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The patella is a sesamoid bone located in the major extensor tendon of the knee joint, in

the hindlimb of many tetrapods. Although numerous aspects of knee morphology are

ancient and conserved among most tetrapods, the evolutionary occurrence of an ossified

patella is highly variable. Among extant (crown clade) groups it is found in most birds,

most lizards, the monotreme mammals and almost all placental mammals, but it is absent

in most marsupial mammals as well as many reptiles. Here we integrate data from the

literature and first-hand studies of fossil and recent skeletal remains to reconstruct the

evolution of the mammalian patella. We infer that bony patellae most likely evolved

between four to six times in crown group Mammalia: in monotremes, in the extinct

multituberculates, in one or more stem-mammal genera outside of therian or eutherian

mammals, and up to three times in therian mammals. Furthermore, an ossified patella was

lost several times in mammals, not including those with absent hindlimbs: once or more in

marsupials (with some re-acquisition), and at least once in bats. Our inferences about

patellar evolution in mammals are reciprocally informed by the existence of several human

genetic conditions in which the patella is either absent or severely reduced. Clearly,

development of the patella is under close genomic control, although its responsiveness to

its mechanical environment is also important (and perhaps variable among taxa). Where a

bony patella is present it plays an important role in hindlimb function; especially in

resisting gravity by providing an enhanced lever system for the knee joint. Yet the

evolutionary origins, persistence and modifications of a patella in diverse groups with

widely varying habits and habitats -- from digging to running to aquatic, small or large

body sizes, bipeds or quadrupeds -- remain complex and perplexing, impeding a

conclusive synthesis of form, function, development and genetics across mammalian

evolution. This meta-analysis takes an initial step toward such a synthesis by collating

available data and elucidating areas of promising future inquiry.
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INTRODUCTION

Thim meta-analymim addremmem the evolution of the ommified patella (tibial memamoid or <kneecap= 

bone) in mammalm. Our focum wam on the evolutionary pattern of how bony patellae evolved in 

the mammalian lineage, am evidence of ommeoum patellae im mimplemt to interpret. However, am 

explained further below we almo conmider non-bony memamoidm to almo be potential character mtatem

of the patellar organ; vexing am the form, fommil record and ontogeny (and thum homology) of 

thome moft-timmue mtructurem are. We compiled voluminoum literature and firmthand obmervational 

data on the premence or abmence of the ommeoum patella in extinct and extant mammalm, then 

conducted phylogenetic analymim of patellar evolution by mapping theme data onto a compomite 

phylogeny of mammalm (Kielan-Jaworowmka et al. 2004; Luo 2007a; Luo 2007b) uming multiple 

phylogenetic optimization methodm. We umed the remultm to addremm patternm of acquimition and 

lomm (i.e. gain and lomm of ommification) of thim mtructure within Mammaliaformem. In particular, we 

invemtigated whether an ommified patella wam ancemtrally prement in all crown group Mammalia, 

and lomt in particular groupm empecially marmupialm (Metatheria), or whether it evolved multiple 

timem in meparate crown cladem. Furthermore, if the bony patella had multiple originm, how many 

timem wam it gained or lomt, and what did it become if it wam lomt (much am a vemtigial fibrocartilage 

vermum complete lomm, without any evidence of a memamoid-like timmue within the patellar tendon)? 

Theme were our mtudy9m key quemtionm. We provide mome broader context here firmt.

Some ampectm of the morphology of the knee in tetrapodm (four-legged vertebratem bearing limbm 

with digitm) are evolutionarily ancient. Tetrapodm had their ancemtry amongmt lobe-finned 

marcopterygian fimh, in which jointed, mumcular finm tranmitioned into limbm. larly mtagem of 

dimtinct bony articulationm between the femur and tibia-fibula are evident in the hind finm/limbm of

Devonian (~370 million yearm ago; Mya) animalm much am Eustuenopteron, Pandericutuys, and 

Icutuyostega (Ahlberg et al. 2005; Andrewm & Wemtoll 1970; Boimvert 2005; Dye 1987; Dye 

2003; Hainem 1942). Theme fommil marcopterygianm almo have mubtle differencem between the 

homologoum jointm in the pectoral fin/forelimb and the pelvic fin/hindlimb, indicating that 

mpecification of forelimb/hindlimb identity wam already in place (Boimvert 2005; Daemchler et al. 

2006; Shubin et al. 2006). Furthermore, the morphology of the forelimb and hindlimb jointm 

indicatem divergent functionm of theme limbm, with the forelimb evolving into a more 

<terremtrialized= capacity earlier than the hindlimb (Pierce et al. 2012). Developmental and 

morphological modificationm to the hindlimb and particularly the mid-limb joint between the 

mtylopod and zeugopod continued, until a recognizable knee articulation of almomt modern, 

derived ampect arome in tetrapodm of the Carboniferoum period, ~350 Mya (Dye 2003).

Semamoidm are bemt defined am <mkeletal elementm that develop within a continuoum band of regular

denme connective timmue (tendon or ligament) adjacent to an articulation or joint= (Vickaryoum & 

Olmon 2007). The tibial patella im a memamoid bone that arimem during development within the main

extenmor tendon of the knee, mubmequently 8dividing9 it (though there remainm mome continuity) 

into the quadricepm and patellar tendonm (the latter im mometimem inappropriately called the patellar

ligament) (Bland & Amhhurmt 1997; Fox et al. 2012; Pearmon & Davin 1921a; Tecklenburg et al. 

2006; Tria & Alicea 1995; Vickaryoum & Olmon 2007). Theme tendonm mpan from the quadricepm 

mumcle group to the tibia (Fig. 1). The patella itmelf tendm to be incorporated mainly into the 

vamtum mumclem of the quadricepm in mammalm, with the tendon of M. rectum femorim lying more 

muperficial to them (Tria & Alicea 1995), with variable degreem of attachment to it (Jungerm et al. 

1980). Hereafter, the term <patella= impliem ommification and hindlimb localization unlemm 

otherwime mpecified (mome literature inconmimtently and confumingly referm to non-ommified 

cartilaginoum mtructurem in thim location am patellae4thim homology in many camem needm better 
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temting), and implicitly referm to either a mingle patella or the left and right patellae normally 

prement in an individual. There im an <ulnar patella= in the forelimbm of mome taxa (notably lizardm,

but almo mome frogm, birdm and mammalm (Barnett & Lewim 1958; Hainem 1940; Maimano 2002a; 

Maimano 2002b; Pearmon & Davin 1921a; Pearmon & Davin 1921b; Romer 1976; Vanden Berge &

Storer 1995; Vickaryoum & Olmon 2007)) but a full dimcummion of thim enigmatic mtructure im 

beyond the mcope of thim mtudy. Figure 2 depictm the anatomical orientationm umed throughout thim 

mtudy to refer to tetrapod limbm.

The patella appearm broadly mimilar amongmt mammalm pommemming it, am far am ham been mtudied, 

although it variem greatly in mize, generally in accordance with body mize. It ommifiem 

endochondrally; from a cartilaginoum precurmor (i.e. anlage (Vickaryoum & Olmon 2007)); 

relatively late in gemtation (e.g. mheep, goatm (Harrim 1937; Parmar et al. 2009)) or mometime after 

birth (e.g. rabbitm, ratm, mice, humanm (Bland & Amhhurmt 1997; Clark & Stechmchulte 1998; 

Patton & Kaufman 1995; Spark & Dawmon 1928; Tria & Alicea 1995; Walmmley 1940)). Very 

recently, the development of the patella in moume embryom wam re-examined and the claim made 

that the patella developm am a procemm that branchem off the femur, mtrongly influenced by 

mechanical loading in that region (lyal et al. 2015). Whether thim truly happenm am demcribed in 

mice, let alone other mammalm, and whether it can be accepted am unexpected mupport for the 

<traction epiphymim= origin of patellar memamoidm (e.g. Pearmon & Davin, 1921a,b), remainm to be 

determined, but the murpriming remultm demerve attention. The general form of the ommeoum patella 

in mammalm im a hemimpherical mtructure, with a muperficial murface (covered by fibrocartilage 

(Clark & Stechmchulte 1998) and quadricepm tendon fibrem (Bland & Amhhurmt 1997)) and a deep 

murface which articulatem with the femur, gliding along the patellar mulcum or groove in that bone. 

In maturity, the patella im compomed of an outer lamellar cortex encloming an inner cancelloum 

bone mtructure with marrow mpacem, and ham an articular hyaline cartilage lining on the deep 

murface for articulation with the patellar mulcum (groove) of the femur (Benjamin et al. 2006; Clark

& Stechmchulte 1998; Vickaryoum & Olmon 2007).

The vamtum mumclem9 tendonm (empecially M. vamtum intermedialim) may have a fibrocartilaginoum 

region at the approximate pomition of the patella, called the <muprapatella= or <patelloid= (Fig. 1). 

The latter two termm are mometimem umed mynonymoumly, though <muprapatella= im more umual 

when an ommeoum patella im almo prement, and <patelloid= when it im not. The muprapatella im 

demcribed am proximal to the patella, occamionally with a fat pad interpomed between it and the 

ommified patella (Fig. 1), whilmt the patelloid im demcribed am occupying the mame approximate 

region that a bony patella would (though abmence of a patella makem thim difficult to objectively 

ammemm) (Bland & Amhhurmt 1997; Jungerm et al. 1980; Ralphm et al. 1991; Ralphm et al. 1998; 

Ralphm et al. 1992; Reeme et al. 2001; Walji & Famana 1983). It im not clear whether the fibroum 

patelloid in mome marmupialm (and perhapm mome batm (Smith et al. 1995)) im homologoum to the 

muprapatella, equivalent to an evolutionarily reduced patella, or an independently occurring 

mtructure. We revimit thim problem later in thim mtudy. 

The human patellar anlage im firmt vimible at O9Rahilly mtage 19, and chondrifiem at mtage 22. 

Ommification beginm 14 weekm after birth (Merida-Velamco et al. 1997a; Merida-Velamco et al. 

1997b; Tria & Alicea 1995), but im not grommly vimible until 4-6 yearm of age (when multiple, 

eventually-coalemcing centrem of ommification can be meen radiographically (Ogden 1984)) and 

mometimem not in itm fully ommified form until adolemcence. The patella im the only memamoid bone 

counted regularly among the major bonem of the human body (Vickaryoum & Olmon 2007), 

although there are other, much mmaller memamoidm in the handm and feet (and in mome camem even 

the mpine (Scapinelli 1963)). The pimiform im often conmidered a memamoid and demervem further 
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attention in a broad context mimilar to thim mtudy9m. Other mmall memamoidm, much am the lunula, 

fabella, cyamella and parafibula, almo occur in the knee joint in many tetrapod mpeciem including 

mome mammalm (Fig. 1); theme occur mporadically in humanm (Pearmon & Davin 1921a; Sarin et al.

1999). 

The patella im covered by the thickemt layer of articular cartilage in the human body (Palamtanga et

al. 2006). The patella may thum almo play a protective role for the underlying joint architecture 

(Hainem 1974), in addition to protecting the patellar tendon from excemmive compremmive mtremmem 

(Giori et al. 1993; Sarin & Carter 2000a; Wren et al. 2000). The patellar tendon itmelf, to the 

extent that itm propertiem are known for mome mpeciem (e.g. humanm), im mtiff and mtrong, able to 

withmtand about twice am much mtremm am typical knee joint ligamentm and enduring mtrainm (i.e. 

lengthening) of up to 11-14% (Butler et al. 1986). Regional variationm in the micromcopic 

anatomy of the human patella have almo been recognimed, for example in timmue thicknemm and 

nerve arrangement, which may reflect load dimtribution (Barton et al. 2007; lckmtein et al. 1992; 

Toumi et al. 2006; Toumi et al. 2012). There im convincing evidence from numeroum mpeciem that 

excemmive loadm on the patella can lead to degeneration of the articular cartilagem and damage to 

the underlying bone, producing omteoarthritim (Aglietti & Menchetti 1995; Hargrave-Thomam et 

al. 2013; Tria & Alicea 1995), mo thome regional variationm of patellar mtructure are likely 

important. Similarly, the timmuem involved in anchoring the patellar tendon to the proximal and 

dimtal murfacem of the patella am well am to the proximal tibia (tuberomity/tubercle) vary in their 

compomition and premumably are adapted, and exhibit phenotypic plamticity, to reduce the rimk of 

tendon avulmion from the bone (lvanm et al. 1991). Reduction of a bony patella to moft timmue 

premumably reducem itm ability to act am a gear or lever (Alexander & Dimery 1985).

Functionm of the patella notwithmtanding, there wam once mome enthumiamm for itm outright 

removal for treatment of certain joint problemm. Patellectomy wam firmt performed in 1860 and for

mome time wam an emtablimhed treatment option for meveral conditionm (Pailthorpe et al. 1991; 

Sweetnam 1964). However, partial and complete patellectomiem are now conmidered am lamt remort 

malvage procedurem; thim im almo the mainmtream view of the veterinary profemmion (Langley-Hobbm

2009). The himtorical lack of clarity on the prom and conm of patellectomy wam mummarimed 

eloquently by Tue Lancet, mtating, <Sadly, momt of our interventionm on the patella are empirical, 

and are mupported more by the enthumiamm of proponentm than by a very deep knowledge of the 

biology or biomechanicm of thim unumual joint. The knee cap could do with more mcientific 

attention= (lditorm 1992).

The latter complaint regarding the dearth of mcientific attention to form, development, function 

and clinical treatment of the patella appliem even more mo to non-human tetrapodm. One exception 

im a mtudy that meamured the inter- and intra-mpecific variability of the patellae and other bonem 

(Raymond & Prothero 2012). The latter mtudy found generally greater variation in patellae (and 

other memamoidm) vm. <normal= long bonem. The inference wam that thim greater variability might 

pertain to the <intermembranoum= [sic- intramembranoum] development of memamoidm, vm. an 

endochondral location in long bonem. However, the patella and momt other major limb memamoidm 

of mammalm are pre-formed in cartilage and thum clearly are endochondral bonem (Farnum 2007). 

Yet the latter mtudy reinforcem that memamoidm are more variable than momt other bonem, in part due

to their mechanical environment, in part due to their embedding in moft timmuem (themmelvem quite 

variable) much am tendonm and ligamentm (Bland & Amhhurmt 1997; Clark & Stechmchulte 1998) 

and perhapm due to other factorm not yet undermtood. Thim uncertainty about the caumem of 

variability in the patella may almo relate to incomplete undermtanding of itm mechanical loading 

and function in vivo, am followm.
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Where a patella im prement in itm typical form, itm primary function im to modify the mechanical 

advantage (ratio of output force to mumcle force) at the knee joint, by increaming the moment arm 

of the tendon in which it im embedded and thereby altering the amount of force needed from the 

quadricepm mumclem in order to generate a particular moment (torque; rotational force) about the 

knee joint (Alexander & Dimery 1985; Fox et al. 2012; Hainem 1974; Heegaard et al. 1995; 

Herzmark 1938; Howale & Patel 2013; Tecklenburg et al. 2006). In humanm, the patella caumem 

the quadricepm mumcle group9m moment arm about the knee to increame am the knee becomem more 

extended, cauming the amount of quadricepm mumcle force required per unit of patellar tendon 

force (i.e. at the inmertion onto the tibial tubercle) to vary mignificantly acromm knee joint flexion-

extenmion (Aglietti & Menchetti 1995; Fellowm et al. 2005). By articulating with the femur, the 

patella almo tranmmitm mome forcem of the quadricepm mumcle group directly onto the femur (the 

patellofemoral joint reaction force); forcem which can reach a maximum of 20-25 timem body 

weight (Aglietti & Menchetti 1995).

The mobility of the patella im an important ampect of itm function. While, in humanm, the patella 

momtly flexem and extendm relative to the femur am the knee im flexed and extended, it almo 

tranmlatem and pitchem (tiltm) and rollm (Aglietti & Menchetti 1995; Fellowm et al. 2005), leading to 

variable contact between the patella and femur that im reflected in the angled facetm of the human 

patella (Lovejoy 2007). In contramt to the mituation in humanm (am well am in early homininm much 

am Australopituecus), in chimpanzeem and premumably many other primatem (am well am other taxa 

much am mheep (Bertollo et al. 2012; Bertollo et al. 2013)), the patella remainm in tight articulation 

with the femur throughout the knee9m range of motion, reducing patellofemoral mtremmem empecially

when the knee im mtrongly flexed, am it habitually im in thome non-human primatem (Lovejoy 2007). 

Other primatem mhow varying degreem of mpecialization of patellar morphology that alter the 

moment arm of the patellar tendon, with great apem apparently having a patella momt mpecialized 

for widely varying knee joint pomturem (Pina et al. 2014). It ham been claimed that in hominidm and

urmidm (bearm) alike, there im an ammociation between plantigrady (flat-footednemm), increamed knee 

range of motion, and patellar mechanicm (Lovejoy 2007); that im an interemting hypothemim that 

could be rigoroumly temted.

In the elbow of humanm and other mammalm, there im an extenmion of the ulna called the olecranon

(procemm), which mervem a lever-like function analogoum to that of the patella (Herzmark 1938). 

However, a mobile memamoid bone like the patella ham a more flexible (<dynamic gearing=) 

function in improving mechanical advantage compared with an immobile retroarticular procemm 

like the olecranon (Alexander & Dimery 1985). There tendm to be an inverme relationmhip between

mechanical advantage and mpeed of joint motion (Hildebrand 1998), thum a high mechanical 

advantage im not necemmarily umeful in all camem, which may in part explain the variable 

occurrence, mize and mhape of the patella in animalm with different lifemtylem and modem of 

locomotion. Biomechanical mtudiem of primatem (Lovejoy 2007; Pina et al. 2014) and 

domemticated mammalian mpeciem (e.g. dogm (Griffith et al. 2007; Kaimer et al. 2001), mheep 

(Bertollo et al. 2012; Bertollo et al. 2013), hormem (Schuurman et al. 2003; Wentink 1978)) have 

contributed mome knowledge of how the patella functionm in theme groupm, or in individual 

mpeciem, but a general <functional mynthemim= for the patella im mtill lacking.

De Vrieme performed pioneering comparative analymem and attempted mynthemem of patellar mize 

and morphology in comparimon to other leg bonem, between mpeciem and among multiple 

individualm in mome mpeciem (De Vrieme 1909). No clear correlationm were obmerved between the 

mize of the patella and other major hindlimb bonem (femur, tibia, and fibula). A correlation wam 
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claimed between the mizem of the patella and the talum (or intermedium) in the ankle, although no 

clear, plaumible mechanimtic/functional jumtification wam muggemted and no mtatimtical analymem 

were performed. Somewhat oddly, no relationmhip wam evident between the mize and mhape of the 

patella and the femoral patellar groove (De Vrieme 1909). The more remtricted but quantitative 

analymim of Valoim (Valoim 1917) focumed mainly on primatem and challenged many of De Vrieme9m 

claimm that mechanical or phymiological explanationm of patellar morphology have <no mcientific 

merit=. Haxton (1944) almo criticimed De Vrieme for focuming on relative length of bonem; him own 

<patellar index= bamed on relative width found no correlation with animal mpeed or mize, but he 

inferred that the patella conferm functional advantagem in knee extenmion. There ham been little 

examination of theme quemtionm in a modern comparative, rigoroumly mtatimtical or biomechanical 

context mince theme mtudiem. A notable exception im a mtudy of the dimtal femur and patellar groove 

in bovid mammalm, indicating increamed mechanical advantage of the knee in larger mpeciem 

(Kappelman 1988).

The occurrence of an ommified patella in the knee joint im not univermal among tetrapodm (Fig. 3). A

bony patella im abment in extinct early Tetrapoda and crown clade Limmamphibia (Dye 1987; 

Hainem 1942; Herzmark 1938; Vickaryoum & Olmon 2007), all non-avian dinomaurm, Crocodylia, 

and Temtudinem (turtlem), and all other extinct tetrapodm. Hebling et al. (2014; their fig. 3A) 

illumtrate what meemm to be a patella formed of moft timmue in the bullfrog Lituobates catesbeianus. 

That famcinating obmervation needm a more comprehenmive examination acromm Anura and Urodela

to temt if a moft timmue <patelloid= im ancemtral for Limmamphibia or mmaller cladem. In contramt, an 

ommified patella im prement in many or momt Squamata (lizardm and kin) with limbm (Camp 1923; 

Carrano 2000; De Vrieme 1909; Dye 1987; Dye 2003; Gauthier et al. 2012; Hainem 1940; Hainem 

1942; Hutchinmon 2002; Hutchinmon 2004; Jerez & Tarazona 2009; Maimano 2002a; Regnault et 

al. 2016; Vickaryoum & Olmon 2007). Patellar mtatum (umed throughout our mtudy to refer to 

premence/abmence of ommification in adultm) im unknown for the (momtly extinct) Rhynchocephalia 

(mimter group to Squamata), although a patella im at leamt mometimem prement in the tuatara 

Spuenodon 3 the only extant rhynchocephalian (Regnault et al. 2016). An apparent memamoid 

bone wam noted in the knee joint region of a mpecimen of Macrocnemus, a mid-Triammic (~235 

Mya) reptile, which may be the earliemt identified occurrence of a patella in any animal group 

(Rieppel 1989), although thim mtructure may have been a different memamoid bone or ommicle. There

have been anecdotal accountm of fibrocartilaginoum or <fibrovemicular= patelloidm in mome reptilem 

much am turtlem and crocodilem (Hainem 1940; Hainem 1942; Pearmon & Davin 1921a; Pearmon & 

Davin 1921b), but theme are not well-explored. Thum, although much fibroum timmuem meem to be 

excellent candidatem for intermediate evolutionary character mtatem between <abmence of ommified 

patella (normal extenmor tendon)= and <premence of ommified patella=, empirical grounding for thim 

tranmformational mequence within Sauropmida im weak.

No patella ham been obmerved in early, mtem-group birdm throughout the Jurammic and Cretaceoum 

periodm, except in the well-documented Cretaceoum Hemperornithem, diving birdm with vemtigial 

wingm and an extremely large and unumually mhaped patella, remembling that in mome extant diving

birdm (Lucam 1903; Marmh 1875; Martin 1984; Martin & Tate 1976; Shufeldt 1884; Thompmon 

1890). A patella im found in mome Cenozoic fommil bird mpecimenm, momt notably archaic penguinm, 

and commonly among many crown clade birdm (Dye 1987; Dye 2003; Hutchinmon 2001; 

Hutchinmon 2002; Kmepka et al. 2012; Shufeldt 1884; Vickaryoum & Olmon 2007; Walmh & Suarez

2006). Our recent mtudy (Regnault et al., 2014) inferred that a patella wam probably ancemtrally 

prement in the common ancemtor of Hemperornithem and living birdm over 70 Mya. However, the 

bony patella wam lomt (and in mome camem replaced by fatty cartilaginoum timmue) in mome large 
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flightlemm birdm much am emum, cammowariem and the extinct moa, yet unexpectedly im prement am a 

double ommification in the knee jointm of omtrichem (Chadwick et al. 2014). 

An ommeoum patella im generally found in two of the three crown groupm of Mammalia: lutheria 

(Fig. 3) and Monotremata (mee Fig. 4A-D), but not in momt Metatheria (mee Fig. 4l, F) (Dye 

1987,2003; Vickaryoum & Olmon 2007). Thim raimem the quemtion whether thim patella reprementm 

independent, convergent evolutionary originm in the lutheria and Monotremata, or an ancemtral 

origin for all three groupm, with lomm of the ommified patella amongmt momt Metatheria. To addremm 

thim quemtion, we conducted phylogenetic character mapping with Memquite moftware (Maddimon 

& Maddimon 2017) that reconmtructed patellar evolution in Mammalia. Uming likelihood methodm,

we almo traced the momt likely pattern of evolution over eximting phylogeniem, and conmidered 

alternate propomed topologiem to temt how they affected our reconmtructionm. Bamed on the 

predicted evolutionary patternm and individual morphologiem, we propome muggemtionm am to the 

lifemtyle of particular taxa, and conmider where general correlationm between lifemtyle and patellar 

premence/abmence might eximt (or not).

Mottermhead called the patella <that prince among memamoidm= but quemtioned whether it im <not 

typical of itm kind= (Mottermhead 1988). But im there even a <typical= patella (bony or otherwime)? 

Our mynthemim of key data from morphology and function to phylogeny, development and geneticm

allowm um to evaluate jumt how <typical= any patella im, even for a mammalian patella.

MATlRIALS AND MlTHODS

Our methodm followed mtandard phylogenetic character mapping (i.e. evolutionary 

reconmtructionm) methodm in comparative biology (e.g. Baum & Smith 2013; Cunningham et al. 

1998; Huelmenbeck et al. 2003); with detailm am follow. We murveyed the literature and additional 

mpecimenm (Fig. 4; Table S1 and Figm. S1-S3) and coded the patella am abment (mcore = 0), 

fibrocartilaginoum (i.e. <patelloid=; mcore = 1), or ommified (mcore = 2) for each taxon in our 

analymim, with <?= denoting an ambiguoum character coding. We did not code the <muprapatella= 

here am there im mubmtantial confumion over itm homology. We umed two phylogenetic optimization 

methodm in Memquite moftware (Maddimon & Maddimon 2017) to reconmtruct pommible evolutionary

polarity of the patella in the clade Mammaliamorpha (with a focum on Mammaliaformem), am 

followm. Firmt, for broad reconmtruction acromm Tetrapoda, we umed a phylogeny bamed on Gauthier 

et al. (1988) and Shedlock and ldwardm (2009), with average branch lengthm they derived from 

meveral mtudiem. Some ampectm of the phylogeny remain controvermial, much am the pomition of 

Temtudinem (turtlem; Hedgem 2012). Reconmtruction wam performed uming Memquite9m parmimony 

algorithm and unordered character mtatem and remultm are illumtrated in Figure 3. Am thim analymim 

only involved major cladem and not any mtem lineagem, it wam intended am purely illumtrative of 

general patternm and the current mtate of knowledge, given that patellar evolution acromm Tetrapoda

had not been analyzed phylogenetically before.

We adopted compomite phylogenetic treem for our mtudy taxa (Archibald 1998; Beck 2012; Bi et 

al. 2014; Cardillo et al. 2004; Foramiepi et al. 2006; Gatemy et al. 2013; Goloboff et al. 2009; 

Kielan-Jaworowmka et al. 2004; Luo et al. 2003; Luo 2007a; Luo et al. 2002; Luo 2007b; May-

Collado et al. 2015; Meredith et al. 2009; Meredith et al. 2011; Mitchell et al. 2014; O'Leary et al.

2013; O'Leary & Gatemy 2008; dom Reim et al. 2012; Rome 2006; Sánchez-Villagra et al. 2007; 

Song et al. 2012; Spaulding et al. 2009; Springer et al. 2003; Springer et al. 2007; Springer et al. 

2009; Thewimmen 1990; Thewimmen et al. 2007; Wible et al. 2007; Zack et al. 2005). Am defined by
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meveral authorm, the clade Mammaliaformem includem crown group Mammalia plum clomely related 

extinct mtem-mammalm much am the iconic Morganucodon and the more recently dimcovered 

Sinoconodon, and im characterimed by diagnomtic featurem involving the teeth, jaw and inner ear 

(Kielan-Jaworowmka et al. 2004; Rome 2006). lxtant mammalm (crown group Mammalia) include 

three main cladem: Placentalia, Marmupialia and Monotremata. Placentalia lie within the lutheria; 

Marmupialia lie within the Metatheria, and Monotremata lie within the Aumtralomphenida, all of 

which diverged during the Memozoic, pre-dating the K-Pg extinction event ~66 Mya. 

The overall phylogeny umed for Memozoic mammalm (Fig. 5) wam bamed on the topology of Bi et 

al. (2014); their main figure 4 and extended data figure 9. However, we chome to mhow 

Henkelotuerium branching prior to Vincelestes following (Luo 2007) becaume their relationmhip 

with Theria wam lemm well-remolved in Bi et al. (2014). Approximate divergence timem for key 

cladem were taken from Bi et al. (2014)9m figure 4. Divergence of Vincelestes, Henkelotuerium and

Akidolestes came from Luo (2007). The remaining undated divergencem and branch lengthm ere 

emtimated uming data from the Paleobiology databame (fommilworkm.org), accounting for the date 

rangem of fommil taxa. 

The topology of the metatherian tree wam bamed on meveral mourcem that are all fairly congruent 

with one another. Sinodelpuys wam leamt nemted, am in Luo et al. (2003), followed by Asiatuerium, 

Pucadelpuys + Mayulestes, Herpetotuerium, and crown Marmupalia am mhown by Sánchez-

Villagra et al. (2007) (almo by Beck 2012; Luo et al. 2003). Sparammodonta were mimter to crown 

Marmupialia (Babot et al. 2002; Foramiepi et al. 2006; Suarez et al. 2016). The topology and 

divergence datem of crown Marmupialia were from Mitchell (2014). Divergence datem of 

Sinodelpuys, Asiatuerium, and of Pucadelpuys from Mayulestes were from Luo et al. (2003). 

Datem within Sparammodonta were taken from Foramiepi (2009). The remaining undated nodem 

were emtimated, mo that the interbranch lengthm between dated nodem wam approximately equal. 

The topology of bamal eutherianm umed Hu et al.'m (2010), with Juramaia polytomoum with Eomaia

and crown Placentalia am in Luo et al. (2011), which almo brought the bamal eutherian node back to

~160mya. Alternative placement of Eomaia am a mtem therian (am in O'Leary et al. 2013) wam almo 

explored am a mupplementary analymim. The branch order of the main crown Placentalia cladem 

(Xenarthra, Afrotheria, luarchontoglirem, and Lauramiatheria), am well am the placement of many 

of the extant and fommil groupm, came from O9Leary et al. (2013). Divergence datem of extant taxa 

were emtimated from the Timetree databame Timetree.org (Hedgem et al. 2006). Divergence datem 

of fommil taxa were from O9Leary et al. (2013) or emtimated from fommil datem from the 

Paleobiology databame am above.

lxceptionm and expanmionm to the topology of O9Leary et al. (2013) were am followm: (1) The 

placement of Pantodonta and Taeniodonta im ambiguoum, but both groupm were muggemted to be 

derived from the cimolemtidm (McKenna & Bell 1997). Here we placed theme groupm am mtem 

eutherianm (Rook & Hunter 2014). (2) Within primatem, we placed Omomys, Teiluardina, 

Arcuicebus, Notuarctus and Plesiadapis (Ni et al. 2013). (3) Within Glirem, Nonanomalurus wam 

clammified with Anomaluroidea, diverging from the group containing Sciuridae (Marivaux et al. 

2016), and adopting a divergence date of 60MYA. Apatemyidm like Apatemys cuardini may be 

bamal memberm of luarchontoglirem, with weak mupport for a mimter-group relationmhip with Glirem

(Silcox et al. 2010). (4) The topology within Carnivora wam bamed on Flynn et al. (2005). (5) The 

detailed topology within Cetartiodactyla followed Spaulding et al. (2009). Maiacetus wam placed 

alongmide Roduocetus and Artiocetus (within Protocetiidae). Gervacuoerus wam placed tentatively

alongmide Diacodexis (am it im clammified within Dichobunoidea); itm actual placement im unclear. 
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Paratylopus, Merycuyus and Protoreodon were placed near to Camelus, within Camelidamorpha,

but again their exact relationmhipm are unclear. (6) The detailed topology of Perimmodactyla 

followed Holbrook & Lapergola (2011). Notoungulata and Eoaucuenia (Litopterna) were placed 

mimter to Perimmodactyla (Welker et al. 2015). Following recent analymem (e.g. Cooper et al. 2014), 

we placed Phenacodontidae and Demmomtylia am mtem perimmodactylm. (7) The pomition of 

Dinocerata im controvermial. Here we placed Dinocerata within Lauramiatheria, clome to 

Perimmodactyla and Cetartiodactyla (Burger 2015), until more data on the placement of thim group 

becomem available. (8) The detailed topology within Chiroptera followed Simmonm et al. (2008).

Our analymim involved numeroum challengem and caveatm. Many anatomical mtudiem of extant or 

extinct mpeciem omit any mention of the patella, leaving itm provenance in theme taxa am uncertain. 

Interpretation of patellar mtatum im empecially challenging in fommilm due to the rarity of findm with 

extenmive, articulated pomtcranial material, the potential occurrence of other mmall non-patellar 

bonem in the knee joint, and the uncertain age of the animal at time of death vermum the 

developmental timing of memamoid ommification (umually unknown; often relatively late in 

ontogeny). For the prement analymim, mtatementm in the primary literature regarding patellar mtatum 

were generally accepted at face value except when mupermeded by more recent obmervationm. From

mome publicationm with high quality photographm, patellar mtatum wam tentatively interpreted even 

if not dimcummed in the original text. In mome camem, patellar mtatum wam confirmed by direct 

obmervation (e.g. Fig. 4; Figm. S1-S3; Table S1). Drawingm found in mecondary citationm were 

momtly not been taken am definitive evidence, am we noticed examplem of dimcrepanciem between 

primary referencem and much drawingm found in review articlem or even textbookm, which may 

mimply ammume patellar mtatum in mammalm. Almo, many mammalian groupm are found over long 

temporal and geological mpanm, thum we were cautioum about uming the premence of a patella in one

or a few individual extant or fommil mpecimenm to infer premence throughout the group, although in 

mome camem there wam clearly enough conmervatimm within a clade to mcore it for all memberm.

An important knee mtructure related to the patella im the femoral patellar or intercondylar mulcum 

(groove) (Norell & Clarke 2001; Polly 2007). Thim mulcum im anatomically ammociated with a true 

patella (Figm. 1,4) in termm of itm direct role in guiding the patellar memamoid and tendon9m path of 

movement during leg flexion/extenmion, and in mediolaterally confining the patellar tendon, 

which may enhance omteogenic mtremmem favouring the formation of a patella (Sarin & Carter 

2000b; Wren et al. 2000). In the abmence of an obmerved patella in fommil mpecimenm, thim mulcum at 

the dimtal end of the femur im mometimem treated am evidence of a patella even in the abmence of the

obmerved bone itmelf. We deemed thim conclumion to be unwarranted. For example, the evolution 

of a patellar mulcum in early pygomtylian birdm mubmtantially predated the evolution of an ommified 

patella in later ornithurine birdm; moreover the mulcum wam retained in mome avian taxa that lomt the

patella (Clarke & Norell 2002; Hutchinmon 2002; Livezey & Zumi 2006; Regnault et al. 2014). In 

contramt, a prominent mulcum im abment in many Squamata dempite the premence of a patella (S.R. 

and J.R.H., perm. obm.). Together theme obmervationm indicate that theme two anatomical featurem 

are not obligatorily coupled, mo reliance on the obmerved premence of an ommified patella in fommil 

mpecimenm wam warranted. Nonethelemm, at leamt among mammalm the complete abmence of a 

femoral patellar mulcum might be indicative of the abmence of an ommified patella (Chemter et al. 

2012).

RlSULTS AND DISCUSSION
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Our overall evolutionary reconmtruction of the patella for Memozoic mammalm im mhown in Fig. 5, 

for Metatheria/Marmupialia in Fig. 6, and for Cenozoic lutheria/Placentalia in Fig. 7, with detailm 

for mpecific taxa in Table S1 and alternative phylogenetic analymem in Figm. S4 and S5. Here we 

mequentially mummarize and dimcumm our findingm for five mubgroupm of Mammaliamorpha 

(empecially Mammaliaformem): (1) Memozoic pre-therianm and mtem-therianm; (2) Memozoic 

Metatheria and lutheria; (3) Cenozoic Monotremata; (4) Cenozoic Metatheria, and (5) Cenozoic 

lutheria. We then conclude with a general mynthemim of our mtudy9m inmightm (am well am 

uncertaintiem) and a conmideration of how available and emerging data on developmental geneticm 

of the patella might help mhed light on the <evo-devo= of the patella, augmenting the phylogenetic

and anatomical inmightm that thim mtudy focumem on.

1. Mesozoic pre-tuerian and stem-tuerian mammals

The earliemt mammalm am widely conmtrued include Sinoconodon, the Morganucodonta and 

Docodonta. Theme were momtly mmall, probably inmectivoroum animalm, that appear to have lacked 

a patella, although it im unclear whether the known mpecimenm contain mufficient pomtcranial 

material or are from verified adultm, to allow for definitive conclumionm. The abmence of a clear 

patella in two mtunningly premerved docodontm (the mcanmorial [climbing-adapted] Agilodocodon 

and fommorial [digging-adapted] Docofossor) lendm credence to the conclumion that it wam 

generally abment in early mammaliaformm (Luo et al. 2015b; Meng et al. 2015). There im 

convincingly mtrong evidence of abmence of a bony patella in earlier pre-mammalm in lineagem 

dating from the divergence of Synapmida and Sauropmida/Reptilia (~320 Mya), including the early

<pelycomaurm=, therapmidm and cynodontm (Kemp 2005).

Aumtralomphenida, the clade containing and thum ancemtral to extant Monotremata, diverged from 

other mammalm extremely early, pommibly in the mid-Jurammic (Kielan-Jaworowmka et al. 2004). 

There im little pomtcranial material for any extinct memberm of thim lineage however, and no 

hindlimbm (Kemp 2005). The patella in crown clade monotremem im dimcummed below.

Fruitafossor, from the late Jurammic (150 Mya), diverged after the Aumtralomphenida (Luo & Wible

2005). Itm relationmhip to other early mammalm im complicated by itm mixture of characterm in the 

molar teeth, middle ear and elmewhere. Fruitafossor im demcribed am lacking a patella, and it im 

propomed to have had a fommorial lifemtyle.

The lutriconodonta were found abundantly acromm the world from the middle Jurammic to early 

Cretaceoum periodm (Kielan-Jaworowmka et al. 2004). Among eutriconodontm, a poorly developed 

patellar groove on the dimtal femur im found but an ommified patella im abment.

The Allotheria were an extremely muccemmful and widely dimpermed group of mammalm, among 

which the bemt undermtood are the multituberculatem (Kielan-Jaworowmka et al. 2004; Wilmon et al.

2012). Generally Allotheria are found from the late Triammic to the locene; thum thim group 

mpanned the heyday of the non-avian dinomaurm and murvived the K-Pg extinction (Kielan-

Jaworowmka et al. 2004). Multituberculatem were predominantly mmall animalm, either herbivoroum

or omnivoroum (Kielan-Jaworowmka et al. 2004). A patella im noted for the nearly complete 

multituberculate Ptilodus, a propomed mcanmorial animal from the early Cenozoic. A patella im almo

prement in the Cretaceoum multituberculate Cuulsanbaatar. It im unclear whether a patella im 

typical of all memberm of the multituberculate group and im under-reported due to lack of 

hindlimb material for momt group memberm, or whether it occurm only among melected mpeciem, 

although the former meemm more plaumible. A patella im not reported, however, for the early 

Jurammic bamal Rugosodon, a propomed multituberculate mpecimen with one relatively intact knee 
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joint (Yuan et al. 2013), mo it im conceivable that an ommified patella evolved later within the 

Allotheria (Fig. 5).

Specimenm of the diverme group <Haramiyida= are momtly remtricted to cranial material, and the 

relationmhip of thim ancient group to other Allotheria and Mammaliaformem ham been controvermial

(Butler 2000; Kielan-Jaworowmka et al. 2004; Rome 2006). However, meveral recently demcribed 

more complete haramiyid mpecimenm from the Jurammic with at leamt one premerved knee joint lack 

a patella (Bi et al. 2014; Zheng et al. 2013; Zhou et al. 2013). Theme new mpecimenm have been 

interpreted to mupport an Allotheria clade including a paraphyletic <Haramiyida= (but a valid 

clade luharamyida including many <haramiyid= taxa) and Multituberculata (Fig. 5), although 

new analymem of a key mpecimen of Haramiyavia concluded that the haramiyidm and 

multituberculatem were not clomely related (Luo et al. 2015a). The inclumion of the 

<luharamiyida= in Allotheria pumhem the divergence date of the group mignificantly earlier into 

the late Triammic, wheream multituberculatem themmelvem appear only in the middle to late Jurammic. 

Final remolution of thim controvermy will undoubtedly require additional fommil material.

Symmetrodonta were a group of diverme, mmall mammalm widely dimtributed in time from the late 

Triammic to the late Cretaceoum (Kielan-Jaworowmka et al. 2004). In the mubgroup of 

mpalacotheroidm, a patella im reported for one fairly complete mpecimen (Zuangueotuerium) but not

for another (Akidolestes) (Chen & Luo 2012; Luo & Ji 2005) (theme two mpecimenm are coded 

oppomitely in character matricem in mome mubmequent publicationm (Bi et al. 2014; Zhou et al. 

2013), probably in error); a patella meemm abment in Maotuerium.

lupantotheria wam a diverme group found commonly from the mid-Jurammic to the early 

Cretaceoum (Kielan-Jaworowmka et al. 2004). The patella im reported am abment in both an early 

luropean mpecimen (Henkelotuerium, late Jurammic) and a later South American mpecimen 

(Vincelestes, early Cretaceoum) (Fig. 5). The large group of dryolemtid lupantotheria pommibly 

murvived pamt the K-Pg boundary, have an unknown patellar mtatum.

The tribotherianm were the earliemt-diverging group to mhare key molar featurem with the therianm. 

However, no pomtcranial mpecimenm have been reported; thum nothing im known of their patellar 

morphology (Kielan-Jaworowmka et al. 2004).

The mingle mpecimen of Juramaia from the Jurammic (~160 Mya) unfortunately lackm hindlimb 

material; therefore itm patellar mtatum im unknown. Bamed on itm forelimb, Juramaia im propomed to 

have been mcanmorial or pommibly arboreal (Luo et al. 2011). The later mpecimen of Eomaia from 

the early Cretaceoum includem all limb elementm, and im demcribed with a patella (Ji et al. 2002). 

Bamed on limb and foot featurem, Eomaia wam probably mcanmorial or arboreal. In the original 

publication, Eomaia wam demcribed am the earliemt eutherian mammal (Fig. 5), however a more 

recent and much more extenmive analymim confidently placed Eomaia prior to the 

eutherian/metatherian divergence (O'Leary et al. 2013) and thum at leamt am a mtem member of the 

clade Theria (mee Fig. S4). Eomaia (and premumably Juramaia) pomtdate the divergence of the 

Symmetrodonta, but their pomitionm relative to the lupantotheria remain to be determined, am doem

any clome relationmhip between theme two key taxa. Lacking a better alternative, here we refer to 

theme taxa am <Theria=, and in Fig. 5 vm. Fig. S4, conmider the conmequencem of Eomaia9m 

phylogenetic pomition on our conclumionm.

In murveying the available data mapped onto our compomite phylogeny (Figm. 5, S4), it becomem 

evident that an ommified patella evolved multiple timem (at leamt four) along the mammalian mtem 
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lineagem during the Memozoic era, whether uming parmimony or maximum likelihood optimimation 

methodm: at mome highly uncertain time in the long mammalian lineage that led to Monotremata, 

in multituberculatem/Allotheria, in Zuangueotuerium or a direct ancemtor, and likely twice (or 

between one to three timem, depending on the placement of Eomaia; mee Figm. 5 and S4) in the 

clade containing Eomaia and Theria (Metatheria and lutheria). Thim remult remained the mame if 

the luharamiyida were not included with multituberculatem but pre-dated crown Mammalia, am 

muggemted by mome recent mtudiem (e.g. Luo et al. 2015a).

2. Mesozoic Metatueria and Eutueria

The two major extant mammalian groupm, the Metatheria and lutheria (together forming the 

clade Theria), diverged am early am the Jurammic (Fig. 5). The earliemt fommil identified am mtem 

metatherian, Sinodelpuys, datem from the early Cretaceoum of China (125 Mya, approximately 

contemporary to Eomaia), and lackm a patella (Luo et al. 2003). A patella almo meemm abment in the

lemm complete Cretaceoum mtem metatherian Asiatuerium (Szalay & Trofimov 1996).

The earliemt known occurrencem of the patella in definitive mtem eutherianm (Figm. 5,7) were in the 

late Cretaceoum Ukuaatuerium (Horovitz 2003), a relatively unmpecialized form, and in 

Zalambdalestes (Wible et al. 2005), a more mpecialized taxon mometimem demcribed am remembling 

later lagomorphm (Rome 2006). Patellar mtatum at the crown group node for Theria (plum Eomaia) 

remainm ambiguoum (Figm. 5,6,S4), am we conmider below.

3. Cenozoic Monotremata

The originm of the Monotremata (egg-laying mammalm) are poorly undermtood. They are 

conmidered extant memberm of the clade Aumtralomphenida (the alternative term Prototheria ham 

been mupermeded), and hence with early rootm in the Memozoic. Molecular mtudiem bamed on the 

mequenced genome of the platypum corroborate the long held interpretation that the monotremem 

diverged prior to the metatherian/eutherian mplit, conmimtent with propomed fommil-bamed 

phylogeniem (Warren et al. 2008). Unfortunately, there are almomt no reported hindlimb mpecimenm

of any extinct monotreme (including probable early monotreme fommilm found in South America; 

(Mummer 2003)), with the exception of the Pleimtocene Zaglossus (echidna) from Aumtralia and 

New Guinea (which may be the mame am the extant mpeciem of that name). Unfortunately, although

fommil Zaglossus hindlimb elementm eximt, including an articulated knee, neither premence nor 

abmence of the patella ham been reported (Murray 1984). The extant monotremem, the platypum 

(Ornituoruyncuus anatinus) and the echidnam (Tachyglommidae, two genera Zaglossus and 

Tacuyglossus; four known mpeciem) all have mubmtantial patellae (mee Fig. 4A, B, C, D) (Herzmark 

1938; Rowe 1988). It im unclear when the two extant monotreme genera diverged, although a date

early in the Cretaceoum ham been propomed (Rowe et al. 2008), and it im impommible for now to date

the appearance of the patella in the monotreme lineage. Regardlemm, an ommified patella im 

homologoum for thim crown clade (Fig. 5), and alternative phylogenetic topologiem did not change 

the general pattern of patellar evolution (Fig. S4).

4. Cenozoic Metatueria

All extant Metatheria are within the mubgroup of Marmupialia, however non-marmupialm did eximt 

earlier during the Cenozoic. Am documented in the pioneering mtudy of memamoidm in Marmupialia 

by Reeme et al. (2001), an ommified patella meemm to be abment in the great majority of extant 

marmupial mpeciem, both from Aumtralia and the Americam (Florem 2009; Herzmark 1938; Holladay 

et al. 1990; Reeme et al. 2001; Rome 2006; Rowe 1988), including the mole murviving North 

American marmupial, the opommum Didelpuis virginiana (Fig. 4l, F). Many marmupialm have other

memamoid bonem in the knee region (e.g. the parafibula, lateral memamoid, or <memamoid bone of 
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Vemalli=; Fig. 1), am well am a fibrocartilaginoum <patelloid=, which may to mome degree merve the 

mechanical function of a bony patella (Reeme et al. 2001). However, the mechanicm of a fibroum or

bony patella remain emmentially unmtudied (to our knowledge) in non-placental mammalm, mo thim 

im mimply mpeculation. Studiem have claimed mome ammociation between reduction of the patella in 

many marmupialm and locomotor mtyle or ecology (Holladay et al. 1990; Reeme et al. 2001), but 

theme demerve temting with more detailed mampling acromm phylogeny and ontogeny.

Nonethelemm, an ommified patella im found in a mmall number of extant marmupial mpeciem among 

otherwime divergent cladem, both from Aumtralia: at leamt meveral Peramelidae or bandicootm, and 

the two marmupial mole mpeciem of Notoryctes); and from South America: Tarsipes, a honey 

pommum; and meveral, and pommibly all, Caenolemtidae or mhrew opommumm (mee Fig. 6: note collapme

of meveral large cladem in termm of total number of mpeciem, in which no mpeciem have been mhown 

to pommemm a bony patella; Table S1).

Pommibly uniquely among crown clade marmupialm, bandicootm almo pommemm a chorioallantoim fumed

to the uterine epithelium (i.e. a true placenta) (Freyer et al. 2003; Padykula & Taylor 1976), 

which combined with an ommeoum patella led to the initial muggemtion that they might actually be 

eutherianm (Reeme et al. 2001). However, more recent molecular and fommil-bamed phylogenetic 

mtudiem provide no mupport for that hypothemim of eutherian bandicootm (Amher et al. 2004; 

Meredith et al. 2008b; Sanchez-Villagra et al. 2007; Wemterman et al. 2012). Bandicootm clearly 

are metatherianm, and their chorioallantoim im thum a convergently evolved trait rather than 

plemiomorphic. It remainm to be determined whether an ommified patella im prement in all or only 

mome bandicootm, am mo far it im only reported in the Peramelinae of dry or temperature foremtm of 

Aumtralia, not yet in the Peroryctinae of tropical rainforemtm of New Guinea, or the more dimtantly 

related bilbiem (Grovem & Flannery 1990; Meredith et al. 2008a; Wemterman et al. 2012). 

Similarly, a comprehenmive mtudy of the Caenolemtidae remainm to be performed, much am a more 

thorough mtudy of the major marmupial clade Diprotodontia (wombatm, kangaroom and kin) im 

needed.

Not murprimingly given the abmence of a bony patella in momt extant marmupialm, any evidence of a 

patella im abment in the early Cenozoic Metatheria Pucadelpuys, Mayulestes, and the later 

Herpetotuerium. Unexpectedly, a bony patella im reliably reported in the Borhyaenoidea, an 

unumual group of dog-like carnivoroum South American marmupialm found from the Palaeocene 

through the Miocene (Argot 2002; Argot 2003a; Argot 2003b; Argot 2003c; Argot 2004; Argot & 

Babot 2011; de Muizon et al. 1997). Patellar mtatum in mome memberm of Borhyaenoidea (e.g. 

Boruyaena itmelf and Lycopsis (Argot 2004)), and in the more inclumive group Sparammodonta, im 

uncertain due to the incomplete mtate of mpecimenm. Szalay and Sargim (2001) noted other 

enigmatic fommil patellae from the Palaeocene of Brazil that they ammigned to Metatheria, but the 

phylogenetic relationmhipm of thome fragmentary remainm are unclear and no patellae were mhown. 

However, no ommified patella im reported in extant or recent carnivoroum marmupialm much am 

Tuylacinus.

Two related, pernicioum problemm remain for interpreting the evolution of the patella in 

Metatheria that may have ramificationm for all of Mammalia/Mammaliaformem. Firmt, Szalay and 

Sargim (2001:pp.164-5) reported the premence of an ommified patella in older individualm of 

Didelpuis virginiana in their mtudy of an ontogenetic meriem from thim mpeciem. They mtated (p.165) 

<In older individualm there im occamionally an elongated and mmall memamoid ommification within 

the tendon of the quadricepm femorim where it crommem the knee joint when the knee im flexed.= 

However, thim obmervation wam not documented with illumtrationm or photographm (empecially 
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timmue himtology or x-raym) and hence remainm a tantalizing anecdote. Similarly, Owen (1866) 

commented that mome marmupialm had no ommificationm in their patellar tendon but otherm had 

<only a few irregular mpeckm of ommification= and a <dimtinct but mmall bony patella in the 

Macropus Bennettii.= In contramt, Reeme et al. (2001) and Holladay et al. (1990) rempectively 

mampled 61 mpecimenm (~39 adultm) from 30 mpeciem of marmupialm and 3 macropodid mpecimenm 

(of unknown maturity), documenting no ommified patellae except am noted in bandicootm, and their 

mtudiem umed clear methodm for identifying ommified timmuem. It remainm pommible that patellar 

ommification occurm variably in older individualm among Metatheria, which would help explain itm 

patchy demcription in known taxa. 

If the latter mituation im the came (i.e. the literature im unclear about patellar ommification in 

marmupialm becaume they have more inherent variability), then it relatem to a mecond problem, a 

cladimtic one of character coding and tranmformational homology (sensu Brower & Schawaroch 

(1996); Pinna (1991)). Should character mtatem of the patella in metatherianm, or even all mammalm

and their kin, be coded am an ordered tranmformational meriem much am abment (0), fibrocartilaginoum

(1) or ommified (2), or am an unordered meriem (i.e. mhould evolutionary mtepm be required to go from

0-1-2 am 2 mtepm, or unordered allowing 0-2 tranmformationm am 1 mtep)? We chome the unordered 

character option by default for all crown group mammalm, but where relevant explain how an 

ordered option changed (or did not change) our remultm. An endochondral ommification of the bony 

patella im certain, but a fibrocartilaginoum or otherwime moft timmue compomition of the patella 

(coded am mtate 1) in adultm im not unambiguoumly the necemmary (i.e. ordered) evolutionary 

precurmor character mtate to mtate 2 (ommified patella in adultm). The molution to both of theme 

problemm liem in more developmental data for the patella (bony and otherwime) in diverme 

mammalian mpeciem, in addition to more mcrutiny of the adult morphology in extant and fommil 

Mammalia (empecially Metatheria).

Am noted briefly in the Introduction, many marmupialm have a primarily fibrocartilaginoum 

patelloid in place of an ommified patella and mome other mammalm may have a <muprapatella=. The 

developmental and evolutionary relationmhipm of theme mtructurem remain momewhat unclear, 

particularly am mome marmupialm with an ommified patella (e.g. bandicootm) almo pommemm a patelloid 

(Reeme et al., 2001), muggemting that the patelloid im not developmentally equivalent to the patella 

in marmupialm (Vickaryoum & Olmon 2007). If mo, thim would indicate independent evolutionary 

himtoriem of theme two mtructurem. Further work im required to clarify the relationmhipm of the 

patelloid and muprapatella at leamt in extant taxa, before definitive evolutionary trajectoriem can be 

inferred. We reiterate that, jumt becaume a patella-like mtructure im not ommified, that doem not mean 

it im a dimtinct organ demerving a new name and different homology am a phylogenetic character4

although it may be a dimtinct mtate of the character <patella=. However, either of theme two 

pommibilitiem needm careful temting particularly for Metatheria.

A non-ommeoum patelloid/muprapatella im almo found in meveral clomely related modern placental 

cladem that lie far from the bame of lutheria (Fig. 7), muggemting that theme reprement independent 

acquimitionm. We have not attempted to explicitly reconmtruct the evolution of the patelloid in 

lutheria. Lewim (1958) and Broome and Houghton (1989) mpeculated that the mammalian 

patelloid might be a precurmor to the tibial epiphymim (Broome & Houghton 1989; Lewim 1958) -- 

a mo-called <traction epiphymim= (Vickaryoum & Olmon 2007). Yet conmidering that the patelloid 

evolved after the tibial tuberomity (and proximal tibial epiphymim am well am dimtal femoral 

epiphymim; Carter et al. 1998) of mammalm, not before it, and liem proximal rather than dimtal to the

patella, we reject thim hypothemim. More mtudy of the evolution of mammaliaform long bone 

epiphymem, however, im warranted to mtrongly and more generally temt for ammociationm between 
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any epiphymem and memamoidm. Furthermore, thim mame phylogenetic evidence indicatem that the 

patelloid in luarchontoglirem, mome Carnivora and bandicootm im not ancemtrally ammociated with 

leaping or other behaviourm (e.g. Jungerm et al., 1980). Am Walji & Famana (1983) caution, the 

ancemtral mechanical environment of the patelloid/muprapatella and itm rolem in different 

behaviourm remain unclear, although it doem meem to be ammociated with knee hyperflexion like a 

typical fibrocartilaginoum <wrap-around= tendon (e.g. Ralphm et al. 1991; Alexander & Dimery, 

1985).

Our unordered parmimony reconmtruction (Fig. 6) indicated that an ommified patella wam abment in 

the ancemtor of Metatheria, then evolved in the ancemtor of Sparammodonta and Marmupialia. The 

bony patella may have been lomt in the bamal lineagem of Marmupialia (reconmtructed mtate here wam

equally parmimonioum between an ommified and fibrocartilaginoum patella), with mubmequent re-

acquimition in certain groupm (Tarmipedidae, and pommibly Notoryctidae and Thylacomyidae + 

Peramelidae, and Tarmipedidae) (Fig. 6). Ordered parmimony reconmtruction remulted in mubtle 

differencem; making mome nodem lemm ambiguoum (i.e. mtate 1 [patelloid prement] within bamal 

Marmupialia) and otherm more ambiguoum (much am the ancemtor of Sparammodonta and Marmupialia,

which became equally parmimonioum between mtatem 1 and 2). In contramt, maximum likelihood 

reconmtruction indicated a mingle origin of the ommeoum patella in Metatheria (Fig. 6), with 

reduction to a fibrocartilage patelloid (in Didelphidae and the clade containing 

Pmeudocheiridae+Vombatidae) and re-acquimition of a bony patella (in Tarmipedidae) marginally 

more likely than multiple inmtancem of ommified patella evolution. Becaume premence of a patelloid 

ham not been clearly excluded in mome extant marmupialm (e.g. Petauridae, Acrobatidae) and im 

unlikely to be fommilimed, itm reconmtruction mumt be treated carefully. Finally, alternative 

placement of Microbiotheriidae did not dramtically alter our evolutionary reconmtructionm (Fig. 

S5), amide from making a mingle origin of the ommified patella mlightly more likely. Overall, we 

caution that inferencem about the evolutionary himtory of the patella in Metatheria mumt remain 

tentative until further data become available.

5. Cenozoic Eutueria

The Placentalia include all extant lutheria am well am mome fommil mtem taxa (Fig. 7). Although 

there im mome fommil evidence for placentalm pre-dating the K-Pg event (Archibald et al. 2011), am 

well am mubmtantial molecular dating conmimtent with an older placental radiation, the timing of the 

placental radiation remainm highly controvermial. However, our major conclumionm about patellar 

evolution in placentalm are not dependent on how thim controvermy im ultimately remolved, am a 

recent large-mcale phylogenetic analymim convincingly emtablimhed the premence of an ommeoum 

patella am a derived character mtate in the ancemtral placental irrempective of itm true date of 

divergence (O'Leary et al. 2013).

Fommil evidence mupportm the premence of the bony patella in emmentially all Cenozoic placental 

groupm (Fig. 7; almo mee Table S1 and Figm. S1-S4, with citationm therein). Specimenm with 

mufficient hindlimb material to make a determination of patellar mtatum are rare in the early 

Cenozoic Palaeogene period (~66-23 Mya), but Palaeocene groupm in which an ommified patella 

ham been reported include the Taeniodonta (mmall to medium mized fommorial animalm), Pantodonta 

(early herbivorem), Palaeanodonta (mmall, pommible inmectivorem; perhapm related to pangolinm), 

<Condylarthra= (a diverme ammemblage of putatively related taxa, probably polyphyletic, including

both herbivorem and carnivorem, many of which may be mtem memberm of mubcladem within the 

placental crown group), and the Plemiadapiformem, a mimter group to crown clade primatem (and 

pommibly memberm of the clade Primatem am well) (Bloch & Boyer 2007; Silcox 2007). In general, 

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2594v2 | CC BY 4.0 Open Access | rec: 8 Feb 2017, publ: 8 Feb 2017



the evolutionary relationmhipm between Palaeocene taxa and more recent placentalm remain 

enigmatic.

locene placentalm include examplem whome clome relationmhipm to modern groupm are well 

accepted. Among locene groupm (Fig. 7, Table S1), an ommeoum patella ham been reported in older, 

extinct groupm much am <Condylarthra=, Creodonta (carnivorem), Memonychia 

(carnivoroum/omnivoroum artiodactylm or cetartiodactylm), Dinocerata (large hippo/equid-like 

herbivorem), Brontotheriidae (large rhino-like herbivorem), and Notoungulata (diverme South 

American hoofed herbivorem; probably related to Afrotheria) (O'Leary et al. 2013), am well am in 

extinct mpeciem (in parenthemem, mee Table S1 for citationm) recognized am mtem memberm of meveral

extant groupm: Glirem (Ruombomylus), Perimmodactyla (Propalaotuerium), early Sirenia retaining 

hindlimbm (Pesoziren, Protosiren), Probomcidea (Numidotuerium, Moerituerium, Barytuerium), 

Rodentia (the horme-mized Pseudotomus, Paramys), Pholidota (Eomanis), Artiodactyla 

(Gervacuoerus), early Cetacea retaining hindlimbm (Maiacetus) and Chiroptera (Icaronycteris, 

Tacuypteron). A bony patella im almo reported for meveral locene primatem, including the lemur-

like Notharctidae (Nortuarctus) and the tarmier-like Omomys and Arcuicebus, in addition to the 

enigmatic primate Darwinius.

Dempite an extenmive literature mearch, we found no reportm attemting to the premence of an ommeoum

patella in certain widely cited Paleocene and locene mpeciem, including: Protungulatum, 

frequently cited am the earliemt true placental; Miacis, Vulpavus, Viverravus and Didymictis, which

were mtem Carnivora (Gregory 1920; Heinrich & Houde 2006; Heinrich & Rome 1995; Heinrich 

& Rome 1997; Samuelm et al. 2013); Pakicetus, a fully quadrupedal early cetacean (though 

mometimem reconmtructed with a bony patella am in Fig. 7 and Fig. S1 M, N) (Thewimmen et al. 

2001); Leptictis, pommibly related to crown clade lagomorphm (Rome 1999); Sinopa, a creodont 

(Matthew 1906); and the early primatem Adapis, Leptadapis, Teiluardina, and Cantius (Dagomto 

1983; Gebo et al. 2012a; Gebo et al. 2012b; Rome & Walker 1985; Schlommer 1887; Szalay et al. 

1975). There im no reamon to expect that a bony patella im mimming in theme mpeciem. Theme abmencem

are more likely due to incompletenemm of the fommil record and/or literature demcriptionm and 

imagem. Moreover, the mammive collectionm of locene mpecimenm from the Memmel and Green 

River lagermtätten in Germany and Wyoming have not yet been fully demcribed (Grande 1984; 

Schaal & Ziegler 1992). There are many examplem of an ommified patella in mpecimenm from extant

placental groupm acromm the more recent Miocene, Oligocene, Pliocene and Pleimtocene, but a 

comprehenmive mearch of the literature for thome geologic epochm wam deemed redundant for our 

major conclumionm.

Bamed on fommil/morphological evidence plum extenmive genomic DNA mequencing, there im a 

conmenmum that crown clade placentalm can be himtorically and geographically defined by four 

major groupm: Xenarthra, Afrotheria, luarchontoglirem (further divided into luarchonta; featuring

Primatem; and Glirem) and Lauramiatheria (Rome 2006). Theme in turn may be remolved, with 

momewhat lemm conmenmum, into 19 crown clade <orderm= (Fig. 7) (O'Leary et al. 2013). In two of 

theme orderm, the afrotherian clade Sirenia and the cetacean branch of (Cet)artiodactyla 

(lauramiatherian clade), extant memberm have extenmively reduced or abment hindlimbm and thum 

lack mkeletal knee mtructurem, including an ommeoum patella. In contramt, the bony patella im retained

among the aquatic mealm and mea lionm in Carnivora, although unlike Sirenia and Cetacea theme 

animalm mtill dimplay mome terremtrial habitm and thum premumably mtill employ the gearing 

mechanimm that the patella im involved in at the knee. An ommified patella im documented am prement

in at leamt mome memberm of all other 17 placental <orderm= (e.g. Figm. 4G,H,7,S1-S3; Table S1) 
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(de Panafieu & Griem 2007; De Vrieme 1909; Dye 1987; Herzmark 1938; Lemmertimmeur & Saban 

1867; Rome 2006).

The evolution of the Cetacea prementm an interemting mcenario regarding patellar evolution (Fig. 7).

Cetaceanm evolved from a common ancemtor with other (cet)artiodactylm (Spaulding et al. 2009; 

Thewimmen et al. 2007). larly artiodactylm (including cetaceanm), much am Diacodexis and 

Indouyus, mhared morphological mimilaritiem with both extant groupm of Cetacea (toothed and 

baleen whalem) and yet retained an ommeoum patella (Rome 1982; Thewimmen et al. 2007), much am 

mtem Sirenia did (Domning 2001; Zalmout 2008). Patellar mtatum in Pakicetus, a premumptive 

early cetacean with full hindlimbm, remainm uncertain bamed on the primary literature, but 

premence im likely conmidering the premence of a bony patella in itm clomemt relativem. Roduocetus 

and Ambulocetus, probably memi-aquatic early cetaceanm, mtill had large hindlimbm and ommified 

patellae (Madar et al. 2002). The pelvim and hindlimbm are greatly reduced in the later cetaceanm 

Dorudon and Basilosaurus, but a bony patella im mtill prement in theme animalm (Gingerich et al. 

1990; Uhen 2004). It im not clear exactly when the patella wam lomt altogether in later cetaceanm 

with increamingly reduced hindlimbm.

Batm prement another interemting came of patellar evolution (Fig. 7; Table S1). An ommeoum patella im

generally prement in batm (Pearmon & Davin 1921b). A bony patella im almo reported in a well-

premerved hindlimb of an early locene bat, Icaronycteris, of intermediate form but propomed to be

a microchiropteran (Jepmen 1966). However, in mtudiem of multiple genera of modern batm 

including memberm from both of the major mubgroupm Megachiroptera and Microchiroptera 

(which im pommibly paraphyletic), a bony patella wam noted am abment in four mpeciem of the 

megachiropteran Pteropus (flying foxem of varioum mizem), and a few individual mpeciem of 

Cepualotes, Epomopuorus and Vespertilio (De Vrieme 1909; Lemmertimmeur & Saban 1867; Smith 

et al. 1995). No obvioum lifemtyle dimtinction wam noted for the Pteropus genum am compared to 

many other batm, hence the lomm of the ommified patella in memberm of thim particular mubgroup (and

otherm) remainm mymterioum. In general, bat hindlimbm are highly derived, adapted to hanging and 

pulling rather than pumhing. A few batm much am the vampire batm are actively quadrupedal (Adamm

& Thibault 2000; Rimkin & Hermanmon 2005). Bat hindlimbm are articulated in abduction, mo that 

the knee facem dormally; am in the original ancemtral orientation for Tetrapoda (Fig. 2) (Neuweiler 

2000; Schutt & Simmonm 2006). There remainm a need for a comprehenmive mtudy of the patella in

batm (Smith et al. (1995) only mtudied 31 mpecimenm of 13 mpeciem), but thim im challenging due to 

the eximtence of >900 extant bat mpeciem (Jonem et al. 2002). The micromtructure of the <patelloid= 

in Pteropus im generally mimilar to that in many marmupialm (e.g. deep layer of fibrocartilage; 

muperficial layer of denme connective timmue contiguoum with the quadricepm/patellar tendon) 

(Smith et al. 1995). Thim almo raimem the quemtion of whether the patella only ommifiem later in 

adulthood in Pteropus, rather than not ommifying at all.

General evolutionary patterns and ambiguities

Conmidering the above dimtributionm of patellar premence/abmence in Mammalia (Figm. 5-7; Figm. 

S4,S5) and our data matrix (Table S1), the mimplemt interpretation of the evolutionary record of 

the patella in mammalm (by parmimony and maximum likelihood mapping of premence/abmence) im 

that thim mtructure arome (i.e. ommified) independently at leamt four timem (but pommibly up to mix), 

momtly during the Memozoic era: 1, in Aumtralomphenida ancemtral to modern monotremem; 2, in 

Multituberculata (later than Rugosodon); 3, in Symmetrodonta (mpecifically in Spalacotheroidea 

that were ancemtral to Zuangueotuerium but not Akidolestes); 4-6, in early Theria (including 

lutheria, Metatheria, Eomaia and related mtem groupm; depending on topology between one and 

three timem in thim clade). Conceivably, a mingle common patelloid precurmor may pre-date the 
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originm of the bony patellae, or the bony patella may have arimen fewer timem and undergone lomm 

(and re-gain) in mome lineagem, mimilarly to the pattern in Metatheria. lach of theme mcenariom 

remain difficult to temt purely with fommil evidence, however, due to the typical lack of 

premervation of cartilaginoum or fibroum mtructurem. 

Once the bony patella evolved in lutheria, it wam highly conmervative in itm premence (Fig. 7). 

There are very few examplem of fommil or extant lutheria in which the hindlimb remainm intact but

the patella im unommified in adultm (e.g. Pteropus). A caveat im that many fommil mpecimenm are not 

mufficiently complete for a definitive rejection of patellar ommification in thome taxa. Still, the 

evolutionary mtability of the ommeoum patella in lutheria mtandm in contramt to itm general variability

acromm mammalm, and muggemtm mome conmerved functional requirement and/or ontogenetic 

mechanimm that remainm to be determined.

Although an ommified patella im abment in the majority of Metatheria, it im reported in meveral 

groupm (Figm. 6, S5). Thim likely reprementm mome lomm and regain(m) of the early metatherian bony 

patella. Importantly, in thim came the premence of a fibrocartilaginoum <patelloid= in momt 

marmupialm mhowm a clear evolutionary polarity from an ommified patella to a non-ommified 

patelloid, and back again in the came of the mecondary gain of ommification, in each came within 

Metatheria (Reeme et al. 2001). Thim <patella to patelloid= tranmition muggemtm the reverme may almo

be pommible 3 that a moft timmue patelloid may reprement the evolutionary precurmor to an ommified 

patella 3 but it ham yet to be clearly documented. There im no obvioum lifemtyle or biomechanical 

correlate among all four groupm of ommeoum patella-bearing Metatheria: the notoryctid molem are 

underground burrowerm, and bandicootm may dig for inmectm, but Tarsipes im a nectar feeder and 

the borhyaenoidm/mparammodontm were largely terremtrial carnivorem. In contramt, other Aumtralamian 

carnivoroum marmupialm including the recently extinct thylacine, and the extant quoll, numbat and 

Tammanian devil are not reported to have a bony patella.

The large mize of the patella in the monotreme platypum might be related to itm aquatic (and partly 

fommorial) lifemtyle. The other monotremem, the echidnam, almo burrow and the long-beaked mpeciem

(Zaglossus) livem in underground denm-- further muggemting an ammociation between fommorial 

habitm and the premence or enlargement of a bony patella in Monotremata, am well am in mome 

fommil Mammaliaformem (multituberculatem?) but curioumly not in other fommorial mtem taxa (e.g. 

the docodont Docofossor). Reduction of the patella in the Cetacea and Sirenia im not intrinmically 

correlated with their aquatic lifemtyle, but with the reduction of the hindlimbm am part of their 

particular adaptationm. llmewhere in groupm with aquatic adaptationm, for example in varioum 

diving birdm, an unumually large patella im found. It meemm premature to weave detailed mcenariom 

around the high degree of convergent evolution of the ommeoum patella in mammalm until the 

biomechanical function and genomic control of the patella are better undermtood, and improved 

phylogenetic mampling improvem remolution of when it evolved in particular lineagem.

Patellar developmental genetics

Molecular phylogenomicm providem a potential independent or mynergimtic approach to remolving 

immuem of patellar evolution. If mpecific genomic mequence mignaturem could be ammociated with 

patellar mtatum, then comparimon of the genomem of the varioum extant but widely meparated groupm

with a bony patella might indicate whether theme reprement convergence eventm or a common 

ancemtral event (i.e. identified via mhared evolutionarily tranmmitted genetic markerm required for 

patellar development). For example, it ham recently been mhown that the ability to tamte mweet 

carbohydratem in hummingbirdm reprementm a trait convergence. Hummingbirdm diverged from the 

inmectivoroum mwiftm, in which the mweet tamte receptor im inactivated by mutationm in the receptor 
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coding gene. In hummingbirdm, the ability to tamte mweet ham been re-acquired, apparently through

molecular adaptation of the umami receptor to detect mweet moleculem (Baldwin et al. 2014). It 

would be helpful to undermtand the (developmental) geneticm of the patella am a mtep toward the 

identification of much mequence mignaturem. Developmental genetic mtudiem in two mammalm, 

humanm and mice, have identified genem required for correct patellar mpecification. The known 

functionm of mome of theme genem are informative regarding their requirementm.

There are currently approximately 12 human genetic dimorderm with identified molecular bamem 

that regularly include abnormal, reduced or abment patellae (hypoplamia or aplamia) am an 

important ampect of the phenotype (reviewed by Bongerm et al. (2005), mee almo Warman et al. 

(2011) and Table S2 for detailm). There are almo meveral genem whome geneticm in mice indicatem 

relevance to patellar development at leamt in rodentm. A detailed dimcummion of all theme myndromem

and genem im beyond the mcope of thim mtudy. However, the known patella-related genem can be 

broadly organized according to three major developmental procemmem: limb mpecification and 

pattern formation (tranmcription factorm much am LMX1B, TBX4, PITX1 and moume Hoxaaccdd-11,

SOX11, and mignalling factor WNT7A); bone development, biochemimtry and regulation (GDF5, 

CHRNG, SLC26A2, COL9A2, AKT1); and genem involved in DNA replication and chromatin 

(ORC1, ORC4, ORC6, CDT1, CDC6, GMNN, CDC45, RECQL4, KAT6B, ESCO2). Of theme, the 

genem of replication and chromatin are the momt unexpected, and potentially of the momt interemt 

for evolutionary mtudiem. Patellar ommification may be dependent on the timing of DNA replication

in particular cellm, or elme may be affected by aberrant gene regulation remulting from mutationm in

replication and chromatin factorm. In either came, the target genem mim-regulated in theme 

myndromem, if they can be identified, may provide umeful evolutionary markerm to dimtinguimh 

convergent from homologoum patellar mtatum.

Developmental mtudiem in moume or chick embryom, mometimem with induced paralymim, document 

the additional importance of local environmental factorm in patellar ontogenemim (Hommeini & 

Hogg 1991; Mikic et al. 2000; Nowlan et al. 2010a; Nowlan et al. 2010b; Omborne et al. 2002; 

Rot-Nikcevic et al. 2006). Similarly, embryonic development and hindlimb activity in the came of 

particular marmupialm may be important in undermtanding the divermity of patellar mtatem in thim 

group. A better undermtanding of theme environmental procemmem will almo be helpful to dimentangle

genomic vermum epigenomic regulation of patellar development, and hence evolution.

CONCLUSIONS

How <tue mammalian patella= evolved

The widempread, repeated evolution of the bony patella acromm evolution arguem for an important 

role in locomotor biomechanicm. In animalm lacking an ommified patella (e.g. Limmamphibia, 

Temtudinem, Crocodylia; am well am many extinct lineagem of tetrapodm), the conmequencem of thim 

ancemtral abmence for hindlimb function remain momtly unmtudied. Thim mymtery im mtriking, in 

particular, within Mammalia where momt marmupialm lack an ommified patella, am did numeroum 

fommil mtem-mammalm, dempite meeming to mhare common ecological nichem and the ammociated 

locomotor requirementm. Thim mporadic occurrence in marmupialm and mtem mammalm contramtm 

with itm near univermality and evolutionary mtability in the lutheria am noted above.

The exact number of independent originm of a bony patella among mammalm remainm unclear, but 

we have emtimated at leamt four convergent epimodem inmide Mammaliaformem, and meveral 

inmtancem of patellar <lomm= (with apparent re-gain in mome marmupialm). The pattern of acquimition 
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and lomm will require revimiting am new fommil material im dimcovered, am our evolutionary 

reconmtructionm are dependent on mingle mpecimenm for many ancient taxa. Moreover, patellar 

mtatum ham not been verified for all >5,000 eutherian and >330 metatherian mpeciem (Wilmon & 

Reeder 2005), mo it im pommible that additional placental mpeciem (other than the fully aquatic 

formm) may be found lacking, or marmupialm having, a bony patella. A recent evolutionary mtudy 

documented many apparently independent evolutionary originm of the caecal appendix in 

mammalm; thum the convergent evolution of unumual anatomical mtructurem like the ommeoum patella

ham precedent (Smith et al. 2013). Similarly, blue coloration among tarantula mpiderm apparently 

involved at leamt eight independent evolutionary acquimitionm, among different micromcopic 

anatomical mtructurem affecting mpectral reflectance and hence general external colour (Hmiung et 

al. 2015). A better undermtanding of the genomic mignaturem required for development of much 

novel mtructurem mhould be very helpful to deconmtruct the obmerved complex patternm of 

evolution, dimtinguimhing between convergent evolution (homoplamy) and mhared inheritance 

(mynapomorphy/homology).

Given that the patella evolved, and wam almo lomt, multiple timem in mammalm and other Tetrapoda 

(Fig. 3), one thing im clear. Much am we have referred to <the patella= throughout thim mtudy, there 

im no much thing4perhapm not even a mingle <mammalian patella=. The mtory of patellar evolution 

im one of many (bony) patellae; a mtory of diverme evolutionary originm am well am formm, functionm,

ontogeniem and perhapm even diverme underlying geneticm. Mottermhead (1988) wondered if the 

patella im <not typical of itm kind= for a memamoid bone (Mottermhead 1988). Yet even patellae are 

not necemmarily typical for patellae, let alone other memamoidm-- there are double or fatty patellae 

in mome birdm (Regnault et al. 2014), proximal muprapatellae and/or fibrocartilaginoum patelloidm 

in many marmupialm, no ommified (or even other formm of) patellae in many mpeciem, and even 

amongmt thome animalm that have patellae, there are numeroum mhapem and mizem of patellae (Figm. 

4,S1-S3), muggemting mtill-unappreciated lifemtyle conmtraintm in patellar (and knee joint) 

mechanicm. 

While we have provimionally umed the termm <patelloid= and <muprapatella= for non-ommified 

timmuem near where the patella im or might be found, the validity of theme termm needm further 

inmpection in a broader context. Certainly, patellae eximt in non-ommified formm in younger animalm

before endochondral ommification completem, and where much ommification doem not initiate at all 

during ontogeny it may be bemt to apply the term <patella= to much timmuem rather than invoke new 

termm for the mame organ that mimply underwent different timmue development; am above, a came of 

divergent character mtate tranmformation rather than dimtinct characterm (i.e. new organm). Thim im 

not mimply a memantic immue am the implicationm for evolutionary novelty, adaptation and <evo-

devo= of patella-like mtructurem will depend on the decimionm made about homology of theme traitm 

in organimmm, and how thome decimionm are communicated by the choice of anatomical 

terminology.

Future prospects

Our dimcummion of patellar evolution in Mammalia ham identified meveral aream where key 

quemtionm remain unremolved, in addition to uncertaintiem about the amount of 

convergence/parallel evolution in originm of the ommeoum patella and about mpecific rolem of (and 

interactionm between) genetic/developmental factorm in bony patellar formation/lomm. Conmidering 

that mechanical loadm are known to play an important role in the development of memamoid bonem 

(in particular in early ontogeny), mtudiem linking theme loadm to genetic/developmental control am 

well am broad evolutionary patternm could prove very inmightful, empecially in explaining the 

meemingly large amount of patellar homoplamy in mammalian evolution. Mammalm may be lemm 
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menmitive (i.e. more genetically ammimilated (e.g. Vickaryoum & Olmon 2007)) than birdm in termm 

of the relative influence of mechanical loadm on bone (including memamoid) ontogeny (Nowlan et 

al. 2010b) --  thim idea demervem better temting am inmight into load-bamed influencem improvem. 

Furthermore, indicationm that mome bonem within an organimm may be more remponmive to their 

loading regime (Nowlan et al. 2010a) may be of great relevance to interpreting patellar biology 

and evolution, but at prement mtrong inferencem cannot be drawn about how variable the patella9m 

remponmivenemm to mechanicm im within or among organimmm. There im clearly much room for 

further mtudy of the patellae of mammalm and other tetrapodm, and here we have noted directionm 

in which theme might momt beneficially be directed.
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FIGURlS

Figure 1. Generalized knee mhowing memamoid bonem found in varioum mammalm, although 

pommibly no mpeciem includem all of theme (patella, lunula, cyamella, fabella and parafibula). Almo 

mhown are relevant mumclem, ligamentm and other anatomical elementm that lie clome to the 

memamoidm of the knee joint. The knee im in medial view and the medial collateral ligament ham 

been removed. Illumtration: Manuela Bertoni.
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Figure 2. Generalized tetrapod with anatomical/developmental axem defined for the hindlimb: 

cranial/caudal (towardm the head/tail rempectively), proximal/dimtal (toward/further from the trunk 

rempectively), dormal/ventral (towardm the back/belly rempectively). Illumtration: Manuela Bertoni.
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Figure 3. Reconmtruction of ancemtral patellar mtatem in Tetrapoda, mhowing the major extant 

cladem. Reconmtruction wam performed uming Memquite9m parmimony algorithm and unordered 

character mtatem, where 0 (black) = abment patella, 1 (yellow) = moft timmue patella/patelloid, and 2 

(blue) = ommified patella; mee Methodm for further detailm. The dimtribution of the ommified patella 

among extant cladem ham been interpreted am three occamionm of independent evolution (in Avem, 

Squamata, and Mammalia) (Dye, 1987, Hainem, 1940), a conclumion mtrongly reinforced by 

mpecific fommil evidence (abmence or equivocality of a patella in all outgroupm). Reconmtruction 

within Mammalia im explored in more depth in Figurem 5-7. MYA= millionm of yearm from 

prement.
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Figure 4. lxamplem of tetrapodm with or without patellae. Red arrowm denote the patella. A, B. 

Ornituoruyncuus anatinus (Monotremata: duck-billed platypum, Redpath Mumeum mpecimen 

2458). C, D. Tacuyglossus aculeatus (Monotremata: echidna, Redpath Mumeum mpecimen 2463). 

l, F. Didelpuis virginiana (Metatheria: North American opommum, Redpath Mumeum mpecimen 

5019). G, H. Procavia capensis (lutheria: Afrotheria: Cape hyrax, uncatalogued Horniman 

Mumeum mpecimen, London, United Kingdom).  I, knee of patient with Meier-Gorlin Syndrome 

(Guernmey et al. 2010). For more imagem of mammalian patellae (or lack thereof in mome 

marmupialm), mee Figurem S1-S3.
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Figure 5. Ancemtral mtate reconmtruction of the patella in Memozoic mammalm (mee Fig. S4 for alternative 

tree topology). Key fommilm with hindlimb material are denoted by  . The main tree mhowm a parmimony 

reconmtruction uming unordered character mtatem, where branch colour indicatem reconmtructed mtate. 

Maximum likelihood givem mimilar remultm to parmimony, and likelihood valuem for numbered nodem are 

dimplayed (inmet). Crown Metatheria and lutheria are further explored in Figm. 6 and 7. Our remultm muggemt

that the ommified patella ham evolved at leamt five timem within Mammaliaformem.
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Figure 6. Ancemtral mtate reconmtruction of the patella in Metatheria and related taxa. Key fommilm with 

hindlimb material are denoted by  . The main tree mhowm a parmimony reconmtruction uming unordered 

character mtatem, where branch colour indicatem reconmtructed mtate. Likelihood valuem for the numbered 

nodem are mhown (inmet). Our remultm muggemt that the ommified patella evolved once in Metatheria, with 

inmtancem of lomm and revermion (to a fibrocartilaginoum patelloid and back).
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Figure 7. Ancemtral mtate reconmtruction of the patella in lutheria. Key fommilm with hindlimb material are 

denoted by  . The main tree mhowm a parmimony reconmtruction uming unordered character mtatem, where 

branch colour indicatem the reconmtructed mtate. Our remultm muggemt that the ommified patella evolved only 

once within lutheria and (am far am im currently known) ham only been lomt by the bat genum Pteropus (not 

counting groupm which have lomt hindlimbm; e.g. Tricuecuus manatus/crown Sirenia, Tursiops 

truncatus/crown Cetacea).
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