connections be-

tween the somas of principal cells, without the mediation of inhibitory interneurons; these could
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» be added in future work, following the example of King et al. (2013) who complemented the
» network described in Zylberberg et al. (2011) with a separate inhibitory population.

inh

rc

26 Recurrent inhibitory synapses are plastic. The weight w"" of the recurrent synapse between

» each (pre, post) pair of neurons is updated according to the following learning rule:

z(pre) z(post)> — w™ if z(pre) > 0

re

Ainh ==
0 otherwise )

inh inh inh
Wy = Wy + Ty Ainh

= Recurrent weights are restricted to positive values, but the net effect is inhibitory because of the

» parameter K" in eq. (8).

i
210 The rule is pre-synaptically gated, since weights can change only when the presynaptic neuron
. is active. It is not symmetrical: the rate of change of the weight from a weakly active neuron to
. a strongly active one (z(post) > 1) is greater than that of the reciprocal connection. The fact that
o the rule is not post-synaptically gated, unlike the feedforward learning rule, ensures that lateral
« inhibition to a silent cell will eventually vanish, allowing the cell to pick up a pattern of its own.
«s This is critical for the self-organisation of the network, as discussed in Marshall (1990).

inh

216 The learning rate 7,

is set so that the effective modification speed for recurrent inhibitory
. synapses is much faster than that of feedforward synapses, otherwise the network is unstable.
« While very fast plasticity rates may seem implausible, there is some evidence for inhibitory plas-

»  ticity operating on the order of seconds in the hippocampus (Hartmann et al., 2008). Fast effective

= plasticity is also plausible if it involves a large number of synapses (Yger et al., 2015).

» Recurrent somatic excitation

= The final step is to add recurrent somatic excitation to our model. Without it no receptive fields
» would develop, because the dendritic prediction z’ could then only be (a) correct (2 ~ 0), in
= the absence of inhibition, or (b) overestimated (2 < 0), when the soma is inhibited. Recurrent

= excitation allows () to become positive, provided that recurrent inhibition is sufficiently low.

12

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.2595v1 | CC BY 4.0 Open Access | rec: 15 Nov 2016, publ:




257

258

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

276

277

These synapses are non-plastic; the synapse strength w®* between each (pre, post) pair of
neurons is constant and defined as follows.

For experiments where the neurons form a topographic map, the connectivity pattern of recur-

exc

e is given by a normalised Gaussian

rent excitation is all-to-all within a local neighbourhood. w

kernel: .
e dist(pre, post)? dist(j, post)*
Wy = exp | — Z exp | ——— 5 (10)
Utopo j Utopo

where dist(pre, post) is the Euclidean distance between neurons pre and post on the map, and 7,
defines the size of the neighbourhood. Boundary conditions are periodic and self-excitation is
allowed.

For all other experiments, the size of the neighbourhood is reduced to the point where only

self-connections are allowed:

1 if pre = post
W' = (11)

re

0 otherwise

In that case the effect of self-excitation is equivalent to a systematic underestimation of the soma’s
current-frequency response curve by the dendrite; the same outcome could be achieved without

recurrent excitation through the parameters 2, and 2;.

3. Results

Inhibitory control of the effective Hebbian nonlinearity

First let us look at how an effective Hebbian nonlinearity emerges in our model. The relevant term
is the post-synaptic factor {2 = z — 2’ in the learning rule for the feedforward synapses. To study
how (2 varies as a function of the feedforward and recurrent inputs, we isolate a single neuron
and replace the dendritic activation g and somatic inhibition ™" with constant inputs that we
can manipulate (we retain somatic self-excitation, but no lateral excitation). We then compute
the Selectivity Index, as defined in Brito and Gerstner (2016), for the various combinations of

values. This index measures the learning rule’s preference for a heavy-tailed activity distribution
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(Laplace) over a Gaussian distribution of the same mean and variance. The results are summarised
in figures 2 and 3.

In the absence of somatic excitation or inhibition, dendritic expectations are more or less
correct (2’ & z) and the Q(g) relationship is flat: __. No learning takes place.

Now add somatic self-excitation. This creates more somatic activity than the dendrite expects,
and the () term increases with g above the threshold: _~". This rule is only selective if the dendritic
threshold ¢, is located towards the tail of the dendritic activity distribution (fig. 3, left). This is
typically not the case in our network, because there is no mechanism in place to enforce that
constraint and (g) will tend to overtake 6,. As a result neurons with only self-excitation will
acquire broad, unselective receptive fields.

Finally, add somatic inhibition. €2 becomes negative for low values of g, where recurrent inhi-
bition is stronger than self-excitation: ~~~. Increasing somatic inhibition shifts the zero-crossing
point to the right (fig. 2), and widens the range of input current distributions for which selective
receptive fields can develop (fig. 3, middle and right). This also means that more competition
will result in narrower receptive fields, providing a mechanism through which the network can

self-organise to cover the entire feature space.

3.0 - - - - - - - - - - - - - - - - 1.0
2.5 1+ 0.5
2.0 4
0.0
N 1.5 a
W
- -0.5
1.0
0.5 1 F-1.0
0.0 1 T \ \ T \ \ T \ T \ \ \ T \ \ -1.5
-0.2 00 0.2 04 06 08 1.0 1.2 14 1.6 -0.2 00 0.2 04 06 08 1.0 1.2 14 1.6

g—0, g0

Figure 2. Effect of somatic excitation and inhibition on the Hebbian nonlinearity. Each labeled curve corresponds to
a particular value of I ,’?h. Dendritic prediction in red, actual somatic values in black. Left: Because of self- excitation,
the somatic response (2) is steeper than predicted by the dendrite (z’), while somatic inhibition shifts it to the right.
Right: The prediction error €2 produces the effective Hebbian nonlinearity. A smaller timestep dt = 0.005 ms was
used while generating this figure, to make the curves smoother.
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Figure 3. Selectivity Index for various levels of somatic inhibition and dendritic current distributions. Positive values
indicate rules that can form selective receptive fields.

Solving the Bars Problem

We revisit a task used notably by Foldidk (1990) to test their network. The input patterns in
that task consist of horizontal and vertical bars; each bar can be present or absent with a certain
probability and independently of others bars. This is considered a nonlinear ICA problem, because
the bars overlap non-additively: pixel values are zero where there is no bar, and one where there
is at least one bar.

The expected behaviour of the network is straightforward. The independent components of
the input are individual bars, therefore there should be at least one neuron that codes specifically

for the presence of each particular bar.

We consider three variants or perturbations of the task, which were also explored in Spratling (2011).

The first variant adds Gaussian noise to each pixel, with the final value clipped to the range [0, 1].
This amounts to a substantial corruption of the input patterns; the author himself struggles to
discern individual bars. The second variant introduces unequal probabilities for horizontal and
vertical bars, and the third variant changes the shape of the pattern from a square to an elongated
rectangle, so that horizontal bars are longer than vertical bars. These test for a possible failure
mode of competitive learning models, where the largest or most frequent features invade the en-
tire coding space and the network becomes blind to other patterns. Finally we also combine all

three variants together (figure 4).
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Figure 4. Sample 8 x 16 bars patterns. Bar probabilities: 0.12 (horizontal), 0.06 (vertical). Top: without noise.
Bottom: with Gaussian noise (z = 0,02 = 0.3).

The network succeeds in learning a full set of single bars in all cases, even when all the pertur-
bations are combined (figure 5). Learning speed is affected by the various perturbations: smaller
bar sizes, lower bar probabilities and higher noise variance all delay the formation of the receptive
fields, considerably so in the case of the noise. Note that throughout this paper we use the feed-
forward weights of each neuron as a proxy for its receptive field; this did not differ appreciably

from measures based on spike-triggered averages.

Figure 5. Receptive fields (sorted by type) learned by a network (N = 64) trained on 36,000 noisy patterns. Some
neurons learn the full set of 24 bars (top rows), the other receptive fields are mostly random. This network uses
stronger lateral inhibition than in the rest of the paper to avoid redundant bars: gi"* = 30/N.
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Learning from MNIST handwritten digits

We now turn to a more complex dataset, the MNIST database (LeCun and Cortes, 1998). This
dataset consists of 70,000 grayscale images of handwritten digits that have been normalised and
centered in a 28x28 pixel frame. It is divided into a training set of 60,000 images and a testing set
of 10,000 images; we use only the training set for learning receptive fields. Each pattern is shown
only once during training, unless otherwise indicated. We apply random translations in the X
and Y axis to each pattern, drawn from the discrete uniform distribution #/{—1,1}. A sample
of the training patterns is shown in figure 6. The MNIST dataset contains contiguous blocks of
digits by the same writer; we do not randomise these away, because such runs occur in natural

data and online learning algorithms should be able to deal with them. Instead we randomise the

#317]010[413]3] 7
AgMI /7]l

Figure 6. Sample of the MNIST training patterns.

starting position.

S\
ol4]3
EED

AN

The MNIST dataset is more complex than the bars problem of Foldidk. There is more variability
and it is not known a priori what the independent components of handwritten digits are. One
can expect that each pattern must be decomposed into a greater number of components, and that
these components overlap with each other more, than in the bars problem.

The results are shown in figure 7. The independent components learned by our network re-
semble pen strokes: straight lines delimited by inhibitory margins and curved lines surrounding
an inhibitory center. A few pixel-like blobs appear in the periphery of the 28x28 frame, where
data is rare since digits are centered. The early stages of receptive field development give us a clue

as to how these pen strokes form: each receptive field starts as a more-or-less complete digit and
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w then shrinks to a smaller fragment that is also part of other digits (figure 8). This process depends
w primarily on the regularisation parameter \: the higher the value, the smaller and simpler the

w receptive fields.

(b) A= 0.0 © A=0.2

Figure 7. Receptive fields after presenting 60,000 MNIST digits. Each plot shows a subset of a network (N = 484)
trained with different values of the regularisation parameter \. Receptive fields are normalised individually: middle
gray is neutral, lighter colours are excitatory, darker colours are inhibitory.

341 Interestingly, these features are similar to those extracted by various implementations of sparse
« autoencoders, for instance Makhzani and Frey (2013), despite significant differences in the net-

« work architecture and learning rule.
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Figure 8. Evolution of four selected receptive fields during training. In the early stages (left) one can recognise
individual digits (7, 3). After training (right) the receptive fields become selective for smaller components that are
found in several classes of digits.

The network’s activity is sparse and average firing rates differ across neurons, as shown in
figure 9. Feedforward weights converge smoothly. The fine temporal structure visible in the spike
raster reflects the blocks of digits written in the same hand, and disappears when the dataset is
randomised.

Our implementation takes 2 to 3 minutes to train a network of 484 neurons on 60,000 MNIST
patterns, using one core of an Intel® Core™ i7-2635QM and single-precision numerical kernels,

compiled to SIMD vector instructions with the ispc compiler (Pharr and Mark, 2012).

Reconstructing MNIST digits

With the MNIST dataset, evaluating the quality of the learned code is not as simple as counting
bars in the network’s receptive fields. Instead, we come back to the idea that the goal of sparse
coding is to produce a transformation of the input that preserves information while improving de-
codability, linear decodability in particular. First we ask how well a linear model can reconstruct
the input patterns from the network’s output.

The process has four separate phases: (1) First, we train the network’s receptive fields with one
presentation of the training set. (2) Then, we disable weight updates and go through the training
set once more while recording the network’s responses. This generates 60,000 feature vectors.
(3) Using stochastic gradient descent, we compute regression coefficients () for a linear model
that maps these feature vectors back to the corresponding input patterns. (4) Finally, we test the

reconstruction performance using the 10,000 patterns of the testing set: each test pattern is first
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Figure 9. Spike raster (top) and evolution of the feedforward weights wy (bottom) during the presentation of the
60,000 training pattern (20 patterns per second of simulated time). The alternating bands in the detail plot indicate
successive input patterns. The plots on the left use nonlinear color maps (spikes: d°-°, weights: log(1 + d°°) to
accommodate the high dynamic range.

presented to the sparse coding network, and we use the resulting feature vector to reconstruct
the input using the coefficients learned at step 3.
The reconstruction for each pixel 7 is , = max <Z i (Qijzj) O) and the gradient descent rule

is as follows:

Qij + Qij + gz, — 2))2; (12)

with the learning rate n, = 1 x 1072

Quantifying the reconstruction quality for our images of handwritten digits is difficult: pixel-
wise errors that affect the underlying structure of the digits should be given a higher weight
than those that don’t, but we lack a formal definition of that underlying structure — in fact,
that is precisely what our network is trying to discover. We could attempt to compute some

measure of mutual information between the input patterns and the reconstructions, but that is
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» not straightforward in the multivariate case with high-dimensional data. Instead we fall back to
+ showing a small subset of the patterns for visual comparison (fig. 10).

Input Readout Most Active Units

Figure 10. Sample reconstructions of MNIST digits, showing the receptive fields of the 20 most active neurons (sorted
and normalised by firing rate).

w Classifying MNIST digits

v The second experiment tests whether the learned encoding is suitable for associative learning,
» and in particular whether it is linearly decodable: we compare how well a linear classifier can
w associate digit labels to the feature vectors, versus the raw input patterns.

9 The MNIST database has been used as a benchmark for classification algorithms, therefore we
w can also compare the performance of our model to that of others. However, our intent here is
w not to advance the state of the art in classification, but merely to test whether the sparse code
w learned by our network is more linearly separable than the input patterns.

o The method is the same as in the reconstruction task, but we train a linear Support Vector
w Machine (SVM) to predict the class labels instead of reconstructing the input patterns. We use the

w LinearSVC implementation from scikit-learn (Pedregosa et al., 2011) with the default parameters
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Linear SVM kNN

raw input 82+0.0% 2.8%
features (N = 484) 26+0.1% 3.6%01%
features (N = 784) 26+02% 34+0.1%
features (N = 784, 040po = 0.5) 38+02%

features (N = 784, random) 51+0.2%

Table 1. Error rate for various classifiers and input transformations (for non-deterministic methods we show the
mean and standard deviation over 10 runs, rounded to 1 decimal).

(¢ penalty, squared hinge loss). We also evaluate a k-Nearest Neighbours (kNN) classifier (k = 3,
weighted by Euclidean distance). A non-parametric method, kNN is often effective despite its
simplicity; its main drawback is that it is very expensive in computations and in memory. Here
it serves as a baseline and as a control for parametric methods.

There is one potential confound to be aware of: the possibility that our network improves clas-
sification performance not because it learns a particularly good encoding of the input, but simply
because it adds a nonlinear projection step. This is how the kernel trick improves the perfor-
mance of a nonlinear SVM, and we are reminded of a long history of neural networks that make
use of random hidden weights (Wang and Wan, 2008). To control for this we also need to run
a network without coherent receptive fields. We tested several configurations of untrained net-
works and networks where the weights were shuffled after learning; the one that performed best
had random feedforward weights (w as per the initial distribution) and no recurrent inhibition
(with = 0).

Results can be seen in table 1. The combination of sparse features and linear SVM has a lower
error rate than the linear SVM alone. According to the results collected by LeCun et al. (1998), that
makes it comparable to a multilayer Perceptron with about the same number of neurons and two
hidden layers. It is expectedly worse than convolutional networks — these can take advantage
of spatial invariants, which our network ignores. As for random nonlinear projections, they are
indeed better than the raw input, but not as good as trained features; this confirms that our
learning rule is doing something useful.

In contrast, the error rate of the kNN classifier is worse when using the feature vectors. We

do not analyse that result further since our focus is on linear decodability, but offer a tentative
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explanation: sparse codes do not help the classifier because the kNN algorithm does not rely on

linear separability; the transformation is also not completely lossless.

Learning topographic maps

In several mammalian species, the neurons of the primary visual area are organised into feature
maps with smoothly varying receptive fields (Hubel and Wiesel, 1962; Mountcastle, 1997). Some
neural network models generate similar maps through a center/surround organisation of the
lateral connectivity: a neuron receives net excitation from its immediate neighbours and net
inhibition from neurons further away, in a way that is reminiscent of the self-organising map
of Kohonen (1982). See for instance the work of Linsker (1986), or, more recently, Butko and
Triesch (2007) and Stevens et al. (2013).

Our model already incorporates recurrent excitation, therefore we can easily check whether
imposing a topographic pattern on these connections, as per equation (10), would also yield fea-
ture maps.

The results are shown in figure 11. The receptive fields are indeed organised into patterns that
resemble the pinwheels of smoothly varying features seen in cortical maps. Individual receptive
fields are not obviously different from those learned with self-excitation only, but they seem less

diverse. Classification performance is also worse compared to the non-topographic case (table 1).

Response to input deprivation

In networks with a sliding threshold, removing the feedforward input induces a compensatory
adaptation of the threshold that eventually causes the neurons to respond to background noise,
erasing their receptive fields and inducing large transients when the feedforward input is re-
established.

Since our model lacks an adaptive threshold, one might wonder how the network reacts to

the same scenario. We train a network on the MNIST dataset, this time with additive Gaussian
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Figure 11. Receptive fields learned with topographic recurrent excitation (N = 484, 0, = 0.5)

noise. Once receptive fields have stabilised, we interrupt the stream of MNIST digits, showing
only background noise for a period of time before re-establishing the normal input.

The input deprivation protocol does induce a compensatory response in our network (fig-
ure 12). This is evident when comparing the spike raster plots just after the input is turned off, and
just before it is turned back on: most neurons eventually starting responding to the background
noise. Receptive fields start to fade but their structure is preserved; they recover quickly when

the input is re-established. Activity transients are limited in duration and amplitude: sparse re-
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Figure 12. Response of a pre-trained network to input deprivation in the presence of noise. MNIST digits with a
Gaussian noise overlay (u = 0.0, o = 0.3, final value clipped to [0, 1]) are presented as usual until ¢ = 1000 and
after ¢ = 2000. In-between, only noise is presented to the network. Top: receptive fields and activity of the first 144
neurons of the network at selected points in time. Spike raster plots show 10 seconds of activity. Middle: sample
input patterns. Bottom: evolution of the feedforward weights.

sponses are retained throughout the transitions. Note that without noise no compensation would

occur, because weights don’t change unless z > 0 or y > 0.

Adaptation to changes in input statistics

The situation is different when, instead of just turning off the input, we alter its underlying struc-
ture. One kind of change is to freeze the input and present the same pattern over and over again.
This causes a small number of neurons to change their receptive fields to match that pattern, with
the other neurons remaining inactive. On the other hand, if the whole training dataset is replaced

by another one with different statistics, extensive reorganisation occurs, as shown in figure 13.
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(a) before (b) after

Figure 13. Left: sample receptive fields learned on the full MNIST dataset. Right: receptive fields of the same
neurons after further training on zeroes only.

4. Discussion

Sparse coding without adaptive thresholds

In sparse coding models that use a sliding threshold, inhibition modulates the net activity ahead
of the nonlinearity. The adaptive threshold adjusts to these variations, so that the nonlinearity
stays aligned with the activity distribution. But fast, step-like changes — for instance turning the
input on and off — will leave it saturated until the threshold catches up.

This leads to a dilemma of time scales that is particularly problematic when the sliding thresh-
old controls not just the Hebbian nonlinearity as in the BCM rule (Bienenstock et al., 1982), but
also the excitability of the neuron (Foldiak, 1990; Triesch, 2007). The threshold must adapt slowly
compared to the interval between recurrences of the feature, otherwise the neuron will give false
positives as it strives to find something to respond to. Yet it must respond quickly to changes in
input statistics, because as long as the network remains in a saturated regime its output will not
be reliable.

In contrast, our model — like the BCM rule — has a fixed response threshold. The selectivity of

the neurons depends mainly on their dendritic receptive fields; these adapt at a speed set by the
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feedforward learning rate 7y, which may be made as slow as required to get a good sample of the
input. The average firing rates and population sparseness, on the other hand, depend on recurrent
inhibition, which adapts in seconds and keeps the network functional throughout perturbations.

But the BCM rule still uses an adaptive threshold to adjust the Hebbian nonlinearity. That is
because BCM theory started as a model of a single neuron — something was needed to control
the nonlinearity and ensure that it would latch onto one of the independent components.

What we show here is that the adaptive threshold becomes redundant in a network. Lateral
inhibition can play the same role, provided that it is plastic and that the feedforward learning
rule lets it control the effective Hebbian nonlinearity directly. Selectivity is a single-neuron phe-
nomenon, but one that is enabled by competition — it is because other units compete to respond
that a neuron can afford to become silent most of the time. Outside of a network, our neuron
model reverts to the strategy that will transmit the most information about the input: learning

the principal component.

On the role of gating mechanisms

Does this mean that there is no role for adaptive thresholds and intrinsic plasticity in sparse cod-
ing networks? They are not an absolute requirement for the development of selective receptive
fields. But they could be still be useful for other aspects of learning, in particular whenever there
are slower changes that must be compensated — for instance developmental changes related to
the growth of neurons and synapses, or changes in the network’s operating conditions caused by
glial cells or diffusing substances such as nitric oxide.

More generally, our results highlight the need for an adaptive gating of plasticity. There is
more to learning online than just using stochastic gradient descent. When learning happens in
realistic conditions, we can no longer assume that the input data will be properly randomised
over the timescale of plasticity; it may linger in small areas of the feature space for long periods

of time. Our results show that this will result in extensive reorganisation of the network — a
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desirable effect in some cases, when it is called adaptation, but a catastrophe in many others,
when it is called forgetting, as per the old stability-plasticity dilemma.

The solution is probably not as simple as having the learning slow enough that all these
perturbations average out: there is a role for gating mechanisms, both intrinsic and external.
These could take the shape of critical periods for learning, conditional consolidation of synaptic
changes (Redondo and Morris, 2011), neuromodulation and attention (Hasselmo, 1995; Krich-
mar, 2008), and rules based on the mismatch between top-down and bottom-up inputs (Gross-

berg, 1980).

Sparse coding with spikes

Sparse coding has been studied with continuous neurons (Foldiak, 1990; Olshausen and Field, 1997)
and spiking neurons (Savin et al., 2010; Zylberberg et al., 2011), with fairly similar results. Is there
any advantage to the use of spiking neurons then, beyond demonstrating how spiking neurons
can perform sparse coding?

We argue that the main benefit is speed. Lateral inhibition is particularly expensive to com-
pute in large continuous-time recurrent networks that must be iterated to convergence for every
input pattern, like the network of Foldiak (1990). The process is not unlike solving a continu-
ous Hopfield network, which can require thousands of iterations with the Euler method (Talavan
and Yafiez, 2005). In contrast, spiking neurons communicate with their neighbours only a small
fraction of the time. We speculate that this may lead to a faster convergence of the competition.

At any rate, a spiking network simulator can take advantage of the sparse activity to speed up
the simulation, even with a fully-connected network. With or without neuromorphic hardware,

spiking models could therefore be of some use in machine learning.

Topographic maps

As the primary visual area (V1) has been an inspiration for sparse coding models, it is natural

that some also aim to reproduce the topographic maps that can been seen in V1 in a number of
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mammalian species. Yet we find that enforcing a topographical organisation through short-range
lateral excitation does not improve the quality of the code. In fact, that may encourage redundant
receptive fields and reduce the coverage of the feature space. The specifics of our model may be
at fault; more experiments are needed to conclude on that topic.

But should sparse coding models try to produce maps at all? Feature maps are appealing to
us, human observers, because they helps us make sense of cortical representations. That does not
mean the brain has them for the same reason. Some mammals (such as grey squirrels) seem to

do just fine without them:

These results suggest that [...] an orientation map is not essential for strong orienta-
tion tuning. We suggest that an orderly arrangement of functional properties is not a

universal characteristic of cortical architecture. (Van Hooser, 2005)

Besides, while map models assume a Mexican hat pattern of short-range excitation and long-
range inhibition, the cortex, it seems, wears its hat upside down: studies show that the range
of inhibition is actually smaller than that of excitation (Muir and Cook, 2014). Chklovskii and
Koulakov (2004) suggest that cortical maps may simply be the side-effect of an optimisation to
minimise wiring length. Would it be possible to reproduce the formation of maps with a devel-
opmental rule of that sort? Maps that develop through the creation and pruning of synapses may

yield a better encoding than maps that emerge through the influence of lateral connectivity.

On linear separability and associative learning

Our network learns a sparse code that improves the performance of a linear classifier. That clas-
sification task is an artificial one, in the sense that the class labels are far removed from any
sensory modality. Nonetheless, the improvement in linear separability should be broadly useful
to many associative paradigms, such as the learning of predictive and causal relationships across
sensorimotor modalities, or the association of a stimulus with an adapted response.

There is a case for linear separability as a coding principle in the brain. It is not very plausible,

in terms of resource economy and scaling properties, that the process of decoding the information
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converging to each pyramidal cell from other parts of the cortex requires multiple neurons. It is
more likely that this process can be performed entirely within the dendritic tree of the target neu-
ron, acting as a small cascade of linear filters and nonlinearities (Hausser and Mel, 2003; Poirazi et
al., 2003). This would require each item of distal context to be linearly separable, with the cascade
structure learning to respond to specific combinations of these items. Sparse codes fulfil the first
condition; the second one calls for new models of integration across dendritic branches.

Legenstein and Maass (2011) showed for instance how branch-specific potentiation can lead
to competition between dendrites that allows a single neuron to respond to several overlapping
patterns, but not to shuffled combinations of their parts. As the concept of somato-dendritic
predictions can be generalised to multiple dendrites (Schiess et al., 2016), it would make sense to
combine these mechanisms with sparse coding in the same neuron, modelling the basal and apical
dendritic domains of pyramidal cells. This may allow the simultaneous discovery of features and
of associative relationships between features in a single layer.

In the present work we do not consider the temporal structure of the input. But the model
we describe is similar in structure to other models of single-neuron processing that do take it
into account. For instance, the linear-nonlinear-Poisson (LNP) model (Brunel et al., 2014) also
contains a static nonlinearity that feeds into a spike generation mechanism, and adds a temporal
filter at the level of the dendrite and synapses. The similarity suggests further experiments in
that direction. Another possibility would be to use delays in recurrent excitation to learn pattern

transitions, as suggested in Rodriguez et al. (2004).
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Annex: Model Parameters

These parameters are common to all figures unless otherwise indicated in the figure or caption.

Literal values are not rounded. Single precision (32-bit floats) is assumed throughout the model.
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