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Abstract

Late Cretaceous deposits of the North Americant®viednterior represent the
best, if not only, opportunity to construct a higgsolution chronostratigraphic
framework within which to conduct continental-scgéological and paleontological
analyses. This is due to the serendipitous comibmaf large areas of outcrop,
interfingering marine units with biostratigraphigahformative fossils, and a consistent
scattering of radiometric dates due to synorogeaicanic activity. Accurate correlation
is essential for testing a large number of curgaaiogical and paleobiological
hypotheses; however, despite the large amounttafadailable, many published

correlations suffer from inaccuracies or are sinfyaged on outdated information.

Here | present a comprehensive high-resolutiatigtaphic chart for terrestrial
Late Cretaceous units of North America, combininglighed chronostratigraphic,
lithostratigraphic, and biostratigraphic data. & first time, nearly two hundré@r /
39Ar radiometric dates are recalibrated to both aurséandard and decay constant
pairings, correcting errors in previous recalilas. Revisions to the stratigraphic
placement of most units are slight, but importdr@nges are made to the proposed
correlations of the Aguja and Javelina Formatidrexas, and miscalculations in recently
published analyses are corrected which in parti@affacts the relative age positions of
the Belly River Group, Alberta; Judith River Grolontana, Kaiparowits Formation,

Utah, and Fruitland and Kirtland Formations, Newxide.
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This work represents the most extensive and atcurierbasinal correlation
currently available for the North American Westénrterior and should replace all

previously published similar works and diagrams.

The stratigraphic ranges of selected dinosauseslade plotted on the
chronostratigraphic framework, typically formingsks of short-duration species which
do not overlap stratigraphically with precedingsacceeding forms. This is the expected
pattern which is produced by an anagenetic modwalfition, suggesting that true
branching (speciation) events were rare and mag gawgraphic significance. Purported
north-south provinciality of dinosaurs is showrb®mostly an artifact of stratigraphic
miscorrelation. Rapid stepwise acquisition of dagptharacters in many dinosaur clades,
in particular chasmosaurine ceratopsids, suggleatstiey may represent the highest

resolution biostratigraphic markers to be used whadiometric dates are not available.

Introduction

In 1952, Cobban and Reeside published a grandlation of Cretaceous rocks
of the Western Interior of central and southernthNiédmerica, including both marine and
terrestrial units, and biostratigraphic rangesafoariety of invertebrates and vertebrates.
Such interbasinal correlation diagrams are usefuhfaking stratigraphic comparisons
between units and similar style diagrams have beacommmonplace in the geological

literature, albeit few with such broad geographgmpe. The interbasinal correlation
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chart of Cobban and Reeside (1952) was importaits ohay, but it has been superceded
by the advent of advanced chronostratigraphic nustinhich offer current workers
much greater precision and accuracy in placingigteghic boundaries. However, most
recently published correlations are fairly locakoale, aligning units within the same or
adjacent basins, and thus limiting applicability éxception was presented by Krystinik
and DeJarnett (1995) that was specifically intentdeshow sequence stratigraphic
correlations (and lack of correlations) between ¥@sinterior units. This progressive
work incorporated sea-level curves and radiomelates, yet is itself now largely
outdated with changes to many of the depictedages and especially their durations.
Another analysis (Miall et al., 2008) was similabigoad in geographic scope, but not

particularly detailed (although this was not thraain intent).

Interbasinal correlation charts are not just @& tesgeologists; more frequently
than ever, paleontologists are using high-resaiutironostratigraphic data to formulate
and test evolutionary hypotheses. A simple exanspileat of time-calibrated phylogenies,
where the stratigraphic positions of individualdaate superimposed on phylogenetic
trees. These are becoming much more promineneidittosaur literature (e.g. Sampson
et al., 2010; Evans et al., 2013), and are useéedaoce the timing of important
phylogenetic branching events, infer ghost ranged,potentially to calculate rates of
evolution. A more nuanced application that is egdlgamportant to my research is
assessing whether two sister taxa are contempararfgeereby inferring a genuine
speciation event), or whether they form a succassistratigraphically separated

morphologies (supportive of anagenesis; e.g. Haghal, 1992; Scannella et al., 2014).
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The value of such analyses is inherently depengamm the accuracy of the plotted taxa,
which in turn depend upon the accuracy of theigtagthic correlations of the formations
from which their fossils were recovered. Hereirs liee problem. Precise dating of
geological formations is especially critical fosti@g anagenesis or cladogenesis in
dinosaurs, but when specimens are very similag@) enprecision of only a few hundred

thousand years is often enough to completely reveateobiological interpretation.

The Late Cretaceous deposits of the North Amerivastern Interior represent
the best, if not only, opportunity to make a higisalution chronostratigraphic
framework within which to study dinosaur evolutidrhis is due to the serendipitous
combination of large areas of outcrop, interfinggmarine units with
biostratigraphically informative fossils, and a smtent scattering of radiometric dates
due to synorogenic volcanic activity, not to mentibe vast literature detailing over a
century’s worth of research. However, despite #ngd amount of data available, many
published correlations suffer from inaccuracies thavitably strongly affect

paleobiological interpretations:

1. It is difficult to find the reasoning behind semorrelations

In paleontological papers especially, correlatibarts are typically presented as a series
of geological columns, and rarely contain cleadetailed justifications for the
stratigraphic positions of the depicted horizonsuélly a few citations are given for
stratigraphic position, and radiometric dates mayarked (also including citations), but

important details may be lacking. This can cread@yrproblems, including circular
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citation of incorrect or unknown stratigraphic dé¢ay. the age of thé\famosaurus
fauna’; Lehman 2001) or unknowingly mismatching olddated stratigraphic data with
new interpretations or calibrations (e.g. the cligngorrelations and calibrations of
radiometric dates from the Kaiparowits FormatiomaljtRoberts et al., 2005; 2013;
Sampson et al., 2010; Zanno et al., 2011). Adniitigdstifying every boundary or
horizon in a stratigraphic column is an arduouk,tbat without detailed work like this,

precise stratigraphic placement of taxa can beeithpossible or plotted incorrectly.

2. Lacunae are not depicted

Geological columns often do not emphasize the laeuhat exist within formations. For
example, a historical problem in terrestrial lithatigraphy is that laterally consistent
resistant sandstones are often used as uppernitsstarformational contacts; e.g. the
Capping Sandstone Member, Wahweap Formation, HBato, 1991). This is a problem
as amalgamated channel sandstones typically faerbdakalmost unit of depositional
sequences; it happens that the uppermost uniedMahweap Formation (Capping
Sandstone) is actually the basal amalgamated chemmplex of the overlying sequence
that comprises the Kaiparowits Formation (Lawtoalet2003). Hence, the Wahweap
and Kaiparowits Formations can appear to represemire conformable succession than
what occurs in actuality, and the therefore tedhicorrect cited durations for each of
the formations are misinformative. For this andeotleasons, formation members and the
lacunae between them should be plotted on comelatiarts and explained where

possible.
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3. Radiometric dates may be incorrect or incomgdarab

Many currently cited radiometric dates are not prbpcomparable as from the early
1980's through to the current day, radiometric ysed have used a variety of standards,
decay constants, or different methods. There sahsemerging issue that analyses
performed in different laboratories produce sligtdifferent results, and this is being

investigated internally by those labs (Renne.,.paymm.).

Here | present a comprehensive stratigraphic laioe chart comprising the
major terrestrial geological formations of the NioAmerican Western Interior (Table
S1). The chart is plotted based on extensive rewietive pertinent stratigraphic literature
on each formation, and on the recalibration of lye200*°Ar / *°Ar radiometric dates.
Recalibrated radiometric dates are presented botheochart itself, and as a separate
excel sheet (Table S2), and are recalibrated o &trently acceptefAr / *Ar
standards (Kuiper et al., 2008, combined with theag constant values of Min et al.,
2000; and Renne et al., 2011). The recalibrationsect minor and major errors in
previous works (e.g. Kuiper et al., 2008; Schnfiz]2; Roberts et al., 2013). This new
work represents the most precise and compreheosivelation currently available for
terrestrial geological formations of the North Aimgan Western Interior. This is used in
combination with locality data for individual dinms specimens to plot the stratigraphic
ranges for dinosaur taxa (currently restricted émderatopsia, Sauropoda, and
Hadrosauridae). This replotting of dinosaur taxdissussed with regards to current

hypotheses of dinosaur biogeography and evolution.
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Methods

Abbreviations used

Gp, Group; Fm, Formation; Mbr, Member. Ma, millioofsyears ago; Ka thousands of
years ago; m.y. million years; k.y. thousands @rgec.z., coal zone; FCT, Fish Canyon

Tuff; TCR, Taylor Creek Rhyolite.

Display format - excel sheets

The recalibration sheet and stratigraphic correfathart are offered as two separate

excel files (Tables S1 and S2). They are kept s¢pdor ease of cross referencing.

Table S1 - Stratigraphic correlation chart

The stratigraphic correlation chart is arrangedrasxcel spreadsheet (Table S1),
and is intended to be used directly in this foramit offers a number of advantages over
a graphic embedded within a PDF or printed page.drid of cells naturally permit
precise plotting of stratigraphic boundaries, vatith vertical cell height representing 0.1
m.y.. Most usefully, each cell, (or group of celtgn be tagged with a pop-up note that is

activated by simply hovering the mouse cursor @sr cell with a red triangle in the
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173 upper right corner. These pop-up notes compriseuheof the results of this study,

174  providing the information that supports each degaatratigraphic position or boundary
175 of the geologic unit or taxon, along with introdoist text. For ideal formatting, the

176 reader is advised to view the chart in native nesmh, at 22% zoom level.

177

178 Some disadvantages of the excel format includdirtiieed range of line styles
179 and orientations, such that (for example) it ispadsible to represent unconformities by
180 awavy line, and cell borders necessarily aregtitaDue to the need to keep font size
181 small (to increase available space), taxon nameesa@rproduced in italics as it makes
182 them much less readable. The reader is adviseditidler some levels of zoom, a note
183 box might not be fully readable; if so, right cliakd select edit note, then either read the
184 note in place, or resize the note box such thahaltext is visible.

185

186 References used in the construction of the clnardaailable as a separate

187 document (Text S1).

188

189 Table S2 - Recalibration sheet

190

191 The recalibration sheet (Table S2) is also maddable in the form of an excel
192 sheet. This is due to its large size, but alsoyanijbe benefit of the pop-up notes,

193 providing additional information on radiometric datand the original publications.
194 Maintaining the recalibrations as an excel shesst permits the retention of the active

195 formulae used to calculate the new dates.
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The recalibration sheet is adapted from the EARINHH excel recalculation
sheet provided by Noah McLean at the earthtimea@igsite. This is the same source as
for the recalibrations performed by Roberts e{2013), cited as: http://www
.earth-time.org/ar-ar.html, by those authors. Uniicately, the earthtime.org website is
currently listed as "under construction”, and @ve not been able to relocate the

original download location.

The original recalibration formulae were duplichteross into my Table S2 such
that this is a "live" document which independemégalculates dates based on the input
data on each line of the sheet. | have also adapgesburce lines for each recalculation
such that all the original input data (standar@ésay constant, etc.) are visible for each
recalculation. This way the sheet shows all therkimg" for all of the 200 recalculations,
and each can be properly independently assesseaxbifyyarison, the original sheet
provided by McLean and EARTHTIME only had spaceddew recalculations at a time).
This is a direct response to the lack of such gedgided in previous recalculation
publications (e.g. Roberts et al., 2013), requitimgrefore that the reader must replicate
the result for themselves in order to check thatrétalibration was performed correctly

(see results section for discussion of errors emevad in previous recalibrations).

There is a problem with the recalculation of efrothe original formulae present

in the McLean EARTHTIME sheet. This has the rethdt for some recalibrations, the

excel sheet will only produce a "'VALUE" stateméanit the recalibrated

10
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241

uncertainty/error (caused by the formula attemptindivide by zero). As a result, the
uncertainty/error for many recalibrations cannotbmputed (an additional problem is
the lack of J-value data in most analyses). Toawee this, for analyses where the new
error cannot be directly computed, | have multgblilee original error by the % change
output factor; error calculated by this methodsirewn in red (normally calculated error
values are shown in black). Comparison to nornedlgulated error values show that
this method produces comparable results suchhbataw stated error values are not

significantly different from what would be calcutatif J-values (etc) were known.

There are two tabs of recalibrations. The firgbgled "Kuiper et al 2008",
recalibrates all the dates to the Kuiper et alO®@CT standard, coupled with the Min
et al. (2000) decay constant. Dates from this faistare plotted on the stratigraphic chart
(Table S1). The second tab, labeled "Renne etHl'20ecalibrates all dates to the
standard and decay constant pairing of Renne €@l1). This second set of
recalibrations is provided for comparison. Bothealof recalibrations have the same

formatting for ease of comparison.

Stratigraphic chart (Table S1)

Construction of the chart is complex and depemasiumany different
stratigraphic methods. Here | explain the undegdydefinitions which provide the base

framework for the chart, and highlight some of igsies surrounding its construction.

11
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263

Definitions: stage and substages, magnetostratigraphy, and

ammonite biostratigraphy

Here | follow The Geological Time Scale 2012 (GU$2; Gradstein et al., 2012)
for definitions of stage and substage boundarieg(@nd Hinnov, 2012),
magnetostratigraphic boundaries (Ogg, 2012), anda@mte biostratigraphy (Ogg and
Hinnov, 2012). Although more recent revisions adt definitions are available,
GTS2012 integrates all these defined units witlobstratigraphic dates which use the
“%Ar /*°Ar standard and decay constant pairing of Kuipeil.e©2008) and Min et al.
(2000), which are used here. A second magnetagtaatiic column is also offered
containing some revised chron boundaries and iesludany of the very short duration
cryptochrons that have not yet been officially igrmsed, but are often named in
magnetostratigraphic analyses (e.g. Lerbekmo aathBn, 2002). Individual definitions
and discussion (where appropriate) can be fourideipopup notes in the respective

parts of the chart.

In some places | have been forced to provide gpcomise in stratigraphic
placement, generally where a magnetostratigrafgserdon does not match, say, the
ammonite zonation (e.g. age of the Dorothy benéanithe Drumheller Member,
Horseshoe Canyon Formation, Alberta). In such ¢dasrsboxes provide explanation of

the problem, and references.
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Positioning of geological units and dinosaur taxa

The stratigraphic ranges of geological units arss$il taxa are plotted as a solid
bordered white cell with the lower and upper bosdepresenting the lower and upper
contacts of the geological unit, or first and ldstumented taxon occurrences
(respectively). If stratigraphic position is noffsziently documented, the possible or
likely stratigraphic range is illustrated as a lacrow. A combination of a solid cell and
block arrow may be used if a taxon comprises squaeimens for which stratigraphic
position is precisely known (depicted by the sakdl) and some specimens for which
stratigraphic position is unknown (block arrows3riBds of non-material time (lacunae)
are represented by blank spaces. A graded bloolasrused for units which may
continue for a long time below the period of insr@ypically used for thick marine

shales).

Sequence Stratigraphy and lithostratigraphy

Some features of typical lithostratigraphic umits not possible to properly depict
on the stratigraphic chart format. In the Westeerior, many terrestrial packages form
clastic wedges thinning basinwardly. | have atteadb represent this in the chart where
possible, although for the most part depictedigiia@bhic sections are based on single
well-sampled sections, cores, or geographic aerabsso the wedge-shaped overall

geometry might not be visible.
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Limitation of scope & future versions

There are some limitations of scope for this ahitiersion of the correlation chart.

Stratigraphic age is currently mostly limited tats of Santonian age (86.3 Ma)
up to the K-Pg boundary (66.0 Ma). There are adgoeptions (e.g. Moreno Hill Fm,
NM; Straight Cliffs Fm, UT) which are included besa they have yielded important

specimens, or provide stratigraphic context forrlyieg units.

Geological units featured in the correlation claaet currently limited to those for
which dinosaurian material has been collected, lichvprovide contextual information
for surrounding units (e.g. intertonguing marinésiwith biostratigraphically

informative fauna; overlying or underlying unitstivchronostratigraphic marker beds).

Dinosaurian fossils are limited to NeoceratopS&ropoda, and Hadrosauridae

as these are the most abundant and biostratigedghicformative taxa.

Future versions of the chart are intended to ekstratigraphic range down to the
Jurassic-Cretaceous boundary (eventually). Howelermplans for the first expansion
concern inclusion of more Late Cretaceous formatioom North America, and also
similarly aged deposits in Asia. Initial work ongading faunal coverage has already

begun concerning the addition of all remaining geuar taxa (including birds),

14
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crocodilians, and mammals, with the intent of euaty incorporating all useful taxa if

possible (although coauthors will be sought fos)thi

Institutional abbreviations

A list of institutional abbreviations used in tbarrelation chart are provided in a

separate tab of the correlation chart excel siesil¢ S1) labeled "repository codes".

Taxa display format- phylogenies and lineages

It is not the intention of this project to makgreficant comment on phylogenies
per se. However, precise stratigraphic placement of f@eenits testing of speciation
hypotheses (see discussion) and so the arrangemtaxa on the chart should reflect up-
to-date phylogenies or other hypotheses of desbretttis current version, this only
affects Ceratopsidae and Hadrosauridae. For caid&he general arrangement follows
the chasmosaurine phylogeny from Fowler (2016),fandentrosaurines | follow the
phylogeny of Evans and Ryan (2015). For hadrosayitie general arrangement of
hadrosaurines follows Freedman Fowler and Horr@tg®, and lambeosaurines follows
Evans and Reisz (2007). An important differencdlie arrangement of taxa in the strat
chart is that unless they are contemporaneous ar@xarranged as lineages of

stratigraphically separated "species".
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Magnetostratigraphy

In magnetostratigraphic analysis, if two stragr@ally adjacent sample points
yield opposite polarities (i.e. they are recognlisas different chrons), then it is
convention to draw the chron boundary stratigraghidalfway between the two points.
However an issue arises when these lower and apeple points are separated by a
sandstone from which it is difficult or impossilieextract a magnetostratigraphic signal.
In terrestrial floodplain deposition (typical ofgtlunits studied in this work), the bases of
depositional sequences are characterized by aceusfanon-deposition or erosion,
overlain by a low accommodation systems tract,cigiby comprising an amalgamated
channel sandstone. The combination of the depasitimatus at the base of the
sandstone, and the sandstone itself, means thatrtteey be a considerable time gap (up
to millions of years) between the last sampledZwriimmediately below the sandstone,
and the first sampled horizon immediately abovestiredstone. If opposite polarities are
recorded for the two sampled horizons either sfdbeunsampled sandstone, then the
chron boundary would be drawn halfway, within taaedstone, whereas it is more likely
to occur at the base of the sandstone, as thieéseathe hiatus occurs. This can have the
effect of making a unit appear older or youngenthaeally is. For example, the
mudstone immediately beneath the Apex sandstorsal(bait of the upper Hell Creek
Formation, Montana; Hartman et al., 2014) is ohmairpolarity, assigned to C30n,
whereas the mudstone immediately above the Apeds$ame is of reversed polarity
(assigned to C29r; LeCain et al., 2014). The C3Qafr®oundary is therefore drawn

within the Apex Sandstone, whereas it is more jikkat it occurs at the hiatus at the

16

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.2554v1 | CC BY 4.0 Open Access | rec: 25 Oct 2016, publ:



354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

base of the sandstone. A more significant casesawsth the contact between the
Laramie Formation and overlying D1 sequence inreé@olorado: here, because of the
halfway convention, the uppermost part of the Laeaisidrawn as being within the
lowermost C31r zone (Hicks et al., 2003), wherea®ality, all magnetostratigraphic
samples from the Laramie are normal, and it is @ibbpentirely C31n. These are just
two examples, and more are highlighted as notédseichart. So long as the reader is
careful and remains cautious of this issue, thestakén correlation and / or artificial age

extension can be avoided.

Radiometric dating

This analysis reports nearly 200 radiometric défedble S2), most of which are
“%Ar / 3%Ar dates which have been recalibrated to the starmated decay constant pairing
of Kuiper et al. (2008), and Min et al. (2000)islinot my intention to provide a thorough
review of all radiometric dating methods (see Vi#eve, 2004), nor is this my personal
research specialisation. However, given the latgeber of*°Ar / **Ar dates used here,
and given discrepancies in past recalibrationssd g cursory overview to the method.

This text is also included (and expanded) in trertcitself (Table S1).

U-Pb and K-Ar

17
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Most radiometric dates reported for Upper Cretasamits use either U-Pb, K-Ar,
or *°Ar / 3°Ar dating methods. U-Pb and K-Ar are primary datingthods, which directly
determine the age of a sample and do not requiedilbeation (unless decay constants
change, which is rare); whereas relative or seayrmui@thods (such d8Ar / *°Ar dating)
require use of a monitor mineral of known or presdrage ("standard"). It is the recent
changes to the recognized age of these standaids hds been the cause of changing

4OAr / %%Ar dates.

U-Pb dating actually analyses two decay sefféd flecay to®°’Pb, and*®U
decay to?Pb), such that there are two independent meastieggeothe overlap of
which is the concordant age of the sample (Ville@e2004). Recent improvements in
analytical techniques (High-Resolution—SecondaryMass Spectrometry: SHRIMP)
have brought greater precision and accuracy to d&@ing and it remains one of the best
methodologies currently available (Villeneuve, 2D0he decay constant for U-Pb
analysis is well established (Steiger and Jae®a17)1 and known to better than 0.07%
(Villeneuve, 2004). It is noted however (Villeney2804) that uncertainty in the U-Pb
decay constant is not typically included in citedhf ages; this is not an issue when
comparing among U-Pb dates, but should be propeelyded when comparing (say) U-

Pb to*°Ar / *°Ar dates.

K-Ar dating is an older method of radiometric datthat was commonplace up

until the end of the 1980's when it was essentiagpfaced by the more precise and

accuraté'®Ar / 3°Ar method (Villeneuve, 2004). K-Ar had a range ehbfits, including a
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large number of possible datable minerals (dueeéacommon occurrence of potassium
in many rock-forming minerals), but among its maingwbacks was a relative lack of
precision, largely due to the requirement to rua sgparate analyses per sample for K
and*’Ar. As such, analytical precision was never bettan 0.5%, and with the
development of new technologies K-Ar dating waskjyireplaced by°Ar / 3°Ar in the
early 1990's (Villeneuve, 2004). Even so, some Kdates are still the only dates
available for a given unit, and so are includethmchart. K-Ar dates typically have error
in the region of 1-2 m.y for Upper Cretaceous yrstsare useful indicators as to a

general age range for a unit, but not for prectseetation.

“Oar [ 3°Ar

Detailed reviews of°Ar / **Ar dating have been published elsewhere (e.g.
McDougall & Harrison, 1999). Notes given here arethe purpose of aiding the reader
in understanding the recalculation of radiometetes reported in this work, hdfAr /
39Ar dates are affected by changing standards araydmmstants, and comparability of

radiometric dates recovered by different methods {8Ar / *°Ar vs U-Pb).

Standards (neutron fluence monitor)

As “°Ar / *Ar dating is a relative dating method, every unkna&mple needs to
be analysed alongside a sample of known age: dathnPrimary standards are minerals
from specific rock samples that have been diratalied by*°K / “°Ar dating or another

method; whereas secondary standards are bas@arar*°Ar intercalibration with a
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primary standard (Renne et al., 1998). The follalist includes (but is not limited to)
some of the more popular standards that have tsshhistorically (see McDougall &

Harrison, 1999, for a more complete list):

MMhb-1 McClure Mountain hornblende, primary startiar420 Ma

GA-1550 Biotite, monazite, NSW, Australia, primatandard: ~98 Ma

TCR Taylor Creek Rhyolite (or sanidine, TCs), setary standard: ~28 Ma

FCT Fish Canyon Tuff (or sandine, FCs), secondtagdard: ~28 Ma

ACR Alder Creek Rhyolite (or sanidine, ACs), secarydor tertiary standard:
~1 Ma

Standards are chosen depending on availabilitysaould be of comparable age
to the unknown sample (Renne et al., 1998). Hdncd,ate Cretaceous deposits, usually
the secondary standards TCR or FCT have been typachlly themselves being
calibrated against a primary standard (historicalg MMhb-1 is commonly used,
although this depends on the preference of thécp&at laboratory). Many historically
popular standards are no longer used as repedilkdhtian studies have found the
original sample to give inconsistent dates; fomeple, Baksi et al. (1996) found the
widely used MMhb-1 primary standard to be inhomagesn making its use as a standard
no longer tenable. Further, intercalibration stadiave continually honed and refined the
ages of standards (especially the more widely ssedndary standards), with the result
that radiometric dates published years apart guiedily not precisely comparable

without recalibration.
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For“°Ar / *°Ar analysis, a significant issue concerns the clranage of the Fish
Canyon Tuff (FCT: the relative standard used fostf@Ar / *°Ar analyses of Cretaceous
rocks), and to a lesser extent, the associated/derestantsi3: p- decay of 40K to 40Ca;
andie: electron capture @+ of 40K to 40Ar; which combined are referred ta\@or

Motal; Beckinsale and Gale, 1969).

Cebula et al. (1986) first proposed an age of2K1a for the Fish Canyon Tuff.
This was quickly refined to 27.84 Ma by Samson Alekander (1987), which remained
the standard used B3Ar / *°Ar analyses published up to the mid 1990’s (e.qyd®® et
al., 1993). Renne et al. (1994) revised the FCI7t@5 Ma (although this new figure was
not commonly used at the time). The next major tgdeas that of Renne et al. (1998)
whereupon the FCT was revised to 28.02 Ma, which widely accepted up to 2008
when Kuiper et al. published the current stand&@B®01 Ma. This also brougfftar /
%9Ar dates into line with U-Pb dates, unifying thése major chronostratigraphic dating
systems (Kuiper et al., 2008). Two further revisidrave been offered by Renne et al. in
2010 and 2011, of 28.305 Ma, and 28.294 Ma (respdg). Rivera et al. (2011), Meyers
et al. (2012), Singer et al. (2012), and Sagemah €2014) all found independent
support for Kuiper et al. (2008)'s 28.201 Ma agetlie Fish Canyon Sanidine (and
therefore rejected Renne et al.'s (2010) furthaseel 28.305 Ma standard as too old).
These three analyses also used three metitds €°Ar, U-Pb, cyclostratigraphy) to

reach consensus, confirming alignment of U-Pb“8ad/ *°Ar dates.
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When applied to Late Cretaceous units, a ~0.2 difference between the age of
two different standards corresponds to ~0.4 - Qb difference in thé%Ar / *°Ar age of
the analysed sample, and this is exacerbated gtdmelards used were further apart. For
example, using the 27.84 standard of Samson andAdker (1987), Rogers et al., 1993
published ari®Ar / *°Ar date of 74.076 Ma for a bentonite at the toghef Two Medicine
Formation, MT. This becomes 75.038 Ma if usinge¢heent Kuiper et al. (2008)
standard, and 75.271 Ma under the less commontyReane et al. (2011) standard.
This difference of 1.28 m.y. between 1987 and 2§&8@8dards highlights why it is
important to know which standards were used foarzalysis, especially since only a few

hundred thousand years make critical differencgmlaobiological interpretation.

Decay constants

The*Ar / **Ar method depends upon tRedecay of K to “°Ca ), and
electron capture g+ of *°K to “°Ar (L&), which combined are referred toXEor Atotal
(Beckinsale & Gale, 1969). The value of the deaaystan. T (and its components)
have historically been subject to fewer changes tha standards listed above, but have
come under increased scrutiny since the late 199@salso notable that different values
of AT have been used historically by geochronologistspgared to physicists and
chemists (further details and a history of decaystant values can be found in the

corresponding note within the chart).

Recalibration & current standards
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In order to compar&Ar / *°Ar dates, it is essential to ensure that the same
standards and decay constants were used in theilatzon, which may require
recalibration. If the standards used are diffe(Bartexample, if an old analysis used the
TCR standard, and a more recent one used the BH)jt will be necessary to find
what the equivalent FCT value was to the TCR usdte original analysis. This is
usually achieved by referencing either the origmablication of the standard, or the
relevant published intercalibration analysis (&gnne et al. 1994). It is critical to
understand that recalculation cannot simply begperéd by entering the original
standard used (e.g. TCR = 28.32 Ma) into the egagtiovided on the recalculation
sheet from McLean and EARTHTIME (or the adaptecagdsheet used here); the
equivalent FCT value is what is entered as the didaranly uses FCT. This might seem
obvious, but this error was the cause of numerassaiculations in Roberts et al. (2013;

see later).

The decay constant absolute value has only a sffietit on the absolute age of a

sample, but decay constants contribute a greateuiainto the error of a radiometric date.

There are two currently prominently used pairiofystandard and decay constant:
Kuiper et al. (2008) combined an FCT standard d@8@01 +/-0.023 Ma, with the
decay constant of Min et al. (200Q); = 5.463 +/- 0.214 E-10/y. Renne et al. (2011) use
an FCT standard age of 28.294 +/- 0.036 Ma, with af 5.5305 E-10/y. The dates used
here in the correlation chart (Table S1) are catdxn to the Kuiper et al. (2008) standard,

paired with the Min et al. (2000) decay constamisTs not a judgment on the reliability
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of one method over another; rather it is out ofvesnence, since the various ammonite
biozones and magnetochrons detailed in The Gea@bgime Scale 2012 (Gradstein et
al., 2012; upon which this chart is based) useiliper et al. (2008) FCT standard, and

Min et al. (2000) decay constant.

Choice of mineral

Direct comparisons betweéfAr / *°Ar dates require not only the same standard
and decay constant pairing, but also that the stbjeeral is the same. Although it is
theoretically possible that a date obtained froatita crystals might be comparable with
one from sanidine, in practice the difference wsakre temperature (the temperature at
which the mineral no longer loses any productsadfaactive decay; Villeneuve, 2004)
and other factors such as recolil effects (Obrampi993) mean that (for example)
biotite dates are typically ~0.3% older than samediates (e.g. see Rogers et al., 1993).
The current "gold standard" mineral f8Ar / *°Ar dating is sanidine, and most modern
analyses use this mineral exclusively (where ptesihowever plagioclase and biotite
dates are quite common in literature from the 199Gecalibrate these non-sanidine
dates, and they are comparable to each otherititeldates can be directly compared
with other biotite dates), but caution is advisdtew comparing non-sanidine dates with

those of sanidine (although this is sometimes uidlade).

Reporting of uncertainty / error
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Reporting of error associated wittir / *°Ar derived ages is not standardized and
varies in the inclusiveness of sources of erra stiatistical method used to calculate

error, the type of error, and in the amount of el information provided.

Sources of error ifPAr / **Ar analyses include analytical error (e.g. J-value)
uncertainty in the standard used (e.g. age of igie Ganyon Tuff, FCTis 28.201 +/- 0.23
Ma at Is; Kuiper et al., 2008), uncertainty in the decagstant (e.git of 5.463 +/-

0.214 E-10/y; Min et al., 2000), and geologicalqasses that may lead to post-
crystallization alteration of isotope ratios (Villeuve, 2004). Most older publications do
not explicitly state what is included in the regarerror, but newer studies (e.g. Sprain et

al., 2014) report both analytical and systematiorer

The statistical method used to report error isstatdardized, and is typically
given in one of three forms; some authors repant 2 standard deviations){ Standard
Error is also commonly reported (especially for plagion means); finally, some authors
report 95% confidence intervals for the populatie®an, which is roughly equivalent to

26 (=95.45% confidence interval).

It is common for published radiometric dates tklassociated details of the
analysis, by either the date being given as a peram., or simply the omission of
analytical details. Consequently, it is sometimeslear as to whether (for example) a
stated error of +/- 0.15 Ma refers te, Po, Standard Error, or whether it includes

analytical an systematic error.
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As such, it is not possible to make the error =test between each recalibration
(although the effects are relatively minor). Whpossible, | have reported recalibrated
error to b analytical error, but generally | have simply takke original reported error
and processed it through the recalibration spresatshoting wherever possible all
possible details and any issues that may arisecDoomparison of error between dates

(both recalibrated and unrecalibrated) should foeeebe approached with caution.

Agreement of “°Ar / *Ar dateswith U-Pb dates

“%Ar / 3°Ar dates have historically tended to be youngen tHePb dates by about
1% (Schoene et al., 2006), equating to ~750 kffergince in a 75 m.y. old sample (i.e.
the approximate age of the units studied here)siBlesexplanations include longer
zircon magma residence times prior to an eruptititefeuve, 2004), error in tHEK
decay constant (Schmitz & Bowring, 2001), or irdbdratory bias and geological
complexities (Kuiper et al., 2008). Recent revisiof standards and decay constants for
“%Ar / %%Ar dating have closed the gap to within ~0.3% (Kuipt al., 2008; Renne et al.,
2011). This led Kuiper et al. (2008) to suggest thar / 3°Ar dating has improved

"absolute uncertainty from ~2.5% to 0.25%"

Other general comments

The number of decimal places for reported datesearor are left in their original

published form where possible.
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In previous publications, a large number of racétnio dates are reported as pers.
comm. or featured only in abstracts. Such referehggcally lack any analytical data
and so original standards (etc) must be assumestitmasthe year in which the analysis
was (likely) conducted, and any details of the ¢gpstandards used by the scientist and
laboratory which carried out the analysis (if kngwae individual notes for details of

sleuthing).

Results

An early version of this chart was presented bwlEp(2006), small parts of
which were published elsewhere without my knowleddes prior version was not
finalized, contains taxonomic misplots, and is blase unrecalibrated radiometric dates
and stratigraphic boundary definitions from thevimas version of A Geologic Time
Scale (Gradstein et al., 2004; as opposed to Gaiadst al., 2012). As such, the previous
data presented in Fowler (2006) and elsewhere dhlmmudisregarded and replaced by

this new version.

The results of this study are presented as sepdoguments in the Supporting
Information; the stratigraphic chart (Table S1)] &éme recalibration sheet (Table S2).
These documents contain a large amount of infoonati the various pop up notes, most

of which is not repeated here.
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Notes on recalibrations by other authors

Various analyses published by J. D. Obradovich (~1990 until at

least 2002)

Recalibration of radiometric dates from analysgd.lD. Obradovich (USGS,
Colorado) conducted in the 1990's (and possiblly 2800's) requires special caution
due to the particular methodology of Obradovichimythis time, which differs slightly
from what might be expected. Obradovich typicabgsithe TCR as the standard for his
analysis, but the equivalent age of the FCT (reglior recalibration) is not typical.

Indication of this is noted by Hicks et al. (209243) who state:

"The TCR (Duffield & Dalrymple, 1990) has been digxclusively since 1990 by
one of us (Obradovich) with an assigned age of2B18 normalized to an age of 520.4
Ma for MMhb-1 (Samson & Alexander, 1987). This aifers from that of 27.92 Ma
assigned by Sarna-Woijcicki and Pringle (1992). din@ice of 28.32 Ma was entirely
pragmatic because this monitor age provided thedmesparison with ages delivered by
Obradovich and Cobban (1975). In an intercalibraitudy [...] Renne et al. (1998)
obtained ages of 28.34 Ma for TCR and 28.02 M&fT when calibrated against
GA1550 biotite as their primary standard with ap @§98.79 Ma. This value of 28.02

agrees quite well with [..] 28.03 Ma obtained thgbucalibration based on the
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astronomical time scale (Renne et al., 1994). @rb#sis of unpublished data, one of us
(Obradovich) obtained an age of 28.03 Ma for th&@ IEC] of W, McIntosh (Geoscience
Dept. NM Institute Mining * Technology, Socorroglibrated against an age of 28.32

Ma for TCR."

However, Obradovich-published analyses from tinie tdo not exclusively use
the TCR at 28.32 Ma, as lIzzett and Obradovich (198te that they use FCT sanidine at
27.55 Ma, and TCR sanidine at 27.92 Ma, both neddtts MMhb-1 at 513.9 Ma (in
conjunction withAT = 5.543 E-10/y). They note that the 513.9 Ma aigelMhb-1
differs from the then standardized age of 520.4(8&mson & Alexander, 1987) as the
former age was calibrated in the lab where theirezu samples were analysed (Lanphere

et al., 1990; Dalrymple et al., 1993).

This creates a problem when recalibrafitfy / **Ar ages that used TCR as the
fluence monitor (standard). The "official" TCR agfe27.92 Ma has a corresponding
FCT age of 27.84 Ma (Samson & Alexander, 1987; Restral., 1998). However, since
most analyses by Obradovich use TCR at 28.32 Ma, e question remains as to what
number to use for the equivalent FCT when perfogmacalibrations. Renne et al. (1998)
provide an intercalibration factor for FCT : TCRIof 1.00112 +/- 0.0010, which simply
calculated is FCT =28.32/1.100112 = 28.006 Mas agrees well with the calculated
FCT equivalent of 28.03 Ma (Hicks et al., 2002;\a9d0bradovich, 2002) and a value of
28.02 Ma of Renne et al. (1998). In the Geologicale Scale 2012 (Gradstein et al.,

2012), Schmitz (2012) recalibrates dates from Odrith (1993), and Hicks et al. (1995,
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1999) using a legacy FCT age of 28.00 Ma (not dtddet retrocalculated by DF).
Sageman et al. (2014, cited as Siewert et al.téag) by Schmitz, 2012) recalibrate
Obradovich's older dates using a legacy FCT a@8 &2 Ma (thereby agreeing with

Renne et al., 1998).

In this analysis, when recalibrating ®Ar / *°Ar date that was calculated by
Obradovich using a TCR = 28.32, | use an FCT vafu#8.03, as this is the equivalent
FCT explicitly stated by Obradovich (2002). Thisigery close value to 28.02 (Renne et
al., 1998; where the TCR equivalent is 28.34 +16Ma; I, ignoring decay error) so
confusion between the two should be avoided, ajhdbe difference between ages
calculated using 28.03 or 28.02 Ma standards woaittespond to only 0.02 to 0.04 m.y.

for ages in the Late Cretaceous (100.5 - 66 Ma; &¢gtinnov, 2012)

Kuiper et al. (2008)

In their presentation of the new standard andyleoastant pairing for the FCT,
Kuiper et al. (2008) recalibrate some radiometdated which are of general interest. One
of these dates (the K-Pg boundary dates of Swisthadr, 1993) is used in my current
stratigraphic chart, but | found that my own reoadtion (66.06 Ma) did not agree with
that presented by Kuiper et al. (2008; 65.99 Mayotigh retrocalculation, | determined
that Kuiper et al. (2008) had not accounted forftot that Swisher et al. (1993) had used
the Steiger and Jaeger (1977) decay constant; Katg. (2008) had only accounted for

change in the standards used (thereby assumingwhaher et al., 1993, had used the
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decay constant of Min et al., 2000, which was tjeianpossible). The difference
between the two dates is only 0.07 Ma, but | feat it is worth highlighting in case this

discrepancy is of greater significance to otherksor

Schmitz (2012)

As mentioned above, recalibrations of Obradoviates (Obradovich, 1993;
Hicks et al., 1995; 1999) that use the 28.32 TGRdard are recalibrated using an FCT
equivalent of 28.00 by Schmitz (2012). Schmitztalibrated dates form the basis of the
spline fits (etc) of the Geological Time Scale oh@stein et al. (2012), and so any slight
changes might be important. The correct date tdarshe FCT equivalent would be

either 28.03 Ma (used by me; see above note), 6228a (based on Renne et al., 1994).

Roberts et al. (2013)

Roberts et al. (2013) present a table of recabldreadiometric dates from a
selection of important dinosaur-bearing formatiohthe North American Western
Interior. Unfortunately, 11 out of 18 dates areoimectly recalibrated, with different
kinds of errors in different recalibrations, prothgedates that are incorrect by up to a

million years.
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Roberts et al. (2013) recalibrate the dates fedtdith River Formation
(originally published by Goodwin and Deino, 198%wever they input an incorrect
original (legacy) FCT standard of 28.02 Ma (i.enfrRenne et al., 1998, published after
the original 1989 analysis). For the recalibratiofe correct, the legacy standard must
be the value of FCT that was equivalent to the MMt 420.4 Ma, which is FCT =
27.84 Ma (Samson & Alexander, 1987; see Renne,et398). As it stands, the Roberts
et al. (2013) recalibrations for the Judith Riverration are incorrect by nearly half a
million years. For example, the sample 84MG8-3-4 waginally published as 78.2 Ma
(Goodwin and Deino, 1989), Roberts et al. (2018alibrate it as 78.71 Ma, whereas the
correct recalibration (see Table S1 and S2) isZZMa, a difference of half a million

years, which can have serious implications foreation.

It is likely that the same error is made for treaBpaw, Dinosaur Park, and
Oldman Formations as Roberts et al. (2013) alsdahes®enne et al. (1998) FCT date of
28.02 as their legacy FCT for dates originally jghed by Eberth and Hamblin (1993)

and Eberth and Deino (1992); i.e. before the 13g&pwas published.

When recalibrating®Ar / *°Ar dates for the Fruitland and Kirtland Formations,
New Mexico (originally published by Fassett & S&in1997), Roberts et al. (2013)
input the incorrect original (legacy) decay cons{ahand standard, producing
recalibrated dates that are incorrect by nearlyliiomyears. First, the legadyused by
Roberts et al. (2013) is 4.962E-10/y, which waspneably copied from the bottom of

the chart on p. 243 of Fassett & Steiner (1997 gmlit is clearly referred to as the value
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of AP (ie. the probability off- decay of 40K to 40Ca), and which is printed betber
valueie (0.581 E-10/y; probability of electron captureBerof 40Kto 40Ar). In this case,
the correch. value to use for recalibration is 5.543 E-10/\e{§r & Jaeger, 1977),
which is the totalXT) of Ap plusie. Second, Roberts et al. (2013) correctly statettiea
legacy standard used by Fassett & Steiner (199 7)u@nce monitoring was the TCR at
28.32 Ma; however Roberts et al. (2013) then usentimber directly for their
recalibration to the new FCT standard (28.201; Kuig al., 2008). This is incorrect as
recalculation must use the same standard minetplK€T) for both legacy and
recalibrated dates. For the recalculation to besctrthe legacy standard must therefore
be the value of FCT that was equivalent to the BECR®8.32 at the time of the 1997
analysis, which is either FCT = 27.84 Ma or ~28$Ee Table S1; above note on
Obradovich), both of which produce recalibratedsage million years older than the
dates presented by Roberts et al. (2013). Thisatiisation is all the more surprising as
the newly recalibrated dates of Roberts et al. 2@te actually younger than the original
dates, which should have been obviously incorre¢ha standards f8fAr / *°Ar dating
have been getting progressively older, and seeallibrations should produce older

dates.

The recalibrated dates of Roberts et al. (2013 weplicated (therefore

confirmed) by rerunning the legacy values throughrecalibration spreadsheet provided

by the Earth-Time institute.

33

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.2554v1 | CC BY 4.0 Open Access | rec: 25 Oct 2016, publ:



735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

Roberts et al. (2013) correctly recalibrated a@yen out of eighteefiAr / *°Ar
dates, notably five from the Kaiparowits Formatithah, and two from the Two
Medicine Formation, Montana. All other dates puidid in their recalibration chart are

incorrect and should be discarded.

Discussion

Here | discuss some of the implications of thiatggraphic reassessment. It is
beyond the scope of this short work to summarieartiplications of everything in the
stratigraphic chart, so here | will highlight soofethe important changes which might

affect geological or paleontological interpretation

Geology

Judith River Formation -further subdivision required

The Judith River Formation is a Middle to Uppen@anian terrestrial unit
exposed across north and central Montana. It haxs steidied since the mid-19th century,
but its upper and lower contacts are still not wieltumented nor understood, although
some details are offered for specific sections bpdwin & Deino (1989), Rogers (1993),

and Rogers et al. (2016).
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The Judith River Formation in the type area hasmtdy been formally
subdivided into a series of members (Rogers e2@1.6), notably a sand-dominated basal
McClelland Ferry Member and overlying mud-dominat&hl Ridge Member,
distinguished by a distinctive "kick" in subsurfg8P logs. This "kick" is named the Mid
Judith Discontinuity by Rogers et al. (2016) anthisught to be related to the maximum
regression of the Claggett seaway. However, demt@aming of these members it is
not clear how the type section of the Judith R@mation correlates with exposures of
the Judith River Formation along the US-Canadadrifdom which most of the
diagnostic vertebrate fossils have been recovémerbntrast to the type area, exposures
of the Judith River Formation close to the US-Canlaorder are already recognized as
direct lithostratigraphic equivalents to the DinasRark (albeit very limited), Oldman,
and Foremost Formations (Belly River Group; Ebe20)5) of southern Alberta and

Saskatchewan, and can be readily identified as isuchtcrop.

Rogers et al. (2016) state that the distinctivi-leg "kick" is detectable in the
subsurface near Havre (north-central Montana) atwdsouthern Canada, but there is
very little discussion as to which of the well-aefd lithostratigraphic boundaries within
the Oldman and Dinosaur Park Formations is equivatethe "kick". Rogers et al. (2016)
state that the discontinuity occurs higher in sgcthan the exposures in Kennedy Coulee,
near Rudyard, Montana, which comprise direct edenta of the Foremost Formation
through to Unit 1 of the Oldman Formation. As sutie, "kick" must therefore be

stratigraphically higher than Unit 1 of the Oldnmfaarmation, possibly the top of the
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sandy zone of the overlying Dinosaur Park Formatitiverth, 2005; see Table S1). In
the only statement suggesting possible correlaRagers et al. (2016; p. 126) state that
"the Oldman Formation [is an ...] approximate ageiealent to the McClelland Ferry
Member [... and that ...] the overlying DinosaurkPlaormation [is an ...] approximate
age equivalent to the Coal Ridge Member". Howenagtiometric dates from
immediately below the discontinuity (76.24 and 76Ma; Rogers et al., 2016) are
younger than a radiometric date from the middlthefDinosaur Park Fm (76.39 Ma; see
individual entry in Table S1). This would make theggested correlation therefore
unlikely. However, | suspect that accuracy or inpatibility of the radiometric dates
may be the cause of this issue; as such it islddly to be resolved if samples from
both the Judith River Formation and Canadian wari¢sanalysed by the same laboratory

under identical conditions.

In summary, lack of a defined correlation or |ghatigraphic definition for the
Mid Judith Continuity in US-Canada border exposwiethe Judith River Formation
mean that the newly defined members are therefdimibed use for surficial regional
correlation. Furthermore, as the McLelland Ferrymder is equivalent to the combined
Foremost, Units 1-3 of the Oldman Formation, arabpbly part of the Dinosaur Park
Formation, it offers reduced stratigraphic resolatirom merely referring to these
equivalent units for Judith River Formation expesualong the US-Canada border
sections where correlations are readily appareme. O these limitations | cannot
recommend use of the newly defined members outditlee type area. Instead, here |

follow previous workers in referring to the lithcestigraphically correlative Foremost,
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Oldman, and Dinosaur Park Formations, as definelald®yrth (2005), which offer much
greater stratigraphic resolution and whose strapigic correlations are well understood

and defined.

A final issue which remains unresolved by any entistratigraphic work or
revision is that as a result of lack of formal swizdon, the base of the Judith River
Formation is strongly diachronous, being ~ 80 M#&himarea north of the town of
Rudyard (where it is the base of the Foremost Fobom&quivalent), but perhaps as
young as 77.5 Ma 200km to the east near the toviatta (base of the upper Oldman
Formation equivalent). This is not the same as"tdiachronaeity which occurs at the
base of (say) a prograding deltaic deposit (egFibx Hills Formation), but rather it is
mostly an artifact of the lack of subdivision. Td@ution to this issue would be to follow
Canadian stratigraphic definition in raising thdiflu River Formation to group status,
and subdivide it into constituent formations whieve direct correlates in Canada.
Formal subdivision of the Judith River Formatiorbes/ond the scope of this work.
However, here | informally refer to the lower-Oldm@derronton Sandstone and Unit 1,
Eberth, 2005) equivalent of the Judith River Foioraas the "Rudyard beds", and the
upper Oldman Formation (Units 2-3; Eberth, 2003)iegjent as the "Malta beds" in
reference to the geographic locations where thageplar parts of section are well

exposed. It is a long term goal to formalize thesmes.

Age
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A number of radiometric dates help constrain tndith River Fm, and are
particularly useful in dating the contact betwedes Foremost and Oldman Fm
equivalents near the town of Rudyard in northermtdoa (see individual entries; Table
S1). New radiometric dates from the type area ghbli by Rogers et al. (2016) seem to
raise conflicts with previous correlations basedouonding surfaces (Rogers, 1994,

1998).

Age of the Aguja Formation, Texas

The Aguja Formation of southwest Texas is typicatinsidered as an Upper
Campanian or even Maastrichtian aged unit (e.ggtioh et al., 2010; Sankey, 2010)
based on interpretation of low resolution magreatigraphy (Sankey and Gose, 2001),
phreatomagmatic volcanism (Longrich et al., 2080 chemostratigraphic correlation
(Nordt et al., 2003). However, detailed review afrmreliable published stratigraphic
evidence is not supportive of this view. Ammongenains from the marine tongue which
separates the Lower and Upper Shale Members iedicat the Lower Shale Member
can be no younger than the Early Campaiarulites mclearni zone (Rowe et al., 1992;
Lehman and Tomlinson, 2004). A recently publishestlometric date of 69.0 Ma
recovered from the overlying Javelina Formatior) s6above the formational contact
(Lehman et al., 2006) demonstrates that the UppaleSviember of the Aguja Formation
cannot be any younger than this (centra Sankey et al., 2010). Furthermore, the Upper
Shale Member of the Aguja Formation contains ploragmatic volcanic deposits dated

at 76.9 +/- 1.2 Ma (Befus et al., 2008) and 72:61+3 Ma (Breyer et al., 2007), which by
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847 the nature of their formational mechanism must Haaen emplaced after deposition of
848 the Upper Shale Member itself, meaning that it catwe any younger than 76.9 Ma +/-
849 1.2 Ma, and is probably much older (i.e. contradrach et al., 2010) based on the

850 absence of any obvious lengthy hiatus separatedtiper Shale Member from the

851 underlying Lower Campanian units. Thus it is likétat the Upper Shale Member is
852 probably Middle Campanian, and is shown as sudfabiie S1 (see included notes for a
853 more detailed account of the evidence). This rewisif the age of the Aguja Formation
854 is important as dinosaur taxa from the Upper ShEmber probably represent early,
855 more basal forms of their respective clades (dgsmosaurines), giving key insight into
856 the morphological changes and timing of lineagétsyd events (speciation, or true

857 cladogenesis), rather than being regional endepaciss (e.g. Sampson et al., 2010).

858

859 Age of the Javelina Formation, Texas

860

861 The Javelina Formation (and basal part of thelgwvey Black Peaks Formation,
862 sensu Lehman and Coulson, 2002) of southwest Treasasften been considered as

863 Upper Maastrichtian, even uppermost Maastrichtéag. Lawson, 1976; Lehman and
864 Coulson, 2002; Atchley et al., 2004), and is basedomparison of the Javelina

865 Formation dinosaur fauna with that of the Hell Graad Lance Formations (Lawson,
866 1976; Lehman, 2001). From this perspective themag perhaps surprising when

867 Lehman et al. (2006) published a U-Pb date of 69.0.9 Ma for the middle of the

868 Javelina Formation. This date plots firmly in tbeermost part of the Late Maastrichtian

869 (69.1-66.0 Ma; Ogg and Hinnov, 2012). The Jawehkm is often considered to
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represent continuous deposition up to and throbglKtPg boundary (e.g. Atchley et al.,
2004). If this were the case, then it would meat the ~90m of deposits overlying the
69 Ma datum (Lehman et al., 2006) represented they3leading up to the K-Pg
boundary, and that the ~60 m below might repre2anty. (if average rates of deposition
were assumed). This would seem to be an unuswealtyperiod of time for such a thin
unit, although not impossible. Alternatively, catesiable hiatuses (up to 2 m.y.) are
suggested to occur within the Javelina Fm (Nor@t.e2003). This would be consistent
with the findings of Fowler (2016) which proposkattthe recently named ceratopsid
dinosaurmBravoceratops (collected from the basalmost part of the Javdtmg Wick and
Lehman, 2013), is probably Upper Campanian in sigalar to the Fruitland and
Kirtland Formations of New Mexico. This is of greatportance to regional correlation

and warrants further consideration.

Thinking about taxa as lineages

One of the striking results of the accurate repigtof both geological formations
and dinosaur taxa, is that dinosaur taxa often staoked columns of short-duration
species which do not overlap stratigraphically.sTiBithe expected pattern produced by
anagenesis, the evolutionary mode whereupon lirseaigpopulations transform
morphologically through time without branching imtwltiple contemporaneous species
(cladogenesis; also technically, speciation; s&mok, 1906). This is an important
finding as it suggests that most of the morpholalgibange which we observe through

time is probably not related to the multiplicatioinspecies. If cladogenesis was the most
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893 important driver of morphological change, then wauld expect to see stratigraphic

894 overlap between different morphologies. Althougls tfoes occur, it is much more rare
895 than stratigraphically successive replacementskifithis is very interesting as it reduces
896 the likely number of genuine lineage splitting etgeto maybe only three within the best
897 studied group, chasmosaurine ceratopsids. Furtipgrost for this interpretation is that
898 many stratigraphically intermediate forms are adermediate in morphology; this is

899 best shown in chasmosaurine ceratopsids of theraastrichtian Hell Creek

900 Formation {riceratops; Scannella et al., 2014), but also in Beataceratops lineage

901 chasmosaurines of the Middle to Upper Campaniash paobablyChasmosaurus in the

902 Dinosaur Park Formation, Alberta (Fowler, 2016).

903

904 The trouble with "turnover"

905

906 Stratigraphic successions of non-overlapping gsdeave previously been

907 referred to as "turnover". Among many examples,|dfaét al. (2012) refer to the rapid
908 succession of different dinosaur species withinoBaur Provincial Park as turnover;
909 Gates et al. (2013) suggest that a change @oyposaurus notablisin the lower

910 Kaiparowits Formation, Utah, 8. monumentensis in the middle Kaiparowits Formation
911 is an example of "intergeneric [sic] faunal turno@resumably the authors mean

912 intrageneric). However, if these records are intlieaof anagenesis (i.e. non-branching
913 evolution of one form into an another) then theghtecally cannot be "turnover" by

914 definition. In one of the few publications thateatipt a definition of "turnover”, Vrba

915 (1985) defines “lineage turnover” as:
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“includes speciation, extinction and migration,adlwhich change the

composition of species in particular areas.” ([8)22

Therefore, “turnover” refers to a point where epecies disappears from the
fossil record, and is replaced by another; appbrénplying stasis followed by turnover.
The notable exclusion of anagenesis (or any syndifiymm this list suggests that it
should therefore not be considered as part of ti@nevents (Vrba, 1985, includes a
definition for "phyletic evolution”, a synonym ohagenesis, within the same paper, so
she is not using "speciation” in the general sém$eean any change in morphology).

Expanding and clarifying upon the concepts anthdens presented in Vrba
(1985), Vrba (1993) specifically notes (her Figthiat she considers the phyletic
evolution (anagenesis) of one form into anotheeasesenting neither species extinction

(of the ancestor) nor origination (of the descemdan

This may seem pedantic, but turnover is an impbdad precise concept used to
explain (for example) the replacement of a natpecges by non-native immigrants, or
the classic example of a "turnover pulse” (Vrb&@83)9where many turnover events
occur to multiple lineages simultaneously, indiecgta major immigration event. If
turnover is merely used as a synonym of anagettemisexplanatory power of the term
is lost. Anagenesis is not turnover, and the tdraukl not be used unless it can be

shown that a replacement species (or its lineagai least partly contemporaneous with
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938 the species being replaced. Admittedly, this disicusis only a short and simple
939 treatment of a complex subject; a more detailed@aiis in preparation.

940

941 North-south biogeography and extreme faunal endemism

942

943 Anagenesis also provides explanatory power chgilgnthe hypothesis of

944  extreme faunal endemism proposed for the Campaiistern Interior. It has been

945 proposed that during the Campanian, the Westeenidmtof North America was divided
946 into basin-scale faunal provinces, each with awmiguna (Sampson et al., 2010). This
947 is based primarily on the description of new geragré species of dinosaur collected
948 from the Kaiparowits Formation, Utah (e.g. Gated 8ampson, 2007; Sampson et al.,
949 2010; 2013), and the perception that the Kaipasotirmation was deposited

950 contemporaneously with other dinosaur-bearing dep¢esg. the Dinosaur Park

951 Formation, Alberta; Fruitland and Kirtland Formaisy New Mexico). However,

952 recalibration here of critical radiometric dateswh that only the lower part of the

953 Kaiparowits Formation stratigraphically overlapsiwthe fossiliferous portion of the
954 Dinosaur Park Formation (see Table S1). This iontamt as the lower Kaiparowits

955 Formation does not yield the taxa purportedly endemsouthern Utah, and fragmentary
956 specimens suggest that taxa are shared betweapybe part of the Dinosaur Park and
957 lower Kaiparowits Formations (Gates et al., 201@yler, 2016). Here | consider it more
958 likely that differences between dinosaur speciesdbin the Dinosaur Park Formation,
959 and middle Kaiparowits Formation are an artifacsapling different stratigraphic

960 levels (likely, though not necessarily an anagerigteage), rather than biogeographic
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segregation; at the least the anagenetic hypothesigins unfalsified. Similarly,
differences between the middle Kaiparowits taxd, tiose of the Fruitland and Kirtland
Formations, New Mexico, are also more parsimonipoasplained by the slight

difference in age of the units, with the Fruitleartd Kirtland being slightly younger than
the middle Kaiparowits Formation. Moreover, theemtddentification of purportedly
southerrPentaceratops-lineage chasmosaurines within the Dinosaur ParkAtberta
(Longrich, 2014; Fowler, 2016), demonstrates theg lineage was able to move between
northern and southern regions in the middle Cangpariurther falsifying the extreme

faunal endemism hypothesis.

Biostratigraphy

Cobban and Reeside (1952) used the ceratopsidalinfriceratops as an index
taxon of the latest Maastrichtian. Similarly, diaass were part of the original Land
Vertebrate Ages (LVA; Aquilian; Judithian; Edmonian; Lancian) described by Russell
(1964) before revision into North American Land Maai Ages (NALMA; Russell,
1975; Lillegraven & McKenna 1986; Cifelli et al.0@4). More recently, dinosaurs have
been used to stratigraphically correlate Maastachuinits of the Southwestern US
(Lawson, 1976; Lehman 1987, 2001) and were utillae&ullivan and Lucas (2003,
2006) in their definition of the “Kirtlandian”: aadditional LVA roughly equivalent to
the early part of the Bearpaw Shale and positiongde gap between the Judithian and

Edmontonian identified by Russell (1964; 1975).

44

Peer] Preprints | https://doi.org/10.7287 rj.preprints.2554v1 | CC BY 4.0 Open Access | rec: 25 Oct 2016, publ:



984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

The demonstration here that individual dinosaecss form stratigraphically
stacked sequences of non-overlapping taxa shouté them ideal for use as
biostratigraphic indicators. It is probably notetaggeration to claim that the single most
biostratigraphically informative skeletal elememattcan be found in the Late Cretaceous
of North America is the midline portion of the paxsor parietal border from an adult
chasmosaurine ceratopsid dinosaur. The use ofalin®ss biostratigraphic indicators
might be seen as controversial, since generallysdior taxa are known from relatively
few specimens and are arguably less abundant taammals. However, if current
hypotheses of rapid evolution are correct (e.gnidoet al., 1992; Holmes et al., 2001;
Scannella et al., 2014; Fowler, 2016), then at Isasie clades of dinosaurs would seem
ideal for biostratigraphic correlation. If we atdeto understand the stratigraphic
distribution and ontogenetic variation of dinosawedl enough, then conceivably they
may represent the most biostratigraphically infaimeastaxa that we have for terrestrial
sediments, potentially at resolutions of ~200Kal¢ss; see Table S1; Mallon et al.,
2012), superior to the resolution available usiregnmals or palynomorphs: the other

primary options in terrestrial biostratigraphy.

Conclusions

Precise stratigraphic placement of specimensdtisairto understanding
paleobiology. Horner et al. (1992) demonstrated éhaetter understanding of the mode

of evolution in dinosaurs can be achieved with fcdustratigraphic analysis. However,
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all too often in descriptions of new specimenstgiraphic and geologic data are ignored,
or only poorly described. The value of such dateesting paleobiological hypotheses is

incomparable.

Similarly, it is clear that care needs to be takésen recalibrating radiometric
dates. Although it is time consuming to intensivedarch older publications for
analytical data, a better approximation for thgioal standards can be found with
careful reading and some knowledge of past proesdiisinformation in the form of
mistakenly recalibrated dates could potentiallyatsurce of significant error in the

literature.

Future versions of the chart will include addiabstratigraphic units and taxa.
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1341 published Ar / Ar radiometric dates. These arelieed to the two current standards
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1343 within pop up notes for the respective recalibrataté(s).
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