1 Validation and characterization of thirteen microsatellite markers for queen conch,

2 Lobatus gigas

Nathan K. Truelove¹, Loong Fai Ho¹, Richard F. Preziosi², and Stephen J. Box¹ 3

4 5 ¹Smithsonian national Museum of Natural History, Smithsonian Marine Station, Fort Pierce, FL, USA

- ²Manchester Metropolitan University, School of Science and the Environment, Manchester, UK
- 6

7 Abstract

8 We report the development and characterization of 13 novel microsatellite loci for 9 the Caribbean queen conch, *Lobatus gigas*, an ecologically and commercially important 10 marine gastropod. Paired-end sequencing was carried out on genomic DNA from a single 11 queen conch using half a flow cell lane of an Illumina MiSeq. A total of 48 potentially 12 amplifiable loci containing microsatellites were tested on 45 individuals from the Florida 13 Keys and Bahamas. In total, 13 consistently amplifying and polymorphic microsatellite 14 loci were identified. The number of alleles ranged from 4 to 26 and observed 15 heterozygosities ranged from 0.340 to 1.00. There was no evidence of scoring error, large 16 allele dropout, or evidence of linkage disequilibrium at any locus. Four loci deviated 17 from Hardy-Weinberg equilibrium due to moderate levels of null alleles (null allele 18 frequencies ranged from 0.081 to 0.230). Although null alleles were detected at four 19 microsatellite loci, the high levels of polymorphism and moderate null allele frequencies 20 suggest that these 13 novel microsatellite markers will be useful for researchers carrying 21 out conservation genetic studies of L. gigas. 22 23

- 24
- 25

26 1. Introduction

27 The queen conch, *Lobatus gigas*, is a commercially important fishery resource for 28 many countries in the greater Caribbean and is part of a lucrative export market with the 29 United States and Europe (Acosta 2006). The high demand for queen conch has lead to 30 overfishing in several Caribbean nations (Hernandez-Lamb et al. 2012). The status of the 31 greater Caribbean queen conch fishery led to the listing of the species on Appendix II of 32 the Convention on International Trade in Endangered Species of Wild Fauna and Flora 33 (CITES) in 1990 and trade suspensions now exists in several Caribbean nations (Acosta 34 2006).

35 Genetic techniques are widely used to guide conservation strategies for overfished 36 species by identifying genetically unique stocks and levels of gene flow among 37 populations (Allendorf et al. 2012). Queen conch have a 2 - 4 week pelagic larval phase 38 during their life history that facilitates dispersal within the Caribbean seascape (Mitton et 39 al. 1989). Previous population genetics studies of queen conch, using mitochondrial DNA 40 and allozyme markers, found high levels of geneflow and no evidence of genetically unique subpopulations (Mitton et al. 1989, Zamora-Bustillos et al. 2011, Pérez-Enriquez 41 42 et al. 2011). In contrast to previous genetics studies, biophysical modeling of queen 43 conch larval dispersal suggests that larval connectivity among Caribbean queen conch 44 populations may be more limited than previously thought, implying that genetic 45 differentiation may occur (Paris et al. 2006).

Large microsatellite datasets allow for inferences about contemporary levels of gene flow in species with high levels of dispersal and allow for the detection of genetic structure caused by ecological and evolutionary processes (Andersen et al. 2010; Selkoe

NOT PEER-REVIEWED

Peer Preprints

49 et al. 2008). A total of eight microsatellite markers have already been developed for 50 queen conch, however, six out of the eight are likely to have reduced statistical power for 51 detecting population structure due to a low numbers of alleles and the confounding 52 effects of five out of eight loci containing null alleles (Zamora-Bustillos et al. 2007, 53 Carlsson 2008). Larger microsatellite datasets for queen conch will help improve the 54 knowledge of genetic connectivity among queen conch populations, which is an 55 important component for conservation plans and fishing quotas. 56 The objective of our study was to develop novel polymorphic microsatellite loci 57 for *Lobatus gigas*, which will be useful for assessing genetic population structure, gene 58 flow, and genetic diversity in this CITES listed species. Next-generation sequencing 59 technology has greatly reduced the cost and time required to identify microsatellites in 60 species such as queen conch, which lack detailed genome-wide data. We applied this 61 technology to identify a panel of 13 microsatellites for queen conch. 62

63 2. Methods

64 2.1 Tissue Sampling and DNA Extraction

A research permit was not required to collect tissue samples from Florida since
the Florida Fish and Wildlife Conservation Commission assisted with sample collection.
The Bahamas Department of Marine Resources Research Permit Number MAMR/FIS/3
and CITES Export Permit 2015/258 were used to collect and export samples from the
Bahamas.
Sterile biopsy forceps were used to extract a 1.5cm³ tissue sample from the mantle

of a single queen conch from the Long Key, Florida. The sample was soaked in RNA-

72	Later (Qiagen, Valencia, CA, USA) at 4°C for 1 day then stored at -80°C. DNA was
73	extracted using the E.Z.N.A. Mollusc DNA extraction kit (Omega Bio-Tek) following the
74	manufacturer's protocol. DNA concentration and quality was tested using 1) a NanoDrop
75	2000 spectrophotometer (Thermo Scientific), 2) Qubit® fluorometer (Life Technologies),
76	and 3) by running 5ul of DNA solution on a 2% agarose gel that was visualized using a
77	GelGreenDNA stain (Biotium Inc.). The DNA concentration was $20ng/\mu l$, and the bands
78	on the gel were not fragmented or smeared, indicating high quality, non-degraded
79	genomic DNA (Wong et al. 2012). The DNA sample was shipped on dry ice to the
80	University of Manchester Genomics Core Facility for sequencing.
81	
82	2.2 Library Preparation and Sequencing
83	A total of 50ng of DNA from one individual was used to create a paired-end
84	library using the Illumina Nextera® DNA Sample Preparation Kit according to the
85	manufacturer's protocol, with Illumina adaptors used for identification purposes. Two-
86	hundred and fifty cycle paired-end sequencing was carried out in half a flow cell lane of
87	the Illumina MiSeq platform at the Genomics Core Facility at the University of
88	Manchester. The left and right raw reads were separated into two files and converted to
89	the FASTQ format to conduct further quality control and filtering procedures.
90	
91	2.3 Quality Filtering of Sequence Data
92	The FASTQ files containing raw MiSeq reads were imported into Galaxy-Golem,
93	a customized local installation of the Pennsylvania State University's Galaxy, run by the
94	University of Manchester's Bioinformatics Core Facility (Goecks et al. 2010). Galaxy is

95	an open-access web-based bioinformatics tool that allows researchers to run a number of
96	analyses on large next-generation sequencing datasets. The quality of the raw Illumina
97	reads was checked in Galaxy using FastQC
98	(http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/) and reads with low quality were
99	removed using Trimmomatic (Bolger et al. 2014). The sliding window trimming
100	operation was performed using four bases and an average Phred quality score (Ewing and
101	Green 1998) of 20 or higher.
102	
103	2.4 Microsatellite Identification and Primer Design
104	Potentially amplifiable loci (PAL) containing microsatellites were identified with
105	program PAL_FINDER v0.02, which was incorporated into Galaxy (Castoe et al. 2012).
106	Primer development settings were adjusted to develop microsatellites PCR primers with
107	optimal melting temperatures for use with the Qiagen Type-it® Microsatellite PCR Kit.
108	Primer design parameters were set to: minimum melting temperature (Tm) 60°C;
109	optimum Tm 68°C; maximum difference in Tm between primers in pair 2°C; and primer
110	length 20-30bp. Primers meeting these criteria were then screened against all other
111	MiSeq reads to identify primers that may bind to > 1 location in the conch genome. Only
112	primers that bound to 1 location in the MiSeq dataset were selected for primer testing to
113	minimize the possibility of primers binding to multiple sites in a repetitive region of the
114	queen conch genome.
115	
116	
117	

118 **2.5 Microsatellite Primer Testing**

119 The PCR amplification success of 48 PALs were tested on DNA from eight queen 120 conch filets purchased from the Pelican Bay Fish Market in Fort Pierce, Florida, USA. 121 DNA was extracted using the QIAGEN DNeasy kit following the manufacturer's 122 protocol. DNA concentrations for each sample were quantified using a Nanodrop ND-123 1000 and they ranged from $15 \text{ ng/}\mu\text{l}$ to $100 \text{ ng/}\mu\text{l}$. The quality of genomic DNA was tested 124 by visualizing 5µl of genomic DNA solution on a 2% agarose and visualized with a 125 GelGreenDNA stain (Biotium Inc.). All DNA samples showed a single high molecular 126 weight band with no smearing, indicating that the DNA used for primer testing was of 127 high quality (Wong et al. 2012). PCR was carried out using the Type-it® Microsatellite 128 PCR kit (Qiagen) in a reaction volume of 10µl, with a thermal cycle of: 95°C for 5 129 minutes, 28 x (95°C for 30 seconds, 60°C for 90 seconds, 72°C for 30 seconds) and 60°C 130 for 30 minutes. The final concentration of forward and reverse primers were 0.2 μ M. 131 PCR products were checked on a 2.0 % agarose gel to determine if PCR amplification 132 was successful. A PAL was classed as successfully amplified if at least 7 of the 8 samples 133 tested showed one or two clear bands on the gel. 134 Primer pairs that successfully amplified 15 PALs were further tested on 45 135 individuals from Delta Shoal in the Florida Keys (n = 23) and Grand Cay, Bahamas (n = 23)136 22). Bahamas Department of Marine Resources Research Permit Number MAMR/FIS/3 137 and CITES Export Permit 2015/258 were used to collect samples and export samples 138 from the Bahamas. DNA extraction of these individuals followed the same methodology 139 as the eight individuals used for the first stage of primer testing. The quality of PALs to 140 produce reliable genotypes were tested by labeling the 5' end of the forward primer of

141	each PAL with either the 6-FAM or HEX fluorescent label (Table 1). PCRs conditions
142	were the same as those used for the first stage of primer testing. PCR products were sent
143	to the Smithsonian Laboratory for Analytical Biology where fragment analysis was
144	conducted on an ABI 3730xl Sequencer (Life Technologies). These data were manually
145	scored using GENMAPPER 3.7 (Life Technologies). GENODIVE (Meirmans and van
146	Tienderen 2004) was used to estimate observed (H_0) and expected (H_E) heterozygosity,
147	number of alleles (NA), and deviations from Hardy–Weinberg equilibrium. The presence
148	of null alleles or scoring errors caused by excessive stuttering was analyzed with
149	MICROCHECKER (van Oosterhout et al. 2004). Linkage disequilibrium was tested for
150	by using the program GENEPOP (Raymond and Rousset 1995, Rousset 2008).
151	
152	3. Results
153	The Illumina MiSeq run produced 3,872,724 (2 x 1,936,362) total reads with
154	852,641 reads containing microsatellites. Primer testing identified 13 primer pairs that
155	consistently amplified polymorphic microsatellite loci. The 13 microsatellite loci
156	produced allele sizes ranging from 144 base pairs to 476 base pairs. The number of
156 157	
	produced allele sizes ranging from 144 base pairs to 476 base pairs. The number of
157	produced allele sizes ranging from 144 base pairs to 476 base pairs. The number of alleles ranged from 4 to 26 and observed heterozygosities ranged from 0.340 to 1.00.
157 158	produced allele sizes ranging from 144 base pairs to 476 base pairs. The number of alleles ranged from 4 to 26 and observed heterozygosities ranged from 0.340 to 1.00. There was no evidence of scoring error, large allele dropout, or evidence of linkage
157 158 159	produced allele sizes ranging from 144 base pairs to 476 base pairs. The number of alleles ranged from 4 to 26 and observed heterozygosities ranged from 0.340 to 1.00. There was no evidence of scoring error, large allele dropout, or evidence of linkage disequilibrium at any locus. Four loci (Conch31, Conch37, ConchPR1, and ConchPR7)
157 158 159 160	produced allele sizes ranging from 144 base pairs to 476 base pairs. The number of alleles ranged from 4 to 26 and observed heterozygosities ranged from 0.340 to 1.00. There was no evidence of scoring error, large allele dropout, or evidence of linkage disequilibrium at any locus. Four loci (Conch31, Conch37, ConchPR1, and ConchPR7) deviated from Hardy-Weinberg equilibrium due to moderate levels of null alleles with

163

164 **4. Discussion**

165	Although null alleles were detected at four microsatellite loci, the high levels of
166	polymorphism and moderate null allele frequencies suggest that these 13 novel
167	microsatellite markers will be useful for researchers carrying out conservation genetic
168	studies of queen conch. Such studies can be used to help further the development of
169	conservation and management plans of the Caribbean queen conch Lobatus gigas.
170	
171	5. Acknowledgements
172	The Summit Foundation provided funding for S. J. Box. We thank Lester Gittens
173	at the Bahamas Department of Marine Resources for his assistance with research and
174	CITES export permits from the Bahamas. We are grateful for the fieldwork assistance
175	provided by Einat Sandbank, Gabriel Delgado and Bob Glazer from the Florida Fish and
176	Wildlife Conservation Commission collecting samples in the Florida Keys and grateful
177	for the help Sara Rosewall, Phaedra Geer, and Emily Dark provided in the lab.
178	
179	6. Literature Cited
180 181 182 183	Acosta, C. A. (2006). Impending trade suspensions of Caribbean queen conch under CITES: a case study on fishery impacts and potential for stock recovery. Fisheries, 31(12), 601-606.
184 185 186	Allendorf, F. W., G. H.Luikart, and S. N. Aitken. 2009. Conservation and the genetics of populations. John Wiley & Sons.
187 188 189 190 191	Anderson, C. D., B. K. Epperson, MJ. Fortin, R. Holderegger, P. M. A. James, M. S. Rosenberg, K. T. Scribner, and S. Spear. 2010. Considering spatial and temporal scale in landscape-genetic studies of gene flow. Molecular Ecology 19(17):3565–3575.

Bolger, A. M., M. Lohse, and B. Usadel. 2014. Trimmomatic: a flexible trimmer for
Illumina sequence data. Bioinformatics: btu170.

194 195	Carlsson, J. 2008. Effects of Microsatellite Null Alleles on Assignment Testing. Journal of Heredity, 99(6), 616-623.
196 197 198	Castoe, T. A., A. W. Poole, A. P. J. de Koning, K. L. Jones, D. F. Tomback, S. J. Oyler- McCance, J. A. Fike, S. L. Lance, J. W. Streicher, E. N. Smith, and D. D. Pollock.
199 200 201	2012. Rapid Microsatellite Identification from Illumina Paired-End Genomic Sequencing in Two Birds and a Snake. PloS one 7(2):e30953.
202 203 204	Ewing, B., and P. Green. 1998. Base-Calling of Automated Sequencer Traces Using Phred. II. Error Probabilities. Genome Research 8(3), 186-194.
204 205 206 207 208	Goecks, J., A. Nekrutenko, and J. Taylor. 2010. Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biology 11(8):R86.
209 210 211 212 213	Hernandez-Lamb, J., A. Dibello, S. Lewis, G. Mackin, K. Kirby, and C. Acosta. 2012. Modelling the effects of reserve size and fishing mortality for Caribbean queen conch Strombus gigas. Aquatic Conservation: Marine and Freshwater Ecosystems 22(6):721–730.
213 214 215 216 217	Meirmans, P. G., and P. H. van Tienderen. 2004. Genotype and Genodive: two programs for the analysis of genetic diversity of asexual organisms. Molecular Ecology Notes 4(4):792–794.
218 219 220 221	Mitton, J. B., C. J. Berg, and K. S. Orr. 1989. Population structure, larval dispersal, and gene flow in the queen conch, Strombus gigas, of the Caribbean. The Biological Bulletin 177(3):356–362.
222 223 224 225 226 227	Paris, C. B., M. P. Perez, J. Kool, and D. A. Aranda. 2006. Segregation of Queen Conch, Strombus gigas, Populations from the Yucatan Peninsula, Mexico. Caribbean Connectivity: Implications for Marine Protected Area Management.Proceedings of Special Symposium at the 59 th Annual Meeting of the Gulf and Caribbean Fisheries Institute. Belize City, Belize. pp71-89.
228 229 230 231 232	Pérez-Enriquez, R., F. J. Garcia-Rodriguez, G. Mendoza-Carrion, and C. Padilla. 2011. Geographical variation in the genetic diversity and composition of the endangered queen conch Strombus gigas (Mesogastropoda: Strombidae) from Yucatán, México. Revista de biología tropical 59(3):1115–1126.
233 234 235	Raymond, M., and F. Rousset. 1995. GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. Journal of Heredity 86(3):248–249.
236 237 238 239	Rousset, F. 2008.genepop'007: a complete re-implementation of the genepop software for Windows and Linux. Molecular Ecology Resources 8(1):103–106.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2559v1 | CC BY 4.0 Open Access | rec: 28 Oct 2016, publ:

240 241	Selkoe, K. A., C. M. Henzler, and S. D. Gaines. 2008. Seascape genetics and the spatial ecology of marine populations. Fish and Fisheries 9(4):363–377.
242	
243	Van Oosterhout, C., W. F. Hutchinson, D. P. M. Wills, and P. Shipley. 2004. Micro-
244	checker: software for identifying and correcting genotyping errors in microsatellite
245	data. Molecular Ecology Notes 4(3):535–538.
246	
247	Waples, R. S. 1998. Separating the wheat from the chaff: patterns of genetic
248	differentiation in high gene flow species. Journal of Heredity 89(5):438–450.
249	
250	Wong, P. B., E. O. Wiley, W. E. Johnson, O. A. Ryder, S. J. O'Brien, D. Haussler, KP.
251	Koepfli, M. L. Houck, P. Perelman, G. Mastromonaco, A. C. Bentley, B. Venkatesh,
252	YP. Zhang, R. W. Murphy, G10KCOS. 2012. Tissue sampling methods and
253	standards for vertebrate genomics. GigaScience 1(1):8.
254	
255	Zamora-Bustillos, R., R. Rodríguez-Canul, and F. J. G. De León. 2007. Isolation and
256	characterization of eight polymorphic microsatellite markers from pink conch
257	(Strombus gigas). Molecular Ecology Notes 7(4):597–599.
258	
259	Zamora-Bustillos, R., R. Rodríguez-Canul, F. J. García de León, and J. TelloCetina.
260	2011. Diversidadgenética de dos poblaciones del caracol Strombus gigas
261	(Gastropoda: Strombidae) en Yucatán, México, con microsatélite. Revista de biología
262	tropical 59(3):1127–1134.
263	• • • · · ·

NOT PEER-REVIEWED

Table 1. Primer sequence, repeat motifs, fluorescently labeled dyes and characteristics of 13 microsatellite loci: Label (fluorescent label attached to forward primer), GenBank (GenBank Accession Number), T_A (annealing temperature), Na (number of alleles), Ho (observed heterozygosity), He (expected heterozygosity), Fis (fixation index), *P* (*P*-value for deviation from Hardy-Weinberg equilibrium), and F_{NA} (null allele frequency). Significant values after the false discovery rate correction for multiple comparisons (Benjamini & Hochberg, 1995) are in bold.

Locus	Primer sequence (5'-3')	Repeat motif	Label	GenBank	Size range	Та	Florida (n = 23)						Bahamas (n = 22)						
							Na	Но	He	Fis	р	F_{NA}	Na	Но	He	Fis	р	F _{NA}	
Conch3	F: GGAAATGTGAAGCATCAGCG	(AG)19 (TC)23	Hex	KP985701	211-309	63.16	26	1.000	0.962	-0.039	0.445		21	0.889	0.956	0.070	0.189		
	R: GACGCTGTAGGAACAAGGGG																		
Conch4	F: CTTGGCGTAGCTACCTGACC	(TG)8 (AG)18 (TC)29	6fam	KP985702	198-242	65.25	10	0.957	0.879	-0.088	0.203		16	0.889	0.936	0.051	0.355		
	R: GGAGAGAGCCAGAATGAGGG																		
Conch17	F: GAGGGATATGACGATGGTGG	(ATC)12 (ATG)14 (ACC)3	6fam	KP985703	426-459	63.02	7	0.826	0.831	0.006	0.566		9	0.762	0.804	0.052	0.394		
	R: TGAGGAACAAGGTCTGGTCG																		
Conch21	F: CAGGTCTGGCTGGGAAGC	(TTC)12 (AAG)68	6fam	KP985704	248-280	64.36	9	0.870	0.873	0.003	0.565		9	0.778	0.845	0.079	0.309		
	R: AAGTTGCCGTCAGTTTTGAGG																		
Conch23	F: AACATTTGTCACTGCTGCTGG	(TGC)15 (AGG)3 (ACT)3 (AGT)4 (ACC)3	Hex	KP985705	361-391	62.98	4	0.696	0.594	-0.171	0.193		7	0.350	0.499	0.298	0.037		
	R: TGATAGGAGTGGTCAGGATGG																		
Conch29	F: TCAGTCTGTCTGTTTTGGCG	(ACAG)6 (TCTG)9 (TC)8	6fam	KP985706	259-294	62.71	12	0.696	0.870	0.200	0.02		12	0.818	0.871	0.061	0.310		
	R: ATAGAGAATTGGAGACAGTAAGCG																		
Conch31	F: GCCTCCCACAGAATACCAGC	(AGG)27 (AAG)9 (TTC)18 (ATG)19 (TCC)7	Hex	KP985707	276-300	66.36	6	0.609	0.639	0.048	0.486		4	0.286	0.596	0.521	0.005	0.230	
	R: CAAGACTGCACCACTGTCCC																		
Conch37	F: CAGTTTCCAGTCAAGAATACCCC	(TC)90	Hex	KP985708	234-263	61.93	12	0.696	0.912	0.237	0.002	0.107	11	0.476	0.923	0.484	0.001	0.229	
	R: GCATCCACAATGAATCAAAATCC																		
Conch39	F: ATGTATCCACCCATCCACGG	(AG)42	6fam	KP985709	257-321	64.9	23	1.000	0.965	-0.036	0.448		20	0.867	0.969	0.106	0.077		
	R: GTACTTCAGCCGCCAGATCC																		
Conch44	F: TGTGTATGTGTGTGTCACTCTGCG	(TG)50 (TTTG)3	6fam	KP985710	230-264	62.98	12	1.000	0.854	-0.171	0.02		16	1.000	0.942	-0.062	0.275		
	R: TCTTGATGGCTTGTGGTTGG																		
ConchPR1	F: GCGAAGCTTGATTCAAAATGG	(ATCT)38	Hex	KP985711	364-476	61.81	17	0.696	0.950	0.267	0.002	0.124	15	0.773	0.921	0.161	0.029		
	R: AAAGAGGGTGCTTCTGTGGC																		
ConchPR7	F: TGAAAGAGTGGCCAATACGC	(TTTG)29 (AAAC)17	Hex	KP985712	168-261	62.92	22	0.913	0.956	0.045	0.273		18	0.773	0.950	0.187	0.002	0.081	
	R: GCTTTCCCTTGATCCCAGC																		
ConchPR11	F: CACTACGATAGATTGTGGCAGC	(AT)72	Hex	KP985713	144-209	64.21	19	0.826	0.937	0.118	0.056		16	0.952	0.937	-0.017	0.592		
	R: TGTCAGTACAGGTTTGAGTGACC																		