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Abstract 15 

1) Environmental bulk samples often contain many taxa with biomass differences of several orders of magnitude. This can 16 

be problematic in DNA metabarcoding and metagenomic high throughput sequencing approaches, as large specimens 17 

contribute over proportionally much DNA template. Thus a few specimens of high biomass will dominate the dataset, 18 

potentially leading to smaller specimens remaining undetected. Sorting of samples and balancing the amounts of tissue used 19 

per size fraction should improve detection rates, but has not been systematically tested.   20 

2) Here we tested the effects of size sorting on taxa detection using freshwater macroinvertebrates. Kick sampling was 21 

performed at two locations of a low-mountain stream in West Germany, specimens were morphologically identified and 22 

sorted into small, medium and large size classes (< 2.5x5, 5x10 and up to 10x20 mm). Tissue from the 3 size categories was 23 

extracted individually, and pooled to simulate bulk samples that were not sorted and samples which were sorted and then 24 

pooled proportionately by specimen size. DNA from all 5 extractions of both samples was amplified using 4 different 25 

freshwater primer sets for the COI gene and sequenced on a HiSeq Illumina sequencer. 26 

3) Sorting taxa by size and pooling them proportionately according to their abundance lead to a more equal amplification 27 

compared to the processing of complete samples without sorting. The sorted samples recovered 30% more taxa than the 28 
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unsorted samples, at the same sequencing depth. Our results imply that sequencing depth can be decreased ~ 5 fold when 29 

sorting the samples into three size classes.  30 

4) Our results demonstrate that even a coarse size sorting can substantially improve detection rates. While high throughput 31 

sequencing will become more accessible and cheaper within the next years, sorting bulk samples by specimen biomass is a 32 

simple yet efficient method to reduce current sequencing costs.   33 

 34 

Key words: Biomass bias, specimen sorting, next generation sequencing, metabarcoding, metagenomics, DNA barcoding, 35 

ecosystem assessment36 
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1) Introduction 37 

Recent improvements in high-throughput sequencing (HTS) technology in combination with DNA barcoding has enabled us 38 

to rapidly assess the biodiversity in ecosystems world wide. By using traps or manual collection methods (e.g. nets), 39 

thousand specimens can be easily collected. However, manually identifying hundreds or thousands of specimens in a single 40 

sample is often not feasible. Bulk samples, which previously took weeks or month to determine morphologically, can now 41 

be homogenised and their DNA extracted for sequencing based identification within days. The power, accuracy and cost 42 

effectiveness of these HTS DNA based assessments have already been demonstrated (e.g. (Hajibabaei et al. 2011; Ji et al. 43 

2013; Gibson et al. 2014; Zimmermann et al. 2014; Dowle et al. 2015; Leray & Knowlton 2015; Gómez-Rodríguez et al. 44 

2015; Tang et al. 2015)) and sequencing costs are expected to further decline in the future. 45 

In DNA based ecosystem assessment we can distinguish between two approaches: 1) a target gene fragment is amplified 46 

and compared to a DNA barcoding database (metabarcoding, see Taberlet et al. 2012) or 2) the extracted DNA from the 47 

bulk sample is shotgun sequenced directly without PCR and can be optionally enriched for target genes (metagenomics,  see 48 

Liu et al. 2015). Both approaches have specific advantages and drawbacks: metabarcoding is severely limited by PCR bias, 49 

preventing estimates of taxa biomass and potentially not detecting all taxa present in the sample (Piñol et al. 2014; Leray & 50 

Knowlton 2015; Elbrecht & Leese 2015). While metagenomics might overcome these PCR based problems, this approach is 51 

currently limited by the lack of adequate reference data (e.g. mitochondrial genomes) and a high sequencing depth is 52 

required (Crampton-Platt et al. 2016). While these problems might be solved at least partially by optimised degenerated 53 

primers (Elbrecht et al. 2016), reduced sequencing costs and mitogenome capture (Tang et al. 2014), both metabarcoding 54 

and metagenomics are limited by an additional factor: variable taxa biomass. 55 

Environmental samples usually contain a diverse set of taxa spanning often several orders of magnitude in specimen sizes 56 

and biomass. When extracting complete unsorted samples in bulk, large biomass rich specimens will contribute significantly 57 

more DNA to the final bulk DNA isolate than small organisms with little biomass. We demonstrated this previously by bulk 58 

extracting DNA from 31 specimens of the same stonefly species but varying specimen biomass, and found a clear 59 

significant linear correlation between obtained reads and dry specimen weight (p<0.001, R2 = 0.65, (Elbrecht & Leese 60 

2015)). We hypothesise that also in more species rich samples, taxa biomass translates directly into read abundance 61 

(assuming taxon specific primer bias, unrelated to specimen size). Thus just a few big specimens in a sample will likely 62 

make up a majority of the reads, requiring higher sequencing depth to also detect small or rare specimens and taxa. Some 63 

studies have already sorted their samples into different size fractions, for DNA metabarcoding because of this biomass 64 

introduced bias (Leray & Knowlton 2015; Wangensteen & Turon 2016). However, to our knowledge the effect of 65 
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fractioning samples by specimen biomass against the complete sample without pre-sorting of specimens has never been 66 

systematically tested and quantified. (Morinière et al. 2016) have found effects of sorting malaise trap samples by insect 67 

orders (potentially caused by unequal sequencing depth), but also encouraged the testing of size based sample fractioning. 68 

In this study we systematically quantified the effects of biomass-sorting on taxon recovery using two complete stream 69 

macroinvertebrate kick samples, morphologically identifying and sorting them into three biomass categories based on 70 

specimen sizes: small (S), medium (M) and large (L), see Figure 1 & S1. Specimens of each size class were then 71 

homogenized and DNA extracted. DNA from each size fraction was pooled based on specimen dry weight in each size 72 

category, to generate an unsorted sample (Un), and additionally pooled by specimen abundance in each size category, to 73 

generate a sorted sample (So) in which ideally all specimens are equally well represented. As we metabarcode bulk DNA 74 

from each size category and pool the same extractions to simulate a sorted and unsorted sample, we can precisely 75 

investigate the effects of sample size sorting on taxa recovery.  76 

 77 

2) Material and Methods 78 

Sample collection and processing 79 

Figure S2 gives an overview of sample sorting and laboratory processing steps. Macroinvertebrates were collected at two 80 

sampling points of the small low mountain range stream Kleine Schmalenau in West Germany (Arnsberger Wald). The 81 

main stream (P8, N51.43623 E8.13721) and a tributary (P10, N51.43295 E8.14350) were each sampled with 5 kick samples 82 

per spot (0.45 m2 area) following the general principle of the multi habitat sampling protocol also used in German 83 

implementation of the EU Water Framework Directive (Meier et al. 2006). Collected specimens were stored in 96% ethanol 84 

at -20°C for later molecular analysis. All invertebrates were counted and identified based on morphology to the highest 85 

possible taxonomic level. 86 

Specimens from the two samples were each sorted into three size categories under a Zeiss Stemi 2000 stereo microscope by 87 

placing them onto millimetre paper. Specimens below 2.5x5 mm were sorted into small (S) specimens up to 5x10 mm into 88 

medium (M) and everything bigger than that into large specimens (L, max 10x20 mm). For thin but long specimens like e.g. 89 

chironomids (non-biting midges), the total surface was considered and evaluated if it fitted into the respective rectangle. 90 

Terrestrial taxa and Trichoptera (caddisfly) quivers were included in the samples. 91 

 92 

DNA extraction and tissue pooling 93 
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Specimens of each size category were dried overnight in sterile Petri dishes to remove the ethanol. Total dry specimen 94 

weight in each size category was measured (in duplicates) on a Sartorius RC 210D scale. Specimens from each category 95 

were homogenised using an IKA ULTRA-TURRAX Tube Drive control system with sterile 20 ml tubes and 10 steel beads 96 

(5 mm Ø) by grinding at 4000 rpm for 30 minutes. 97 

We wanted to extract and sequence DNA from each size category (S, M & L), but also simulate extracting DNA from 1) 98 

proportionally pooled specimens based on number of specimens in each size category (So = "sorted") and 2) also extract 99 

DNA from the whole sample as if it was never sorted into S, M and L (Un = "unsorted") by pooling tissue based on total dry 100 

tissue weight in each size category. While we could have pooled two subsets of homogenised tissue from each size category, 101 

we wanted to avoid this as tissue subsets might differ slightly in taxa composition. Thus, tissue from each category was 102 

digested following a modified salt DNA extraction protocol and then the lysate pooled ((Sunnucks & Hales 1996), Figure 103 

S3). Seven replicates were in each size category, which were united after tissue lysis. This way a higher amount of tissue 104 

could be digested for the S, M and L samples. DNA extraction was then carried out in triplicates using 3 times 530 µl TNES 105 

extraction buffer for S, M and L as well as the sorted (So) and unsorted (Un) samples. Figure 1 gives a schematic overview 106 

of how S, M and L were pooled to generate sorted and unsorted samples (see Figure S1 for exact proportions). To generate 107 

the unsorted samples (Un), buffer from S, M and L was pooled based on dry specimen weight in each category. The same S, 108 

M and L solutions were additionally pooled proportionally to the total number of specimens in each size category (So), so 109 

all specimens contribute more equal amounts of DNA in the bulk extraction. 15 µl DNA were pooled from each of the 3 110 

extraction replicates and digested with 1 µl RNAse A and cleaned up using a MinElute Reaction Cleanup Kit (Qiagen, NL) 111 

with resuspension in ddH2O. DNA concentrations were quantified fluorometric using a Qubit with (HS Kit) and 112 

concentrations adjusted to 25 ng/µl. 113 

 114 

DNA metabarcoding and bioinformatics 115 

All 10 samples (sample site 8 and 10 with S, M, L, US, PS each) were amplified with the four freshwater macroinvertebrate 116 

fusion primer sets BF / BR as described in (Elbrecht et al. 2016) (see Figure S4 for sample tagging). Each PCR reaction was 117 

composed of 1× PCR buffer (including 2.5 mM Mg2+), 0.2 mM dNTPs, 0.5 µM of each primer, 0.025 U/µL of HotMaster 118 

Taq (5Prime, Gaithersburg, MD, USA), 0.5 mg/µl molecular grade BSA (NEB, MA, USA), 12.5 ng DNA, filled up with 119 

HPLC H2O to a total volume of 250 µL. Each 250 µL PCR reaction mix was divided into 5 wells before PCR. PCR 120 

reactions were run in a Biometra TAdvanced Thermocycler using the flowing program 94°C for 3 min, 40 cycles of 94°C 121 

for 30 s, 50°C for 30 s, and 65°C for 2 min, and 65°C for 5 min. High reaction volume and BSA was necessary due to PCR 122 
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inhibitors present in the samples. PCR products were purified and left size selected using SPRIselect with a ratio of 0.8x 123 

(Beckman Coulter, CA, USA) and quantified with a Qubit fluorometer (HS Kit, Thermo Fisher Scientific, MA, USA). 124 

Samples were pooled to equal molarity, and the final library purified with the MinElute Reaction Cleanup Kit (Qiagen, NL), 125 

as a precaution because the BSA used in the PCR caused adhesion of magnets to the tube walls in the PCR clean-up with 126 

SPRIselect. Sequencing was done on one lane of an Illumina HiSeq 2500 system with a rapid Run 250 bp PE v2 sequencing 127 

kit and 5% PhiX spike-in. However, sequences contained ambiguous bases at two positions, due to air bubbles in the flow 128 

cell (SRR3399055). Thus the run was repeated, this time loading two lanes with the same library in slightly different cluster 129 

density, again with a 5% PhiX spike-in. 130 

Figure S5 gives an overview of our bioinformatic pipeline. We used the UPARSE pipeline in combination with custom R 131 

scripts (Dryad DOI) for data processing (Edgar 2013). Reads from both lanes were demultiplexed with a R script and paired 132 

end reads merged using Usearch v8.1.1861 -fastq_mergepairs with -fastq_maxdiffs and -133 

fastq_maxdiffpct 99 (Edgar & Flyvbjerg 2015). Primers were removed with cutadapt version 1.9 on default settings 134 

(Martin 2011). Sequences were trimmed to the same 217 bp region amplified by the BF1+BR1 primer set and the reverse 135 

complement build if necessary using fastx_truncate / fastx_revcomp. Only sequences with 207 - 227 bp were 136 

used in further analysis (filtered with cutadapt). Low quality sequences were then filtered from all samples using 137 

fastq_filter with maxee = 1. Sequences from all samples were then pooled, dereplicated (minuniquesize = 3) 138 

and then clustered into operational taxonomic units (OTUs) using cluster_otus with 97% identity (Edgar 2013) 139 

(includes chimera removal). 140 

Pre-processed reads (Figure S5, step B) of all samples were dereplicated again using derep_fulllength, but singletons 141 

were included. Sequences of each sample were matched against the OTUs with a minimum match of 97% using 142 

usearch_global. As the sample library was loaded on both lanes, hit tables from both HiSeq lanes were combined, 143 

because they only represent sequencing replicates. Only OTUs with a read abundance above 0.01% in at least one sample 144 

were considered in downstream analysis. Taxonomy was assigned to remaining OTUs using an R script searching the 145 

BOLD and NCBI database. 146 

 147 

3) Results 148 

The library was sequenced on a HiSeq rapid run with a cluster density of 438 k/mm2 and 542 k/mm2 for lane 1 and 2 149 

(SRR3399056 and SRR3399057). On average 1.71 (SD = 0.29, lane 1) and 2.17 (SD = 0.38, lane 2) million read pairs were 150 

obtained for each sample after demultiplexing (Figure S4). Read quality varied with amplicon length and cluster density 151 
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(Figure S4), but did not affect results strongly as OTU abundance was very similar between both lanes (= sequencing 152 

replicates of identical library). However, stochastic effects between both lanes increased for OTUs with low read abundance 153 

(Figure S6). 154 

The OTU raw data is available in Table S1 as well as morphology based identifications and taxa abundances in Table S2. 155 

After clustering and discarding low abundance OTUs, a total of 314 OTUs remained in the data set (Figure S7, Table S1). 156 

71% of these OTUs could be reliably identified with available reference databases, with 58% of the OTUs belonging to 157 

target invertebrate taxa (Figure S8). High abundance OTUs (at least 0.1% of reads) belonged all to the invertebrate target 158 

groups, with 45 of 52 these taxa reliably identified at species level, of which about 3/4 had 100% similarity matches to 159 

reference sequences. Low abundance OTUs (<0.1%) often showed poor matches to data bases or could not be identified at 160 

all (see Figure S8). With DNA metabarcoding over twice as much target taxa were detected than with morphology based 161 

identification alone, with 5 times more on species level alone (Figure S9). 162 

Sorting the sample into 3 size categories and proportional pooling of DNA extracts by amount of specimens in each 163 

category reduced the bias introduced by large specimens substantially (Figure 2). This sorted samples (So) resembled the 164 

composition of the original sample much better than the unsorted samples (Un). By using the S M and L samples as controls, 165 

we could estimate the expected (E) amount of taxa we should be detecting with each primer pair (Figure S10). In sorted 166 

samples (So) very similar amounts of taxa as in the controls (E) were detected (paired t-test, p = 0.17). However on average 167 

only 80% (SD = 8%) of the expected number of taxa were detected when the complete sample was extracted without sorting 168 

(Figure S10 A, paired t-test, p < 0.001). The same trend could be observed when looking at Shannon Diversity (Figure S10 169 

B, paired t-test, E vs So; p = 0.9153, E vs Un; p < 0.001). When comparing the taxa detected with metabarcoding against 170 

the taxa list based on morphological identification, again the unsorted samples show decreased detection rates (67%, SD = 171 

3%, paired t-test, p = 0.006). However, also with sorting only 74% (SD = 3%) of the morphologically identified taxa were 172 

detected with each primer set, which however was not significantly less than with the controls E (paired t-test, p < 0.23, 173 

Figure S10 C). Six morphologically identified taxa were not detected in our metabarcoding dataset (Figure S7). The reduced 174 

amount of taxa detected with the unsorted samples, persists when the sequencing depth is reduced (Figure 3). Sample 175 

sorting does reduce the required sequencing depth to detect the same amount of taxa by ~5 times, compared to the unsorted 176 

samples. In the sorted samples an average of 88.75 (SD = 6.46) invertebrate taxa were detected, compared against 62.5 (SD 177 

= 4.5) in the unsorted samples (30% less, paired t-test, p = 0.005, Figure 3). 178 

 179 

4) Discussion 180 
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4.1) Data basis and reliability of results 181 

Current freshwater macroinvertebrate COI reference databases are already quite reliable, common taxa in our samples often 182 

had 100% matches to BOLD and NCBI databases. However, the reliability of DNA barcoding database entries depends  183 

highly on the expert knowledge and accuracy when morphologically identifying specimens. Not all database entries have 184 

resolved taxonomy, potentially inflating the number of taxa detected. While most metabarcoding studies will likely be 185 

affected by this issue and also the number of morphotaxa detected with OTUs in this study might be inflated, the over all 186 

investigation of size sorting is likely unaffected as the bias will be the same for all samples and size categories. Nevertheless, 187 

DNA based identifications can be more accurate than classical morphology based identification (Sweeney et al. 2011; Stein 188 

et al. 2013) as we also show with our two kick samples in this project. We did make sure to only morphologically identify 189 

specimens to a level we were confident the identifications were correct, as we relate the size classes of each taxon back to 190 

the metabarcoding data (Figure 2). 191 

We further show with our dataset that stochastic effects during Illumina sequencing affect mainly low abundant OTUs. 192 

While this effect adds variability to low abundant OTUs, it does not affect the detection of OTUs with an abundance of > 193 

0.01%. However, when analysing OTUs with lower abundance stochastic effects should be taken into consideration.  194 

 195 

4.2) Effects of sorting metabarcoding samples by specimen size 196 

We sorted two samples by specimen size (resembling biomass) into small, medium and large specimens and pooled them 197 

proportionately by specimen abundance per size class to compare these results against unsorted samples. Our results 198 

demonstrate unambiguously that, as expected, read abundances of the unsorted samples were dominated by few taxa with 199 

large specimens that contribute the majority of DNA when bulk extracting samples. This not only does skew the read 200 

abundances in favour of the biomass rich specimens, but also some smaller and less abundant taxa remained undetected (on 201 

average 30% fewer taxa detected in the unsorted samples). The sorted samples only need 1/5 of the sequencing depth, to 202 

detect the same amount of taxa as in the unsorted samples. This means that sorting metabarcoding bulk samples by 203 

specimen biomass can substantially reduce sequencing costs. While we only manually sorted our samples into 3 size 204 

categories, further cost reductions might be possible by sorting samples into more size categories. It is likely that larger 205 

specimens will have similar effects on metagenomic bulk samples, thus sorting by specimen size might also likely be viable 206 

for these samples. 207 

 208 

4.3) Implications: Not all samples have to be sorted 209 
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While we could demonstrate and also quantify the increased resolution and potential cost savings by size sorting 210 

metabarcoding bulk samples, we have to acknowledge that these sample sorting steps can be time consuming and 211 

potentially also a source of cross contamination between samples. Thus, we do not recommend sorting every sample by 212 

specimen biomass right away. First of all, the sample should have specimens varying several magnitudes in biomass, if all 213 

specimens have similar sizes, sorting will likely not improve the sequencing results. Additionally, the number of samples 214 

which can be reliably tagged on a HTS run in combination with the expected sequencing output, might make sorting 215 

obsolete if expected sequencing depth per sample is sufficiently high. However, in many cases bulk samples are variable in 216 

biomass and sequencing depth should be maximised, thus sorting your samples will increase the number of taxa detected. 217 

The method of size sorting depends on sample composition and characteristics. If samples just contain a few large 218 

specimens, one could obtain a small piece of tissue (e.g a leg of an invertebrate) and remove the rest of the specimen from 219 

the sample. Especially if only presence-absence data is desired, this is a good trade off to reduce the negative influence of a 220 

few large specimens on the dataset, without sorting the complete sample. In this study, we measured the size of each 221 

individual specimen under a stereo microscope to get very accurate size classes needed to test this method. With 222 

approximately 2-3 hours for each sample and additional workload for DNA extraction, this is a highly time consuming step, 223 

making the technique of size sorting samples impractical for large sample quantities. Studies on marine invertebrate did size 224 

sort samples by sieving the samples with different sieve sizes from 10 mm to 63 µm (Leray & Knowlton 2015; 225 

Wangensteen & Turon 2016). Sieving is probably the only feasible method for processing large numbers of samples, but 226 

good care has to be taken when cleaning the sieves between samples, to prevent cross contamination. Sieving might also 227 

change the community composition as very small bacteria on surfaces and small organism might get lost, and broken of 228 

body parts (e.g. legs, antennas) or tissue parts from prey animals might end up in the lowest size fraction (Leray & 229 

Knowlton 2015; Wangensteen & Turon 2016). These effects have to be taken into consideration when looking at each size 230 

fraction individually. However, if the goal is to obtain a presence-absence taxa list for a complete sample, sieving and 231 

proportional pooling might be an ideal solution to minimize bias introduced by large specimens in the samples. Using dry 232 

specimen weight for each size fraction can be used to roughly estimate the number of taxa in each size fraction, which can 233 

then be used to pool the DNA proportionately, instead of sequencing each size fraction individually. 234 

 235 

4.4) Conclusions 236 

We demonstrated that sorting metabarcoding samples into 3 specimen size categories and then pooling the tissue 237 

proportionally to the number of specimens in each size class, can reduce the amount of required sequencing depth compared 238 
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to the unsorted complete sample by 80%. Sample sorting leads to a more balanced taxa assessment, dramatically reducing 239 

the overrepresentation of large specimens on the dataset. While size sorting of bulk samples might not be necessary or 240 

suitable for all samples and or ecosystems, we encourage to evaluate if sample fractioning could be beneficial and feasible 241 

in your metabarcoding project. Also some metagenomic projects will likely profit from presorting samples by biomass, but 242 

we did not explicitly test this here so we can only hypothesise.  243 

 244 
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Figures 258 

 259 

 260 

 261 

Figure 1: Schematic overview of the laboratory processing of macroinvertebrate samples. Specimens from each sample 262 

were sorted into 3 size categories (Small, Medium and Large) and then processed individually, pooled to simulate complete 263 

samples without sorting (Unsorted) and samples in which subsamples are pooled proportionally to taxa abundance (Sorted). 264 

265 
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 266 

Figure 2: Comparison of specimen number in each size category against the respective OTU read abundance of unsorted 267 

(Un) and sorted samples (So) with 4 different primer sets. Each size category (S, M and L) was also sequenced individually, 268 

and thus the data could be used to assign size classes to the OTUs in the sorted and not sorted samples. Sometimes, one 269 

OTU included reads of specimens from more than one size class, leading to assignment of several size categories (Gray = 270 

OTU containing specimens in S, M and L). The numbers 1 - 4 below the plots indicate the different primer combinations 271 

used; 1 = BF1+BR1, 2 = BF1+BR2, 3 = BF2+BR1, 4 = BF2+BR2. 272 

273 
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 274 

Figure 3: Amount of detected taxa based on OTUs with unsorted (Un) and sorted samples (So), considering different 275 

sequencing depth. The sequencing depth is plotted on a logarithmic scale. 276 

277 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2561v1 | CC BY 4.0 Open Access | rec: 28 Oct 2016, publ:



 

14 

References 278 

Crampton-Platt, A., Yu, D.W., Zhou, X. & Vogler, A.P. (2016). Mitochondrial metagenomics: letting the genes out of the 279 
bottle. GigaScience, 1–11. 280 

Dowle, E.J., Pochon, X. & Banks, J.C. (2015). Targeted gene enrichment and high‐throughput sequencing for 281 
environmental biomonitoring: a case study using freshwater macroinvertebrates. Molecular Ecology. 282 

Edgar, R.C. (2013). UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature Methods, 10, 996–283 
998. 284 

Edgar, R.C. & Flyvbjerg, H. (2015). Error filtering, pair assembly and error correction for next-generation sequencing reads. 285 
Bioinformatics, 31, 3476–3482. 286 

Elbrecht, V. & Leese, F. (2015). Can DNA-Based Ecosystem Assessments Quantify Species Abundance? Testing Primer 287 
Bias and Biomass—Sequence Relationships with an Innovative Metabarcoding Protocol (M. Hajibabaei, Ed.). PloS 288 
one, 10, e0130324–16. 289 

Elbrecht, V., Leese, F. & Peinert, B. (2016). Validation and development of freshwater invertebrate metabarcoding COI 290 
primers for Environmental Impact Assessment. PeerJ PrePrints, 1–16. 291 

Gibson, J., Shokralla, S., Porter, T.M., King, I., van Konynenburg, S., Janzen, D.H., Hallwachs, W. & Hajibabaei, M. 292 
(2014). Simultaneous assessment of the macrobiome and microbiome in a bulk sample of tropical arthropods through 293 
DNA metasystematics. Proceedings of the National Academy of Sciences, 111, 8007–8012. 294 

Gómez-Rodríguez, C., Crampton-Platt, A., Timmermans, M.J.T.N., Baselga, A. & Vogler, A.P. (2015). Validating the 295 
power of mitochondrial metagenomics for community ecology and phylogenetics of complex assemblages (M. Gilbert, 296 
Ed.). Methods in Ecology and Evolution, 6, 883–894. 297 

Hajibabaei, M., Shokralla, S., Zhou, X., Singer, G. & Baird, D.J. (2011). Environmental Barcoding: A Next-Generation 298 
Sequencing Approach for Biomonitoring Applications Using River Benthos. PloS one. 299 

Ji, Y., Ashton, L., Pedley, S.M., Edwards, D.P., Tang, Y., Nakamura, A., Kitching, R., Dolman, P.M., Woodcock, P., 300 
Edwards, F.A., Larsen, T.H., Hsu, W.W., Benedick, S., Hamer, K.C., Wilcove, D.S., Bruce, C., Wang, X., Levi, T., 301 
Lott, M., Emerson, B.C. & Yu, D.W. (2013). Reliable, verifiable and efficient monitoring of biodiversity via 302 
metabarcoding. (M. Holyoak, Ed.). Ecology letters, 16, 1245–1257. 303 

Leray, M. & Knowlton, N. (2015). DNA barcoding and metabarcoding of standardized samples reveal patterns of marine 304 
benthic diversity. Proceedings of the National Academy of Sciences of the United States of America, 201424997–6. 305 

Liu, S., Wang, X., Xie, L., Tan, M., Li, Z., Su, X., Zhang, H., Misof, B., Kjer, K.M., Tang, M., Niehuis, O., Jiang, H. & 306 
Zhou, X. (2015). Mitochondrial capture enriches mito-DNA 100 fold, enabling PCR-free mitogenomics biodiversity 307 
analysis. Molecular ecology resources. 308 

Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet journal, 17, 10–309 
12. 310 

Meier, C., Haase, P., Rolauffs, P., Schindehütte, K., Schöll, F., Sundermann, A. & Hering, D. (2006). Methodisches 311 
Handbuch Fließgewässerbewertung. 1–110. 312 

Morinière, J., Cancian de Araujo, B., Lam, A.W., Hausmann, A., Balke, M., Schmidt, S., Hendrich, L., Doczkal, D., 313 
Fartmann, B., Arvidsson, S. & Haszprunar, G. (2016). Species Identification in Malaise Trap Samples by DNA 314 
Barcoding Based on NGS Technologies and a Scoring Matrix (D. Fontaneto, Ed.). PloS one, 11, e0155497–14. 315 

Piñol, J., Mir, G., Gomez-Polo, P. & Agustí, N. (2014). Universal and blocking primer mismatches limit the use of high-316 
throughput DNA sequencing for the quantitative metabarcoding of arthropods. Molecular ecology resources, 15, 1–12. 317 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2561v1 | CC BY 4.0 Open Access | rec: 28 Oct 2016, publ:



 

15 

Stein, E.D., White, B.P., Mazor, R.D., Jackson, J.K. & Battle, J.M. (2013). Does DNA barcoding improve performance of 318 
traditional stream bioassessment metrics? Freshwater Science, 33, 302–311. 319 

Sunnucks, P. & Hales, D.F. (1996). Numerous transposed sequences of mitochondrial cytochrome oxidase I-II in aphids of 320 
the genus Sitobion (Hemiptera: Aphididae). Molecular biology and evolution, 13, 510–524. 321 

Sweeney, B.W., Battle, J.M., Jackson, J.K. & Dapkey, T. (2011). Can DNA barcodes of stream macroinvertebrates improve 322 
descriptions of community structure and water quality? Journal of the North American Benthological Society, 30, 195–323 
216. 324 

Taberlet, P., Coissac, E., Hajibabaei, M. & Rieseberg, L.H. (2012). Environmental DNA. Molecular Ecology, 21, 1789–325 
1793. 326 

Tang, M., Hardman, C.J., Ji, Y., Meng, G., Liu, S., Tan, M., Yang, S., Moss, E.D., Wang, J., Yang, C., Bruce, C., Nevard, 327 
T., Potts, S.G., Zhou, X. & Yu, D.W. (2015). High-throughput monitoring of wild bee diversity and abundance via 328 
mitogenomics (M. Gilbert, Ed.). Methods in Ecology and Evolution, 6, 1034–1043. 329 

Tang, M., Tan, M., Meng, G., Yang, S., Su, X., Liu, S., Song, W., Li, Y., Wu, Q., Zhang, A. & Zhou, X. (2014). Multiplex 330 
sequencing of pooled mitochondrial genomes-a crucial step toward biodiversity analysis using mito-metagenomics. 331 
Nucleic acids research, 42, gku917–e166. 332 

Wangensteen, O.S. & Turon, X. (2016). Metabarcoding techniques for assessing biodiversity of marine animal forests. 333 
Marine Animal Forests. The Ecology of Benthic Biodiversity Hotspots., 1–34. 334 

Zimmermann, J., Glöckner, G., Jahn, R., Enke, N. & Gemeinholzer, B. (2014). Metabarcoding vs. morphological 335 
identification to assess diatom diversity in environmental studies. Molecular ecology resources, 1–17. 336 

 337 

 338 

Supporting information 339 

Figure S1. Pictures of sorted specimens 340 

Pictures of the specimens sorted into small, medium and large individuals. Also provides information on how S, M and L 341 

tissue was pooled to generate the proportionally sorted (So) and unsorted (Un) samples. 342 

 343 

Figure S2. Flowchart detailing laboratory processing 344 

Overview of the steps carried out for sample sorting and processing in the laboratory.  345 

 346 

Figure S3. DNA extraction protocol 347 

Shows the step where the digested buffers of S, M and L were pooled to generate unsorted (Un) and sorted (So) samples. 348 

 349 

Figure S4. Sequencing depth and sequences discarded in bioinformatic processing 350 
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Barplot showing the number of total reads and proportion of sequences discarded in subsequent bioinformatic processing 351 

steps for all samples. 352 

 353 

Figure S5. Flowchart detailing the bioinformatic pipeline 354 

Figure giving an overview of the metabarcoding pipeline applied to this dataset. 355 

 356 

Figure S6. Reproducibility between HiSeq lanes 357 

Comparison of relative OTUs abundances between both HiSeq lanes. 358 

 359 

Figure S7. Plot of OTU table 360 

Visualisation of taxa detected within S, M, L, Un, So DNA extractions, with 4 different primer combinations. Data is also 361 

compared to morphological identifications and number of specimens of each morphologically identified taxon. 362 

 363 

Figure S8. Database completeness 364 

Plot showing the percent match of each OTU to the reference database, under consideration of read abundance. 365 

 366 

Figure S9. Taxa identification with metabarcoding and morphology 367 

Comparison of number of taxa identified with morphology and DNA metabarcoding on different taxonomic resolutions. 368 

 369 

Figure S10. Taxa detection in sorted and unsorted samples 370 

Comparison of the amount of diversity and taxa detected in sorted samples (So) and unsorted samples (Un). 371 

 372 

Table S1. OTU table 373 

Detailed OTU table giving the number of reads for each sample, including assigned taxonomy and OTU sequence. 374 

 375 

Table S2. Morphologically identified taxa 376 

Table giving an overview of morphologically identified taxa and abundance of specimens in S, M and L for both sample 377 

locations. 378 

 379 
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