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Abstract

1) Environmental bulk samples often contain many taxa with biomass differences of several orders of magnitude. This can
be problematic in DNA metabarcoding and metagenomic high throughput sequencing approaches, as large specimens
contribute disproportionate amounts of DNA template. Thus a few specimens of high biomass will dominate the dataset,
potentially leading to smaller specimens remaining undetected. Sorting of samples and balancing the amounts of tissue used
per size fraction should improve detection rates, but this approach has not been systematically tested.

2) Here we tested the effects of size sorting on taxa detection using freshwater macroinvertebrates. Kick sampling was
performed at two locations of a low-mountain stream in West Germany, specimens were morphologically identified and
sorted into small, medium and large size classes (< 2.5x5, 5x10 and up to 10x20 mm). Tissue from the 3 size categories was
extracted individually, and pooled to simulate samples that were not sorted by biomass and samples that were sorted and
then pooled so that each specimen contributed approximately equal amounts of biomass. DNA from all five extractions of
samples from both sites was amplified using four different DNA metabarcoding primer sets targeting the Cytochrome ¢
oxidase I (COI) gene. The library was sequenced on a HiSeq Illumina sequencer.

3) Sorting taxa by size and pooling them proportionately according to their abundance lead to a more equal amplification

compared to the processing of complete samples without sorting. The sorted samples recovered 30% more taxa than the
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unsorted samples, at the same sequencing depth. Our results imply that sequencing depth can be decreased approximately
five-fold when sorting the samples into three size classes.

4) Our results demonstrate that even a coarse size sorting can substantially improve detection of taxa using DNA
metabarcoding. While high throughput sequencing will become more accessible and cheaper within the next years, sorting

bulk samples by specimen biomass is a simple yet efficient method to reduce current sequencing costs.

Key words: Biomass bias, specimen sorting, metabarcoding, metagenomics, DNA barcoding, ecosystem assessment
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1) Introduction

Recent advancements in high-throughput sequencing (HTS) and DNA barcoding have improved our ability to rapidly assess
biodiversity. By using traps or manual collection methods (e.g. nets), thousand specimens can be easily collected. However,
manually identifying hundreds or thousands of specimens in a single sample is often not feasible. Bulk samples, which
previously took weeks or month to determine morphologically, can now be homogenised and their DNA extracted for
sequencing based identification within days. The power, accuracy and cost effectiveness of these HTS DNA based
assessments have already been demonstrated (e.g. (Ji et al. 2013; Tang et al. 2015; Gomez-Rodriguez et al. 2015; Leray &
Knowlton 2015; Gibson et al. 2014; Hajibabaei et al. 2011; Zimmermann et al. 2014; Dowle et al. 2015)) and sequencing
costs are expected to further decline in the future.

In DNA based ecosystem assessment we can distinguish between two approaches: 1) a target gene fragment is amplified
and compared to a DNA barcoding database (metabarcoding, see (Taberlet ez al. 2012)) or 2) the extracted DNA from the
bulk sample is shotgun sequenced directly without PCR and can be optionally enriched for target genes (metagenomics, see
(Liu et al. 2015)). Both approaches have specific advantages and drawbacks: metabarcoding is severely limited by PCR bias,
preventing estimates of taxa biomass and potentially not detecting all taxa present in the sample (Elbrecht & Leese 2015;
Pifiol et al. 2014; Leray & Knowlton 2015). While metagenomics might overcome these PCR based problems, this approach
is currently limited by the lack of adequate reference data (e.g. mitochondrial genomes) and a high sequencing depth is
required (Crampton-Platt et al. 2016). While these problems might be solved at least partially by optimised degenerate
primers (Elbrecht & Leese 2016), reduced sequencing costs and mitogenome capture (Tang et al. 2014), both
metabarcoding and metagenomics are biased by an additional factor: variable taxa biomass.

Environmental samples usually contain a diverse set of taxa spanning often several orders of magnitude in specimen sizes
and biomass. When extracting complete unsorted samples in bulk, large biomass rich specimens will contribute significantly
more DNA to the final bulk DNA isolate than small organisms with little biomass. We demonstrated this previously by bulk
extracting DNA from 31 specimens of the same stonefly (Plecoptera) species with varying specimen biomass, and found a
clear significant linear correlation between obtained reads and dry specimen weight (p<0.001, R* = 0.65, (Elbrecht & Leese
2015). We hypothesise that also in more species rich samples, taxa biomass translates directly into read abundance
(assuming taxon specific primer bias, unrelated to specimen size). Thus just a few big specimens in a sample will likely
make up a majority of the reads, requiring higher sequencing depth to also detect small or rare specimens and taxa. Some
studies have already sorted their samples into different size fractions, for DNA metabarcoding because of this biomass

introduced bias (Leray & Knowlton 2015; Wangensteen & Turon 2016). However, to our knowledge the effect of
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fractioning samples by specimen biomass against the complete sample without pre-sorting of specimens has never been
systematically tested and quantified. (Moriniére ez al. 2016) have found effects of sorting malaise trap samples by insect
orders (potentially caused by unequal sequencing depth), but also encouraged the testing of size based sample fractioning.
In this study we systematically quantified the effects of biomass-sorting on taxon recovery using two complete stream
macroinvertebrate kick samples, morphologically identifying and sorting them into three biomass categories based on
specimen sizes: small (S), medium (M) and large (L), see Figure 1 & S1. Specimens of each size class were then
homogenized and DNA extracted. DNA from each size fraction was pooled proportionately to the dry weight of each size
category, to generate an unsorted sample (Un), and additionally pooled by specimen abundance in each size category, to
generate a sorted sample (So) in which ideally all specimens are equally well represented. By metabarcoding these unsorted

and sorted samples, we can precisely investigate the effects of sample size sorting on taxa recovery.

2) Material and Methods

Sample collection and processing

Figure S2 gives an overview of sample sorting and laboratory processing steps. Macroinvertebrates were collected at two
sampling points of the small low mountain range stream Kleine Schmalenau in West Germany (Arnsberger Wald). The
main stream (P8, N51.43623 E8.13721) and a small tributary (P10, N51.43295 E8.14350) were each sampled with 5 kick
samples per spot (0.45 m? area) following the general principle of the multi habitat sampling protocol also used in German
implementation of the EU Water Framework Directive (Meier et al. 2006). Collected specimens were stored in 96% ethanol
at -20°C for later molecular analysis. All invertebrates were counted and identified based on morphology to the lowest
taxonomic level that could be determined accurately and consistently.

Specimens from the two samples were each sorted into three size categories under a Zeiss Stemi 2000 stereo microscope by
placing them onto millimetre paper. Specimens below 2.5x5 mm were sorted into small (S) specimens up to 5x10 mm into
medium (M) and everything bigger than that into large specimens (L, max 10x20 mm). For thin but long specimens like e.g.
chironomids (non-biting midges), the total surface was considered and evaluated if it fitted into the respective rectangle.

Terrestrial taxa and Trichoptera (caddisfly) cases were included in the samples.

DNA extraction and tissue pooling
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Specimens of each size category were dried overnight in sterile Petri dishes to remove the ethanol. Total dry specimen
weight in each size category was measured (in duplicates) on a Sartorius RC 210D scale. Specimens from each category
were homogenised using an IKA ULTRA-TURRAX Tube Drive control system with sterile 20 ml tubes and 10 steel beads
(5 mm @) by grinding at 4000 rpm for 30 minutes.

We wanted to extract and sequence DNA from each size category (S, M & L), but also simulate extracting DNA from 1)
proportionally pooled specimens based on number of specimens in each size category (So = "sorted") and 2) also extract
DNA from the whole sample as if it was never sorted into S, M and L (Un = "unsorted") by pooling tissue based on total dry
tissue weight in each size category. While we could have pooled two subsets of homogenised tissue from each size category,
we wanted to avoid this as tissue subsets might differ slightly in taxa composition. Thus, tissue from each category was
digested following a modified salt DNA extraction protocol and then the lysate pooled (Sunnucks & Hales 1996), Figure
S3). Seven replicates were in each size category, which were united after tissue lysis. This way a higher amount of tissue
could be digested for the S, M and L samples. DNA extraction was then carried out in triplicate using 3 times 530 ul TNES
extraction buffer for S, M and L as well as the sorted (So) and unsorted (Un) samples. Figure 1 gives a schematic overview
of how S, M and L were pooled to generate sorted and unsorted samples (see Figure S1 for exact proportions). To generate
the unsorted samples (Un), buffer from S, M and L was pooled based on dry specimen weight in each category. The same S,
M and L solutions were additionally pooled proportionally to the total number of specimens in each size category (So), so
all specimens contribute approximately equal amounts of DNA in the bulk extraction. 15 pl DNA were pooled from each of
the 3 extraction replicates and digested with 1 pl RNAse A and cleaned up using a MinElute Reaction Cleanup Kit (Qiagen,
NL) with resuspension in ddH,O. DNA concentrations were quantified fluorometric using a Qubit with (HS Kit) and

concentrations adjusted to 25 ng/ul.

DNA metabarcoding and bioinformatics

All 10 samples (sample site 8 and 10 with S, M, L, Un, So each) were amplified with the four freshwater macroinvertebrate
fusion primer sets BF / BR as described in (Elbrecht & Leese 2016) (see Figure S4 for sample tagging). Each PCR reaction
was composed of 1x PCR buffer (including 2.5 mM Mg”"), 0.2 mM dNTPs, 0.5 uM of each primer, 0.025 U/uL of
HotMaster Taq (5Prime, Gaithersburg, MD, USA), 0.5 mg/ul molecular grade BSA (NEB, MA, USA), 12.5 ng DNA, filled
up with HPLC H,O to a total volume of 250 puL. Each 250 pL PCR reaction mix was divided into 5 wells before PCR. PCR
reactions were run in a Biometra TAdvanced Thermocycler using the flowing program 94°C for 3 min, 40 cycles of 94°C

for 30 s, 50°C for 30 s, and 65°C for 2 min, and 65°C for 5 min. High reaction volume and BSA was necessary due to PCR
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inhibitors present in the samples. PCR products were purified and left size selected using SPRIselect with a ratio of 0.8x
(Beckman Coulter, CA, USA) and quantified with a Qubit fluorometer (HS Kit, Thermo Fisher Scientific, MA, USA).
Samples were pooled to equal molarity, and the final library purified with the MinElute Reaction Cleanup Kit (Qiagen, NL),
as a precaution because the BSA used in the PCR caused adhesion of magnets to the tube walls in the PCR clean-up with
SPRIselect. Sequencing was done on one lane of an Illumina HiSeq 2500 system with a rapid Run 250 bp PE v2 sequencing
kit and 5% PhiX spike-in. However, sequences contained ambiguous bases at two positions, due to air bubbles in the flow
cell (SRR3399055). Thus the run was repeated, this time loading two lanes with the same library in slightly different cluster
density, again with a 5% PhiX spike-in.

Figure S5 gives an overview of our bioinformatic pipeline. We used the UPARSE pipeline in combination with custom R
scripts (Dryad DOI - NA) for data processing (Edgar 2013). Reads from both lanes were demultiplexed with a R script and
paired end reads merged using Usearch v8.1.1861 -fastq_mergepairs with -fastqg maxdiffs and -

fastqg maxdiffpct 99 (Edgar & Flyvbjerg 2015). Primers were removed with cutadapt version 1.9 on default settings
(Martin 2011). Sequences were trimmed to the same 217 bp region amplified by the BF1+BR1 primer set and the reverse
complement build if necessary using fastx_truncate / fastx_ revcomp. Only sequences with 207 - 227 bp were
used in further analysis (filtered with cutadapt). Low quality sequences were then filtered from all samples using

fastqg filter with maxee = 1. Sequences from all samples were then pooled, dereplicated (minuniquesize = 3)
and then clustered into operational taxonomic units (OTUs) using cluster otus with 97% identity (Edgar 2013)
(includes chimera removal).

Pre-processed reads (Figure S5, step B) of all samples were dereplicated again using derep fulllength, but singletons
were included. Sequences of each sample were matched against the OTUs with a minimum match of 97% using

usearch global. As the sample library was loaded on both lanes, hit tables from both HiSeq lanes were combined,
because they only represent sequencing replicates. Only OTUs with a read abundance above 0.01% in at least one sample
were considered in downstream analysis. Then for each sample, OTUs with less or equal than 0.01% were set to 0%
sequence abundance. Taxonomy was assigned to remaining OTUs using an R script searching the BOLD and NCBI

database.

3) Results

The library was sequenced on a HiSeq rapid run with a cluster density of 438 k/mm?” and 542 k/mm? for lane 1 and 2

(SRR3399056 and SRR3399057). On average 1.71 (SD =0.29, lane 1) and 2.17 (SD = 0.38, lane 2) million read pairs were
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150 obtained for each sample after demultiplexing (Figure S4). Read quality varied with amplicon length and cluster density

151 (Figure S4), but did not affect results strongly as OTU abundance was very similar between both lanes (= sequencing

152 replicates of identical library). However, stochastic effects between both lanes increased for OTUs with low read abundance
153 (Figure S6).

154 The OTU raw data is available in Table S1 as well as morphology based identifications and taxa abundances in Table S2.
155 After clustering and discarding low abundance OTUs, a total of 314 OTUs remained in the data set (Figure S7, Table S1).
156 71% of these OTUs could be reliably identified with available reference databases, with 58% of the OTUs belonging to

157 target invertebrate taxa (Figure S8). High abundance OTUs (at least 0.1% of reads) belonged all to the invertebrate target
158 groups, with 45 of 52 these taxa reliably identified at species level, of which about 3/4 had 100% similarity matches to

159 reference sequences. Low abundance OTUs (<0.1%) often showed poor matches to data bases or could not be identified at
160 all (see Figure S8). With DNA metabarcoding over twice as much target taxa were detected than with morphology based
161 identification alone, with 5 times more on species level alone (Figure S9). The main stream (P8) and tributary (P10) could
162 be clearly distinguished, with only 14.3% of OTUs shared between both sites (Figure S8, 36.4% similarity based on

163 morphological identification, Table S1).

164 Sorting the sample into 3 size categories and proportional pooling of DNA extracts by amount of specimens in each

165 category reduced the bias introduced by large specimens substantially (Figure 2). The sorted samples (So) resembled the
166 composition of the original sample much better than the unsorted samples (Un). An average of 88.75 (SD = 6.46)

167 invertebrate taxa were detected in the sorted samples, compared against 62.5 (SD = 4.5) in the unsorted samples (30% less,
168 paired t-test, p = 0.005, Figure 3). By using the S M and L samples as controls, we could estimate the expected (E) amount
169 of taxa we should be detecting with each primer pair (Figure S10). In sorted samples (So) very similar amounts of taxa as in
170 the controls (E) were detected (paired t-test, p = 0.17). However on average only 80% (SD = 8%) of the expected number of
171 taxa were detected when the complete sample was extracted without sorting (Figure S10 A, paired t-test, p < 0.001). The
172 same trend could be observed when looking at Shannon Diversity (Figure S10 B, paired t-test, E vs So; p = 0.9153, E vs Un;
173 p <0.001). When comparing the taxa detected with metabarcoding against the taxa list based on morphological

174 identification, again the unsorted samples show decreased detection rates (67%, SD = 3%, paired t-test, p = 0.006).

175 However, also with sorting only 74% (SD = 3%) of the morphologically identified taxa were detected with each primer set,
176 which however was not significantly less than with the controls E (paired t-test, p < 0.23, Figure S10 C). Six

177 morphologically identified taxa were not detected in our metabarcoding dataset (Figure S7). The reduced amount of taxa
178 detected with the unsorted samples, persists when the sequencing depth is reduced (Figure 3). Sample sorting does reduce

179 the required sequencing depth to detect the same amount of taxa by ~5 times, compared to the unsorted samples.
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4) Discussion

4.1) Data basis and reliability of results

Freshwater macroinvertebrate COI reference databases were quite reliable for the studied ecosystem. Common taxa in our
samples often had 100% matches to BOLD and NCBI databases. However, the reliability of DNA barcoding database
entries depends highly on the expert knowledge and accuracy when morphologically identifying specimens. Not all
database entries have resolved taxonomy or possibly misidentified specimens, potentially inflating the number of taxa
detected. While most metabarcoding studies will likely be affected by this issue and also the number of morphotaxa
detected with OTUs in this study might be inflated, the over all investigation of size sorting is likely unaffected as the bias
will be the same for all samples and size categories. Nevertheless, DNA based identifications can be more accurate than
classical morphology based identification (Stein et al. 2013; Sweeney et al. 2011) as we also show with our two kick
samples in this project. We did make sure to only morphologically identify specimens to a level we were confident the
identifications were correct, as we relate the size classes of each taxon back to the metabarcoding data (Figure 2).
Furthermore, we show with our dataset that stochastic effects during Illumina sequencing affect mainly low abundant OTUs.
While this effect adds variability to low abundant OTUs, it does not affect the detection of OTUs with an abundance of >

0.01%. However, when analysing OTUs with lower abundance stochastic effects should be taken into consideration.

4.2) Effects of sorting metabarcoding samples by specimen size

We sorted two samples by specimen size (resembling biomass) into small, medium and large specimens and pooled them
proportionately by specimen abundance per size class to compare these results against unsorted samples. Our results
demonstrate unambiguously that, as expected, read abundances of the unsorted samples were dominated by few taxa with
large specimens that contribute the majority of DNA when bulk extracting samples. This not only does skew the read
abundances in favor of biomass rich specimens, but also some smaller and less abundant taxa remained undetected (on
average 30% fewer taxa detected in the unsorted samples). The sorted samples only need 1/5 of the sequencing depth, to
detect the same amount of taxa as in the unsorted samples. This means that sorting metabarcoding bulk samples by
specimen biomass can substantially reduce sequencing costs. While we only manually sorted our samples into 3 size
categories, further cost reductions might be possible by sorting samples into more size categories. It is likely that larger

specimens will have similar effects on metagenomic bulk samples, thus sorting by specimen size might also likely be viable
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4.3) Implications: Not all samples have to be sorted

While we could demonstrate and also quantify the increased resolution and potential cost savings by size sorting
metabarcoding bulk samples, we have to acknowledge that these sample sorting steps can be time consuming and
potentially also a source of cross contamination between samples. Thus, we do not recommend sorting every sample by
specimen biomass right away. First of all, the sample should have specimens varying several magnitudes in biomass, if all
specimens have similar sizes, sorting will likely not improve the sequencing results. Additionally, the number of samples
which can be reliably tagged on a HTS run in combination with the expected sequencing output, might make sorting
obsolete if expected sequencing depth per sample is sufficiently high. However, in many cases bulk samples are variable in
biomass and sequencing depth should be maximised, thus sorting your samples will increase the number of taxa detected.
The method of size sorting depends on sample composition and characteristics. If samples just contain a few large
specimens, one could obtain a small piece of tissue (e.g a leg of an invertebrate) and remove the rest of the specimen from
the sample (as done by (Ji ef al. 2013) for example). Especially if only presence-absence data is desired, this is a good trade
off to reduce the negative influence of a few large specimens on the dataset, without sorting the complete sample. In this
study, we measured the size of each individual specimen under a stereo microscope to get very accurate size classes needed
to test this method. With approximately 2-3 hours for each sample and additional workload for DNA extraction, this is a
highly time consuming step, making the technique of size sorting samples impractical for large sample quantities. Studies
on marine invertebrate did size sort samples by sieving the samples with different sieve sizes from 10 mm to 63 um (Leray
& Knowlton 2015; Wangensteen & Turon 2016). Sieving is probably the only feasible method for processing large numbers
of samples, but good care has to be taken when cleaning the sieves between samples, to prevent cross contamination.
Sieving might also change the community composition as very small bacteria on surfaces and small organism might get lost,
and broken of body parts (e.g. legs, antennas) or tissue parts from prey animals might end up in the lowest size fraction
(Leray & Knowlton 2015; Wangensteen & Turon 2016). These effects have to be taken into consideration when looking at
each size fraction individually. However, if the goal is to obtain a presence-absence taxa list for a complete sample, sieving
and proportional pooling might be an ideal solution to minimize bias introduced by large specimens in the samples. Using
dry specimen weight for each size fraction can be used to roughly estimate the number of taxa in each size fraction, which

can then be used to pool the DNA proportionately, instead of sequencing each size fraction individually.
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4.4) Conclusions

We demonstrated that sorting metabarcoding samples into 3 specimen size categories and then pooling the tissue
proportionally to the number of specimens in each size class, can reduce the amount of required sequencing depth compared
to the unsorted complete sample by 80%. Sample sorting leads to a more balanced taxa assessment, dramatically reducing
the overrepresentation of large specimens on the dataset. While size sorting of bulk samples might not be necessary or
suitable for all samples, ecosystems or research questions, we encourage to evaluate if sample fractioning could be
beneficial and feasible in your metabarcoding project. Also some metagenomic projects will likely profit from presorting

samples by biomass, but we did not explicitly test this here so we can only hypothesise.
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Figure 1: Schematic overview of the laboratory processing of macroinvertebrate samples. Specimens from each sample

were sorted into 3 size categories (Small, Medium and Large) and then processed individually, pooled to simulate complete

samples without sorting (Unsorted) and samples in which subsamples are pooled proportionally to taxa abundance (Sorted).

N refers to the number of taxa in each size category in this hypothetical example, with the respective total weight given in

mg. See Figure S1 for actual numbers of the used samples.
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Supporting information

Figure S1. Pictures of sorted specimens
Pictures of the specimens sorted into small, medium and large individuals. Also provides information on how S, M and L

tissue was pooled to generate the proportionally sorted (So) and unsorted (Un) samples.

Figure S2. Flowchart detailing laboratory processing

Overview of the steps carried out for sample sorting and processing in the laboratory.

Figure S3. DNA extraction protocol

Shows the step where the digested buffers of S, M and L were pooled to generate unsorted (Un) and sorted (So) samples.

Figure S4. Sequencing depth and sequences discarded in bioinformatic processing
Barplot showing the number of total reads and proportion of sequences discarded in subsequent bioinformatic processing

steps for all samples.

Figure S5. Flowchart detailing the bioinformatic pipeline

Figure giving an overview of the metabarcoding pipeline applied to this dataset.

Figure S6. Reproducibility between HiSeq lanes

Comparison of relative OTUs abundances between both HiSeq lanes.
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Figure S7. Plot of OTU table
Visualisation of taxa detected within S, M, L, Un, So DNA extractions, with 4 different primer combinations. Data is also

compared to morphological identifications and number of specimens of each morphologically identified taxon.

Figure S8. Database completeness

Plot showing the percent match of each OTU to the reference database, under consideration of read abundance.

Figure S9. Taxa identification with metabarcoding and morphology

Comparison of number of taxa identified with morphology and DNA metabarcoding on different taxonomic resolutions.

Figure S10. Taxa detection in sorted and unsorted samples

Comparison of the amount of diversity and taxa detected in sorted samples (So) and unsorted samples (Un).

Table S1. OTU table
Detailed OTU table giving the number of reads for each sample, including assigned taxonomy and OTU sequence. OTUs

with below 0.01% sequence abundance in each sample (highlighted in Orange), were set to 0 for statistical analysis.

Table S2. Morphologically identified taxa
Table giving an overview of morphologically identified taxa and abundance of specimens in S, M and L for both sample

locations.
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