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Identifying the pathways that control a cellular phenotype is the first step to building a

mechanistic model. Recent examples in developmental biology, cancer genomics, and

neurological disease have demonstrated how changes in the variability of gene expression

can highlight important genes that are under different degrees of regulatory control.

Simple statistical tests exist to identify differentially-variable genes; however, methods for

investigating how changes in gene expression variability in the context of pathways and

gene sets are under-explored. Here we present pathVar, a new method that provides

functional interpretation of gene expression variability changes at the level of pathways

and gene sets. pathVar is based on a multinomial exact test, or an asymptotic Chi-squared

test as a more computationally-efficient alternative. The method can be used for gene

expression studies from any technology platform in all biological settings either with a

single phenotypic group, or two-group comparisons. To demonstrate its utility, we applied

the method to a diverse set of diseases, species and samples. Results from pathVar are

benchmarked against analyses based on average expression via GSEA, and demonstrate

that analyses using both statistics are useful for understanding transcriptional regulation.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2585v1 | CC BY 4.0 Open Access | rec: 9 Nov 2016, publ:



1 pathVar: a new method for pathway-based interpretation of gene expression variability.

2 Laurence de Torrenté1#, Samuel Zimmerman1, Deanne Taylor2, Yu Hasegawa1%, Christine A. Wells4, 

3 Jessica C. Mar1,5*

4 1Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, 

5 USA. 

6 #Present address: New York Genome Center, New York, NY, USA.

7 2Department of Biomedical and Health Informatics, Children�s Hospital of Philadelphia, PA, USA.

8 %Present address: Robert Mondavi Institute for Wine and Food Science, University of California, Davis, 

9 CA, USA.

10 4Department of Anatomy and Neuroscience, School of Biomedical Sciences, University of Melbourne, 

11 VIC, Australia.

12 5Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, 

13 USA. 

14 *To whom correspondence should be addressed.

15 Abstract

16 Identifying the pathways that control a cellular phenotype is the first step to building a mechanistic model. 

17 Recent examples in developmental biology, cancer genomics, and neurological disease have demonstrated 

18 how changes in the variability of gene expression can highlight important genes that are under different 

19 degrees of regulatory control. Simple statistical tests exist to identify differentially-variable genes; however, 

20 methods for investigating how changes in gene expression variability in the context of pathways and gene 

21 sets are under-explored. Here we present pathVar, a new method that provides functional interpretation of 

22 gene expression variability changes at the level of pathways and gene sets. pathVar is based on a 

23 multinomial exact test, or an asymptotic Chi-squared test as a more computationally-efficient alternative. 

24 The method can be used for gene expression studies from any technology platform in all biological settings 

25 either with a single phenotypic group, or two-group comparisons. To demonstrate its utility, we applied the 

26 method to a diverse set of diseases, species and samples. Results from pathVar are benchmarked against 

27 analyses based on average expression via GSEA, and demonstrate that analyses using both statistics are 

28 useful for understanding transcriptional regulation.

29

30 Availability: The method is publicly available from the pathVar Bioconductor R package.

31
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36 Introduction 

37 Global studies of gene expression provide two quantitative parameters: a commonly-used metric is the 

38 relative abundance of a transcript (and group differences in transcript abundance), likewise the expression 

39 variability of that transcript provides insight into the heterogeneity of a sample group [1], and expression 

40 variability changes between groups have been shown to reflect underlying changes in transcriptional 

41 regulatory processes [2-5]. Patterns of variability in gene expression have provided insight into how 

42 pathways are regulated in cells [6,7]; especially in the context of single cell profiling studies, where the 

43 average expression of a gene in a cell population carries limited information for understanding 

44 transcriptional regulation. Recent studies have identified pathways showing differential control or 

45 regulatory constraint that were discovered only by modeling changes in gene expression variability and 

46 were not apparent from standard analyses of average gene expression [8]. While variability is becoming 

47 more prevalent as an informative metric, the current challenge lies in how to interpret these analyses to 

48 maximize functional information, such as with respect to pathways and curated gene sets. Due to the 

49 newness of this area, statistical methods for investigating expression variability are currently under-

50 developed, and lacking for pathway-centric approaches. It is necessary, therefore, to develop such 

51 methods since information on expression variability can be used to complement analyses of average 

52 expression, and improve our understanding of the transcriptional state of the cell.

53 Intuitively, the distribution of gene expression variability in a pathway highlights the subset of genes with 

54 different degrees of regulatory control (Fig 1). In the case of a one-group design, where multiple profiles 

55 represent replicates of the same phenotype, e.g. different embryonic stem cell (ESC) lines, identifying 

56 pathways that have an unexpected proportion of low variability genes may point to those that contribute 

57 integral roles for stem maintenance or regulation [1]. To appreciate this, consider two previous studies 

58 that provided evidence linking criticality of genes and their decreased variability in expression. One study 

59 [8] identified genes with decreased expression variability in tumors relative to normal tissue; this gene set, 

60 termed the Posed Gene Cassette, included key genes whose expression impacted metastasis and patient 

61 survival as demonstrated through in vivo and in vitro experimental approaches. More recently, a second 

62 study [9] showed that genes with decreased variability in expression for four stages of early embryonic 

63 development (4-cell, 8-cell, morula and blastocyst) were more likely to be associated with essentiality, 

64 haploinsufficiency or ubiquitous expression, suggesting that these stably-expressed genes contribute to 

65 cell survival.

66 In the two-group design, where profiles are compared between two contrasting phenotypes, e.g. ESCs 

67 versus induced pluripotent stem cells (iPSCs), identifying pathways associated with different patterns of 

68 expression variability may highlight those pathways that contribute to group-specific differences. 

69 Previous studies have analyzed the enrichment of genes with different levels of expression variability for 

70 specific pathways [9,10]; however, these analyses are based on gene lists defined by an arbitrary cut-off 

71 and do not take into account the expression distribution of genes in the pathway. One would expect that 

72 more informative results could be obtained by focusing on the shape of the expression distribution in a 

73 statistically rigorous manner, much like a gene set enrichment analysis (GSEA) [11] analogue for 

74 variability instead of relying only on average expression, or over-representation (OR) analyses [12]. 

75 Computational methods to implement these kinds of approaches are currently lacking for expression 

76 variability.

77 Our method, pathVar, addresses this gap by providing a pathway-based analysis of gene expression 

78 variability where pathways are assessed based on deviations of their gene expression variability distribution 

79 relative to a reference. In the one-group setting, the reference can be the global distribution constructed 

80 from all genes. In a two-group setting, one of the groups serves as the reference or control group. For each 

81 pathway, our method also identifies which genes in a pathway show aberrant levels of gene expression 

82 variability (Fig 1). 

83
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84 Methods

85 The pathVar method can be summarized in three main steps (Fig. 2).

86 Step 1: Selecting a statistical measure to estimate gene expression variability.

87 Variability is defined as the amount of dispersion in a given distribution [13]. Different statistical measures 

88 are available to estimate gene expression variability, and in genomics, the estimators that are most often 

89 employed are the standard deviation (SD) (Equation 1) [9], the coefficient of variation (CV) (Equation 2) 

90 [1,10], and the median absolute deviation (MAD (Equation 3) [14]. Conceptually, these statistics share 

91 similarities in their mathematical definition, and each one comes with their own advantages, as is often the 

92 case with any estimator that is applied to data. 

(Equation 1)��= 1� ‒ 1∑��= 1(�� ‒ �)2
(Equation 2)��= ���

) (Equation 3)���=�������(|�� ‒ �������(��)|
93 A consensus on which estimator should be adopted for variability analysis remains unclear, and this is 

94 partly because performance of the estimators appears to be data-specific. The SD is often the preferred 

95 estimator for measuring gene expression variability since it is on the same scale as the average and 

96 therefore easy to interpret. The variance (i.e. SD2) is also characterized by the second central moment of a 

97 distribution, and hence the SD is directly linked to one of the fundamental metrics characterizing the 

98 probability distribution. A criticism of the SD however is that it may be dependent on average expression 

99 and therefore it is necessary to investigate the association between these two measures. To address this 

100 concern, the CV, which represents the ratio of the SD and the average, is often used however it also has 

101 its own drawbacks. Most significantly, it can be affected by zero-inflation which occurs when very small 

102 levels of average expression result in extremely large values of CV that do not necessarily reflect a large 

103 degree of overall variability. The MAD is a robust measurement of dispersion that behaves well in the 

104 presence of outlier data points. It has previously been used to study DNA methylation variability [14].

105 Data simulations suggest that in general, the SD shows stronger performance as the variability estimator 

106 compared to MAD and CV in the pathVar method (see Text S1). The simulations were conducted to test 

107 the performance of each estimator under a wide variety of conditions. The choice of an estimator can also 

108 be motivated by the expectation that an ideal estimator of gene expression variability will be uncorrelated 

109 with average gene expression. If the variability estimator is highly correlated with the average expression, 

110 then trends observed for expression variability may simply be recapitulated by those observed for average 

111 expression. We therefore desire an estimator of variability that is the least correlated with average gene 

112 expression for an analysis of gene expression variability to be maximally informative. Our suggestion is to 

113 use the SD since overall this estimator displayed stronger performance in simulations or the estimator with 

114 the lowest correlation with average expression; however, ultimately, the final choice of the estimator is left 

115 to the user and can be easily specified in the software.

116 Step 2: Identifying genes that belong to categories of high, medium or low levels of expression variability.

117 Using a specified estimator, all genes are assigned to a discrete level of expression variability. In the one-

118 group case, assignments are based on clustering the data using Normal mixture models via the mclust 

119 algorithm [15]. The number of clusters or mixtures corresponds to the discrete levels of variability and is a 

120 parameter inferred by mclust. The mclust algorithm considers a finite range of values (starting with a 

121 minimum of one level to a maximum of four by default) and chooses the number that is most appropriate 

122 for the data using the Bayesian Information Criterion. The upper limit of four levels is recommended out 

123 of simplicity, where it is more useful to model a handful of variability levels, e.g. low, medium, high and 
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124 very high, whereas for much larger numbers, the interpretation ceases to be as intuitive. In the pathVar 

125 package, the user is, however, free to use whatever upper limit is appropriate for the analysis. 

126 For the two-group case, assignments are based instead on the 33rd and 66th percentiles that are computed 

127 from the combined gene expression variability distribution of all genes from both groups in the dataset. 

128 Low variability genes are defined as those with values falling between 0 and the 33rd percentile, medium 

129 variability genes are those between the 33rd percentile and the 66th percentile, and high variability genes 

130 being greater than the 66th percentile. The variability levels are defined by a fixed number of standardized 

131 percentiles, instead of inferred as in the one-group case, because it is possible that a different number of 

132 variability levels might be inferred for the two groups. To ensure a straightforward and balanced 

133 comparison between the two groups, the number of discrete categories are fixed and the boundaries for 

134 variability levels are based on percentiles calculated from all the data. Under both the one-group and two-

135 group cases, the outcome of Step 2 is to identify the fixed boundaries that define each of the discrete levels 

136 of expression variability.

137 Step 3: Testing pathways for aberrant gene expression variability signatures.

138 The pathVar method decomposes each pathway into a set of counts corresponding to the number of genes 

139 in each discrete level of expression variability. By default, pathways from the Kyoto Encyclopedia of Genes 

140 and Genomes (KEGG) [16] and REACTOME [17] are used, however users may also import their own 

141 definitions. For a specific pathway, let Oi denote the observed count of genes annotated to this pathway 

142 with expression variability in the i-th level, where i = 1, �, m discrete levels. The total number of genes n 

143 is defined as . A statistical test is used to evaluate whether the set of counts (O1,..., Om) �= ∑��= 1��
144 associated with a pathway deviates significantly from either a reference count distribution in the one-group 

145 case, or between the two phenotypes in the two-group case. In the one-group case, the reference distribution 

146 is obtained by counting the total number of genes in each level of gene expression variability (Fig. S1). 

147 The null hypothesis that pathVar evaluates is: 

148  H0(1): the expression variability counts observed for a specific pathway were generated under the same 

149 distribution as the reference counts for the one-group case.

150  H0(2): the variability-based counts for both groups were drawn from the same underlying distribution, 

151 for the two-group case. 

152 To assess the deviation observed between the variability count distribution and an expected distribution for 

153 a specific pathway, we provide two statistical tests as options available for this analysis. Option 1 is the 

154 multinomial exact test, and Option 2 is the Chi-squared test. 

155 For Option 1, the exact test models the counts as a multinomial random variable (O1,..., Om) ~ Multi(n, p) 

156 where p = (p1,�,pm) and pi is the probability that a gene belongs to the i-th variability level for i = 1, �, m 

157 in the reference distribution. Under the exact test, the P-value is obtained by summing over all possible 

158 events that are less likely than the set of counts observed. If the P-value falls below a specified significance 

159 threshold (e.g. P-value < 0.05), sufficient evidence exists to reject the null hypothesis and we conclude that 

160 the pathway has an aberrant distribution of expression variability counts. In the one-group case, this means 

161 that the variability count distribution of the specific pathway deviates from the reference distribution i.e. all 

162 genes surveyed. In the two-group case, this result means that the variability is not identically distributed 

163 between the two contrasting phenotypes.

164 While the exact test is attractive because it calculates the P-value exactly, from a practical perspective, these 

165 kinds of tests can often be time and memory-intensive for genomic data, especially as the number of levels 

166 m and the number of genes in the pathway n grows. For example, consider a pathway with 30 genes, where 

167 the number of possible sets of counts to consider with three variability levels for the calculation of the P-

168 value is 496. If the size of the pathway increases to 100, then the number of possibilities to consider grows 
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169 to 5151. From this basic example, it can be seen how increasing n or m can lead to some very extensive 

170 calculations.

171 Option 2 overcomes this limitation, as it is less computationally intensive, and tests the same null 

172 hypotheses using the Chi-squared test as an alternative to the exact test. The test statistic   X
2
= ∑m

i = 1

(Oi
‒ Ei)2
Ei

173 follows a Chi-squared distribution  with m-1 degrees of freedom: . The expected X
2 ∼ χ 2� ‒ 1 X

2 ∼ χ 2� ‒ 1
174 counts  are the expected number of genes in each level of expression variability within a specific ��= � ∗ ��
175 pathway. The Chi-squared test achieves its computational efficiency because it is based on an asymptotic 

176 approximation, where the test becomes more accurate as n, the total number of genes in a pathway increases. 

177 Both the exact test and the Chi-squared test assess whether a pathway has a significant change in gene 

178 expression variability. The resulting P-values from all pathways tested are adjusted using the Benjamini-

179 Hochberg method which is based on controlling the false discovery rate [18]. Finally, a pathway of interest 

180 can be investigated further using a Binomial test to assess within each level of variability, whether a 

181 significant deviation exists between either the pathway and the reference in the one-group case, or between 

182 the two phenotypic groups. This pairwise difference for each independent level provides a means to 

183 pinpoint the subset of genes within a pathway showing deviation in expression variability.

184 Power calculations indicate that pathVar has greater power to detect changes for pathways with 

185 skewed expression variability distributions than symmetric ones.

186 Simulations were designed to investigate how experimental parameters influence the power of pathVar 

187 (Text S1). The results demonstrate that for a fixed effect size, the power of the Chi-squared test increases 

188 when the number of genes in a pathway also increases. Similarly, for a pathway of fixed size, the power of 

189 the test is higher for a larger effect size. The simulations also showed that the Chi-squared test had more 

190 power to detect differences between the reference distribution and a pathway that has a skewed variability 

191 distribution compared to a symmetric one. As an example, consider pathway p1 where an effect size of 0.24 

192 results in 80% power for approximately 150 genes in the pathway. For the symmetric distribution in 

193 pathway p2, in order to obtain the same level of power, a pathway size of at least 200 genes is required (see 

194 Text S1). 

195

196 Results

197 Application of pathVar to human embryonic stem cell datasets identify significant pathways with distinct 

198 profiles of gene expression variability.

199 To demonstrate the utility of pathVar in practice, the method was applied to three gene expression datasets 

200 of human ESCs (Text S2). The Bock dataset [19] had twenty ESC samples that were generated using 

201 microarray profiling, and the Yan dataset [20] had hESC samples profiled using single cell RNA-

202 sequencing (RNA-seq) for eight cells at passage 0 (p0), and 26 cells at passage 10 (p10). pathVar was run 

203 independently on the three datasets, and pathways with a statistically significant deviation in their gene 

204 expression variability profile relative to the reference distribution were detected (Table S1, P-value < 0.01). 

205 Significant KEGG pathways reflected aberrant gene expression counts in ribosomes, metabolism (oxidative 

206 phosphorylation), the spliceosome and neurodegenerative pathways (Alzheimer, Parkinson and 

207 Huntington) (Table S2A-S4A). Significant REACTOME pathways fell into three main classes representing 

208 cell cycle, metabolism and infectious disease (Table S2B-S4B). Considerable overlap was observed in the 

209 significant results obtained between the three datasets (Fig. S2), where cell cycle was the most highly 

210 represented REACTOME category. Similar percentage distributions were observed (Fig. S2), 

211 demonstrating consistency in the results obtained from pathVar despite differences in technology platforms, 

212 ESC lines and passage number.
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213 We next inspect the variability count distributions for individual pathways of interest. As an example, 

214 consider the Bock dataset, where the significant KEGG pathways for spliceosome, oxidative 

215 phosphorylation and ECM-receptor interaction each cover different aspects of hESC regulation. For both 

216 the spliceosome and oxidative phosphorylation pathways, greater transcriptional stability was manifested 

217 through a significantly higher number of low variability genes, in addition to significantly fewer medium 

218 variability genes compared to the reference distribution (Fig 3A-C). A significant reduction in genes with 

219 high variability in the ESCs was also observed for the oxidative phosphorylation pathway compared to the 

220 reference (Fig 3C). The opposite trend was observed for genes in the ECM-receptor interaction where there 

221 was a significant increase in genes with medium, high and very high levels of expression variability (Fig 

222 3D). This pathway also had a concurrent reduction in low variability genes compared to the reference 

223 distribution.

224 Highlighting differences between ESC and iPSC usage of global gene expression programs using 

225 pathVar.

226 Human iPSCs were also profiled by Bock using microarrays, and we use this data to investigate how ESCs 

227 and iPSCs differ with respect to expression variability. pathVar identified five KEGG and thirty 

228 REACTOME statistically significant pathways between the ESCs and iPSCs (Table S5, P-value < 0.01). 

229 The significant KEGG pathways reflected aberrant gene expression activity in ribosome, oxidative 

230 phosphorylation, DNA replication and disease processes (Huntington�s disease and Parkinson�s disease, 

231 Table S6). The significant REACTOME terms were associated with cell cycle, splicing, and metabolic 

232 processes as well as DNA replication and repair, namely homologous recombination pathways (Table S6).

233 We then compared the variability count distributions in ESCs versus iPSCs for two significant KEGG 

234 pathways, oxidative phosphorylation and DNA replication (Fig. 4). Both pathways showed increased gene 

235 expression stability in ESCs compared to iPSCs. For the oxidative phosphorylation pathway, a significantly 

236 higher number of low variability genes were in ESCs versus iPSCs. The same trend was observed for the 

237 DNA replication pathway where there was a significant reduction in the number of highly variable genes 

238 in ESCs compared to iPSCs. 

239 Benchmarking pathVar results using gene expression variability versus those based on average 

240 expression via GSEA.

241 pathVar results were benchmarked against those obtained using an average expression statistic to 

242 investigate the utility of expression variability analyses. Under this average-based setting, genes were first 

243 classified into discrete levels using average expression, corresponding to low, medium and high levels of 

244 absolute expression. This average-based implementation defaults to the generic version of GSEA [21] and 

245 allows for direct comparison with the results that are obtained when studying gene expression variability. 

246 Four statistically significant pathways (P-value < 0.01, Table S7) were identified as having differences in 

247 average expression between iPSCs and ESCs (three REACTOME terms: Heme biosynthesis, Sphingolipid 

248 metabolism, Metabolism of porphyrins; and one KEGG pathway African trypanosomiasis). These results 

249 do not seem very informative or relevant to stem cell regulation suggesting that average expression alone 

250 does not always identify the pathways involved in transcriptional control of a phenotype.

251 Regulatory insights from other datasets confirm utility of looking at pathways with changes in both gene 

252 expression variability and average gene expression using pathVar and GSEA. 

253 Examples using stem cells illustrate how pathVar works in practice, however the method can be applied 

254 to virtually any gene expression data set. To highlight the generalizability of pathVar, we selected ten 

255 other data sets that cover a variety of biological and experimental variables. Collectively, these ten data 

256 sets were generated from multiple technology platforms that featured samples from human, mouse and 

257 parasite which represent a range of different disease phenotypes (see Text S3). 
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258 Three cancer RNA-seq datasets from the Cancer Genome Atlas (TCGA) were selected; these were the 

259 ovarian serous cystadenocarcinoma (OVC) [22], acute myeloid leukemia (AML) [23], and glioblastoma 

260 multiforme (GBM) [24] cohorts. An infectious disease was included where transcriptomes from patients 

261 infected with cerebral malaria were profiled using microarrays [25], as well as the Plasmodium falciparum 

262 parasites that the patients were infected with [26]. A genetic disorder was featured where patient-derived 

263 iPSCs were collected from Down syndrome (DS) donors and profiled using microarrays, with a set of 

264 matched controls from healthy subjects [27]. A microarray data set from a normal human population via 

265 the Geuvadis study (1000 Genomes Project) was used [28], as well as two mouse data sets that profiled 

266 tissues from two different regions of the brain, the hippocampus and the striatum using microarrays [29]. 

267 pathVar identified statistically significant pathways from KEGG and REACTOME pathway terms for the 

268 ten different one-group analyses (Table S8), and five independent two-group comparisons (Table S9) of all 

269 ten data sets.

270 The results from the different analyses were used to investigate the uniqueness of analyses based on GSEA 

271 versus gene expression variability. The number of significant pathways that had changes in both mean and 

272 variability via GSEA and pathVar respectively showed that for all cases, the amount of overlap in 

273 significant pathways differed depending on the data sets that were used. This suggests that average and 

274 variability-based statistics reflect different ways in which cells may use their transcription programs 

275 depending on the biological context (Table S8, S9). It is interesting to note that for the KEGG pathways, 

276 pathVar results for the DS versus WT iPSC comparison, and the mouse hippocampus versus striatum 

277 comparison both had zero overlap between average-based and variability-based significant pathways (Table 

278 S9A). In fact, both comparisons also yielded no significant pathways with a difference in average, whereas 

279 pathways were found to have a difference in gene expression variability. These two comparisons are 

280 extreme examples where the analyses of gene expression variability identify changes in the transcriptional 

281 program, whereas average-based analyses do not yield significant results.

282 Overall, it was apparent that the transcriptional features responsible for distinguishing one phenotype from 

283 another are exerted through changes in average expression or variability in expression for key pathways. 

284 To further investigate the relevance of these different modes, we focused only on the ten most significant 

285 pathways from the pathVar results obtained for the three cancer versus normal comparisons (Table S10, 

286 S11).  For all three cancers, the KEGG DNA replication pathway and REACTOME �DNA strand 

287 elongation term� had significant changes in both average and variability of expression. Other terms with 

288 changes in both average and variability were related to DNA damage response pathways, such as �base 

289 excision repair� (Table S10) for AML versus normal, and �non-homologous end-joining� for OVC versus 

290 normal (Table S11). 

291 Five KEGG pathways had changes in variability only that were consistent in all three cancer comparisons; 

292 these were the pathways involved in Epstein-Bar virus infection, cell cycle, Fanconi anemia, lysosome and 

293 apoptosis (Table S10). The Epstein-Bar virus is associated with certain kinds of cancer like lymphoma or 

294 carcinoma. Apoptosis is also an important pathway for tumors because its inactivation is central in the 

295 development of cancer. Similarly, for the REACTOME terms, those unique to changes in variability were 

296 related to DNA repair and replication (SLBP dependent processing of replication-dependent histone pre-

297 mRNAs) for the AML and GBM comparisons. For OVC, several terms were related to the cell cycle, e.g. 

298 G1 phase, cyclin D associated events in G1, cyclin A/B1 associated events during G2/M transition (Table 

299 S11C). 

300 Discussion

301 With pathway-centric approaches like GSEA and OR now such ubiquitous features of transcriptomic 

302 analyses, pathVar represents a natural adjunct to this kind of analysis. Our results from analyses of ESCs 

303 and other datasets have demonstrated that it is not uncommon for phenotypes to be regulated by pathways 

304 that have altered levels in both average expression and expression variability, as well as pathways unique 
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305 to either statistic. Therefore, to derive more accurate insights into transcriptional control, our results suggest 

306 that pathway-based analyses should include the detection of changes in both population statistics. pathVar 

307 may also be used to investigate the regulatory control associated with common targets of transcription 

308 factors [30,31], microRNA [32,33], or lncRNAs [34,35], genes with common variants identified from 

309 genome-wide association studies [36], or other regulatory features [37] that may benefit from further study 

310 of gene expression variability patterns. 

311 In the analysis of ESCs versus iPSCs, pathVar identified very few significant pathways relative to the other 

312 two-group comparisons conducted (Table S9). This result likely reflects the high degree of similarity that 

313 exists between iPSC and ESC transcriptional programs. While the two cell populations have identical 

314 developmental capabilities, in some instances, iPSCs retain a limited memory of the gene expression 

315 program of the cell of origin. Some of the significant pathways identified by pathVar may point to different 

316 usage of metabolic processes or the cell cycle by iPSCs and ESCs. Overall, we see more variability in the 

317 iPSCs than the ESCs and the increased heterogeneity for these pathways could reflect underlying 

318 differences due to donor variability, or experimental factors associated with their generation. 

319 Of the six two-group comparisons performed, it is interesting to note that the ESC and iPSC comparison 

320 also had the least number of significant pathways (Table S9) and this may have been due to the fact that all 

321 other comparisons were between a disease and normal group, or in the case of the mouse data, between two 

322 distinct regions of the brain (Text S3). This result suggests that the degree of perturbation to a transcriptome 

323 in the presence of a tumor, or extra chromosome, or even a different anatomical region of the same organ, 

324 is greater globally, than how iPSCs differ from ESCs. 

325 The observation that pathways were significant for changes in both average expression and gene expression 

326 variability reflects the different modes in which cells are using pathways to regulate transcriptional signals. 

327 For the cancer-based comparisons, common themes were observed across cancer types where pathways 

328 involved in DNA replication and DNA damage response had significant changes in average and variability 

329 (AML versus 1000 Genomes, OVC versus 1000 Genomes, Table S10, S11). The reliance of DNA 

330 replication pathways may be to facilitate the proliferative nature of tumor cells, while the pathways that 

331 control DNA damage response are important for tumor cells to remain viable in the presence of increased 

332 rates of mutation. This result suggests that a critical factor to understanding how cancer subverts cellular 

333 pathways to promote growth and evade apoptosis more accurately may lie in focusing on how gene 

334 expression is being regulated based on average expression and expression variability from cell to cell, or 

335 from patient to patient.

336 Single cell heterogeneity, or inter-cellular variation is a common reality of all cell populations since even 

337 isogenic cells have some degree of stochastic gene expression. Across the transcriptome, gene expression 

338 variability is not distributed uniformly, and its functional contribution of transcriptional regulation at the 

339 single cell-level remains largely unknown. Genes with decreased variability may be useful as potential 

340 markers since they have a higher degree of generalizability, where it is easier to predict the expression state 

341 for such a gene in any cell in the population. Although the pathVar method is applicable for both single cell 

342 and bulk cell datasets, the interpretation of gene expression variability in the context of single cells would 

343 provide even more precise insights into how cells are controlled by the transcriptional regulation of certain 

344 pathways.

345 Conclusion 

346 The pathVar method identifies pathways with aberrant distributions in gene expression variability relative 

347 to either a reference distribution, or a contrasting control group. The method is based on an intuitive 

348 framework where either a multinomial exact test or Chi-squared test is employed to assess the differences 

349 in variability distributions for each pathway using definitions from any standard or custom annotation 
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350 system. A Binomial test is then used to identify genes within a specific pathway that show differences in 

351 gene expression variability. Comparisons benchmarking results from pathVar applied to a variety of gene 

352 expression data sets against those obtained using GSEA identified significant pathways showing changes 

353 either in average expression, expression variability or both. These results indicate that both population 

354 statistics are useful for interpreting significant alterations of pathways and gene sets that underlie 

355 transcriptional regulation. The implications of these results suggest that future studies may benefit from 

356 analyses of gene expression variability to complement standard analyses of average expression.
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445

446

447 Fig 1. The distribution of gene expression variability highlights the regulatory control that different 

448 genes in the pathway are subjected to. A. Absolute gene expression is a proxy for how genes are 

449 transcriptionally regulated between samples. Studying the consistency of how genes are expressed can 

450 also add information on pathway control e.g. lower levels of inter-individual variability may reflect 

451 increased regulatory control. B. By considering the distribution of gene expression variability, we may be 

452 able to understand transcriptional regulation in a more comprehensive manner � this is the premise of the 

453 pathVar method. 
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455
456

457 Fig. 2. Overview of pathVar, including the main functions in the R package.

458
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459

460

461 Fig. 3. Example of four significant KEGG pathways for one-group pathVar analysis of the Bock 

462 embryonic stem cell data. A. Variability count distribution for the reference. B. Splicesome pathway 

463 (hsa03040), C. oxidative phosphorylation (hsa00190), D. ECM-receptor interaction (hsa04512). The red 

464 stars indicate a significant difference between the pathway and reference distribution for a specific level of 

465 expression variability.
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467

468

Fig 4. Example of two significant KEGG pathways when comparing human embryonic stem cells 

(ESC) and induced pluripotent stem cell (iPSC) data using the two-group pathVar analysis. A. 

Oxidative phosphorylation (hsa00190), B. DNA replication (hsa03030). In both pathways, a higher 

number of genes with lower variability are present in ESCs versus iPSCs. The red stars indicate a 

significant difference between the two groups for a specific level of expression variability.
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