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ABSTRACT

Rapid yet accurate pKa prediction for drug-like molecules is a key challenge in computational chem-
istry. This study uses PM6-DH+/COSMO, PM6/COSMO, PM7/COSMO, PM3/COSMO, AM1/COSMO,
PM3/SMD, AM1/SMD, and DFTB3/SMD to predict the pKa values of 53 amine groups in 48 drug-like
compounds. The approach uses an isodesmic reaction where the pKa value is computed relative to a
chemically related reference compound for which the pKa value has been measured experimentally or
estimated using a standard empirical approach. The AM1- and PM3-based methods perform best with
RMSE values of 1.4 - 1.6 pH units that have uncertainties of ±0.2-0.3 pH units, which make them statisti-
cally equivalent. However, for all but PM3/SMD and AM1/SMD the RMSEs are dominated by a single
outlier, cefadoxil, caused by proton transfer in the zwitterionic protonation state. If this outlier is removed,
the RMSE values for PM3/COSMO and AM1/COSMO drop to 1.0 ± 0.2 and 1.1 ± 0.3, while PM3/SMD
and AM1/SMD remain at 1.5 ± 0.3 and 1.6 ± 0.3/0.4 pH units, making the COSMO-based predictions
statistically better than the SMD-based predictions. So for pKa calculations where a zwitterionic state is
not involved or proton transfer in a zwitterionic state is not observed then PM3/COSMO or AM1/COSMO
is the best pKa prediction method, otherwise PM3/SMD or AM1/SMD should be used. Thus, fast and
relatively accurate pKa prediction for 100-1000s of drug-line amines is feasible with the current setup and
relatively modest computational resources.

INTRODUCTION
One of the central practical challenges to be met when performing calculations on many organic molecules
in aqueous solution is selecting the correct protonation state at a given pH. There are several empirical
pKa predictors such as ACD pKa DB (ACDLabs, Toronto, Canada), Chemaxon (Chemaxon, Budapest,
Hungary), and Epik (Schrödinger, New York, USA) that rely on large databases of experimental pKa
values that are adjusted using empirical substituent-specific rules. As with any empirical approach the
accuracy of these methods correlate with the similarity of the target molecule to molecules in the database.
For example, Settimo et al. (2013) have recently shown that the empirical methods can fail for some
amines, which represent a large fraction of drugs currently on the market or in development. This problem
could make these methods difficult to apply to computational exploration of chemical space (Rupakheti
et al., 2016; Gómez-Bombarelli et al., 2016) where molecules with completely new chemical substructures
are likely to be encountered.

One possible solution to this problem is electronic structure (QM)-based pKa prediction methods (see
Ho (2014) for a review) which in principle requires no empirical input. In practice, when applied to larger
molecules (Eckert and Klamt, 2005; Klicić et al., 2002), some degree of empiricism is usually introduced
to increase the accuracy of the predictions but these parameters tend to be much more transferable
because of the underlying QM-model. However, these QM-based methods are computationally quite
demanding and cannot be routinely applied to the very large sets of molecules typically encountered in
high throughput screening.

Semiempirical QM methods such as PM6 (Stewart, 2008) and DFTB3 (Gaus et al., 2011) are orders
of magnitude faster than QM methods but retain a flexible and, in principle, more transferable QM
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description of the molecules. I recently co-authored a proof-of-concept study (Kromann et al., 2016b)
demonstrating that semiemprical QM methods can be used together with isodesmic reactions to predict
pKa values of small model systems with accuracies similar to QM methods for many functional groups.
However, amines proved the most difficult due to the diverse chemical environment of the ionizable
nitrogen atoms. We hypothesized that the solution to this problem is a more diverse set of reference
molecules and in this study I demonstrate the validity of this hypothesis for a set of 53 amine groups in 48
drug-like compounds. In addition I test more semiempirical methods than in the previous study.

COMPUTATIONAL METHODOLOGY
The pKa values are computed by

pKa = pKref
a +

∆G◦

RT ln(10)
(1)

where ∆G◦ denotes the change in standard free energy for the isodesmic reaction

BH++Bref 
 B+BrefH+ (2)

where the standard free energy of molecule X is computed as the sum of the semiempirical heat of
formation, or the electronic energy in case of DFTB3, and the solvation free energy

G◦(X) = ∆H◦f (X)+∆G◦solv(X) (3)

All energy terms are computed using solution phase geometries unless noted otherwise. ∆H◦f (X) is com-
puted using either PM6-DH+ (Korth, 2010), PM6 (Stewart, 2007), PM7 (Stewart, 2012), PM3 (Stewart,
1989), AM1 (Dewar et al., 1985), or DFTB3 (Gaus et al., 2011) (where the electronic energy is used
instead of the heat of formation), while ∆G◦solv(X) is computed using either the SMD (Marenich et al.,
2009) or COSMO (Klamt and Schüürmann, 1993) solvation method. The SMD calculations are performed
with the GAMESS program (Schmidt et al., 1993), the latter using the semiempirical PCM interface
developed by Steinmann et al. (2013) and the DFTB/PCM interface developed by Nishimoto (2016) and
using version 3ob-3-1 of the 3OB parameter set (Gaus et al., 2011, 2014; Lu et al., 2015; Kubillus et al.,
2015), while the COSMO calculations are performed using MOPAC2016. A maximum of 200 optimiza-
tion cycles are used for solution phase optimizations and a gradient convergence criterion (OPTTOL)
of 5× 10−4 au and delocalized internal coordinates (Baker et al., 1996) are used for GAMESS-based
optimization.

This study considers 53 amine groups in 48 drug-like molecules with experimentally measured amine
pKa values taken from Table 3 of the study by Eckert and Klamt (2005). Some of the smaller molecules
in that table, such as 2-methylbenzylamine, were removed since they would differ very little from the cor-
responding reference molecules. The reference molecules are chosen to match the chemical environment
of the nitrogen within a two-bond radius as much as practically possible and including the ring-size if the
nitrogen is situated in a ring. For example, the tertiary amine group in thenyldiamine (Figure 1) has two
methyl groups and a longer aliphatic chain so the reference molecule is dimethylethylamine, rather than
triethylamine used in our previous study. This choice is motivated by our previous observation (Kromann
et al., 2016b) that, for example, the predicted value of dimethylamine has a relatively large error when
computed using a diethylamine reference. Similarly, the reference compound for the aromatic nitrogen
group in thenyldiamine is 2-aminopyridine, rather than pyridine, to reflect the fact that the nitrogen is
bonded to an aromatic carbon which is bonded to another aromatic carbon and another nitrogen. In a
few cases somewhat larger reference compounds are chosen if they reflect common structural motifs
such as the guanine group in acyclovir or the −OOC-CH(R)-NH+

3 zwitterionic motif in phenylalanine
and tryptophan. This approach resulted in 26 different reference molecules (Table S1) that reflect typical
functional groups found in drug-like molecules. Most of the reference pKa values are computed using the
ACE JChem pKa predictor (ACE/JChem, 2016) while the rest are experimental values. The only molecule
where it proved difficult to apply this general approach to identifying a suitable reference molecule is
the imine nitrogen in clozapin (Figure 1) where the nitrogen is bonded to a phenyl group on one side an
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a tertiary sp2 carbon that in turn is hydrogen bonded to a nitrogen and a phenyl group. The reference
compound that would result from applying the rules outlined above (N-phenylbenzamidine, Figure 1) was
considered ”too specific” for clozapin. Instead I searched the already chosen set of 26 reference molecules
the molecule with the largest sub-structure match, which turn out to N-phenylethanimidamide, that was
originally chosen as a reference for phenacain.

Many of the molecules contain more than one ionizable group. Only the pKa values of the amine
indicated in Eckert and Klamt’s Table 3 are computed and the protonation states are prepared according
to standard pKa values. For example, for phenylalanine the carboxyl group is deprotonated because the
”standard” pKa values of a carboxyl group (e.g. in acetic acid) is lower than the standard pKa values
of a primary amine (e.g. ethylamine). Notice that the cyanoguanidine group in cimetidine has a pKa
value of about 0 ((Hirt et al., 1961; Charton, 1965)) and is therefore deprotonated when the imidazole
group titrates. Eckert and Klamt characterised the histamine pKa value of 9.7 as an amidine pKa and the
thenyldiamine pKa as a pyridine pKa. This is corrected to a primary amine (Baba et al., 2014) and tertiary
amine, respectively. For thenyldiamine pKa values of 3.7 and 8.9 have been measured potentiometrically
(Lordi and Christian, 1956) and cannot be assigned to a particular nitrogen experimentally. But based
on standard pKa values it it is likely that the higher pKa value corresponds to the amino group. For
example, the ACE JChem pKa predictor predicts values of 5.6 and 8.8 for the pyridine and amine groups,
respectively. This hypothesis is further corroborated by the fact that introducing an additional N atom to
the pyridine ring in neohetramine (Figure 1) only significantly affects the lower pKa value (Lordi and
Christian, 1956). The experimental pKa values of morphine and niacin are changed to 8.2 (Prankerd,
2007) and 4.2 (Niazi and Mollin, 1987), respectively, while the remaining experimental pKa values
are taken from Eckert and Klamt (2005). When several tautomers are possible all are considered. The
protonation and tautomer states considered can be found in supplementary materials. RDKit (Landrum,
2016) is used to generate 20 starting geometries for each protonation state and the lowest free energy
structure for each protonation state is used for the pKa calculations.

RESULTS AND DISCUSSION
PM3- and AM1-based methods
Table 1 lists the predicted pKa values, Figure 2 shows a plot of the errors, and Table 2 lists the root-mean-
square-error (RMSE) and maximum absolute error for each method. The AM1- and PM3-based methods
perform best with RMSE values of 1.4 - 1.6 pH units that have uncertainties in the 0.2-0.3 pH unit range,
which make them statistically equivalent (see SI for more information). The null model pKa ≈ pKref

a has
an RMSE of 1.8 ± 0.3/0.4. However, because of the high correlation between the null model and the PM3
and AM1 methods (e.g. r = 0.78 vs PM3/COSMO) the composite errors are relatively small (e.g. 0.2 pH
units vs PM3/COSMO) making the lower RMSE observed for AM1 and PM3 statistically significant.
The rest of the methods (PM6-DH+, PM6, PM7, and DFTB3) perform worse than AM1 and PM3 and are
discussed further below.

The negative outlier seen for the COSMO-based methods (Figure 2) is cefadoxil (Figure 1) and is
due to proton transfer in the zwitterionic protonation state. For the three other zwitterions among the
molecules, niacin, phenylalanine, and tryptophan, no proton transfer is observed and the error in the
predicted pKa values are relatively small. Proton transfer in zwitterions is also a common problem for
DFT/continuum calculations, for example for glycine (Wang et al., 2003; Bachrach, 2008; Kayi et al.,
2012), and is due to deficiencies in the continuum solvent method, not the electronic structure method.
The good performance observed for PM3/SMD is thus due to fortuitous cancellation of error. Cefadroxil
is also the negative outlier for DFTB3/SMD although the proton doesn’t transfer.

If the cefadroxil outlier is removed, the RMSE values for PM3/COSMO and AM1/COSMO drop
to 1.0 ± 0.2 and 1.1 ± 0.2, while PM3/SMD and AM1/SMD remain at 1.5 ± 0.3 and 1.6 ± 0.3/0.4 pH
units. Thus, without this outlier the COSMO-based predictions outperform the SMD-based predictions,
as well as the null model. For pKa calculations where a zwitterionic state is not involved or proton
transfer in a zwitterionic state is not observed then PM3/COSMO or AM1/COSMO is the best pKa
prediction method, otherwise PM3/SMD or AM1/SMD should be used. The main reason for performing
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Table 1. Experimental, reference (cf. Eq 1), and predicted pKa values. ”COS” stands for COSMO. ”+”
and ”-” refers to the charge of the conjugate base.

Molecule Exp Ref PM6-DH+ PM6 PM7 PM3 AM1 PM3 AM1 DFTB3
pKa COS COS COS COS COS SMD SMD SMD

Acebutolol 9.5 10.6 8.2 6.8 10.4 9.4 9.2 6.8 8.8 10.5
Acyclovir 2.2 2.6 0.1 0.3 0.3 1.5 1.0 0.9 1.2 0.9
Alphaprodine 8.7 10.1 6.5 6.5 9.0 8.5 8.6 7.9 8.0 6.2
Alprenolol 9.6 10.6 6.8 6.8 9.1 8.1 8.8 7.4 7.9 8.6
Atenolol 9.6 10.6 8.4 7.2 9.9 9.0 9.4 7.8 8.2 8.1
Benzocaine 2.5 4.6 0.2 0.3 1.3 2.6 1.8 2.6 1.8 0.8
Betahistine 10.0 10.5 9.3 8.7 10.2 8.6 9.5 8.6 8.9 10.6
Betahistine+ 3.9 5.8 2.9 3.8 3.1 4.9 3.3 4.5 2.8 -0.2
Cefadroxil- 7.0 9.5 -2.8 1.2 1.0 0.1 1.6 7.6 4.6 -3.0
Chloroquine 10.6 10.2 9.6 9.1 11.4 9.9 9.9 8.6 9.2 8.3
Cimetidine0 6.8 6.8 6.1 6.1 4.1 5.1 5.5 4.2 5.2 5.3
Clomipramine 9.4 10.2 11.2 10.0 13.6 9.7 9.2 9.4 8.5 8.4
Clotrimazole 5.8 6.6 5.1 5.0 7.3 4.7 5.2 4.0 4.0 4.3
Clozapine 7.5 10.0 5.9 5.7 7.2 8.2 7.8 7.1 7.1 6.2
Clozapine+ 3.9 10.3 5.4 5.6 6.8 2.7 2.5 1.4 1.2 6.6
Codeine 8.1 10.1 6.0 5.7 8.0 7.6 6.2 6.1 4.7 5.4
Desipramine 10.3 10.5 10.8 10.9 11.9 9.9 9.5 9.8 8.9 9.4
Guanethidine 11.4 12.8 14.3 12.4 13.2 13.2 14.0 12.3 12.9 16.2
Histamine 9.7 10.6 9.5 9.5 9.7 8.9 9.9 9.0 9.4 12.9
Hydroquinine 9.1 10.5 7.0 6.4 10.0 8.9 8.9 6.9 8.4 9.7
Hydroquinine+ 4.1 4.5 2.7 2.1 3.8 1.8 2.2 3.1 1.7 3.1
Imipramine 9.6 10.2 9.9 8.9 12.0 9.6 9.3 9.3 8.4 8.6
Labetalol 7.3 10.6 7.0 6.4 9.4 7.5 9.9 7.2 8.4 8.0
Lidocaine 7.9 10.2 3.7 4.2 5.7 5.4 5.7 5.3 5.3 5.9
Maprotiline 10.3 10.5 10.2 10.4 11.7 10.9 10.2 10.5 9.6 10.4
Mechlorethamine 6.4 10.0 4.5 4.2 4.4 5.4 5.8 5.4 6.5 1.3
Metaproterenol 9.9 10.6 9.1 7.6 8.9 8.7 9.7 7.9 8.3 9.2
Metoprolol 9.6 10.6 6.8 6.7 9.8 8.7 9.4 7.3 8.6 9.4
Miconazole 6.4 6.6 5.5 6.0 5.0 5.2 5.4 4.6 5.2 5.1
Morphine 8.2 10.1 5.7 5.5 7.5 7.6 5.6 6.0 4.3 4.9
Nafronyl 9.1 10.2 8.8 6.6 13.3 7.3 7.7 6.9 7.7 8.1
Nefopam 8.5 10.0 6.8 6.8 8.8 7.4 7.8 6.6 7.0 7.9
Niacine- 4.8 5.2 3.9 3.9 6.1 5.4 5.3 4.8 4.1 5.1
Nicotine 8.1 10.3 7.2 7.3 8.1 8.4 8.5 8.3 8.0 7.3
Nicotine+ 3.2 5.2 1.7 1.8 2.4 1.6 1.7 1.4 1.3 -0.7
Nikethamide 3.5 5.2 2.0 2.4 3.6 2.5 2.6 2.0 1.8 2.1
Papaverine 6.4 6.0 3.9 4.4 4.7 4.9 5.0 3.5 4.0 7.3
p-Cl-amphetamine 9.9 10.4 9.0 9.0 10.0 9.2 8.7 8.8 8.2 8.9
Phenacaine 9.3 10.3 10.3 10.1 10.8 8.6 7.7 8.1 6.9 12.2
Phenylalanine- 8.9 9.5 9.7 9.3 10.1 9.4 9.2 8.4 8.1 9.3
Piroxicam 5.3 6.5 5.7 0.5 7.1 6.3 7.7 4.9 6.2 2.3
Prazosin 7.0 7.0 4.6 4.9 6.1 5.0 5.7 4.8 3.6 7.7
Procaine 9.1 10.2 8.6 6.7 10.9 8.6 8.3 8.5 9.1 9.2
Procaine+ 2.0 4.6 -1.0 -0.7 -0.2 2.0 1.4 1.3 0.2 -1.9
Propanolol 9.6 10.6 5.2 6.8 8.8 8.3 8.4 7.5 7.7 8.5
Quinine 8.5 10.5 6.9 6.5 9.6 8.4 8.5 6.5 8.0 8.2
Sotalol 9.3 10.6 7.4 8.1 8.3 9.3 8.0 7.9 7.5 9.1
Sparteine 12.0 10.3 14.4 13.5 15.9 11.7 12.3 10.8 12.1 9.5
Tetracaine 8.5 10.2 9.3 7.8 10.7 9.6 9.0 9.1 9.3 8.7
Thenyldiamine 8.9 10.2 11.5 9.3 13.1 9.4 8.7 9.1 8.5 8.6
Trazodone 6.8 10.2 4.7 3.7 8.1 6.4 6.7 6.2 4.9 6.4
Trimipramine 9.4 10.2 11.9 10.2 13.7 10.2 10.2 9.4 10.1 8.1
Tryptophan- 9.1 9.5 9.6 9.2 11.3 9.5 9.8 8.9 8.4 10.64/19
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Table 2. Root-mean-square-error (RMSE), statistical uncertainty (95% confidence limits) in the RMSE,
see SI for more information), and the maximum absolute error (Max AE) of the pKa (a) the pKa values in
Table 1, (b) with cefradoxil removed, (c) with an empirical offset, and (d) using geometries optimized in
the gas phase and zwittterions removed (Table S2). ”COS” stands for COSMO.

Ref PM6-DH+ PM6 PM7 PM3 AM1 PM3 AM1 DFTB3
pKa COS COS COS COS COS SMD SMD SMD

RMSEa 1.8 2.3 2.1 2.0 1.4 1.3 1.5 1.6 2.4
95% conf 1.4-2.1 1.8-2.7 1.6-2.4 1.6-2.4 1.1-1.6 1.1-1.6 1.2-1.8 1.3-1.9 1.9-2.8
Max AE 6.5 9.8 5.8 5.9 6.9 5.4 2.9 3.9 9.9

RMSEb 1.8 1.8 1.9 1.8 1.0 1.1 1.5 1.6 2.0
95% conf 1.4-2.1 1.4-2.2 1.5-2.3 1.4-2.2 0.8-1.2 0.9-1.3 1.2-1.8 1.2-1.9 1.6-2.3
Max AE 6.5 4.4 4.8 4.3 2.5 2.6 2.9 3.9 5.1

RMSEc 1.8 1.6 1.4 1.8 0.9 1.1 1.0 1.1 1.9
95% conf 1.4-2.1 1.3-1.9 1.1-1.7 1.4-2.1 0.7-1.1 0.8-1.2 0.8-1.2 0.9-1.3 1.5-2.2
Max AE 6.5 3.8 3.4 3.7 2.3 3.0 2.1 2.8 5.6

RMSEd 1.8 2.6 2.4 2.1 1.4 1.3 1.9 1.9 3.0
95% conf 1.4-2.1 2.0-3.0 1.8-2.8 1.6-2.5 1.1-1.7 1.0-1.5 1.5-2.2 1.5-2.2 2.4-3.6
Max AE 6.5 7.8 4.6 5.2 3.5 2.5 4.3 3.8 11.1

solution-phase geometry optimisations was the possible presence of zwitterions, so if a zwitterionic state
is not involved then the geometry optimisations could potentially be done in the gas phase. Table 2
shows that PM3/COSMO and AM1/COSMO continue to perform best with RMSEs of 1.4 ± 0.3 and 1.3
± 0.2/0.3 pH units, respectively (the pKa values can be found in Table S2). The largest difference in
RMSEs is observed for PM3/COSMO(soln) and PM3/COSMO(gas) (0.4 pH units) and is larger than the
composite error of 0.1 pH units for these two error. So using gas phase geometries for non-zwitterionic
molecules leads to a statistically significant decrease in the accuracy of the pKa predictions.

Figure 2 shows that all semiempirical methods except PM7 tend to underestimate the pKa values. The
mean signed errors for PM3/COSMO and AM1/COSMO are -0.4 and -0.5 pH units while they are -1.1
for both PM3/SMD and AM1/SMD (computed without cefadoxil). If these mean errors are included as
an empirical correction to the pKa values then the accuracy of the COSMO- and SMD-based methods
become statistically identical with RMSE values of between 0.9 and 1.1 pH units (Table 2). However, it
remains to be seen whether these corrections are transferable to other sets of amines.

PM6-DH+-, PM6- and PM7-based methods
In addition to their chemical importance pKa values are also useful benchmarking tools that can help
in identifying problems with theoretical methods. Here I compare the results for PM6-DH+/COSMO,
PM6/COSMO- and PM7/COSMO-based methods to PM3/COSMO to gain some insight in to why these
methods lead to less accurate pKa predictions with RMSE values of 1.9 compared to 1.0 (ignoring
cefadroxil).

Compared to PM3, PM6-DH+ has two “outliers”: propranolol and lidocaine (Figure 2). For propanolol
PM6-DH+ predicts a pKa value of 5.2, which is significantly lower than the experimental value of 9.6
and that predicted by PM3 (8.3). Comparison of the lowest free energy structures for the protonated state
shown in Figure 3a-b shows that the PM6-DH+ structure is significantly more compact than the PM3
structure with the isopropylaminoethanol chain stacked on the face with the naphthalene group. This
will lead to desolvation of the amine group and will lower the predicted pKa. This structure is also the
lowest free energy structure for PM6 where the predicted pKa value is 6.8. So the compactness is not
solely due to the dispersion interactions included in PM6-DH+, as one might expect, but these forces do
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contribute to the very low pKa value. It is important to emphasize that this does not necessarily imply
that the dispersion interactions are overestimated by the DH+ corrected, but rather that they possibly
are too large compared to the solute/solvent interactions in the COSMO solvation model when using
PM6-DH+ to describe the solute. This general point also applies to the rest of the analyses presented below.

For lidocaine PM6-DH+ predicts a pKa value of 3.7 pH units, which is significantly lower than the
experimental value of 7.9 and that predicted by PM3 (5.4). Comparison of the lowest free energy struc-
tures for the protonated state shown in Figure 3c-d shows that the NH-O hydrogen bond-like interaction
observed in the PM3 structure is absent in the PM6-DH+ structure, which is consistent with a lower pKa
value. The hydrogen bond, which is also present in the lowest free energy PM6 structure, is replaced by
non-polar interactions between methyl groups which presumably are stronger in PM6-DH+ due to the
dispersion forces.

Compared to PM3, PM6 has one “outliers” (Figure 2), piroxicam, where PM6 predicts a pKa value
of 0.5, which is significantly lower than the experimental value of 5.3 and that predicted by PM3 (6.3).
Comparison of the lowest free energy structures for the protonated state shown in Figure 4 shows that the
pyridine NH hydrogen bond to the amide O observed in the PM3 structure is replaced by a presumably
unfavorable NH-HN interaction with the amide group, which indeed should lower the pKa considerably.
Both PM3 and PM6 geometry optimisations are performed with exactly the same set of starting structures
and it is not immediately clear why this arrangement leads to lowest free energy, but it is presumably due
to an increase in the solvation energy.

Compared to PM3, PM7 has three “outliers” (Figure 2): spartein, trimipramine, and thenyldiamine.
For propanolol PM7 predicts a pKa value of 15.9, which is significantly higher than the experimental
value of 12.0 and that predicted by PM3 (11.7). Comparison of the lowest free energy structures for the
protonated state shown in Figure 5a-b shows virtually no difference in structure. The same is found for
the low free energy structures of the conjugate base and both protonation states of the reference molecule.
The most likely explanation for the overestimation is therefore that the NH-N hydrogen bond strength is
overestimated compared to PM3. This theory is further corroborated for trimiparine where PM7 predicts
a pKa value of 13.7 pH units, which is significantly higher than the experimental value of 9.4 and that
predicted by PM3 (10.2). Comparison of the lowest free energy structures for the protonated state shown
in Figure 5c-d shows a NH-N hydrogen bond for the PM7 structure, which is absent in the PM3 structure.
This structural difference is consistent with both the higher pKa and an overestimation of NH-N hydrogen
bond strength by PM7. Finally, for thenyldiamine PM7 predicts a pKa value of 13.1 pH units, which
again is significantly higher than the experimental value of 8.9 and that predicted by PM3 (9.4). The main
difference in structure between the free energy minima (Figure 5e-f) is an apparently stronger interaction
between the thiophene ring and the amine in the PM7 structure, which, if anything, should desolvate
the amine group and lower the pKa value. The most likely explanation for the overestimation is thus an
overestimation of the NH-N hydrogen bond as in the the other two cases.

DFTB3/SMD
Compared to PM3/COSMO, DFTB3/SMD has five “outliers” (Figure 2) and here I focus on the two with
the largest errors: guanethidine and mechlorethamine. For guanethidine DFTB3 predicts a pKa value of
16.2 pH units, which is significantly higher than the experimental value of 11.4 and that predicted by PM3
(13.2). Comparison of the lowest free energy structures for the protonated state shown in Figure 6a-b
shows that they are quite similar with a NH-N hydrogen bond, but with the 7-membered ring in a slightly
different conformation. The hydrogen bond length in the DFTB3 structure is 2.33 Å, which is significantly
shorter than the 2.56 Åin the PM3 structure. A stronger hydrogen bond is consistent with a higher pKa, but
the errors for DFTB3 are not unusually larger for, for example, spartein, trimipramine, and thenyldiamine.
One possibility is that it is only guanine NH hydrogen bond strengths that are overestimated but this can
not be verified with the current set of molecules.

For mechlorethamine DFTB3 predicts a pKa value of 1.3 pH units, which is significantly lower than
the experimental value of 6.4 and that predicted by PM3 (5.4). Comparison of the lowest free energy
structures for the protonated state shown in Figure 6c-d shows overall similar structures. In both cases the
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amine hydrogen is surrounded by the two chlorine atoms, which lowers the pKa value due to desolvation.
However, closer inspection of the structures reveal that for the DFTB3 structure the chlorine atoms are
significantly closer together and one of the chlorine atoms is significantly closer to the amine hydrogen.
These structural differences are consistent with greater desolvation in the DFTB3 structure and, hence, a
lower pKa value.

With regard to DFTB3 it is also noteworthy that two molecules fragment in the DFTB3 gas phase
geometry optimisations: in the case of the niacin zwitterion CO2 is eliminated while for the protonated
form of sotalol CH3SO2 is eliminated. Barrier-less CO2 has been previously observed for DFTB3 for
model systems of L-aspartate α-decarboxylase (Kromann et al., 2016a) and is presumably due to the 16.8
kcal/mol error in the atomisation energy of CO2 for DFTB3 (Gaus et al., 2011).

Prediction of dominant protonation state
One of the main uses of pKa values is the prediction of the correct protonation state at physiological pH
(7.4), i.e. determining whether the predicted pKa value is above or below 7.4. Here (ignoring cefadroxil)
PM3/COSMO performs best by getting it right 94% of the time, compared to 90%, 79%, and 92% for
AM1/COSMO, PM3/SMD, and the null model. Thus, only PM3/COSMO outperforms the null model.
PM3/COSMO fails in three cases, labetalol, lidocaine, and nafronyl, where PM3/COSMO predicts pKa
values of 7.5, 5.4, and 7.3, respectively and the corresponding experimental values are 7.3, 7.9, and 9.1
pH units. The null model fails in four cases, clozapine (amide nitrogen), labetalol, mechlorethamine, and
trazodone, where the null model predicts pKa values of 10.3, 10.6, 10.0, and 10.2 and the corresponding
experimental values are 3.9, 7.3, 6.4, and 6.8 pH units, respectively. Thus, both methods fail for only one
ionizable site where the experimentally measured pKa value is significantly different from physiological
pH.

Timings
A MOPAC-based geometry optimization requires no more than about 10-20 CPU seconds on a single core
CPU even for the largest molecules considered here (e.g. clozapine), whereas corresponding GAMESS
optimizations take about 60-90 seconds. Thus, using 20 different starting geometries for each protonation
state a pKa value can be predicted in a few CPU minutes using a single 12-CPU node. In practice
the wall-clock time is longer due to the overhead involved in having all cores write output files to disk
simultaneously. Similarly, most queuing software has an some computational overhead which becomes
noticeable when a large number of sub-minute jobs are submitted simultaneously. These general problems
need to be addressed if semiempirical methods are to be used efficiently in very large-scale high throughput
studies. Nevertheless, fast pKa predictions for 100-1000s of molecules is feasible with the current setup
and relatively modest computational resources.

SUMMARY AND OUTLOOK
This study uses PM6-DH+/COSMO, PM6/COSMO, PM7/COSMO, PM3/COSMO, AM1/COSMO,
PM3/SMD, AM1/SMD, and DFTB3/SMD to predict the pKa values of 53 amine groups in 48 drug-like
compounds. The approach uses isodesmic reactions where the pKa values is computed relative to a
chemically related reference compound for which the pKa value has been measured experimentally or
estimated using an standard empirical approach. Both gas phase and solution phase geometry optimi-
sations are tested. The AM1- and PM3-based methods using solution phase geometries perform best
with RMSE values of 1.4 - 1.6 pH units that have uncertainties of 0.2-0.3 pH units, which make them
statistically equivalent. However, for all but PM3/SMD and AM1/SMD the RMSEs is dominated by a
single outlier, cefadoxil, caused by proton transfer in the zwitterionic protonation state. If this outlier
is removed, the RMSE values for PM3/COSMO and AM1/COSMO drop to 1.0 ± 0.2 and 1.1 ± 0.3,
while PM3/SMD and AM1/SMD remain at 1.5 ± 0.3 and 1.6 ± 0.3/0.4 pH units. Thus, without this
outlier the COSMO-based predictions outperform the SMD-based predictions, so for pKa calculations
where a zwitterionic state is not involved or proton transfer in a zwitterionic state is not observed then
PM3/COSMO or AM1/COSMO is the best pKa prediction method, otherwise PM3/SMD or AM1/SMD
should be used. Thus, fast and relatively accurate pKa predictions for 100-1000s of molecules is feasible

7/19

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2564v2 | CC BY 4.0 Open Access | rec: 5 Dec 2016, publ:



with the current setup and relatively modest computational resources.

For the current study the reference molecules were selected by hand to match the local structure
around the ionizable as much as possible for most molecules to maximize the cancellation of error and
improve accuracy as much as possible. This approach will work well when the pKa of a small number of
molecules is needed or if the effect of substituents on the pKa of an ionizable group in a target molecule
is to be investigated. However for high throughput pKa prediction for a very large and diverse set of
molecules it will not always be practically possible to identify closely related reference molecules and
for such a case the overall accuracy is likely to be worse than reported here. How much worse remains
to be seen but the fact that the pKa of the imine nitrogen in clozapine can be predicted to within 1.2 pH
units using PM3/COSMO and a reference compound with a pKa value with a pKa value that is 6.4 pH
units higher suggests that the error may not be that much higher. The current implementation also relies
on manual selection of the protonation state of other ionizable groups, which in cases like cimetidine
requires expert knowledge. In the general case this step needs to be automated by generating all possible
protonation isomers for a given protonation state and selecting the one with the lowest free energy. Work
on full automation of the process is ongoing.
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Figure 1. Some of the molecules referred to in the text
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Figure 2. Plot of the errors of the predicted pKa values (pKa−pKExp
a ). ”C” and ”S” stand for COSMO

and SMD, respectively.
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Figure 3. Lowest free energy conformations of (a-b) propanolol and (c-d) lidocaine at the
PM3/COSMO (a and c) and PM6-DH+/COSMO (b and d) level of theory. Hydrogen bonds are indicated
with dashed lines.
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Figure 4. Lowest free energy conformations of piroxicam at the (a) PM3/COSMO and (b)
PM6/COSMO level of theory. Hydrogen bonds are indicated with dashed lines.
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Figure 5. Lowest free energy conformations of (a-b) spartein, (c-d) trimipramine, and (e-f)
thenyldiamine at the PM3/COSMO (a, c, and e) and PM7/COSMO (b, d, and f) level of theory. Hydrogen
bonds are indicated with dashed lines.
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Figure 6. Lowest free energy conformations of (a-b) guanethidine and (c-d) mechlorethamine at the
PM3/COSMO (a and c) and DFTB3/SMD (b and d) level of theory. Distances are given in Å.
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SUPPORTING INFORMATION
Prediction of pKa Values for Drug-Like Molecules Using Semiempirical Quantum Chem-
ical Methods
Additional supplementary material, including the structures and python scripts that automate most parts
of the computations, can be found on Figshare: dx.doi.org/10.6084/m9.figshare.4141617.

RMSE uncertainties and statistical significance
Following Nicholls (2014) the lower and higher error bar on the RMSE for method X (RMSEX ) is

LX = RMSEX

1−

√
1− 1.96

√
2√

N−1


UX = RMSEX

√
1+

1.96
√

2√
N−1

−1


The 95% confidence interval given in Table 2 is (RMSEX −LX )− (RMSEX +Ux). The error bars are
asymmetric, but in this study they are often equal to the first decimal place and given as a ± value.

Two pKa prediction methods (A and B) give statistically equivalent results if the difference in their
RMSEs are lower than their composite error (Nicholls, 2016)

|RMSEA−RMSEB|<
√

L2
A +U2

B−2rABLAUB

where rAB is the Pearson’s r value of method A compared to method B.
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Table S1. Reference molecules and their associated pKa values

Molecule Reference Reference
Molecule pKa

Acebutolol ethylisopropylamine 10.6
Acyclovir N-methylguanine 2.6
Alphaprodine 1-methylpiperidine 10.1
Alprenolol ethylisopropylamine 10.6
Atenolol ethylisopropylamine 10.6
Benzocaine aniline 4.6
Betahistine ethylmethylamine 10.5
Betahistine+ 2-methylpyridine 5.8
Cefadroxil- phenylethanamine 9.5
Chloroquine triethylamine 10.2
Cimetidine0 4-methylimidazole 6.8
Clomipramine dimethylethylamine 10.2
Clotrimazole 1-methylimidazole 6.6
Clozapine N-ethyl-N-methylethanamine 10.0
Clozapine+ N-phenylethanimidamide 10.3
Codeine 1-2-dimethylpiperidine 10.1
Desipramine ethylmethylamine 10.5
Guanethidine ethylguanidine 12.8
Histamine ethylamine 10.6
Hydroquinine 2-methylquinuclidine 10.5
Hydroquinine+ leucoline 4.5
Imipramine dimethylethylamine 10.2
Labetalol ethylisopropylamine 10.6
Lidocaine triethylamine 10.2
Maprotiline ethylmethylamine 10.5
Mechlorethamine N-ethyl-N-methylethanamine 10.0
Metaproterenol ethylisopropylamine 10.6
Metoprolol ethylisopropylamine 10.6
Miconazole 1-methylimidazole 6.6
Morphine 1-2-dimethylpiperidine 10.1
Nafronyl triethylamine 10.2
Nefopam N-ethyl-N-methylethanamine 10.0
Niacine- pyridine 5.2
Nicotine 1-2-dimethylpyrrolidine 10.3
Nicotine+ pyridine 5.2
Nikethamide pyridine 5.2
Papaverine 1-methylisoquinoline 6.0
p-Chloroamphetamine isopropylamine 10.4
Phenacaine N-phenylethanimidamide 10.3
Phenylalanine- alanine- 9.5
Piroxicam aminopyridine 6.5
Prazosin 2-4-quinazolinediamine 7.0
Procaine triethylamine 10.2
Procaine+ aniline 4.6
Propanolol ethylisopropylamine 10.6
Quinine 2-methylquinuclidine 10.5
Sotalol ethylisopropylamine 10.6
Sparteine quinolizidine 10.3
Tetracaine dimethylethylamine 10.2
Thenyldiamine dimethylethylamine 10.2
Trazodone triethylamine 10.2
Trimipramine dimethylethylamine 10.2
Tryptophan- alanine- 9.5
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Table S2. Experimental, reference (cf. Eq 1), and predicted pKa values computed using gas phase
geometries. ”COS” stands for COSMO. ”+” and ”-” refers to the charge of the conjugate base.

Molecule Exp Ref PM6-DH+ PM6 PM7 PM3 AM1 PM3 AM1
pKa COS COS COS COS COS SMD SMD

Acebutolol 9.5 10.6 7.7 4.9 9.2 7.4 8.7 6.4 8.7
Acyclovir 2.2 2.6 3.0 1.4 2.4 0.7 1.7 0.3 1.4
Alphaprodine 8.7 10.1 6.0 6.0 8.0 8.2 8.3 7.1 7.3
Alprenolol 9.6 10.6 7.1 5.6 8.9 9.3 7.5 8.2 7.2
Atenolol 9.6 10.6 6.1 5.7 7.5 8.3 7.7 7.7 6.5
Benzocaine 2.5 4.6 0.2 0.2 1.1 2.4 1.6 1.9 1.3
Betahistine 10.0 10.5 8.1 8.2 9.3 8.6 9.0 8.5 8.3
Betahistine+ 3.9 5.8 4.2 4.5 4.2 4.8 4.0 4.1 3.2
Cefadroxil- 7.0 9.5 14.8 -2.3 6.8 10.6 12.1 -4.8 7.2
Chloroquine 10.6 10.2 6.1 8.6 8.3 9.5 9.3 8.6 9.1
Cimetidine0 6.8 6.8 2.3 5.1 5.7 4.3 4.5 3.6 3.7
Clomipramine 9.4 10.2 11.1 9.7 13.2 9.6 9.1 9.2 8.3
Clotrimazole 5.8 6.6 4.9 4.8 7.0 4.6 5.1 3.7 3.8
Clozapine 7.5 10.0 15.3 5.1 6.2 7.7 7.6 7.0 7.2
Clozapine+ 3.9 10.3 6.0 6.1 7.2 2.7 2.9 0.3 0.7
Codeine 8.1 10.1 5.6 5.4 7.7 7.4 7.3 5.5 6.1
Desipramine 10.3 10.5 10.2 10.7 11.1 9.8 9.4 8.9 8.3
Guanethidine 11.4 12.8 12.0 12.4 12.6 13.1 13.9 12.0 12.2
Histamine 9.7 10.6 8.5 8.6 9.0 8.7 9.2 8.8 9.3
Hydroquinine 9.1 10.5 6.6 6.8 10.8 7.8 8.7 7.2 8.0
Hydroquinine+ 4.1 4.5 3.3 2.5 3.8 2.2 2.2 1.7 1.7
Imipramine 9.6 10.2 9.8 8.7 11.8 9.4 8.8 8.7 7.7
Labetalol 7.3 10.6 6.4 6.3 12.2 7.4 9.2 7.5 7.6
Lidocaine 7.9 10.2 3.6 4.3 5.7 4.4 5.7 6.0 5.3
Maprotiline 10.3 10.5 10.1 10.1 11.4 9.6 10.1 9.8 9.4
Mechlorethamine 6.4 10.0 4.0 3.9 4.0 5.5 5.7 5.1 6.1
Metaproterenol 9.9 10.6 6.7 6.3 7.6 8.2 9.1 7.4 7.6
Metoprolol 9.6 10.6 7.7 6.1 8.7 7.8 8.8 6.9 8.2
Miconazole 6.4 6.6 4.7 5.5 9.0 4.7 4.9 4.0 4.2
Morphine 8.2 10.1 5.5 5.3 7.2 7.4 7.2 6.3 5.7
Nafronyl 9.1 10.2 8.6 6.5 12.9 6.3 7.2 8.2 6.7
Nefopam 8.5 10.0 6.1 6.3 8.9 7.6 7.9 6.7 6.7
Niacine- 4.8 5.2 4.0 0.9 3.2 3.7 3.6 2.2 2.1
Nicotine 8.1 10.3 7.1 7.3 8.1 8.6 8.7 8.3 8.3
Nicotine+ 3.2 5.2 2.0 1.9 2.2 1.7 1.9 1.0 1.1
Nikethamide 3.5 5.2 1.9 2.0 3.3 3.0 2.4 1.9 1.4
Papaverine 6.4 6.0 3.7 4.3 4.6 3.1 4.4 2.1 3.1
p-Cl-amphetamine 9.9 10.4 8.9 8.9 9.8 9.3 8.7 9.0 8.4
Phenacaine 9.3 10.3 10.4 10.0 10.3 9.0 7.7 8.0 6.9
Phenylalanine- 8.9 9.5 11.2 17.2 15.3 10.1 10.5 9.2 9.5
Piroxicam 5.3 6.5 4.2 1.7 5.5 5.8 6.9 4.0 5.4
Prazosin 7.0 7.0 5.4 5.4 6.5 4.9 5.1 3.2 3.2
Procaine 9.1 10.2 8.6 6.9 10.7 8.1 8.1 9.8 8.7
Procaine+ 2.0 4.6 -0.8 -0.8 -0.2 1.7 1.4 0.6 0.1
Propanolol 9.6 10.6 4.8 5.2 9.6 7.1 7.7 7.4 6.9
Quinine 8.5 10.5 6.5 6.0 9.7 7.3 8.6 6.6 8.1
Sotalol 9.3 10.6 6.4 6.1 8.4 7.0 7.7 5.9 7.1
Sparteine 12.0 10.3 15.3 14.6 16.8 11.7 12.3 11.1 12.1
Tetracaine 8.5 10.2 8.5 7.1 9.7 8.8 8.2 9.0 7.7
Thenyldiamine 8.9 10.2 12.3 9.1 14.1 9.4 8.5 9.5 8.4
Trazodone 6.8 10.2 4.1 3.0 7.8 5.8 5.7 6.4 4.5
Trimipramine 9.4 10.2 11.9 10.4 14.0 10.4 10.0 9.3 9.4
Tryptophan- 9.1 9.5 11.8 17.9 16.3 11.1 11.2 10.4 10.919/19
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