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Abstract 14 

1) Environmental bulk samples often contain many taxa with biomass differences of several orders of magnitude. This can 15 

be problematic in DNA metabarcoding and metagenomic high throughput sequencing approaches, as large specimens 16 

contribute disproportionate amounts of DNA template. Thus a few specimens of high biomass will dominate the dataset, 17 

potentially leading to smaller specimens remaining undetected. Sorting of samples and balancing the amounts of tissue used 18 

per size fraction should improve detection rates, but this approach has not been systematically tested.   19 

2) Here we tested the effects of size sorting on taxa detection using freshwater macroinvertebrates. Kick sampling was 20 

performed at two locations of a low-mountain stream in West Germany, specimens were morphologically identified and 21 

sorted into small, medium and large size classes (< 2.5x5, 5x10 and up to 10x20 mm). Tissue from the 3 size categories was 22 

extracted individually, and pooled to simulate samples that were not sorted by biomass and samples that were sorted and 23 

then pooled so that each specimen contributed approximately equal amounts of biomass. DNA from all five extractions of 24 

samples from both sites was amplified using four different DNA metabarcoding primer sets targeting the Cytochrome c 25 

oxidase I (COI) gene. The library was sequenced on a HiSeq Illumina sequencer. 26 

3) Sorting taxa by size and pooling them proportionately according to their abundance lead to a more equal amplification 27 

compared to the processing of complete samples without sorting. The sorted samples recovered 30% more taxa than the 28 
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unsorted samples, at the same sequencing depth. Our results imply that sequencing depth can be decreased approximately 29 

five-fold when sorting the samples into three size classes.  30 

4) Our results demonstrate that even a coarse size sorting can substantially improve detection of taxa using DNA 31 

metabarcoding. While high throughput sequencing will become more accessible and cheaper within the next years, sorting 32 

bulk samples by specimen biomass is a simple yet efficient method to reduce current sequencing costs.   33 

 34 
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1) Introduction 36 

Recent advancements in high-throughput sequencing (HTS) and DNA barcoding have improved our ability to rapidly assess 37 

biodiversity. By using traps or manual collection methods (e.g. nets), thousand specimens can be easily collected. However, 38 

manually identifying hundreds or thousands of specimens in a single sample is often not feasible. Bulk samples, which 39 

previously took weeks or month to determine morphologically, can now be homogenised and their DNA extracted for 40 

sequencing based identification within days. The power, accuracy and cost effectiveness of these HTS DNA based 41 

assessments have already been demonstrated (e.g. (Ji et al. 2013; Tang et al. 2015; Gómez-Rodríguez et al. 2015; Leray & 42 

Knowlton 2015; Gibson et al. 2014; Hajibabaei et al. 2011; Zimmermann et al. 2014; Dowle et al. 2015)) and sequencing 43 

costs are expected to further decline in the future. 44 

In DNA based ecosystem assessment we can distinguish between two approaches: 1) a target gene fragment is amplified 45 

and compared to a DNA barcoding database (metabarcoding, see (Taberlet et al. 2012)) or 2) the extracted DNA from the 46 

bulk sample is shotgun sequenced directly without PCR and can be optionally enriched for target genes (metagenomics,  see 47 

(Liu et al. 2015)). Both approaches have specific advantages and drawbacks: metabarcoding is severely limited by PCR bias, 48 

preventing estimates of taxa biomass and potentially not detecting all taxa present in the sample (Elbrecht & Leese 2015; 49 

Piñol et al. 2014; Leray & Knowlton 2015). While metagenomics might overcome these PCR based problems, this approach 50 

is currently limited by the lack of adequate reference data (e.g. mitochondrial genomes) and a high sequencing depth is 51 

required (Crampton-Platt et al. 2016). While these problems might be solved at least partially by optimised degenerate 52 

primers (Elbrecht & Leese 2016), reduced sequencing costs and mitogenome capture (Tang et al. 2014), both 53 

metabarcoding and metagenomics are biased by an additional factor: variable taxa biomass. 54 

Environmental samples usually contain a diverse set of taxa spanning often several orders of magnitude in specimen sizes 55 

and biomass. When extracting complete unsorted samples in bulk, large biomass rich specimens will contribute significantly 56 

more DNA to the final bulk DNA isolate than small organisms with little biomass. We demonstrated this previously by bulk 57 

extracting DNA from 31 specimens of the same stonefly (Plecoptera) species with varying specimen biomass, and found a 58 

clear significant linear correlation between obtained reads and dry specimen weight (p<0.001, R2 = 0.65, (Elbrecht & Leese 59 

2015). We hypothesise that also in more species rich samples, taxa biomass translates directly into read abundance 60 

(assuming taxon specific primer bias, unrelated to specimen size). Thus just a few big specimens in a sample will likely 61 

make up a majority of the reads, requiring higher sequencing depth to also detect small or rare specimens and taxa. Some 62 

studies have already sorted their samples into different size fractions, for DNA metabarcoding because of this biomass 63 

introduced bias (Leray & Knowlton 2015; Wangensteen & Turon 2016). However, to our knowledge the effect of 64 
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fractioning samples by specimen biomass against the complete sample without pre-sorting of specimens has never been 65 

systematically tested and quantified. (Morinière et al. 2016) have found effects of sorting malaise trap samples by insect 66 

orders (potentially caused by unequal sequencing depth), but also encouraged the testing of size based sample fractioning. 67 

In this study we systematically quantified the effects of biomass-sorting on taxon recovery using two complete stream 68 

macroinvertebrate kick samples, morphologically identifying and sorting them into three biomass categories based on 69 

specimen sizes: small (S), medium (M) and large (L), see Figure 1 & S1. Specimens of each size class were then 70 

homogenized and DNA extracted. DNA from each size fraction was pooled proportionately to the dry weight of each size 71 

category, to generate an unsorted sample (Un), and additionally pooled by specimen abundance in each size category, to 72 

generate a sorted sample (So) in which ideally all specimens are equally well represented. By metabarcoding these unsorted 73 

and sorted samples, we can precisely investigate the effects of sample size sorting on taxa recovery.  74 

 75 

2) Material and Methods 76 

Sample collection and processing 77 

Figure S2 gives an overview of sample sorting and laboratory processing steps. Macroinvertebrates were collected at two 78 

sampling points of the small low mountain range stream Kleine Schmalenau in West Germany (Arnsberger Wald). The 79 

main stream (P8, N51.43623 E8.13721) and a small tributary (P10, N51.43295 E8.14350) were each sampled with 5 kick 80 

samples per spot (0.45 m2 area) following the general principle of the multi habitat sampling protocol also used in German 81 

implementation of the EU Water Framework Directive (Meier et al. 2006). Collected specimens were stored in 96% ethanol 82 

at -20°C for later molecular analysis. All invertebrates were counted and identified based on morphology to the lowest 83 

taxonomic level that could be determined accurately and consistently. 84 

Specimens from the two samples were each sorted into three size categories under a Zeiss Stemi 2000 stereo microscope by 85 

placing them onto millimetre paper. Specimens below 2.5x5 mm were sorted into small (S) specimens up to 5x10 mm into 86 

medium (M) and everything bigger than that into large specimens (L, max 10x20 mm). For thin but long specimens like e.g. 87 

chironomids (non-biting midges), the total surface was considered and evaluated if it fitted into the respective rectangle. 88 

Terrestrial taxa and Trichoptera (caddisfly) cases were included in the samples. 89 

 90 

DNA extraction and tissue pooling 91 
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Specimens of each size category were dried overnight in sterile Petri dishes to remove the ethanol. Total dry specimen 92 

weight in each size category was measured (in duplicates) on a Sartorius RC 210D scale. Specimens from each category 93 

were homogenised using an IKA ULTRA-TURRAX Tube Drive control system with sterile 20 ml tubes and 10 steel beads 94 

(5 mm Ø) by grinding at 4000 rpm for 30 minutes. 95 

We wanted to extract and sequence DNA from each size category (S, M & L), but also simulate extracting DNA from 1) 96 

proportionally pooled specimens based on number of specimens in each size category (So = "sorted") and 2) also extract 97 

DNA from the whole sample as if it was never sorted into S, M and L (Un = "unsorted") by pooling tissue based on total dry 98 

tissue weight in each size category. While we could have pooled two subsets of homogenised tissue from each size category, 99 

we wanted to avoid this as tissue subsets might differ slightly in taxa composition. Thus, tissue from each category was 100 

digested following a modified salt DNA extraction protocol and then the lysate pooled (Sunnucks & Hales 1996), Figure 101 

S3). Seven replicates were in each size category, which were united after tissue lysis. This way a higher amount of tissue 102 

could be digested for the S, M and L samples. DNA extraction was then carried out in triplicate using 3 times 530 µl TNES 103 

extraction buffer for S, M and L as well as the sorted (So) and unsorted (Un) samples. Figure 1 gives a schematic overview 104 

of how S, M and L were pooled to generate sorted and unsorted samples (see Figure S1 for exact proportions). To generate 105 

the unsorted samples (Un), buffer from S, M and L was pooled based on dry specimen weight in each category. The same S, 106 

M and L solutions were additionally pooled proportionally to the total number of specimens in each size category (So), so 107 

all specimens contribute approximately equal amounts of DNA in the bulk extraction. 15 µl DNA were pooled from each of 108 

the 3 extraction replicates and digested with 1 µl RNAse A and cleaned up using a MinElute Reaction Cleanup Kit (Qiagen, 109 

NL) with resuspension in ddH2O. DNA concentrations were quantified fluorometric using a Qubit with (HS Kit) and 110 

concentrations adjusted to 25 ng/µl. 111 

 112 

DNA metabarcoding and bioinformatics 113 

All 10 samples (sample site 8 and 10 with S, M, L, Un, So each) were amplified with the four freshwater macroinvertebrate 114 

fusion primer sets BF / BR as described in (Elbrecht & Leese 2016) (see Figure S4 for sample tagging). Each PCR reaction 115 

was composed of 1× PCR buffer (including 2.5 mM Mg2+), 0.2 mM dNTPs, 0.5 µM of each primer, 0.025 U/µL of 116 

HotMaster Taq (5Prime, Gaithersburg, MD, USA), 0.5 mg/µl molecular grade BSA (NEB, MA, USA), 12.5 ng DNA, filled 117 

up with HPLC H2O to a total volume of 250 µL. Each 250 µL PCR reaction mix was divided into 5 wells before PCR. PCR 118 

reactions were run in a Biometra TAdvanced Thermocycler using the flowing program 94°C for 3 min, 40 cycles of 94°C 119 

for 30 s, 50°C for 30 s, and 65°C for 2 min, and 65°C for 5 min. High reaction volume and BSA was necessary due to PCR 120 
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inhibitors present in the samples. PCR products were purified and left size selected using SPRIselect with a ratio of 0.8x 121 

(Beckman Coulter, CA, USA) and quantified with a Qubit fluorometer (HS Kit, Thermo Fisher Scientific, MA, USA). 122 

Samples were pooled to equal molarity, and the final library purified with the MinElute Reaction Cleanup Kit (Qiagen, NL), 123 

as a precaution because the BSA used in the PCR caused adhesion of magnets to the tube walls in the PCR clean-up with 124 

SPRIselect. Sequencing was done on one lane of an Illumina HiSeq 2500 system with a rapid Run 250 bp PE v2 sequencing 125 

kit and 5% PhiX spike-in. However, sequences contained ambiguous bases at two positions, due to air bubbles in the flow 126 

cell (SRR3399055). Thus the run was repeated, this time loading two lanes with the same library in slightly different cluster 127 

density, again with a 5% PhiX spike-in. 128 

Figure S5 gives an overview of our bioinformatic pipeline. We used the UPARSE pipeline in combination with custom R 129 

scripts (Dryad DOI - NA) for data processing (Edgar 2013). Reads from both lanes were demultiplexed with a R script and 130 

paired end reads merged using Usearch v8.1.1861 -fastq_mergepairs with -fastq_maxdiffs and -131 

fastq_maxdiffpct 99 (Edgar & Flyvbjerg 2015). Primers were removed with cutadapt version 1.9 on default settings 132 

(Martin 2011). Sequences were trimmed to the same 217 bp region amplified by the BF1+BR1 primer set and the reverse 133 

complement build if necessary using fastx_truncate / fastx_revcomp. Only sequences with 207 - 227 bp were 134 

used in further analysis (filtered with cutadapt). Low quality sequences were then filtered from all samples using 135 

fastq_filter with maxee = 1. Sequences from all samples were then pooled, dereplicated (minuniquesize = 3) 136 

and then clustered into operational taxonomic units (OTUs) using cluster_otus with 97% identity (Edgar 2013) 137 

(includes chimera removal). 138 

Pre-processed reads (Figure S5, step B) of all samples were dereplicated again using derep_fulllength, but singletons 139 

were included. Sequences of each sample were matched against the OTUs with a minimum match of 97% using 140 

usearch_global. As the sample library was loaded on both lanes, hit tables from both HiSeq lanes were combined, 141 

because they only represent sequencing replicates. Only OTUs with a read abundance above 0.01% in at least one sample 142 

were considered in downstream analysis. Then for each sample, OTUs with less or equal than 0.01% were set to 0% 143 

sequence abundance. Taxonomy was assigned to remaining OTUs using an R script searching the BOLD and NCBI 144 

database. 145 

 146 

3) Results 147 

The library was sequenced on a HiSeq rapid run with a cluster density of 438 k/mm2 and 542 k/mm2 for lane 1 and 2 148 

(SRR3399056 and SRR3399057). On average 1.71 (SD = 0.29, lane 1) and 2.17 (SD = 0.38, lane 2) million read pairs were 149 
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obtained for each sample after demultiplexing (Figure S4). Read quality varied with amplicon length and cluster density 150 

(Figure S4), but did not affect results strongly as OTU abundance was very similar between both lanes (= sequencing 151 

replicates of identical library). However, stochastic effects between both lanes increased for OTUs with low read abundance 152 

(Figure S6). 153 

The OTU raw data is available in Table S1 as well as morphology based identifications and taxa abundances in Table S2. 154 

After clustering and discarding low abundance OTUs, a total of 314 OTUs remained in the data set (Figure S7, Table S1). 155 

71% of these OTUs could be reliably identified with available reference databases, with 58% of the OTUs belonging to 156 

target invertebrate taxa (Figure S8). High abundance OTUs (at least 0.1% of reads) belonged all to the invertebrate target 157 

groups, with 45 of 52 these taxa reliably identified at species level, of which about 3/4 had 100% similarity matches to 158 

reference sequences. Low abundance OTUs (<0.1%) often showed poor matches to data bases or could not be identified at 159 

all (see Figure S8). With DNA metabarcoding over twice as much target taxa were detected than with morphology based 160 

identification alone, with 5 times more on species level alone (Figure S9). The main stream (P8) and tributary (P10) could 161 

be clearly distinguished, with only 14.3% of OTUs shared between both sites (Figure S8, 36.4% similarity based on 162 

morphological identification, Table S1). 163 

Sorting the sample into 3 size categories and proportional pooling of DNA extracts by amount of specimens in each 164 

category reduced the bias introduced by large specimens substantially (Figure 2). The sorted samples (So) resembled the 165 

composition of the original sample much better than the unsorted samples (Un). An average of 88.75 (SD = 6.46) 166 

invertebrate taxa were detected in the sorted samples, compared against 62.5 (SD = 4.5) in the unsorted samples (30% less, 167 

paired t-test, p = 0.005, Figure 3). By using the S M and L samples as controls, we could estimate the expected (E) amount 168 

of taxa we should be detecting with each primer pair (Figure S10). In sorted samples (So) very similar amounts of taxa as in 169 

the controls (E) were detected (paired t-test, p = 0.17). However on average only 80% (SD = 8%) of the expected number of 170 

taxa were detected when the complete sample was extracted without sorting (Figure S10 A, paired t-test, p < 0.001). The 171 

same trend could be observed when looking at Shannon Diversity (Figure S10 B, paired t-test, E vs So; p = 0.9153, E vs Un; 172 

p < 0.001). When comparing the taxa detected with metabarcoding against the taxa list based on morphological 173 

identification, again the unsorted samples show decreased detection rates (67%, SD = 3%, paired t-test, p = 0.006). 174 

However, also with sorting only 74% (SD = 3%) of the morphologically identified taxa were detected with each primer set, 175 

which however was not significantly less than with the controls E (paired t-test, p < 0.23, Figure S10 C). Six 176 

morphologically identified taxa were not detected in our metabarcoding dataset (Figure S7). The reduced amount of taxa 177 

detected with the unsorted samples, persists when the sequencing depth is reduced (Figure 3). Sample sorting does reduce 178 

the required sequencing depth to detect the same amount of taxa by ~5 times, compared to the unsorted samples. 179 
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 180 

4) Discussion 181 

4.1) Data basis and reliability of results 182 

Freshwater macroinvertebrate COI reference databases were quite reliable for the studied ecosystem. Common taxa in our 183 

samples often had 100% matches to BOLD and NCBI databases. However, the reliability of DNA barcoding database 184 

entries depends  highly on the expert knowledge and accuracy when morphologically identifying specimens. Not all 185 

database entries have resolved taxonomy or possibly misidentified specimens, potentially inflating the number of taxa 186 

detected. While most metabarcoding studies will likely be affected by this issue and also the number of morphotaxa 187 

detected with OTUs in this study might be inflated, the over all investigation of size sorting is likely unaffected as the bias 188 

will be the same for all samples and size categories. Nevertheless, DNA based identifications can be more accurate than 189 

classical morphology based identification (Stein et al. 2013; Sweeney et al. 2011) as we also show with our two kick 190 

samples in this project. We did make sure to only morphologically identify specimens to a level we were confident the 191 

identifications were correct, as we relate the size classes of each taxon back to the metabarcoding data (Figure 2). 192 

Furthermore, we show with our dataset that stochastic effects during Illumina sequencing affect mainly low abundant OTUs. 193 

While this effect adds variability to low abundant OTUs, it does not affect the detection of OTUs with an abundance of > 194 

0.01%. However, when analysing OTUs with lower abundance stochastic effects should be taken into consideration.  195 

 196 

4.2) Effects of sorting metabarcoding samples by specimen size 197 

We sorted two samples by specimen size (resembling biomass) into small, medium and large specimens and pooled them 198 

proportionately by specimen abundance per size class to compare these results against unsorted samples. Our results 199 

demonstrate unambiguously that, as expected, read abundances of the unsorted samples were dominated by few taxa with 200 

large specimens that contribute the majority of DNA when bulk extracting samples. This not only does skew the read 201 

abundances in favor of biomass rich specimens, but also some smaller and less abundant taxa remained undetected (on 202 

average 30% fewer taxa detected in the unsorted samples). The sorted samples only need 1/5 of the sequencing depth, to 203 

detect the same amount of taxa as in the unsorted samples. This means that sorting metabarcoding bulk samples by 204 

specimen biomass can substantially reduce sequencing costs. While we only manually sorted our samples into 3 size 205 

categories, further cost reductions might be possible by sorting samples into more size categories. It is likely that larger 206 

specimens will have similar effects on metagenomic bulk samples, thus sorting by specimen size might also likely be viable 207 
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for these samples. 208 

 209 

4.3) Implications: Not all samples have to be sorted 210 

While we could demonstrate and also quantify the increased resolution and potential cost savings by size sorting 211 

metabarcoding bulk samples, we have to acknowledge that these sample sorting steps can be time consuming and 212 

potentially also a source of cross contamination between samples. Thus, we do not recommend sorting every sample by 213 

specimen biomass right away. First of all, the sample should have specimens varying several magnitudes in biomass, if all 214 

specimens have similar sizes, sorting will likely not improve the sequencing results. Additionally, the number of samples 215 

which can be reliably tagged on a HTS run in combination with the expected sequencing output, might make sorting 216 

obsolete if expected sequencing depth per sample is sufficiently high. However, in many cases bulk samples are variable in 217 

biomass and sequencing depth should be maximised, thus sorting your samples will increase the number of taxa detected. 218 

The method of size sorting depends on sample composition and characteristics. If samples just contain a few large 219 

specimens, one could obtain a small piece of tissue (e.g a leg of an invertebrate) and remove the rest of the specimen from 220 

the sample (as done by (Ji et al. 2013) for example). Especially if only presence-absence data is desired, this is a good trade 221 

off to reduce the negative influence of a few large specimens on the dataset, without sorting the complete sample. In this 222 

study, we measured the size of each individual specimen under a stereo microscope to get very accurate size classes needed 223 

to test this method. With approximately 2-3 hours for each sample and additional workload for DNA extraction, this is a 224 

highly time consuming step, making the technique of size sorting samples impractical for large sample quantities. Studies 225 

on marine invertebrate did size sort samples by sieving the samples with different sieve sizes from 10 mm to 63 µm (Leray 226 

& Knowlton 2015; Wangensteen & Turon 2016). Sieving is probably the only feasible method for processing large numbers 227 

of samples, but good care has to be taken when cleaning the sieves between samples, to prevent cross contamination. 228 

Sieving might also change the community composition as very small bacteria on surfaces and small organism might get lost, 229 

and broken of body parts (e.g. legs, antennas) or tissue parts from prey animals might end up in the lowest size fraction 230 

(Leray & Knowlton 2015; Wangensteen & Turon 2016). These effects have to be taken into consideration when looking at 231 

each size fraction individually. However, if the goal is to obtain a presence-absence taxa list for a complete sample, sieving 232 

and proportional pooling might be an ideal solution to minimize bias introduced by large specimens in the samples. Using 233 

dry specimen weight for each size fraction can be used to roughly estimate the number of taxa in each size fraction, which 234 

can then be used to pool the DNA proportionately, instead of sequencing each size fraction individually. 235 

 236 
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4.4) Conclusions 237 

We demonstrated that sorting metabarcoding samples into 3 specimen size categories and then pooling the tissue 238 

proportionally to the number of specimens in each size class, can reduce the amount of required sequencing depth compared 239 

to the unsorted complete sample by 80%. Sample sorting leads to a more balanced taxa assessment, dramatically reducing 240 

the overrepresentation of large specimens on the dataset. While size sorting of bulk samples might not be necessary or 241 

suitable for all samples, ecosystems or research questions, we encourage to evaluate if sample fractioning could be 242 

beneficial and feasible in your metabarcoding project. Also some metagenomic projects will likely profit from presorting 243 

samples by biomass, but we did not explicitly test this here so we can only hypothesise.  244 

 245 
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Figures 260 

 261 

 262 

 263 

Figure 1: Schematic overview of the laboratory processing of macroinvertebrate samples. Specimens from each sample 264 

were sorted into 3 size categories (Small, Medium and Large) and then processed individually, pooled to simulate complete 265 

samples without sorting (Unsorted) and samples in which subsamples are pooled proportionally to taxa abundance (Sorted). 266 

N refers to the number of taxa in each size category in this hypothetical example, with the respective total weight given in 267 

mg. See Figure S1 for actual numbers of the used samples. 268 

269 
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 270 

Figure 2: Comparison of specimen number in each size category against the respective OTU read abundance of unsorted 271 

(Un) and sorted samples (So) with 4 different primer sets. Each size category (S, M and L) was also sequenced individually, 272 

and thus the data could be used to assign size classes to the OTUs in the sorted and not sorted samples. Sometimes, one 273 

OTU included reads of specimens from more than one size class, leading to assignment of several size categories (Gray = 274 

OTU containing specimens in S, M and L). Numbers above the plot give toe total amount of taxa identified with 275 

morphology and the number of OTUs detected with each primer set for unsorted and sorted samples. The numbers 1 - 4 276 

below the plots indicate the different primer combinations used; 1 = BF1+BR1, 2 = BF1+BR2, 3 = BF2+BR1, 4 = 277 

BF2+BR2. 278 

279 
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 280 

Figure 3: Amount of detected taxa based on OTUs with unsorted (Un) and sorted samples (So), considering different 281 

sequencing depth. The sequencing depth is plotted on a logarithmic scale. 282 

283 
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Supporting information 333 

Figure S1. Pictures of sorted specimens 334 

Pictures of the specimens sorted into small, medium and large individuals. Also provides information on how S, M and L 335 

tissue was pooled to generate the proportionally sorted (So) and unsorted (Un) samples. 336 

 337 

Figure S2. Flowchart detailing laboratory processing 338 

Overview of the steps carried out for sample sorting and processing in the laboratory.  339 

 340 

Figure S3. DNA extraction protocol 341 

Shows the step where the digested buffers of S, M and L were pooled to generate unsorted (Un) and sorted (So) samples. 342 

 343 

Figure S4. Sequencing depth and sequences discarded in bioinformatic processing 344 

Barplot showing the number of total reads and proportion of sequences discarded in subsequent bioinformatic processing 345 

steps for all samples. 346 

 347 

Figure S5. Flowchart detailing the bioinformatic pipeline 348 

Figure giving an overview of the metabarcoding pipeline applied to this dataset. 349 

 350 

Figure S6. Reproducibility between HiSeq lanes 351 

Comparison of relative OTUs abundances between both HiSeq lanes. 352 
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 353 

Figure S7. Plot of OTU table 354 

Visualisation of taxa detected within S, M, L, Un, So DNA extractions, with 4 different primer combinations. Data is also 355 

compared to morphological identifications and number of specimens of each morphologically identified taxon. 356 

 357 

Figure S8. Database completeness 358 

Plot showing the percent match of each OTU to the reference database, under consideration of read abundance. 359 

 360 

Figure S9. Taxa identification with metabarcoding and morphology 361 

Comparison of number of taxa identified with morphology and DNA metabarcoding on different taxonomic resolutions. 362 

 363 

Figure S10. Taxa detection in sorted and unsorted samples 364 

Comparison of the amount of diversity and taxa detected in sorted samples (So) and unsorted samples (Un). 365 

 366 

Table S1. OTU table 367 

Detailed OTU table giving the number of reads for each sample, including assigned taxonomy and OTU sequence. OTUs 368 

with below 0.01% sequence abundance in each sample (highlighted in Orange), were set to 0 for statistical analysis. 369 

 370 

Table S2. Morphologically identified taxa 371 

Table giving an overview of morphologically identified taxa and abundance of specimens in S, M and L for both sample 372 

locations. 373 

 374 
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