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Abstract 14 

Environmental bulk samples often contain many taxa that vary several orders of magnitude in biomass. This can be 15 

problematic in DNA metabarcoding and metagenomic high-throughput sequencing approaches, as large specimens 16 

contribute disproportionately high amounts of DNA template. Thus, a few specimens of high biomass will dominate the 17 

dataset, potentially leading to smaller specimens remaining undetected. Sorting of samples by specimen size and balancing 18 

the amounts of tissue used per size fraction should improve detection rates, but this approach has not been systematically 19 

tested.   20 

Here we explored the effects of size sorting on taxa detection using two freshwater macroinvertebrate monitoring samples, 21 

collected from a low-mountain stream in Germany. Specimens were morphologically identified and sorted into three size 22 

classes (body size < 2.5x5, 5x10 and up to 10x20 mm). Tissue from each size category was extracted individually, and 23 

pooled to simulate samples that were not sorted by biomass ("Unsorted"). Additionally, size fractions were pooled so that 24 

each specimen contributed approximately equal amounts of biomass ("Sorted"). Mock samples were amplified using four 25 

different DNA metabarcoding primer sets targeting the Cytochrome c oxidase I (COI) gene. 26 

Sorting taxa by size and pooling them proportionately according to their abundance lead to a more equal amplification of 27 

taxa compared to the processing of complete samples without sorting. The sorted samples recovered 30% more taxa than the 28 
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unsorted samples, at the same sequencing depth. Our results imply that sequencing depth can be decreased approximately 29 

five-fold when sorting the samples into three size classes and pooling by specimen abundance.  30 

Our study demonstrates that even a coarse size sorting can substantially improve taxa detection using DNA metabarcoding. 31 

While high throughput sequencing will become more accessible and cheaper within the next years, sorting bulk samples by 32 

specimen biomass is a simple yet efficient method to reduce current sequencing costs. 33 

 34 

Keywords: Biomass bias, specimen sorting, metabarcoding, metagenomics, DNA barcoding, ecosystem assessment35 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2561v3 | CC BY 4.0 Open Access | rec: 29 May 2017, publ: 29 May 2017



 

3 

1) Introduction 36 

Recent advancements in high-throughput sequencing (HTS) and DNA barcoding have improved our ability to rapidly assess 37 

biodiversity. By using traps or manual collection methods (e.g. nets), thousands of specimens can be easily collected. 38 

However, manually identifying hundreds or thousands of specimens in a single sample is often not feasible, especially if 39 

species level identification is needed (Haase et al. 2004). Bulk samples, which previously took weeks or months to 40 

determine morphologically, can now be homogenised and their DNA extracted for sequencing based identification within 41 

days. The power, accuracy and cost effectiveness of these HTS based assessments have already been demonstrated (e.g. Ji 42 

et al. 2013; Tang et al. 2015; Gómez-Rodríguez et al. 2015; Leray & Knowlton 2015; Gibson et al. 2014; Hajibabaei et al. 43 

2011; Zimmermann et al. 2014; Dowle et al. 2015; Elbrecht et al. 2017) and sequencing costs are expected to further decline 44 

in the future. 45 

In DNA based ecosystem assessment we can distinguish between two approaches: 1) a target gene fragment is amplified 46 

and compared to a DNA barcoding database (metabarcoding, see Taberlet et al. 2012) or 2) the extracted DNA from the 47 

bulk sample is shotgun sequenced directly without PCR and can be optionally enriched for target genes (metagenomics,  see 48 

Liu et al. 2016; Crampton-Platt et al. 2016). Both approaches have specific advantages and drawbacks: metabarcoding is 49 

severely limited by PCR bias, preventing estimates of taxa biomass and potentially not detecting all taxa present in the 50 

sample (Elbrecht & Leese 2015; Piñol et al. 2014; Leray & Knowlton 2015). While metagenomics might overcome these 51 

PCR based problems, this approach is currently limited because only little reference data is available (e.g. mitochondrial 52 

genomes) and a high sequencing depth is required (Crampton-Platt et al. 2016). Additionally, both approaches are likely 53 

affected by variable cell densities and types, as well as variable mitochondrial genome copy numbers between taxa and 54 

specimen life stages (Ballard & Whitlock 2004; Moraes 2001), which is potentially affecting taxa detection. While these 55 

problems might be solved at least partially by optimised degenerate primers (Elbrecht & Leese 2017), reduced sequencing 56 

costs and mitogenome capture (Tang et al. 2014), both metabarcoding and metagenomics are potentially affected by an 57 

additional factor: variable taxa biomass. 58 

Environmental samples usually contain a diverse set of taxa spanning often several orders of magnitude in specimen sizes 59 

and biomass. When extracting complete bulk samples, large biomass rich specimens will contribute significantly more DNA 60 

to the final bulk DNA isolate than small organisms with little biomass. We demonstrated this previously, by bulk extracting 61 

DNA from 31 specimens of the same stonefly (Plecoptera) species with varying specimen biomass, and found a clear 62 

significant linear correlation between obtained reads and dry specimen weight (p<0.001, R2 = 0.65, (Elbrecht & Leese 2015). 63 

We hypothesise that also in more species rich samples, taxa biomass translates directly into read abundance (assuming no 64 
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primer bias within species Elbrecht & Leese 2015). Thus just a few big specimens in a sample will likely make up the 65 

majority of the reads, requiring higher sequencing depth to also detect small specimens and rare taxa. The effects of large 66 

specimens might be also further amplified by primer bias increasing or decreasing the number of reads obtained for a taxon 67 

(Elbrecht & Leese 2015; Piñol et al. 2014). Some studies have already applied samples sorting into different size fractions, 68 

for DNA metabarcoding because of this biomass introduced bias (Leray & Knowlton 2015; Wangensteen & Turon 2016). 69 

However, the effect of fractioning samples by specimen biomass against the complete sample without pre-sorting of 70 

specimens has not jet been systematically tested and quantified. Morinière et al. 2016 detected additional taxa when sorting 71 

malaise trap samples by insect orders (which however could have been caused by unequal sequencing depth between the 72 

samples). The authors further encourage to also test the effects of fractioning samples by specimen biomass. 73 

In this study we systematically quantified the effects of biomass sorting on taxon recovery using two complete stream 74 

macroinvertebrate kick samples (mostly larval specimens), morphologically identifying and sorting them into three biomass 75 

categories based on specimen sizes: small (S), medium (M) and large (L), see Figure 1A & S1. These size fractions were 76 

used to generate mock samples to compare the effect of extracting all specimens together without sorting ("Unsorted") 77 

against pooling the sorted samples according to number specimens in each sample ("Sorted"), to archive a more equal 78 

representation of small specimens in the extracted sample (Figure 1). While it is difficult to accurately pool the ground 79 

tissue of each size category (Figure 1B), pooling extracted DNA might be potentially biased by variable cell sizes and 80 

mitochondrial copy numbers in different taxa (Figure 1D, Bendich 1987; Lemire 2005). Thus we decided to pool the DNA 81 

extraction buffer after tissue digestion of S, M and L for mock sample generation, as the lysis buffer has the same DNA 82 

proportions as the ground tissue but can be more precisely pooled (by pipetting, see Figure 1C). Additionally, DNA from 83 

each size category was extracted and sequenced individually, to estimate which taxa are present in each and are thus 84 

expected to be also detected in the mock samples. By metabarcoding these individual size fractions as well unsorted and 85 

sorted samples mock samples, we can precisely investigate the effects of sample sorting by specimen size on taxa recovery.  86 

 87 

2) Material and Methods 88 

Figure S2 gives an overview of how samples were collected, extracted, pooled into mock communities and metabarcoded as 89 

will be discussed in the following. 90 

Sample collection and processing 91 

Macroinvertebrates were collected at two sampling points of the small low-mountain range stream Kleine Schmalenau in 92 

Germany (Arnsberger Wald). The main stream (site P8, N51.43623 E8.13721) and a small tributary (site P10, N51.43295 93 
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E8.14350) were sampled with five kick samples per sampling site (0.45 m2 area) following the general principle of the 94 

multi-habitat sampling protocol also used in the German implementation of the EU Water Framework Directive (Meier et al. 95 

2006). Collected specimens were stored in 96% ethanol at -20°C for later molecular analysis. All invertebrates were counted 96 

and identified morphologically to the lowest taxonomic level that could be accurately and consistently determined given the 97 

available literature, larval life stage and specimen condition (Table S1). 98 

Specimens from the two samples were each sorted into three size categories under a Zeiss Stemi 2000 stereo microscope by 99 

placing them onto millimetre paper (Figure S1, C). Specimens below 2.5x5 mm body size (length x height, excluding thin 100 

extremities and appendices) were sorted into small (S) specimens up to 5x10 mm into medium (M) and everything bigger 101 

than that into large specimens (L, max 10x20 mm, see Figure S1, C). For thin but long specimens like e.g. chironomids 102 

(non-biting midges), the total surface was considered and evaluated if it would fit into the surface of the respective rectangle 103 

(e.g. all chironomids were sorted into the small size category despite being some times longer than 5 mm). Antennae and 104 

cerci were not counted in the measurement of body length. Goal of the sorting by specimen size, was to visually separate the 105 

specimens into size categories as a proxy for biomass that is difficult to measure on ethanol wet specimens (see Figure S1). 106 

Terrestrial taxa and Trichoptera (caddisfly) quivers were included in the samples, as it is not realistic to remove non-target 107 

organisms or empty shells and quivers in routine monitoring samples. 108 

 109 

DNA extraction and tissue pooling 110 

Specimens of each size category were dried overnight at room temperature in sterile Petri dishes to remove the ethanol. 111 

Total dry specimen weight in each size category was measured (in duplicates) on a Sartorius RC 210D scale. Specimens 112 

from each category were homogenised (Figure 2D) using an IKA ULTRA-TURRAX Tube Drive control system with sterile 113 

20 ml tubes and 10 steel beads (5 mm Ø) by grinding at 4000 rpm for 30 minutes (IKA, Staufen im Breisgau, Gemrany). 114 

In this study we wanted to compare the taxa recovery between samples sorted by specimen size and then proportionally 115 

pooled by specimen abundance (So) against unsorted, i.e. complete samples (Un). Thus five different DNA extractions were 116 

prepared for each of the two sampling sites (Figure 2). First of all, DNA from each size category (S, M and L) was 117 

separately digested using a standard salt extraction protocol (Sunnucks & Hales 1996) (see Figure S3). Seven tissue aliquots 118 

were digested and united per size category (Figure 2F), to obtain sufficient amounts of digested tissue for pooling (Figure 119 

2G). Then three aliquots of digested tissue were then used to generate the sorted and unsorted mock samples. Tissue 120 

digested in DNA extraction buffer was used, as it can be precisely pooled in specific proportions (unlike ground tissue), 121 

while not introducing biases based on variation in cell density and mitochondrial copy numbers which possibly affect 122 
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extracted DNA (Figure 1). However, the amount of tissue used in digestion of S, M and L samples was not always similar 123 

(Figure 2E), which has to be accounted for when pooling the digested tissue for mock community generation (Figure 2I). 124 

This however was mistakenly not done for the sorted samples (Figure 2H), where digested tissue was pooled based on 125 

number of specimens in each size category to reduce the influence of large specimens in the extraction. This mock sample 126 

was compared with an unsorted sample pooled based on specimen weight (Figure 2J) that retains the original tissue 127 

proportions in the sample, i.e. bulk extraction of the complete sample. Additionally, all S, M and L aliquots were extracted 128 

separately and used as individual metabarcoding samples, to be included as positive controls (Figure 2). All extractions 129 

from the digested tissue were done in triplicates and united into one single aliquot, to increase the amount of DNA available 130 

for each sample. 131 

45 µl DNA from each sample (S, M, L, Un, So for sampling site P8 and P10) was digested with 1 µl RNAse A (10 mg/mL, 132 

Thermo Fisher Scientific, MA, USA) and cleaned up using a MinElute Reaction Cleanup Kit (Qiagen, Venlo, Netherlands) 133 

with resuspension in ddH2O. DNA concentrations were quantified fluorometrically using a Qubit (HS Kit, Thermo Fisher 134 

Scientific, Waltham, MA, USA) and concentrations adjusted to 25 ng/µl. 135 

 136 

DNA metabarcoding and bioinformatics 137 

All 10 samples (S, M, L, Un, So for sampling site P8 and P10) were amplified with the four freshwater macroinvertebrate 138 

fusion primer sets BF/BR (Elbrecht & Leese 2017). The four primer combinations are targeting a 217 to 421 bp long 139 

fragment of the Cytochrome c oxidase I (COI) gene. Figure S4 gives an overview of sample tagging using fusion primers 140 

with inline barcodes. Each PCR reaction was composed of 1× PCR buffer (including 2.5 mM Mg2+), 0.2 mM dNTPs 141 

(Thermo Fisher Scientific, MA, USA), 0.5 µM of each primer (Biomers, Ulm, Germany), 0.025 U/µL of HotMaster Taq 142 

(5Prime, Gaithersburg, MD, USA), 0.5 mg/µl molecular grade BSA (NEB, MA, USA), 12.5 ng DNA, filled up with HPLC 143 

H2O to a total volume of 250 µL. Each 250 µL PCR reaction mix was divided into five wells before PCR. PCR reactions 144 

were run in a Biometra TAdvanced Thermocycler using the following program 94°C for 3 min, 40 cycles of 94°C for 30 s, 145 

50°C for 30 s, and 65°C for 2 min, and 65°C for 5 min. High reaction volume and BSA was necessary due to PCR inhibitors 146 

present in the samples. PCR products were purified and size selected (left sided) using SPRIselect with a ratio of 0.8x 147 

(Beckman Coulter, CA, USA) and quantified with a Qubit fluorometer (HS Kit, Thermo Fisher Scientific, MA, USA). 148 

Samples were pooled to equal molarity, and the final library purified with the MinElute Reaction Cleanup Kit (Qiagen, NL), 149 

as a precaution because the BSA used in the PCR caused adhesion of magnets to the tube walls in the PCR clean-up with 150 

SPRIselect. Paired-end sequencing was done on one lane of an Illumina HiSeq 2500 system with a rapid run 250 bp PE v2 151 
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sequencing kit and 5% PhiX spike-in. However, sequences contained ambiguous bases at two positions, due to air bubbles 152 

in the flow cell (SRR3399055). Thus the run was repeated, this time loading two lanes with the same library in slightly 153 

different cluster density, again with a 5% PhiX spike-in. 154 

We used the UPARSE pipeline in combination with custom R scripts (Dryad COI - Not jet available!) for data processing 155 

(Edgar 2013, Figure S5). Reads from both lanes were demultiplexed with a R script and paired end reads merged using 156 

Usearch v8.1.1861 -fastq_mergepairs with -fastq_maxdiffs and -fastq_maxdiffpct 99 (Edgar & 157 

Flyvbjerg 2015). Primers were removed with Cutadapt version 1.9 on default settings (Martin 2011). Sequences were 158 

trimmed to the same 217 bp region amplified by the BF1+BR1 primer set and the reverse complement build if necessary 159 

using fastx_truncate / fastx_revcomp. Only sequences with 207 - 227 bp were length used in further analysis 160 

(filtered with Cutadapt). Low quality sequences were then filtered from all samples using fastq_filter with maxee = 161 

1. Sequences from all samples were then pooled, dereplicated (minuniquesize = 3) and then clustered into 162 

operational taxonomic units (OTUs) using cluster_otus with 97% identity (Edgar 2013) (includes chimera removal). A 163 

threshold of 97% was used to reduce the effect of sequencing errors, which might lead to the generation of additional "false" 164 

OTUs. 165 

Pre-processed reads (Figure S5, step B) of all samples were dereplicated again using derep_fulllength, but singletons 166 

were included. Sequences of each sample were matched against the OTUs with a minimum match of 97% using 167 

usearch_global. As the sample library was loaded on both lanes, hit tables from both HiSeq lanes were combined, 168 

because they only represent sequencing replicates. Only OTUs with a read abundance above 0.01% in at least one sample 169 

were considered in downstream analysis. Within each sample, OTUs with less or equal than 0.01% were set to 0% sequence 170 

abundance to reduce the number of false positive OTUs. Taxonomy was assigned to the remaining OTUs using an R script 171 

searching the BOLD and NCBI database independently. Conflicting taxonomy was resolved on a case-by-case basis (with 172 

falling back to a coarser taxonomic level if the correct assignment was no evident). Only OTUs reliably identified as 173 

freshwater macroinvertebrates were included in the main analysis. 174 

 175 

3) Results 176 

Weight measurements of the tissue was done twice independently, with consistent results between replicates (SD = 0.083 177 

mg). The library was sequenced on a HiSeq rapid run with a cluster density of 438 k/mm2 and 542 k/mm2 for lane 1 and 2 178 

(raw data available on the NCBI RSA archive: SRR3399056 and SRR3399057). On average 1.71 (SD = 0.29, lane 1) and 179 

2.17 (SD = 0.38, lane 2) million read pairs were obtained for each sample after demultiplexing (Figure S4). Read quality 180 
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varied with amplicon length and cluster density (Figure S4), but did not affect results strongly as OTU abundance was very 181 

similar between both lanes (= sequencing replicates of identical library). However, stochastic effects between both lanes 182 

increased for OTUs with low read abundance (Figure S6, variability between replicates for abundant OTUs >10%, SD = 183 

0.007, OTUs with 0.1-0.01>% abundance, SD = 0.077). 184 

The OTU raw data are available in Table S2 and morphology based identifications and taxa abundances in Table S3. After 185 

clustering and discarding low abundance OTUs, a total of 314 OTUs remained in the data set (Figure S7, Table S2). 71% of 186 

these OTUs could be reliably identified with available reference databases, with 58% of the OTUs belonging to freshwater 187 

macroinvertebrate taxa (Figure S8). All high abundance OTUs (at least 0.1% of reads) were identified as macroinvertebrate. 188 

Of these taxa 45 of 52 were reliably identified at species level, of which about 3/4 had 100% similarity matches to reference 189 

sequences. Low abundance OTUs (<0.1%) often showed poor matches to data bases or could not be identified at all (see 190 

Figure S8). With DNA metabarcoding over twice as many macroinvertebrate taxa and five times more species were 191 

detected than with morphology based identification (Figure S9). The main stream (P8) and tributary (P10) could be clearly 192 

distinguished, with only 14.3% of OTUs shared between both sites (Figure S7, 36.4% similarity based on morphological 193 

identification, Table S1). 194 

Sorting the sample into three size categories and proportional pooling of DNA extracts by amount of specimens in each 195 

category reduced the dominance of large specimens substantially (Figure 3). The sorted samples (So) resembled the 196 

composition of the original sample much better (average difference to original composition = 2.3-fold, SD = 2.49) than the 197 

unsorted samples (Un, average difference = 9.0-fold, SD = 7.88, Figure 3). Using the four primer sets an average of 88.75 198 

(SD = 6.46) invertebrate taxa were detected in the sorted samples, compared against 62.5 (SD = 4.5) in the unsorted samples 199 

(30% less, paired t-test, p = 0.005, Figure 4, no rarefaction applied). By using the S, M and L samples as controls, we could 200 

estimate the expected (E) amount of taxa we should be detecting with each primer pair (Figure S10). In sorted samples (So) 201 

very similar amounts of taxa as in the controls (E) were detected (paired t-test, p = 0.17). However, on average only 80% 202 

(SD = 8%) of the expected number of taxa were detected when the complete sample was extracted without sorting (Figure 203 

S10 A, paired t-test, p < 0.001). The same trend was observed when looking at Shannon Diversity (Figure S10 B, paired t-204 

test, E vs So; p = 0.9153, E vs Un; p < 0.001). When comparing the taxa detected with metabarcoding against the taxa list 205 

based on morphological identification, again the unsorted samples showed decreased detection rates (67%, SD = 3%, paired 206 

t-test, p = 0.006). However, also with sorting, only 74% (SD = 3%) of the morphologically identified taxa were detected 207 

with each primer set, which however was not significantly different than the detection rates in the controls E (paired t-test, p 208 

= 0.23, Figure S10 C). Six morphologically identified taxa were not detected in our metabarcoding dataset (Figure S7, Table 209 

S3, morphologically determined specimens "Plecoptera" and "Insecta" are counted as detected here, as several insect and 210 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2561v3 | CC BY 4.0 Open Access | rec: 29 May 2017, publ: 29 May 2017



 

9 

Plecoptera OTUs were detected in the dataset). The reduced amount of taxa detected with the unsorted samples, persists 211 

when the sequencing depth is reduced (Figure 4). Sample sorting does reduce the required sequencing depth to detect the 212 

same amount of taxa by ~5 times, compared to the unsorted samples. 213 

 214 

4) Discussion 215 

4.1) Effects of sorting metabarcoding samples by specimen size 216 

We sorted two samples by specimen size (resembling biomass) into small, medium and large specimens and pooled them 217 

proportionately by specimen abundance per size class to compare these results against unsorted samples. Our results 218 

demonstrate that read abundances of the unsorted samples were dominated by few biomass rich taxa that contribute the 219 

majority of DNA in the bulk extraction. This does not only skew the read abundances in favor of biomass rich specimens, 220 

but also some smaller and less abundant taxa remained undetected (on average ~30% fewer taxa detected in the unsorted 221 

samples). The sorted samples only need 1/5 of the sequencing depth, to detect the same amount of taxa as in the unsorted 222 

samples. This means that sorting metabarcoding bulk samples by specimen size can substantially reduce sequencing costs, if 223 

the aim is to detect all taxa present in the sample regardless of biomass. While we only manually sorted our samples into 224 

three size categories, further cost reductions might be possible by sorting samples into more size categories. It is likely that 225 

larger specimens will have similar effects on metagenomic bulk samples, thus sorting by specimen size and correcting for 226 

abundance might also likely be viable for these samples. 227 

Based on basic physical laws it is expected that large specimens are overrepresented in a metabarcoding study when 228 

extracted in bulk together with smaller organisms. Thus, it is no real surprise that sorting by specimen size but pooling 229 

proportionally by number of specimens in each size category lead to a more equal representation of specimens in the sample 230 

and increase the detection of rare and small specimens with DNA metabarcoding. However, also the limitations and 231 

shortcomings of this study should be discussed here. While we took great care to reduce factors biasing ours result, e.g. by 232 

extracting all samples from the same digested tissue aliquots, we failed to adjust for the amount of tissue digested in these 233 

aliquots for the sorted mock samples (Figure 2, H and I). This leads to a slight underrepresentation of small taxa in the mock 234 

samples, as for medium and large taxa more tissue was extracted (Figure 2E). While this will not change the overall effects 235 

found in this study, it does mean that the positive effects of sample sorting are even slightly underestimated here: With the 236 

correct (higher amount) of small specimens used in the mock communities maybe even more taxa could have been detected 237 

in the sorted samples. Additionally, this study was only carried out on two sampling sites and with limited morphological 238 

identifications. With more time spent and higher taxonomic expertise, probably more taxa could have been identified 239 
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morphologically. Also, despite the COI reference databases being fairly complete for common macroinvertebrate taxa 240 

(Figure 8), there are still gaps and potentially unreliable reference barcodes present, potentially also underestimating 241 

diversity. We also show that with our dataset that stochastic effects during Illumina sequencing affect mainly low abundant 242 

OTUs, which was recently also confirmed in other studies (Leray & Knowlton 2017). For a full and more detailed 243 

discussion of effects limitations of DNA metabarcoding for routine macroinvertebrate monitoring see (Elbrecht et al. 2017). 244 

Nevertheless, DNA based identifications can be more accurate than classical morphology based identification (Stein et al. 245 

2013; Sweeney et al. 2011) as we also show with our two kick samples in this project.  246 

 247 

4.2) Implications: Not all samples have to be sorted 248 

While we could demonstrate and also quantify the increased resolution and potential cost savings by size sorting 249 

metabarcoding bulk samples, we have to acknowledge that these sample sorting steps can be time consuming and 250 

potentially also a source of cross contamination between samples. Thus, we do not recommend sorting every sample by 251 

specimen biomass right away. First of all, the sample should have specimens varying several magnitudes in biomass. If all 252 

specimens have similar sizes, sorting will likely not improve sequencing results. Additionally, the number of samples which 253 

can be reliably tagged on a HTS run in combination with the expected sequencing output, might make sorting obsolete if 254 

expected sequencing depth per sample is sufficiently high. However, in many cases where bulk samples show substantial 255 

variation in biomass, sequencing depth should be sufficiently high to also detect small and rare taxa. Here sorting samples 256 

and adjusting for specimen biomass can help to increase the number of taxa detected making it possible to pool more 257 

samples on the same sequencing run. 258 

Whether or not the method of size sorting should be used in a study depends on sample composition and characteristics as 259 

discussed above, but more importantly if it is necessary to detect small and rare taxa present in the study (e.g. for non-260 

targeted early detection of pests, invasive species or to build barcoding references). It has to be stressed that for most studies, 261 

the proportion of the abundant taxa is most relevant, which gets distorted by sample sorting and pooling by abundance of 262 

small, medium and large specimens. If samples just contain a few large specimens and abundance data is not that important, 263 

one could obtain a small piece of tissue (e.g. a leg of an invertebrate) and remove the rest of the specimen from the sample 264 

(as done by Ji et al. 2013 for example). Especially, if only presence-absence data is desired, this is a good trade off to reduce 265 

the negative influence of a few large specimens on the dataset, without sorting the complete sample. However, treating 266 

samples to reduce the influence of biomass rich specimens should be done systematically across samples to not introduce 267 

processing biases. In this study, sorted individual specimens into three size categories under a stereo microscope to get very 268 
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accurate size classes needed to test this method. With approximately 2-3 hours for each sample and the additional workload 269 

for DNA extraction, this is a highly time consuming step, making the technique of size sorting samples impractical for large 270 

sample quantities. Studies on marine invertebrate did size sort samples by sieving the samples with different sieve sizes 271 

from 63 µm  to 10 mm (Leray & Knowlton 2015; Wangensteen & Turon 2016). Sieving is probably the only feasible 272 

method for processing large numbers of samples, but good care has to be taken when cleaning the sieves between samples, 273 

to prevent cross contamination. Sieving might also change the community composition as very small bacteria on surfaces 274 

and small organism might get lost, and broken off body parts (e.g. legs, antennas) or tissue parts from prey animals might 275 

end up in the lowest size fraction (Leray & Knowlton 2015; Wangensteen & Turon 2016). These effects have to be taken 276 

into consideration when looking at each size fraction individually. However, if the goal is to obtain a presence-absence taxa 277 

list for a complete sample, sieving and proportional pooling might be an ideal solution to minimize bias introduced by large 278 

specimens in the samples. Using dry specimen weight for each size fraction can be used to roughly estimate the number of 279 

taxa in each size fraction, which can then be used to pool the DNA proportionately, instead of sequencing each size fraction 280 

individually. 281 

 282 

4.3) Conclusions 283 

We demonstrated that sorting metabarcoding samples into three specimen size categories and then pooling the tissue 284 

fractions proportionally to the number of specimens in each size class, can reduce the amount of required sequencing depth 285 

compared to the unsorted sample by 80%. Sample sorting leads to a more balanced taxa assessment, dramatically reducing 286 

the overrepresentation of large specimens on the dataset. While size sorting of bulk samples might not be necessary or 287 

suitable for all samples, ecosystems or research questions, we encourage to evaluate if sample fractioning could be 288 

beneficial and feasible in metabarcoding projects. Also, some metagenomic projects will likely profit from presorting 289 

samples by biomass, but we did not explicitly test this here.  290 

 291 
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Figures 306 

 307 

 308 

Figure 1: Overview of different strategies to reduce the presence of biomass rich specimens when metabarcoding bulk 309 

samples. Aliquots with a green checkmark (✔) were generated and metabarcoded in this study, while those with a red "X" 310 

were not tested. Large specimens (L) have substantially more biomass than small specimens (S) and thus contribute more 311 

DNA when extracting complete unsorted samples (A). This likely leads to metabarcoding datasets being dominated by a 312 

few biomass rich or abundant taxa, while small and rare ones might remain undetected. If the goal of the study is, to detect 313 

all taxa present in the sample, it might make sense to adjust the biomass to have all specimens equally strong represented in 314 

the dataset. This can be done by sorting specimens into size categories (e.g. small, medium and large specimens), followed 315 

by sequencing of individual size fractions (E) or pooling them proportionally based on specimen abundance in each fraction 316 

(see B, C and D). It is however difficult to precisely pool ground tissue (B). Extracted DNA on the other hand has to be 317 

quantified and might be affected by copy number variation of mitochondrial genomes between taxa (D). Thus, in this study 318 

pooled digested tissue from each size category (C) was used to investigate the effects of sorted and unsorted samples.319 
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 320 

Figure 2: Strategies how digested tissue was pooled, to generate samples which retained the original proportion of small, 321 

medium and large specimens, as if the sample has not been sorted ("unsorted" [J]) and a sample where size sorting did take 322 

place and specimens of each size category are proportionally pooled by specimen abundance ("sorted" [H]). Specimens of 323 

both kick samples were sorted by specimen size into three size categories; small, medium and large [A]. Using the specimen 324 

abundance in each category [B], as well as total dry weight [C], "sorted" and "unsorted" samples were generated by pooling 325 

digested tissue in specific proportions. To generate a unsorted mock sample digested liquid was pooled based on dry 326 

specimen weight in each size category [J] under consideration of how much tissue was used in the digestion [E,I]. To adjust 327 

for specimen biomass, the sorted specimens were pooled according to the number of specimens in each size category [H]. 328 

For the sorted mock sample [H] we mistakenly did not consider the tissue adjustment factor [I]. After pooling of digested 329 

tissue three aliquots were extracted for each category (small, medium, large specimens, sorted and un unsorted), which each 330 

were united into a single DNA aliquot used for metabarcoding. 331 

332 
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 333 

Figure 3: Comparison of specimen number in each size category against the respective OTU read abundance of unsorted 334 

and sorted samples with 4 different primer sets. The proportion of sorted specimens is shown in barplot A, while plot B is 335 

showing how many morphologically identified taxa are sharing the same size categories. For example, if a taxon is 336 

represented by small, medium and large specimens it gets assigned to ‘SML’ (grey) in the metabarcoding dataset as all 337 

specimens contribute DNA which clusters into the same OTU regardless of specimen size. Thus, reads can not always be 338 

reassigned to small, medium or large specimens, but a combination of those (see also figure S7). Numbers above the plot 339 

give the total number of taxa identified with morphology and the number of OTUs detected with each primer set for 340 

unsorted and sorted samples. The numbers 1 - 4 below the plots indicate the different primer combinations used; 1 = 341 

BF1+BR1, 2 = BF1+BR2, 3 = BF2+BR1, 4 = BF2+BR2. 342 

343 
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 344 

Figure 4: Amount of detected taxa based on OTUs with unsorted (Un) and sorted samples (So) for the four tested primer 345 

combinations, considering different sequencing depths. The sequencing depth is plotted on a logarithmic scale. 346 

347 
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Supporting information 411 

Figure S1. Pictures of sorted specimens 412 

Pictures of the specimens sorted into small, medium and large individuals. Also provides information on how S, M and L 413 

tissue was pooled to generate the proportionally sorted (So) and unsorted (Un) samples. 414 

 415 

Figure S2. Flowchart detailing laboratory processing 416 

Overview of the steps carried out for sample sorting and processing in the laboratory.  417 

 418 

Figure S3. DNA extraction protocol 419 
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Shows the step where the digested buffers of S, M and L were pooled to generate unsorted (Un) and sorted (So) samples. 420 

 421 

Figure S4. Sequencing depth and sequences discarded in bioinformatic processing 422 

Barplot showing the number of total reads and proportion of sequences discarded in subsequent bioinformatic processing 423 

steps for all samples. 424 

 425 

Figure S5. Flowchart detailing the bioinformatic pipeline 426 

Figure giving an overview of the metabarcoding pipeline applied to this dataset. 427 

 428 

Figure S6. Reproducibility between HiSeq lanes 429 

Comparison of relative OTUs abundances between both HiSeq lanes. 430 

 431 

Figure S7. Plot of OTU table 432 

Visualisation of taxa detected within S, M, L, Un, So DNA extractions, with 4 different primer combinations. Data is also 433 

compared to morphological identifications and number of specimens of each morphologically identified taxon. 434 

 435 

Figure S8. Database completeness 436 

Plot showing the percent match of each OTU to the reference database, under consideration of read abundance. 437 

 438 

Figure S9. Taxa identification with metabarcoding and morphology 439 

Comparison of number of taxa identified with morphology and DNA metabarcoding on different taxonomic resolutions. 440 

 441 

Figure S10. Taxa detection in sorted and unsorted samples 442 

Comparison of the amount of diversity and taxa detected in sorted samples (So) and unsorted samples (Un). 443 

 444 

Table S1. Identification literature 445 

Overview of identification keys used for the different macroinvertebrate groups. 446 

 447 

Table S2. OTU table 448 
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Detailed OTU table giving the number of reads for each sample, including assigned taxonomy and OTU sequence. OTUs 449 

with below 0.01% sequence abundance in each sample (highlighted in Orange), were set to 0 for statistical analysis. 450 

 451 

Table S3. Morphologically identified taxa 452 

Table giving an overview of morphologically identified taxa and abundance of specimens in S, M and L for both sample 453 

locations. 454 
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