1	
2	
3	
4	Revised geochronology, correlation, and dinosaur stratigraphic
5	ranges of the Santonian-Maastrichtian (Late Cretaceous)
6	formations of the Western Interior of North America
7	
8	
9	Denver Fowler ^{1*}
10	
11	
12	
13	¹ Dickinson Museum Center, Dickinson ND, USA
14	
15	
16	*Corresponding author
17	
18	E-mail: df9465@yahoo.co.uk

19 Abstract

\mathbf{a}	\mathbf{n}
/	()
_	v

21	Interbasinal stratigraphic correlation provides the foundation for all consequent
22	continental-scale geological and paleontological analyses. Correlation requires synthesis
23	of lithostratigraphic, biostratigraphic and geochronologic data, and must be periodically
24	updated to accord with advances in dating techniques, changing standards for radiometric
25	dates, new stratigraphic concepts, hypotheses, fossil specimens, and field data. Outdated
26	or incorrect correlation exposes geological and paleontological analyses to potential error.
27	
28	The current work presents a high-resolution stratigraphic chart for terrestrial Late
29	Cretaceous units of North America, combining published chronostratigraphic,
30	lithostratigraphic, and biostratigraphic data. 40 Ar / 39 Ar radiometric dates are newly
31	recalibrated to both current standard and decay constant pairings. Revisions to the
32	stratigraphic placement of most units are slight, but important changes are made to the
33	proposed correlations of the Aguja and Javelina Formations, Texas, and recalibration
34	corrections in particular affect the relative age positions of the Belly River Group,
35	Alberta; Judith River Formation, Montana; Kaiparowits Formation, Utah; and Fruitland
36	and Kirtland formations, New Mexico.
37	
38	The stratigraphic ranges of selected clades of dinosaur species are plotted on the
39	chronostratigraphic framework, with some clades comprising short-duration species that
40	do not overlap stratigraphically with preceding or succeeding forms. This is the expected

41	pattern that is produced by an anagenetic mode of evolution, suggesting that true
42	branching (speciation) events were rare and may have geographic significance. The
43	recent hypothesis of intracontinental latitudinal provinciality of dinosaurs is shown to be
44	affected by previous stratigraphic miscorrelation. Rapid stepwise acquisition of display
45	characters in many dinosaur clades, in particular chasmosaurine ceratopsids, suggests that
46	they may be useful for high resolution biostratigraphy.

47

48 Introduction

49

50 In 1952, Cobban and Reeside published a grand correlation of Cretaceous rocks 51 of the Western Interior of central and southern North America, including both marine and 52 terrestrial units, and biostratigraphic ranges for a variety of invertebrates and vertebrates. 53 Such interbasinal correlation diagrams are enormously useful for making stratigraphic 54 comparisons between units and similar style diagrams have become commonplace in the 55 geological literature. Recent, broad-scale correlations akin to that of Cobban and Reeside 56 (1952) are less common, but examples include Krystinik and DeJarnett (1995), Sullivan 57 and Lucas (2003; 2006); Miall et al. (2008), and Roberts et al., (2013). Construction of 58 these kinds of correlation charts is built upon a great wealth of literature; the product of 59 dedicated work by generations of stratigraphers working in the Western Interior. 60 Individual papers doubtless number in the thousands, and there are far too many to 61 mention directly here, although many are cited in the supporting information (see S1 62 Table and S1 Text).

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2554v2 | CC BY 4.0 Open Access | rec: 4 Sep 2017, publ: 4 Sep 2017

63

64	Interbasinal correlation charts are not just of use to geologists; more frequently
65	than ever, paleontologists are using high-resolution chronostratigraphic data to formulate
66	and test evolutionary hypotheses. A simple example is that of time-calibrated phylogenies,
67	where the stratigraphic positions of individual taxa are superimposed on phylogenetic
68	trees. These are becoming much more prominent in the dinosaur literature (e.g., Sampson
69	and Loewen, 2010; Sampson et al., 2010; Campione and Evans, 2011; Evans et al., 2013),
70	and are used to deduce the timing of important phylogenetic branching events, infer ghost
71	ranges, and potentially to calculate rates of evolution. A more nuanced application is
72	assessment of whether two sister taxa are contemporaneous (thereby inferring a genuine
73	speciation event), or whether they form a succession of stratigraphically separated
74	morphologies (potentially supportive of anagenesis; e.g. Horner et al., 1992; Campione
75	and Evans, 2011; Scannella et al., 2014; Freedman Fowler and Horner, 2015). The value
76	of such analyses is inherently dependent upon the accuracy of the plotted taxa, which in
77	turn depend upon the accuracy of the stratigraphic correlations of the formations from
78	which their fossils were recovered. Herein lies the problem. Precise dating of geological
79	formations is especially critical for testing anagenesis or cladogenesis in dinosaurs
80	(Horner et al., 1992; Sampson et al., 2010), but when specimens are very similar in age,
81	imprecision of only a few hundred thousand years is often enough to completely reverse
82	paleobiological interpretation.
83	

84

85

The Upper Cretaceous deposits of the North American Western Interior represent a rare opportunity to make a high-resolution chronostratigraphic framework within which

 outcrop, interfingering marine units with biostratigraphically informative fossils, a consistent scattering of radiometric dates due to synorogenic volcanic activity, not mention a vast literature detailing over a century's worth of research and an ever increasing collection of fossils. However, despite the large amount of data availab some problems persist that strongly affect paleobiological interpretations: 	ation of large areas	s of
 consistent scattering of radiometric dates due to synorogenic volcanic activity, not mention a vast literature detailing over a century's worth of research and an ever increasing collection of fossils. However, despite the large amount of data availab some problems persist that strongly affect paleobiological interpretations: 	native fossils, and a	ì
 mention a vast literature detailing over a century's worth of research and an ever increasing collection of fossils. However, despite the large amount of data availab some problems persist that strongly affect paleobiological interpretations: 	ic activity, not to	
 90 increasing collection of fossils. However, despite the large amount of data availab 91 some problems persist that strongly affect paleobiological interpretations: 	n and an ever	
91 some problems persist that strongly affect paleobiological interpretations:	of data available,	
	ations:	

92

93 <u>1. It is difficult to find the reasoning behind some correlations</u>

94 In paleontological papers especially, correlation charts are typically presented as a series 95 of geological columns, and rarely contain detailed justifications for the stratigraphic 96 positions of the depicted horizons. Usually a few citations are given for stratigraphic 97 position, and radiometric dates may be marked (also including citations), but important 98 details may be lacking. This can create many problems, including circular citation of 99 incorrect or unknown stratigraphic data or unknowingly mismatching old outdated 100 stratigraphic data with new interpretations or calibrations (see Discussion for detailed 101 explanation of examples). Admittedly, justifying every boundary or horizon in a 102 stratigraphic column is an arduous task, but without detailed work like this, precise 103 stratigraphic placement of taxa can be either impossible or plotted incorrectly.

104

105 **<u>2. Depositional hiatuses are not depicted</u>**

106 The normal method of illustrating stratigraphic columns often does not include

- 107 illustration of the depositional hiatuses (lacunae) that exist within formations, and this
- 108 can affect the perception of unit duration, conformability, and magnetostratigraphic

NOT PEER-REVIEWED

Peer Preprints

109 relationships. For example, under conventional lithostratigraphic practice, prominent 110 sandstones are sometimes chosen as uppermost units for formational contacts (e.g. the 111 Capping Sandstone Member, Wahweap Formation, Utah; Eaton, 1991). However, under 112 the conventional sequence stratigraphic model, amalgamated channel sandstones often form the basalmost unit of depositional cycles, resting upon a surface of erosion or 113 114 depositional hiatus; i.e., the basal bed of a conformable cycle might simultaneously be 115 considered the uppermost unit of a lithostratigraphic formation. For this and other reasons, 116 formation members and the lacunae between them should be plotted on correlation charts 117 where possible. 118 119 3. Radiometric dates may be incorrect or incomparable 120 Many currently cited radiometric dates are not properly comparable, because from the 121 early 1980's to the current day radiometric analyses have used a variety of standards, 122 decay constants, or different methods. In order to rectify this, historical dates have been 123 recalibrated by previous workers (e.g. for the Western Interior, Eberth, 2005; Kuiper et 124 al., 2008; Schmitz, 2012; Roberts et al., 2013; Sageman et al., 2014; Freedman Fowler 125 and Horner, 2015). There is also an emerging issue that analyses performed in different 126 laboratories under slightly different methodologies produce slightly different results, and 127 this is being investigated internally by those labs 128 129 This current work presents a comprehensive stratigraphic correlation chart

- 130 comprising the major terrestrial geological formations of the Santonian through
- 131 Maastrichtian of the North American Western Interior (S1 Table). The chart is plotted

132	based on extensive reference to the stratigraphic literature on each formation (which is
133	reviewed and cited in detailed notes for each unit), and on the recalibration of $^{40}\mathrm{Ar}$ / $^{39}\mathrm{Ar}$
134	radiometric dates. Over 200 recalibrated radiometric dates are presented as a separate
135	excel sheet (S2 Table), and are recalibrated to both currently accepted ^{40}Ar / ^{39}Ar
136	standards and decay constant pairings (Kuiper et al., 2008, combined with the decay
137	constant values of Min et al., 2000; and Renne et al., 2011). The resultant stratigraphic
138	framework is used in combination with locality data for individual dinosaur specimens to
139	plot the stratigraphic ranges for dinosaur taxa (currently restricted to Neoceratopsia,
140	Sauropoda, Pachycephalosauridae, and Hadrosauridae). This replotting of dinosaur taxa
141	is discussed with regard to current hypotheses of dinosaur biogeography and evolution.
142	

143 Methods

144

145 Abbreviations used

146

147 Gp, Group; Fm, Formation; Mbr, Member; Ma, millions of years ago; Ka thousands of

148 years ago; m.y. million years; k.y. thousand years; c.z., coal zone; FCT, Fish Canyon

149 Tuff; TCR, Taylor Creek Rhyolite.

150

151 Display format - excel sheets

153	The recalibration sheet and stratigraphic correlation chart are offered as two separate
154	excel files (S1 and S2 Tables). They are kept separate for ease of cross referencing.
155	

- 156 S1 Table Stratigraphic correlation chart
- 157

158 The stratigraphic correlation chart is arranged as an Excel spreadsheet (S1 Table), 159 and is intended to be used directly in this format as it offers a number of advantages over 160 a graphic embedded within a PDF or printed page. The grid of cells naturally permit 161 precise plotting of stratigraphic boundaries, with each vertical cell height representing 0.1 m.y. Most usefully, each cell, (or group of cells) can be tagged with a pop-up note that is 162 163 activated by simply hovering the mouse cursor over any cell with a red triangle in the 164 upper right corner. These pop-up notes comprise the bulk of the results of this study, 165 providing the information that supports each depicted stratigraphic position or boundary 166 of the geologic unit or taxon, along with introductory text. For ideal formatting, the 167 reader is advised to view the chart in native resolution, at 22% zoom level.

168

Some disadvantages of the Excel format include the limited range of line styles and orientations, such that (for example) it is not possible to represent unconformities by a wavy line, and cell borders necessarily are straight. Due to the need to keep font size small (to increase available space), taxon names are not produced in italics as it makes them much less readable. The reader is advised that under some levels of zoom, a note box might not be fully readable; if so, right click and select edit note, then either read the note in place, or resize the note box such that all the text is visible.

176	
177	References used in the construction of the chart are available as a separate
178	document (Text S1).
179	
180	S2 Table - Recalibration sheet
181	
182	The recalibration sheet (S2 Table) is also made available in the form of an Excel
183	sheet. This is due to its large size, but also benefits from the pop-up note function,
184	providing additional information on radiometric dates and the original publications.
185	Maintaining the recalibrations as an Excel sheet also permits the retention of the active
186	formulae used to calculate the new dates.
187	
188	The recalibration sheet is adapted from the EARTHTIME excel recalculation
189	sheet kindly provided by Noah McLean at the earthtime.org website. Unfortunately, the
190	main homepage of the earthtime.org website is currently listed as "under construction";
191	however, the direct link to the recalibration spreadsheet and instructions download page
192	is still active as of Jan 30th 2017: http://www.earth-time.org/ar-ar.html Note that a
193	similar recalibration sheet was provided by Paul Renne (pers. comm. 2012)
194	
195	The original recalibration formulae were duplicated across into S2 Table such that
196	this is a "live" document that independently recalculates dates based on the input data on
197	each line of the sheet. The source lines for each recalculation have been adapted from the
198	original EARTHTIME recalulation sheet such that in S2 Table all the original input data

- (standards, decay constant, etc.) are visible for each recalculation. This way the sheet
 shows all the "working" for all of the ~200 recalculations, and each can be properly
 independently assessed.
- 202

203 There is an issue with the recalculation of error in the original formulae present in 204 the McLean EARTHTIME sheet. This has the result that for some recalibrations, the excel sheet will only produce a "!VALUE" statement for the recalibrated 205 206 uncertainty/error (caused by the formula attempting to divide by zero). As a result, the 207 uncertainty/error for many recalibrations cannot be computed (an additional problem is 208 the lack of J-value data in most analyses). To overcome this, for analyses in which the 209 new error cannot be directly computed, the original error has been multiplied by the % 210 change output factor; errors calculated by this method are shown in red (normally 211 calculated error values are shown in black). Comparison to normally calculated error 212 values show that this method produces comparable results such that the new stated error 213 values are not significantly different from what would be calculated if J-values (etc) were 214 known.

215

There are two tabs of recalibrations. The first, labeled "Kuiper et al 2008", recalibrates all the dates to the Kuiper et al. (2008) FCT standard, coupled with the Min et al. (2000) decay constant. Dates from this first tab are plotted on the stratigraphic chart (S1 Table). The second tab, labeled "Renne et al 2011", recalibrates all dates to the standard and decay constant pairing of Renne et al. (2011). This second set of

221	recalibrations is provided for comparison. Both tables of recalibrations have the same
222	formatting for ease of comparison.
223	
224	Stratigraphic chart (S1 Tabla)
224	Stratigraphic chart (ST Table)
225	
226	Construction of the chart is complex and depends upon many different
227	stratigraphic methods. The following text explains the underlying definitions that provide
228	the base framework for the chart, and highlight some of the issues surrounding its
229	construction.
230	
231	Definitions: stage and substages, magnetostratigraphy, and ammonite
232	biostratigraphy
233	
234	The chart follows The Geological Time Scale 2012 (GTS2012; Gradstein et al.,
235	2012) for definitions of stage and substage boundaries (Ogg and Hinnov, 2012),
235 236	2012) for definitions of stage and substage boundaries (Ogg and Hinnov, 2012), magnetostratigraphic boundaries (Ogg, 2012), and ammonite biostratigraphy (Ogg and
235 236 237	2012) for definitions of stage and substage boundaries (Ogg and Hinnov, 2012), magnetostratigraphic boundaries (Ogg, 2012), and ammonite biostratigraphy (Ogg and Hinnov, 2012). Although more recent revisions of these definitions are available,
235236237238	 2012) for definitions of stage and substage boundaries (Ogg and Hinnov, 2012), magnetostratigraphic boundaries (Ogg, 2012), and ammonite biostratigraphy (Ogg and Hinnov, 2012). Although more recent revisions of these definitions are available, GTS2012 integrates all these defined units with chronostratigraphic dates that use the
 235 236 237 238 239 	2012) for definitions of stage and substage boundaries (Ogg and Hinnov, 2012), magnetostratigraphic boundaries (Ogg, 2012), and ammonite biostratigraphy (Ogg and Hinnov, 2012). Although more recent revisions of these definitions are available, GTS2012 integrates all these defined units with chronostratigraphic dates that use the ⁴⁰ Ar / ³⁹ Ar standard and decay constant pairing of Kuiper et al. (2008) and Min et al.
 235 236 237 238 239 240 	2012) for definitions of stage and substage boundaries (Ogg and Hinnov, 2012), magnetostratigraphic boundaries (Ogg, 2012), and ammonite biostratigraphy (Ogg and Hinnov, 2012). Although more recent revisions of these definitions are available, GTS2012 integrates all these defined units with chronostratigraphic dates that use the ⁴⁰ Ar / ³⁹ Ar standard and decay constant pairing of Kuiper et al. (2008) and Min et al. (2000), which are also used here. A second magnetostratigraphic column is also offered
 235 236 237 238 239 240 241 	2012) for definitions of stage and substage boundaries (Ogg and Hinnov, 2012), magnetostratigraphic boundaries (Ogg, 2012), and ammonite biostratigraphy (Ogg and Hinnov, 2012). Although more recent revisions of these definitions are available, GTS2012 integrates all these defined units with chronostratigraphic dates that use the ⁴⁰ Ar / ³⁹ Ar standard and decay constant pairing of Kuiper et al. (2008) and Min et al. (2000), which are also used here. A second magnetostratigraphic column is also offered containing some revised chron boundaries and includes many of the very short duration

magnetostratigraphic analyses (e.g. Lerbekmo and Braman, 2002). Individual definitions
and discussion (where appropriate) can be found in the pop-up notes in the respective
parts of the chart.
In some places it is necessary to provide a compromise in stratigraphic placement,
generally where a magnetostratigraphic assertion does not match, say, the ammonite
zonation (e.g. age of the Dorothy bentonite in the Drumheller Member, Horseshoe
Canyon Formation, Alberta; Lerbekmo, 2002; Eberth and Braman, 2012). In such cases,
the pop-up note text boxes provide explanation of the problem, and references.
Positioning of geological units and dinosaur taxa
The stratigraphic ranges of geological units and fossil taxa are plotted as a solid
The stratigraphic ranges of geological units and fossil taxa are plotted as a solid bordered white cell with the lower and upper borders representing the lower and upper
The stratigraphic ranges of geological units and fossil taxa are plotted as a solid bordered white cell with the lower and upper borders representing the lower and upper contacts of the geological unit, or first and last documented taxon occurrences
The stratigraphic ranges of geological units and fossil taxa are plotted as a solid bordered white cell with the lower and upper borders representing the lower and upper contacts of the geological unit, or first and last documented taxon occurrences (respectively).
The stratigraphic ranges of geological units and fossil taxa are plotted as a solid bordered white cell with the lower and upper borders representing the lower and upper contacts of the geological unit, or first and last documented taxon occurrences (respectively).
The stratigraphic ranges of geological units and fossil taxa are plotted as a solid bordered white cell with the lower and upper borders representing the lower and upper contacts of the geological unit, or first and last documented taxon occurrences (respectively). If stratigraphic position is not sufficiently documented, the possible or likely
The stratigraphic ranges of geological units and fossil taxa are plotted as a solid bordered white cell with the lower and upper borders representing the lower and upper contacts of the geological unit, or first and last documented taxon occurrences (respectively). If stratigraphic position is not sufficiently documented, the possible or likely stratigraphic range is illustrated as a block arrow. For example, if we know a taxon
The stratigraphic ranges of geological units and fossil taxa are plotted as a solid bordered white cell with the lower and upper borders representing the lower and upper contacts of the geological unit, or first and last documented taxon occurrences (respectively). If stratigraphic position is not sufficiently documented, the possible or likely stratigraphic range is illustrated as a block arrow. For example, if we know a taxon occurs in a given formation, but not the precise stratigraphic position within that
The stratigraphic ranges of geological units and fossil taxa are plotted as a solid bordered white cell with the lower and upper borders representing the lower and upper contacts of the geological unit, or first and last documented taxon occurrences (respectively). If stratigraphic position is not sufficiently documented, the possible or likely stratigraphic range is illustrated as a block arrow. For example, if we know a taxon occurs in a given formation, but not the precise stratigraphic position within that formation (or if the age of the formation itself is only roughly known), then the block
The stratigraphic ranges of geological units and fossil taxa are plotted as a solid bordered white cell with the lower and upper borders representing the lower and upper contacts of the geological unit, or first and last documented taxon occurrences (respectively). If stratigraphic position is not sufficiently documented, the possible or likely stratigraphic range is illustrated as a block arrow. For example, if we know a taxon occurs in a given formation, but not the precise stratigraphic position within that formation (or if the age of the formation itself is only roughly known), then the block arrow would show the possible range being equivalent to the full duration of the

266	geological unit comprises some specimens or horizons for which stratigraphic position is
267	precisely known (depicted by the solid cell) and some specimens or horizons for which
268	stratigraphic position is unknown (block arrows). Periods of non-material time (lacunae)
269	are represented by blank spaces. In the aforementioned cases, explanation for the plotting
270	of geological units, lacunae, and taxa is given in the corresponding note A graded block
271	arrow is used for units which may continue for a long time below the period of interest
272	(typically used for thick marine shales). The ranges and boundaries of each taxon or
273	geological unit are discussed on a case-by-case basis in S1 Table.
274	
275	
276	Issues with lithostratigraphy
277	
278	Some features of typical lithostratigraphic units are not possible to depict properly
279	on the stratigraphic chart format. In the Western Interior, many terrestrial packages form
280	clastic wedges thinning basinward. Where possible, it is attempted to represent this in the
281	chart, although for the most part depicted stratigraphic sections are based on single well-
282	sampled sections, cores, or geographic areas, so the wedge-shaped overall geometry
283	might not be visible.
284	
285	Limitation of scope & future versions

286

287 There are some limitations of scope for this initial version of the correlation chart.

14

289	The chart is currently mostly limited to units of Santonian age (86.3 Ma) up to the
290	K-Pg boundary (66.0 Ma). There are a few exceptions (e.g. Moreno Hill Formation, New
291	Mexico; Straight Cliffs Formation, Utah), which are included because they have yielded
292	important specimens, or provide stratigraphic context for overlying units.
293	
294	Geological units featured in the correlation chart are currently limited to those for
295	which dinosaurian material has been collected, or which provide contextual information
296	for surrounding units (e.g. intertonguing marine units with biostratigraphically
297	informative fauna, and overlying or underlying units with chronostratigraphic marker
298	beds).
299	
300	Dinosaurian fossils are limited to Neoceratopsia, Pachycephalosauridae,
300 301	Dinosaurian fossils are limited to Neoceratopsia, Pachycephalosauridae, Sauropoda, and Hadrosauridae. This is partly to limit the amount of data in this first
300 301 302	Dinosaurian fossils are limited to Neoceratopsia, Pachycephalosauridae, Sauropoda, and Hadrosauridae. This is partly to limit the amount of data in this first published version of the chart. Thus, the chosen clades represent the most abundant taxa,
300301302303	Dinosaurian fossils are limited to Neoceratopsia, Pachycephalosauridae, Sauropoda, and Hadrosauridae. This is partly to limit the amount of data in this first published version of the chart. Thus, the chosen clades represent the most abundant taxa, and also include taxa considered biostratigraphically informative by previous workers
 300 301 302 303 304 	Dinosaurian fossils are limited to Neoceratopsia, Pachycephalosauridae, Sauropoda, and Hadrosauridae. This is partly to limit the amount of data in this first published version of the chart. Thus, the chosen clades represent the most abundant taxa, and also include taxa considered biostratigraphically informative by previous workers (e.g., Cobban and Reeside, 1952; Lawson, 1976; Sullivan and Lucas, 2003; 2006; Lucas
 300 301 302 303 304 305 	Dinosaurian fossils are limited to Neoceratopsia, Pachycephalosauridae, Sauropoda, and Hadrosauridae. This is partly to limit the amount of data in this first published version of the chart. Thus, the chosen clades represent the most abundant taxa, and also include taxa considered biostratigraphically informative by previous workers (e.g., Cobban and Reeside, 1952; Lawson, 1976; Sullivan and Lucas, 2003; 2006; Lucas et al., 2012).
 300 301 302 303 304 305 306 	Dinosaurian fossils are limited to Neoceratopsia, Pachycephalosauridae, Sauropoda, and Hadrosauridae. This is partly to limit the amount of data in this first published version of the chart. Thus, the chosen clades represent the most abundant taxa, and also include taxa considered biostratigraphically informative by previous workers (e.g., Cobban and Reeside, 1952; Lawson, 1976; Sullivan and Lucas, 2003; 2006; Lucas et al., 2012).
 300 301 302 303 304 305 306 307 	Dinosaurian fossils are limited to Neoceratopsia, Pachycephalosauridae, Sauropoda, and Hadrosauridae. This is partly to limit the amount of data in this first published version of the chart. Thus, the chosen clades represent the most abundant taxa, and also include taxa considered biostratigraphically informative by previous workers (e.g., Cobban and Reeside, 1952; Lawson, 1976; Sullivan and Lucas, 2003; 2006; Lucas et al., 2012).
 300 301 302 303 304 305 306 307 308 	Dinosaurian fossils are limited to Neoceratopsia, Pachycephalosauridae, Sauropoda, and Hadrosauridae. This is partly to limit the amount of data in this first published version of the chart. Thus, the chosen clades represent the most abundant taxa, and also include taxa considered biostratigraphically informative by previous workers (e.g., Cobban and Reeside, 1952; Lawson, 1976; Sullivan and Lucas, 2003; 2006; Lucas et al., 2012). Future versions of the chart are intended to extend the stratigraphic range down to the Jurassic-Cretaceous boundary. However, the plans for the first expansion concern
 300 301 302 303 304 305 306 307 308 309 	Dinosaurian fossils are limited to Neoceratopsia, Pachycephalosauridae, Sauropoda, and Hadrosauridae. This is partly to limit the amount of data in this first published version of the chart. Thus, the chosen clades represent the most abundant taxa, and also include taxa considered biostratigraphically informative by previous workers (e.g., Cobban and Reeside, 1952; Lawson, 1976; Sullivan and Lucas, 2003; 2006; Lucas et al., 2012). Future versions of the chart are intended to extend the stratigraphic range down to the Jurassic-Cretaceous boundary. However, the plans for the first expansion concern inclusion of more Upper Cretaceous formations from North America, and also similarly

311	concerning the addition of all remaining dinosaur taxa (including birds), crocodylians,
312	and mammals, with the intent of eventually incorporating all useful taxa if possible.
313	
314	Institutional abbreviations
315	
316	A list of institutional abbreviations used in the correlation chart are provided in a
317	separate tab of the correlation chart Excel sheet (S1 Table) labeled "repository codes".
318	
319	Taxa display format- phylogenies and lineages
320	
321	It is not the intention of this project to make significant comment on phylogenies
322	per se. However, precise stratigraphic placement of taxa permits testing of speciation
323	hypotheses (see discussion), and so the arrangement of taxa on the chart should reflect
324	up-to-date phylogenies or other hypotheses of descent. In this current version, this only
325	affects Ceratopsidae and Hadrosauridae. For ceratopsids, the general arrangement follows
326	the chasmosaurine phylogeny from Fowler (2016), and for centrosaurines the
327	arrangement follows the phylogeny of Evans and Ryan (2015). For hadrosaurids, the
328	general arrangement of hadrosaurines follows Freedman Fowler and Horner (2015), and
329	lambeosaurines follows Evans and Reisz (2007).
330	

16

331 Magnetostratigraphy

332

333 The conventional methodology used for delineating magnetostratigraphic chron 334 boundaries can create problems. In magnetostratigraphic analysis, if two stratigraphically 335 adjacent sample points yield opposite polarities (i.e., they are recognisable as different 336 chrons), then it is convention to draw the chron boundary stratigraphically halfway 337 between the two points. However an issue can arise if these lower and upper sample 338 points are separated by a sandstone from which it is difficult or impossible to extract a 339 magnetostratigraphic signal. In terrestrial floodplain deposition (typical of the units 340 studied in this work), the bases of depositional cycles are characterized by a surface of 341 non-deposition or erosion overlain by a low accommodation systems tract, typically 342 comprising an amalgamated channel sandstone. The combination of the depositional 343 hiatus at the base of the sandstone, and the sandstone itself, means that there may be a 344 considerable time gap (up to millions of years) between the last sampled horizon 345 immediately below the sandstone, and the first sampled horizon immediately above the 346 sandstone. If opposite polarities are recorded for the two sampled horizons on either side 347 of the unsampled sandstone, then the chron boundary would be drawn halfway, within 348 the sandstone, whereas it might be more likely to occur at the base of the sandstone, as 349 this is where the hiatus occurs. This would have the effect of making a unit appear older 350 or younger than it really is. For example, the mudstone immediately beneath the Apex 351 sandstone (basal unit of the upper Hell Creek Formation, Montana; Hartman et al., 2014) 352 is of normal polarity, assigned to C30n, whereas the mudstone immediately above the 353 Apex Sandstone is of reversed polarity (assigned to C29r; LeCain et al., 2014). The

354 C30n-C29r boundary is therefore drawn within the Apex Sandstone, whereas it is more 355 likely that it occurs at the hiatus at the base of the sandstone. A more significant case 356 arises with the contact between the Laramie Formation and overlying D1 sequence in 357 central Colorado: here, because of the halfway convention, the uppermost part of the Laramie is drawn as being within the lowermost C31r zone (Hicks et al., 2003), whereas 358 359 in actuality, all magnetostratigraphic samples recovered by Hicks et al. from the Laramie 360 are normal, and it might therefore be entirely C31n. The effects of this issue are best 361 examined on a case by case basis; the reader is referred to the stratigraphic chart (S1 362 Table) where more examples are highlighted in pop-up text boxes. It should be noted that 363 this issue is purely an artifact of conventional methodology, not any mistake by a given 364 researcher. So long as the reader is careful and remains cautious of this issue, then mistaken correlation and / or artificial age extension can be avoided. 365

366

367 Radiometric dating

368

This analysis recalibrates nearly 200 radiometric dates (S2 Table), most of which are 40 Ar / 39 Ar dates that have been recalibrated to the standard and decay constant pairing of Kuiper et al. (2008), and Min et al. (2000). It is not the intention here to provide a thorough review of all radiometric dating methods (see Villeneuve, 2004); however, given the large number of 40 Ar / 39 Ar dates used here, and given discrepancies in past recalibrations, a cursory overview is given to the method. This text is also included (and expanded) in the chart itself (S1 Table).

377 U-Pb and K-Ar

378

Most radiometric dates reported for Upper Cretaceous units use either U-Pb, K-Ar, or 40 Ar / 39 Ar dating methods. U-Pb and K-Ar are primary dating methods, which directly determine the age of a sample and do not require recalibration (unless decay constants change, which is rare); whereas relative or secondary methods (such as 40 Ar / 39 Ar dating) require use of a monitor mineral of known or presumed age ("standard"). It is the recent changes to the recognized age of these standards that has been the cause of changing 40 Ar / 39 Ar dates.

386

U-Pb dating actually analyses two decay series (²³⁵U decay to ²⁰⁷Pb, and ²³⁸U 387 decay to ²⁰⁶Pb), such that there are two independent measures of age, the overlap of 388 389 which is the concordant age of the sample (Villeneuve, 2004). Recent improvements in 390 analytical techniques (High-Resolution-Secondary Ion Mass Spectrometry: SHRIMP; 391 and Chemical Abrasion Thermal Ionization Mass Spectrometry, CA TIMS) have brought 392 greater precision and accuracy to U-Pb dating, and it remains one of the best methodologies currently available (Villeneuve, 2004). The decay constant for U-Pb 393 394 analysis is well established (Steiger and Jaeger, 1977), and known to better than 0.07% 395 accuracy (Villeneuve, 2004).

396

397 K-Ar dating is an older method of radiometric dating that was commonplace up 398 until the end of the 1980's when it was essentially replaced by the more precise and 399 accurate 40 Ar / 39 Ar method (Villeneuve, 2004). K-Ar had a range of benefits, including a

400 large number of possible datable minerals (due to the common occurrence of potassium 401 in many rock-forming minerals), but among its drawbacks was a relative lack of precision, largely due to the requirement to run two separate analyses per sample for K and ⁴⁰Ar. As 402 403 such, analytical precision was never better than 0.5%, and with the development of new technologies K-Ar dating was quickly replaced by ⁴⁰Ar / ³⁹Ar in the early 1990's 404 (Villeneuve, 2004). Even so, some K-Ar dates are still the only dates available for a given 405 406 unit, and so are included in the chart. K-Ar dates typically have error in the region of 1-2 407 m.y. for Upper Cretaceous units, so are useful indicators as to a general age range for a unit, but not for precise correlation. 408 409

410 ⁴⁰Ar / ³⁹Ar

411

412 Detailed reviews of 40 Ar / 39 Ar dating have been published elsewhere (e.g., 413 McDougall and Harrison, 1999; Renne et al., 2010). Notes given here are for the purpose 414 of aiding the reader in understanding the recalculation of radiometric dates reported in 415 this work, how 40 Ar / 39 Ar dates are affected by changing standards and decay constants, 416 and comparability of radiometric dates recovered by different methods (e.g., 40 Ar / 39 Ar 417 vs U-Pb).

418

419 Standards (neutron fluence monitor)

420 As ⁴⁰Ar / ³⁹Ar dating is a secondary dating method, every unknown sample needs
421 to be analysed alongside a sample of known age: a standard. Primary standards are
422 minerals from specific rock samples that have been directly dated by ⁴⁰K / ⁴⁰Ar dating or

423	another method	pd; whereas secondary standards are based on 40 Ar / 39 Ar intercalibration
424	with a primar	y standard (Renne et al., 1998). The following list includes (but is not
425	limited to) so	me of the more popular standards that have been used historically (see
426	McDougall as	nd Harrison, 1999, for a more complete list):
427		
428	MMhb-1	McClure Mountain hornblende, primary standard: ~420 Ma
429	GA-1550	Biotite, monazite, NSW, Australia, primary standard: ~98 Ma
430	TCR	Taylor Creek Rhyolite (or sanidine, TCs), secondary standard: ~28 Ma
431	FCT	Fish Canyon Tuff (or sandine, FCs), secondary standard: ~28 Ma
432	ACR	Alder Creek Rhyolite (or sanidine, ACs), secondary or tertiary standard:
433		~1 Ma
434		
435	Stand	ards are chosen depending on availability, and should be of an age
436	comparable to	o the unknown sample (Renne et al., 1998). Hence, for Upper Cretaceous
437	deposits, usua	ally the secondary standards TCR or FCT have been used, typically
438	themselves be	eing calibrated against a primary standard (historically, the MMhb-1 is
439	commonly us	ed, although this depends on the preference of the particular laboratory).
440	Many historic	cally popular standards are no longer used, as repeated calibration studies
441	have found th	e original sample to give inconsistent dates. For example, Baksi et al. (1996)
442	found the wid	lely used MMhb-1 primary standard to be inhomogenous, making its use as
443	a standard no	longer tenable. Further, intercalibration studies have continually honed and
444	refined the ag	es of standards (especially the more widely used secondary standards), with
445	the result that	radiometric dates published years apart are typically not precisely

446 comparable without recalibration (e.g., Samson and Alexander, 1987; Renne et al., 1994;

447 1998).

448

449 For ⁴⁰Ar / ³⁹Ar analysis, a significant issue concerns the changing age of the Fish 450 Canyon Tuff (FCT: the relative standard used for most ⁴⁰Ar / ³⁹Ar analyses of Cretaceous 451 rocks), and to a lesser extent, the associated decay constants ($\lambda\beta$: β - decay of 40K to 40Ca; 452 and $\lambda\epsilon$: electron capture or β + of 40K to 40Ar; which combined are referred to as λ T or 453 λ total; Beckinsale and Gale, 1969).

454

455 Cebula et al. (1986) first proposed an age of 27.79 Ma for the Fish Canyon Tuff. This was quickly refined to 27.84 Ma by Samson and Alexander (1987), which remained 456 the standard used by 40 Ar / 39 Ar analyses published up to the mid 1990's (e.g., Rogers et 457 458 al., 1993). Renne et al. (1994) revised the FCT to 27.95 Ma (although this new figure was not commonly used at the time). The next major update was that of Renne et al. (1998), 459 460 whereupon the FCT was revised to 28.02 Ma, which was widely accepted up to 2008 when Kuiper et al. published the current standard of 28.201 Ma. This also brought 40 Ar / 461 ³⁹Ar dates into line with U-Pb dates, unifying these two major chronostratigraphic dating 462 463 systems (Kuiper et al., 2008). Two further revisions have been offered by Renne et al. in 464 2010 and 2011, of 28.305 Ma, and 28.294 Ma (respectively). Rivera et al. (2011), Meyers 465 et al. (2012), Singer et al. (2012), and Sageman et al. (2014) all found independent 466 support for Kuiper et al. (2008)'s 28.201 Ma age for the Fish Canyon Sanidine (and therefore rejected Renne et al.'s (2010) further revised 28.305 Ma standard as too old). 467

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2554v2 | CC BY 4.0 Open Access | rec: 4 Sep 2017, publ: 4 Sep 2017

468 These analyses also used three methods (40 Ar / 39 Ar, U-Pb, cyclostratigraphy) to reach 469 consensus, confirming alignment of U-Pb and 40 Ar / 39 Ar dates.

470

471 When applied to Upper Cretaceous units, a ~ 0.2 m.y. difference between the age of two different standards corresponds to $\sim 0.4 - 0.5$ m.y. difference in the 40 Ar / 39 Ar age 472 of the analysed sample, and this is exacerbated if the standards used were further apart. 473 For example, using the 27.84 Ma standard of Samson and Alexander (1987), Rogers et al. 474 (1993) published an 40 Ar / 39 Ar date of 74.076 Ma for a bentonite at the top of the Two 475 Medicine Formation, MT. This becomes 75.038 Ma if using the current Kuiper et al. 476 477 (2008) standard, and 75.271 Ma under the less commonly used Renne et al. (2011) standard, a difference of 1.28 m.y. from the originally published date. 478 479 480 **Decay constants** The 40 Ar / 39 Ar method depends upon the β - decay of 40 K to 40 Ca ($\lambda\beta$), and 481 electron capture or β + of ⁴⁰K to ⁴⁰Ar ($\lambda\epsilon$), which combined are referred to as λ T or λ total 482 483 (Beckinsale and Gale, 1969). The value of the decay constant λT (and its components) 484 has historically been subject to fewer changes than the standards listed above, but has 485 come under increased scrutiny since the late 1990's. The currently (2014) accepted 486 standard is 5.463 E-10/y (Min et al., 2000), although alternatives are available, and 487 refinement of this figure is the subject of active research (see S1 Table). 488 The decay constant used for an analysis is not always reported, although it has much less 489 490 effect on the final calculated age than variations in fluence monitor mineral ages. For

491	example, the difference between using 5.543 E-10/y (Steiger & Jaeger, 1977) and 5.463
492	E-10/y (Min et al., 2000) is 0.02%, equating to a difference of 0.013 Ma for a sample
493	from the late Campanian (~75 Ma). It should be noted that different values of λT have
494	been used historically by geochronologists compared to physicists and chemists; this is
495	pointed out by Renne et al., (1998) who note that (for example) Endt (1990) used a λT
496	value of 5.428 +/- 0.032 E^{-10} /y which "is more than 2% different from the values
497	recommended by Steiger and Jaeger (1977)". Thus, there is no guarantee that, unless
498	otherwise stated, a lab that performed an 40 Ar / 39 Ar analysis in the 1990's will be using
499	the λT of 5.543 E ⁻¹⁰ /y of Steiger and Jaeger (1977), although all dates recalibrated here
500	use either this, Min et al. (2000), or Renne et al. (2011). Further details and a history of
501	decay constant values can be found in the corresponding note within S1 Table .

502

503 **Recalibration & current standards**

In order to compare 40 Ar / 39 Ar dates, it is essential to ensure that the same 504 505 standards and decay constants were used in their calculation, which may require 506 recalibration. If the standards used are different (for example, if an old analysis used the 507 TCR standard, and a more recent one used the FCT), then it will be necessary to find 508 what the equivalent FCT value was to the TCR used in the original analysis. This is 509 usually achieved by referencing either the original publication of the standard, or the 510 relevant published intercalibration analysis (e.g., Renne et al. 1994). It is critical to 511 understand that recalculation cannot simply be performed by entering the original 512 standard used (e.g., TCR = 28.32 Ma) into the equation provided on the recalculation

513	sheet from McLean and EARTHTIME (or the adapted spreadsheet used here); the
514	equivalent FCT value is what must be entered, as the formula only uses FCT.
515	
516	The decay constant absolute value has only a small effect on the absolute age of a
517	sample, but decay constants contribute a greater amount to the error range of a
518	radiometric date.
519	
520	There are two current prominently used pairings of standard and decay constant.
521	Kuiper et al. (2008) combined an FCT standard age of 28.201 +/-0.023 Ma, with the
522	decay constant of Min et al. (2000), $\lambda T = 5.463 + -0.214 \text{ E}-10/\text{y}$. Renne et al. (2011) use
523	an FCT standard age of 28.294 +/- 0.036 Ma, with a λT of 5.5305 E-10/y. The dates used
524	here in the correlation chart (S1 Table) are calibrated to the Kuiper et al. (2008) standard,
525	paired with the Min et al. (2000) decay constant. This is not a reflection on the reliability
526	of one method over another; rather it is out of convenience, because the various
527	ammonite biozones and magnetochrons detailed in The Geological Time Scale 2012
528	(Gradstein et al., 2012; upon which this chart is based) use the Kuiper et al. (2008) FCT
529	standard, and Min et al. (2000) decay constant.
530	
531	Choice of mineral
532	Direct comparisons between 40 Ar / 39 Ar dates require not only the same standard
533	and decay constant pairing, but also that the subject mineral is the same. Although it is
534	theoretically possible that a date obtained from biotite crystals might be comparable with
535	one from sanidine, in practice the difference in closure temperature (the temperature at

536	which the mineral no longer loses any products of radioactive decay; Villeneuve, 2004)
537	and other factors such as recoil effects (Obradovich, 1993) mean that (for example)
538	biotite dates are typically ~0.3% older than sanidine dates (e.g., see Rogers et al., 1993).
539	The current "gold standard" mineral for 40 Ar / 39 Ar dating is sanidine, and most modern
540	analyses use this mineral exclusively; however, plagioclase and biotite dates are quite
541	common in literature from the 1990's. Here these non-sanidine dates are recalibrated, and
542	they are comparable to each other (i.e., biotite dates can be directly compared with other
543	biotite dates), but caution is advised when comparing non-sanidine dates with those of
544	sanidine (although this is sometimes unavoidable).
545	
546	Reporting of uncertainty / error
547	Reporting of error associated with 40 Ar / 39 Ar derived ages is not standardized and
548	varies in the inclusiveness of sources of error, the statistical method used to calculate
549	error, the type of error, and in the amount of analytical information provided.
550	
551	Sources of error in 40 Ar / 39 Ar analyses include analytical error (e.g., J-value),
552	uncertainty in the standard used (e.g. age of the Fish Canyon Tuff, FCT is 28.201 +/- 0.23
553	Ma at 1 σ ; Kuiper et al., 2008), uncertainty in the decay constant (e.g., λ_T of 5.463 +/-
554	0.214 E-10/y; Min et al., 2000), and geological processes that may lead to post-
555	crystallization alteration of isotope ratios (Villeneuve, 2004). Most older publications do
556	not explicitly state what is included in the reported error, but newer studies (e.g., Sprain
557	et al., 2014) report both analytical and systematic error.
558	

559 The statistical method used to report error is not standardized, and is typically 560 given in one of three forms; some authors report 1 or 2 standard deviations (σ); Standard 561 Error is also commonly reported (especially for population means); finally, some authors 562 report the 95% confidence interval for the population mean, which is roughly equivalent 563 to 2σ (=95.45% confidence interval).

564

It is common for published radiometric dates to lack associated details of the analysis, by either the date being given as a personal communication, or simply the omission of analytical details. Consequently, it is sometimes unclear as to whether (for example) a stated error of ± -0.15 Ma refers to 1σ , 2σ , Standard Error, or whether it includes analytical and systematic error.

570

571 As such, it is not possible to make the error consistent between each recalibration 572 (although the effects are relatively minor). Where possible, recalibrated error is reported 573 to 1σ analytical error, but generally the original reported error is simply processed 574 through the recalibration spreadsheet, noting wherever possible all details and any issues 575 that may arise. Direct comparison of error between dates (both recalibrated and 576 unrecalibrated) should therefore be approached with caution. 577

578 Agreement of ⁴⁰Ar / ³⁹Ar dates with U-Pb dates

⁴⁰Ar / ³⁹Ar dates have historically tended to be younger than U-Pb dates by about
1% (Schoene et al., 2006), equating to ~750 k.y. difference in a 75 m.y. old sample (i.e.,
the approximate age of the units studied here). Possible explanations include longer

582zircon magma residence times prior to an eruption (Villeneuve, 2004), error in the 40 K583decay constant (Schmitz and Bowring, 2001), or interlaboratory bias and geological584complexities (Kuiper et al., 2008). Recent revisions of standards and decay constants for585 40 Ar / 39 Ar dating have closed the gap to within ~0.3% (Kuiper et al., 2008; Renne et al.,5862011). This led Kuiper et al. (2008) to suggest that 40 Ar / 39 Ar dating has improved

587 "absolute uncertainty from ~2.5% to 0.25%"

588 It should be noted (Renne et al., 1998; Villeneuve, 2004), that when comparing dates within the same system (i.e., 40 Ar / 39 Ar compared to 40 Ar / 39 Ar; and U-Pb dates 589 590 compared to other U-Pb dates) then it is accepted practice to not include internal error 591 (such as data uncertainties in K-Ar, decay constants, and intercalibration factors; Renne 592 et al., 1998) as both dates are subject to the same uncertainty, effectively canceling it out. However, when directly comparing dates derived from different systems (i.e., 40 Ar / 39 Ar 593 594 dates with U-Pb dates), then internal error should be included. An example from Renne et 595 al. (1998) showed that when reported separately, and therefore without internal error, the age of a biotite-derived 40 Ar / 39 Ar date for the Permo-Triassic Siberian Trap basalt was 596 597 250.0 +/- 0.1 Ma, whereas a zircon and baddeleyite U-Pb date from the same intrusion was 251.2 ± 0.2 Ma. When properly compared with the internal error included, the ⁴⁰Ar 598 $/ {}^{39}$ Ar dates became 250.0 +/- 2.3 Ma, whereas the U-Pb date was recalculated as 251.2 599 600 +/-0.3 Ma, such that the error ranges of the dates now overlap. In the case of this current 601 work, only three U-Pb dates are plotted in S1 Table, all of which are from the Javelina 602 and Aguja formations of Texas. The reader should therefore take care when comparing these units directly with other units based on 40 Ar / 39 Ar geochronology. 603

605 Other general comments

606

607 The number of decimal places for reported dates and error are left in their original 608 published form where possible.

609

In previous publications, a number of radiometric dates are reported as personal communication or featured only in abstracts. Such references typically lack any analytical data, so original standards (etc.) must be assumed based on the year in which the analysis was (likely) conducted, and any details of the typical standards used by the scientist and laboratory that carried out the analysis (if known; see individual notes for details of sleuthing).

616

617 **Results**

618

619 The results of this study are presented as separate documents in the Supporting

620 Information; the stratigraphic chart (S1 Table), and the recalibration sheet (S2 Table).

621 These documents contain a large amount of information in the various pop-up notes, most

622 of which is not repeated here as it is best viewed in stratigraphic context.

623

624 Notes on recalibrations by other authors

626 Various analyses published by J. D. Obradovich

627

Many critical ⁴⁰Ar / ³⁹Ar dates have been published by J. D. Obradovich (United 628 States Geological Survey, Colorado), not the least of which his 1993 work, "a Cretaceous 629 time scale" which presented over 30 40 Ar / 39 Ar dates for many key horizons or ammonite 630 631 biozones, establishing a robust framework for the Late Cretaceous of the U.S. Western 632 Interior. As such, recalibration of Obradovich radiometric dates is of great importance, 633 but requires special caution due to the particular methodology of Obradovich during the 634 1990's (and possibly early 2000's), which differs slightly from what might be expected. 635 During this time, Obradovich typically used the TCR as the standard for his analyses, but 636 the equivalent age of the FCT (required for recalibration) is not typical. Indication of this 637 is noted by Hicks et al. (2002, p.43) who state:

638

639 "The TCR (Duffield & Dalrymple, 1990) has been used exclusively since 1990 by 640 one of us (Obradovich) with an assigned age of 28.32 Ma normalized to an age of 520.4 641 Ma for MMhb-1 (Samson & Alexander, 1987). This age differs from that of 27.92 Ma 642 assigned by Sarna-Wojcicki and Pringle (1992). The choice of 28.32 Ma was entirely 643 pragmatic because this monitor age provided the best comparison with ages delivered by 644 Obradovich and Cobban (1975). In an intercalibration study [...] Renne et al. (1998) 645 obtained ages of 28.34 Ma for TCR and 28.02 Ma for FCT when calibrated against 646 GA1550 biotite as their primary standard with an age of 98.79 Ma. This value of 28.02 647 agrees quite well with [...] 28.03 Ma obtained through calibration based on the 648 astronomical time scale (Renne et al., 1994). On the basis of unpublished data, one of us

649	(Obradovich) obtained an age of 28.03 Ma for the FCT [] of W, McIntosh (Geoscience
650	Dept. New Mexico Institute of Mining and Technology, Socorro), calibrated against an
651	age of 28.32 Ma for TCR."
652	
653	However, Obradovich-published analyses from this time do not exclusively use
654	the TCR at 28.32 Ma, as Izzett and Obradovich (1994) state that they use FCT sanidine at
655	27.55 Ma, and TCR sanidine at 27.92 Ma, both relative to MMhb-1 at 513.9 Ma (in
656	conjunction with $\lambda T = 5.543$ E-10/y). They note that the 513.9 Ma age of MMhb-1 differs
657	from the then standardized age of 520.4 Ma (Samson and Alexander, 1987) as the former
658	age was calibrated in the lab where their current samples were analysed (Lanphere et al.,
659	1990; Dalrymple et al., 1993).
660	
661	This creates a problem when recalibrating 40 Ar / 39 Ar ages that used TCR as the
662	fluence monitor (standard). The "official" TCR age of 27.92 Ma has a corresponding
663	FCT age of 27.84 Ma (Samson and Alexander, 1987; Renne et al., 1998). However, since
664	most analyses by Obradovich use TCR at 28.32 Ma, then the question remains as to what
665	number to use for the equivalent FCT when performing recalibrations. Renne et al. (1998)
666	provide an intercalibration factor for FCT:TCR of 1:1.00112 +/- 0.0010, which simply
667	calculated is FCT = $28.32 / 1.100112 = 28.006$ Ma. This agrees well with an FCT
668	equivalent of 28.03 Ma (as calculated by Obradovich; see above; Hicks et al., 2002;
669	Obradovich, 2002) and a value of 28.02 Ma of Renne et al. (1998). In The Geological
670	Time Scale 2012 (Gradstein et al., 2012), Schmitz (2012) recalibrates a selection of dates
671	from Obradovich (1993), and Hicks et al. (1995, 1999) using a legacy FCT age of 28.00

672	Ma (not stated, but retrocalculated here). Sageman et al. (2014; cited as Siewert et al., in
673	press, by Schmitz, 2012) recalibrate Obradovich's older dates using a legacy FCT age of
674	28.02 Ma (thereby agreeing with Renne et al., 1998).
675	
676	In this analysis, when recalibrating an 40 Ar / 39 Ar date that was calculated by
677	Obradovich using TCR = 28.32 , I use an FCT value of 28.03 , as this is the equivalent
678	FCT explicitly stated by Obradovich (2002). This is a very close value to 28.02 (Renne et
679	al., 1998; where the TCR equivalent is 28.34 +/- 0.16 Ma; 1 σ , ignoring decay error) so
680	confusion between the two should be avoided, although the difference between ages
681	calculated using 28.03 or 28.02 Ma standards would correspond to only 0.02 to 0.04 m.y.
682	for ages in the Late Cretaceous (100.5 - 66 Ma; Ogg and Hinnov, 2012)
683	
684	Roberts et al. (2013)
685	
686	Roberts et al. (2013) present a table of recalibrated radiometric dates from a
687	selection of important dinosaur-bearing formations of the North American Western
688	Interior. Unfortunately, 11 out of 18 dates are incorrectly recalibrated, producing dates
689	that are incorrect by up to a million years.
690	
691	For recalibrated dates of the Judith River Formation (originally published by
692	Goodwin and Deino, 1989), the study (Roberts et al., 2013) utilizes an incorrect original
693	(legacy) FCT standard of 28.02 Ma (i.e., from Renne et al., 1998, published after the

original 1989 analysis). For the recalibration to be correct, the legacy standard must be

NOT PEER-REVIEWED

32

Peer Preprints

695	the value of FCT that was equivalent to the MMhb-1 at 420.4 Ma, which is $FCT = 27.84$
696	Ma (Samson and Alexander, 1987; see Renne et al., 1998). This produces recalibrations
697	for the Judith River Formation that are nearly half a million years different from the
698	corrected recalibrations calculated in the current article. For example, the sample
699	84MG8-3-4 was originally published as 78.2 Ma (Goodwin and Deino, 1989); Roberts et
700	al. (2013) recalibrate it as 78.71 Ma, whereas the recalibration offered in the current work
701	(see S1 and S2 Tables) is 79.22 Ma.
702	
703	The same error was made for recalibrations from the Bearpaw, Dinosaur Park,
704	and Oldman formations as the Renne et al. (1998) FCT date of 28.02 was also input as
705	the legacy FCT for dates originally published by Eberth and Hamblin (1993) and Eberth
706	and Deino (1992); i.e. before the 1998 paper was published. The correct legacy standard
707	to be used for these recalibrations is again, $FCT = 27.84$ Ma (Samson and Alexander,
708	1987; confirmed by Eberth, pers. comm., 2017; in prep.)
709	
710	When recalibrating 40 Ar / 39 Ar dates for the Fruitland and Kirtland formations,
711	New Mexico (originally published by Fassett and Steiner, 1997), incorrect values are
712	input for the original (legacy) decay constant (λ) and standard (Roberts et al., 2013). First,
713	the legacy λ used (Roberts et al., 2013) is 4.962E-10/y, which was presumably copied
714	from the bottom of the chart on p. 243 of Fassett and Steiner (1997), where it is labeled as
715	the value of $\lambda\beta$ (ie. the probability of β - decay of 40K to 40Ca), and is printed below the
716	value of $\lambda\epsilon$ (0.581 E-10/y; probability of electron capture or β + of 40Kto 40Ar). In this
717	case, the correct λ value to use for recalibration is 5.543 E-10/y (Steiger and Jaeger,

718	1977), which is the total (λT) of $\lambda\beta$ plus $\lambda\epsilon$. Second, Roberts et al. (2013) correctly state
719	that the legacy standard used by Fassett and Steiner (1997) for fluence monitoring was
720	the TCR at 28.32 Ma; however, this number is then input directly into the recalibration
721	formula with the new FCT standard (28.201; Kuiper et al., 2008). This is incorrect as
722	recalculation must use the same standard mineral (e.g., FCT) for both legacy and
723	recalibrated dates. For the recalculation to be correct, the legacy standard must therefore
724	be the value of FCT that was equivalent to the TCR at 28.32 at the time of the 1997
725	analysis, which is either FCT = 27.84 Ma or ~ 28.03 (see S1 Table; above note on
726	Obradovich), both of which produce recalibrated ages ~1 million years older than the
727	dates presented by Roberts et al. (2013). The resultant misrecalibrated dates are actually
728	younger than the original legacy dates, which should have been more difficult to overlook
729	as the standards for 40 Ar / 39 Ar dating have been getting progressively older, so all
730	recalibrations should produce older dates.
731	
732	The recalibrated dates of Roberts et al. (2013) were replicated (therefore
733	confirmed) by rerunning the legacy values through the recalibration spreadsheet provided
734	by the EARTHTIME institute.
735	
736	Seven recalibrations were performed correctly; four from the Kaiparowits
737	Formation, Utah, one from the Wahweap Formation, Utah, and two from the Two
738	Medicine Formation, Montana. All other recalibrated dates are incorrect and should be
739	discarded.
740	

34

741 **Discussion**

742	
743	It is beyond the scope of this short work to summarize the implications of
744	everything in the stratigraphic chart; only some enduring issues and important changes
745	that might affect geological or paleontological interpretation are discussed here, as
746	examples of potential uses of this chart's correlations.
747	
748	Geology
749	
750	Judith River Formation
751	
752	The Judith River Formation is a middle to (possibly) upper Campanian terrestrial
753	unit exposed across north and central Montana. It has been studied since the mid-19th
754	century (Stanton and Hatcher, 1905; Bowen, 1915; Sahni, 1972; Gill and Cobban, 1973),
755	but many aspects of its stratigraphy remain unresolved, especially regional correlation
756	(Rogers et al., 2016). This is in part due to the Judith River Formation being a clastic
757	wedge that thins west to east such that its upper and lower contacts change
758	geographically, and in part due to the uneven geographic distribution of published
759	measured sections. The stratigraphy of some areas of outcrop is well documented, such as
760	the type area in central Montana (Sahni, 1972; Rogers, 1993; Rogers et al. 2016) and near
761	Rudyard in northernmost Montana (e.g., Goodwin and Deino, 1989; Freedman Fowler

NOT PEER-REVIEWED

Peer Preprints

and Horner, 2015). However, few measured sections have been published for many other
equally excellent exposures. For example, despite the recovery of many fine fossil
specimens from near the north-central Montana town of Malta (e.g., Prieto-Marquez,
2005), the only measured sections available for this area are in unpublished MS theses
(Malik, 1990; LaRock, 2000).

767

768 The Judith River Formation in the type area (central Montana; Sahni, 1972) has 769 recently been formally subdivided into a series of members (Rogers et al., 2016), notably 770 a sand-dominated basal McClelland Ferry Member and overlying mud-dominated Coal 771 Ridge Member, distinguished in subsurface Spontaneous Potential (SP) logs by a 772 distinctive "kick" named the Mid Judith Discontinuity (Rogers et al., 2016). However, despite the naming of these members for the type section in central Montana, it is not 773 774 clear how they might be applied to exposures of the Judith River Formation in 775 northernmost Montana along the U.S.-Canada border, from which most of the diagnostic 776 vertebrate fossils have been recovered. 777 778 In contrast to the type area, exposures of the Judith River Formation close to the 779 U.S.-Canada border are already recognized as direct lithostratigraphic equivalents to parts 780 of the Belly River Group of Alberta (formerly called the Judith River Formation or Group; 781 Jerzykiewicz and Norris, 1994; Hamblin and Abrahamson, 1996). Specifically, 782 subdivisions of the Foremost and Oldman formations of Alberta (Taber Coal Zone, Herronton Sandstone Zone, Unit 1, Unit 2, and Unit 3; Eberth, 2005) have been identified 783

- in outcrop in northernmost Montana (Eberth, 2005; Schott et al., 2009; Ryan et al., 2010;
 Freedman Fowler and Horner, 2015).
- 786

787 The distinctive well-log "kick" that defines the boundary between the McClelland 788 Ferry and Coal Ridge members is present in the subsurface in northernmost Montana 789 (near Havre) and through into southern Canada (Rogers et al., 2016). Therefore, the 790 discontinuity should occur among the defined subunits of the Belly River Group already 791 identified in this part of southern Canada and their equivalents in the U.S. (Eberth. 2005: 792 Schott et al., 2009; Ryan et al., 2010; Freedman Fowler and Horner, 2015). However, 793 only the subsurface data is referenced for this area by Rogers et al. (2016), so it is not 794 explicitly clear in which Canadian unit the Mid Judith Discontinuity occurs. Rogers et al. 795 (2016) state that it occurs higher in section than the exposures in Kennedy Coulee, near 796 Rudyard, Montana, which comprise direct lithostratigraphic equivalents of the Foremost 797 Formation (Taber Coal Zone and Herronton Sandstone Zone) and the lower part of the 798 Oldman Formation (Unit 1 and the leached zone; *sensu* Eberth, 2005; Schott et al., 2009; 799 Ryan et al., 2010; Freedman Fowler and Horner, 2015; Evans, pers. comm.). As such, the 800 "kick" must therefore occur stratigraphically higher than Unit 1 of the Oldman Formation, 801 possibly correlating with the top of the Comrey Sandstone Zone (Unit 2, middle of the 802 Oldman Formation; Evans. pers. comm. 2016; see S1 Table). The only suggestion in 803 Rogers et al. (2016, p. 126) states, "the Oldman Formation [is an ...] approximate age 804 equivalent to the McClelland Ferry Member [... and ...] the overlying Dinosaur Park 805 Formation [is an ...] approximate age equivalent to the Coal Ridge Member". However, 40 Ar / 39 Ar dates from immediately below the discontinuity (76.24 and 76.17 Ma; Rogers 806
NOT PEER-REVIEWED

Peer Preprints

807	et al., 2016) are younger than an 40 Ar / 39 Ar date from the middle of the Dinosaur Park
808	Formation (76.39 Ma; Eberth, pers. comm.; see individual entry in S1 Table). This would
809	make the suggested correlation unlikely, and would also exclude the possibility of the
810	Mid Judith Discontinuity correlating with the top of the Comrey Sandstone Zone.
811	However, accuracy or incompatibility of the radiometric dates may be the cause of this
812	issue; as such it is only likely to be resolved if samples from both the Judith River
813	Formation and Canadian units are analysed by the same laboratory under identical
814	conditions.
815	
816	A potential opportunity to correlate the type section of the Judith River Formation
817	with exposures in northern Montana and the equivalent units in southern Alberta is
818	provided by biostratigraphy of rhinobatid rays, the teeth of which are a common
819	component of microsites in Late Cretaceous units of the Western Interior. In Alberta, ray
820	teeth recovered from the Foremost Formation, and Unit 1 of the overlying lower Oldman
821	Formation pertain to the smooth-sided form Pseudomyledaphus sp., whereas the
822	overlying Comrey Sandstone Zone (Unit 2) and successively overlying units of the upper
823	Oldman Formation bear only Myledaphus bipartitus (Peng et al., 2001; Brinkman et al.,
824	2004; Kirkland et al., 2013). This biostratigraphic pattern was used to corroborate
825	lithostratigraphic correlation of exposures of the Judith River Formation north of
826	Rudyard, Montana, with the upper Foremost and lower Oldman formations, and also that
827	the lowermost exposures of the Judith River Formation near Malta, Montana, correlate
828	with the Comrey Sandstone Zone of the Oldman Formation (Freedman Fowler and
829	Horner, 2015). The large number of microsites recorded in the type section of the Judith

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2554v2 | CC BY 4.0 Open Access | rec: 4 Sep 2017, publ: 4 Sep 2017

830	River Formation (Rogers and Kidwell, 2000), and indeed potentially elsewhere in
831	similarly aged units in the Western Interior (e.g. Mesa Verde Group, Wyoming and
832	Colorado; Aguja Formation, Texas), mean that this biostratigraphic change may be easily
833	detectable from existing collections and useful for correlation.
834	
835	In summary, lack of a defined correlation or lithostratigraphic definition for the
836	Mid Judith Discontinuity in U.SCanada border exposures of the Judith River Formation
837	mean that the newly defined members are currently of limited use for surficial regional
838	correlation beyond the type area. Furthermore, as the McClelland Ferry Member is
839	equivalent to at least the combined Foremost Formation and Units 1-2 (and possibly 3) of
840	the Oldman Formation, it offers reduced stratigraphic resolution than simply using the
841	Canadian terminology when referring to these equivalent units for Judith River
842	Formation exposures along the U.SCanada border sections where correlations are
843	readily apparent. Due to these limitations, use of the newly defined members outside of
844	the type area of the Judith River Formation is problematic.
845	
846	A final remaining issue is that the lower part of the Judith River Formation as
847	currently defined is strongly variable in age, being ~80 Ma in the area north of the town
848	of Rudyard (where it is equivalent to the Foremost Formation, Alberta; Godwin and
849	Deino, 1989; Eberth, 2005; Schott et al., 2009; Ryan et al., 2010; Freedman Fowler and

- 850 Horner, 2015), but perhaps as young as 77.5 Ma ~200km to the east near the town of
- 851 Malta (where it is equivalent to the Comrey Sandstone, Oldman Formation, Alberta;
- 852 Freedman Fowler and Horner, 2015). This is mostly an artifact of the lack of subdivision.

NOT PEER-REVIEWED

853	A solution to this issue would be to follow Canadian stratigraphic definition in raising the
854	Judith River Formation to group status, and subdivide it into constituent formations and
855	members that have direct correlates in Canada. In order to maintain the resolution offered
856	by the Canadian terms, here the lower-Oldman Formation (Herronton Sandstone and Unit
857	1; Eberth, 2005) equivalent of the Judith River Formation is referred to as the "Rudyard
858	beds", and the upper Oldman Formation (Units 2-3; Eberth, 2005) equivalent as the
859	"Malta beds" in reference to the geographic locations where these particular parts of
860	section are well exposed.
861	
967	Ago of the Aguin Formation Toyog
802	Age of the Aguja Formation, Texas
863	
864	The Aguja Formation of southwest Texas is subdivided into Lower and Upper
865	Shale Members, which are separated by a marine tongue (Rowe et al., 1992; Sankey and
866	Gose, 2001). The Upper Shale Member has yielded important vertebrate fossils (Lehman,
867	1989; Wagner and Lehman, 2009) and is often considered as an upper Campanian or
868	even Maastrichtian aged unit (e.g., Longrich et al., 2010; Sankey, 2010) based on
869	interpretation of magnetostratigraphy (Sankey and Gose, 2001), phreatomagmatic
870	volcanism (Longrich et al., 2010), and chemostratigraphic correlation (Nordt et al., 2003).
871	Magnetostratigraphic analysis by Sankey and Gose (2001) shows that the base of the
872	Upper Shale Member is of reversed polarity, and is overlain by a short normal polarity
873	interval, another reversed interval, then another normal interval. The uppermost part of
874	the Upper Shale Member is shown as normal polarity by Lehman (1990). Sankey and
875	Gose (2001) correlate the basal part of the Upper Shale Member with C32r (74.309 -

73.649 Ma; Ogg, 2012), asserting a late Campanian age. Using chemostratigraphic and
magnetostratigraphic data, Nordt et al. (2003) and Sankey (2010) placed the upper part of
the Upper Shale Member as early Maastrichtian in age, ~69-68 Ma. However, more
recently published stratigraphic evidence is supportive of a middle Campanian age for the
Upper Shale Member.

881

882 Ammonites and radiometric dates constrain the age of the Upper Shale Member 883 as between ~80.2 and 76.9 Ma. Ammonite remains (Rowe et al., 1992; Lehman and 884 Tomlinson, 2004) from the marine tongue that separates the Lower and Upper Shale 885 members indicate that the Lower Shale Member should be no younger than the earliest 886 middle Campanian Baculites mclearni zone (80.67 - 80. 21 Ma; Ogg and Hinnov, 2012), 887 and the Upper Shale Member should be no older than this. A U-Pb date of 69.0 Ma 888 recovered from the overlying Javelina Formation, ~60 m above the formational contact 889 (Lehman et al., 2006) demonstrates that the upper part of the Upper Shale Member of the 890 Aguja Formation is unlikely to be any younger than this. Similarly, phreatomagmatic 891 volcanic deposits occur within the Upper Shale Member, and are U-Pb dated at 76.9 +/-892 1.2 Ma (Befus et al., 2008) and 72.6 +/- 1.5 Ma (Breyer et al., 2007). In which case the 893 base of the Upper Shale Member should not be any younger than 76.9 ± 1.2 Ma. 894 895 Further refinement of the age of the Upper Shale Member is problematic. Befus et 896 al. (2008; p. 262) proposed a formational model where the phreatomagmatic volcanic

897 deposits were emplaced into a crater formed within Aguja Formation sediment; i.e., the

898 76.9 Ma volcanic unit must have been deposited after deposition of the Upper Shale

899 Member (see Fig. 22 in Befus et al., 2008). As such the Upper Shale Member should not 900 itself be considered as 76.9 Ma in age. Sankey and Gose's (2001) assignment of the base 901 of the Upper Shale Member to magnetochron C32r (shown above to no longer be 902 possible) was based in part on the lack of short-duration polarity fluctuations below C32r 903 in the accepted magnetostratigraphic record (then represented by Gradstein et al., 1995). 904 However, a number of short duration 'cryptochron' reversals were detected at the base of 905 C33n by Montgomery et al. (1998). Although these are not yet officially accepted (i.e. in 906 GTS 2012; Ogg, 2012), if these short reversal cryptochrons are considered valid (as in 907 many publications by J. F. Lerbekmo; see S1 Table) then the base of the Upper Shale 908 Member might be more precisely correlated within the lower part of C33n, which would 909 be consistent with the constraints of radiometric dates, ammonite biostratigraphy, and the 910 assertion of Wagner and Lehman (2009). However, this is only speculative, and more 911 data is needed.

912

913 Age of the Javelina Formation, Texas

914

The age of the Javelina Formation (and basal part of the overlying Black Peaks
Formation, *sensu* Lehman and Coulson, 2002) of southwest Texas has often been
considered as late Maastrichtian, even latest Maastrichtian (e.g., Lawson, 1976; Lehman
and Coulson, 2002; Atchley et al., 2004), and is based on comparison of the Javelina
Formation dinosaur fauna with that of the Hell Creek and Lance formations (Lawson,
1976; Lehman, 2001). From this perspective then, it was perhaps surprising when
Lehman et al. (2006) published a U-Pb date of 69.0 +/- 0.9 Ma for the middle of the

922	Javelina Formation. Assuming it is accurate, this plots in the lowermost part of the late
923	Maastrichtian (69.1 - 66.0 Ma; Ogg and Hinnov, 2012). The Javelina Formation is often
924	considered to represent continuous deposition up to and through the K-Pg boundary (e.g.
925	Atchley et al., 2004). If this were the case, then it would mean that the ~90m of deposits
926	overlying the 69 Ma datum (Lehman et al., 2006) represented the 3 m.y. leading up to the
927	K-Pg boundary, and that the ~60 m below might represent 2 m.y. (if average rates of
928	deposition were assumed). This would seem to be an unusually long period of time for
929	such a thin unit, though not impossible. Alternatively, considerable hiatuses (up to 2 m.y.)
930	are suggested to occur within the Javelina Formation by Nordt et al. (2003). This is
931	important regarding regional correlation and warrants further consideration.
932	

933 Paleontology

934 Thinking about taxa as lineages

935

936 There has been a recent re-emergence of study regarding the mode of evolution 937 of dinosaurs. Many analyses have found that dinosaur sister taxa form (typically) short-938 duration species that do not overlap stratigraphically; a pattern especially common 939 within single depositional basins (e.g., Mateer, 1981; Horner et al., 1992; Holmes et al., 940 2001, although see; Ryan and Russell, 2005; Campione and Evans, 2011; Evans et al., 941 2011; Mallon et al., 2012; Gates et al., 2013; Scannella et al., 2014; Freedman Fowler 942 and Horner, 2015; Fowler, 2016). In some cases, it has been suggested that this may 943 represent anagenesis (or the synonym, 'phyletic evolution'; Horner et al., 1992; Campione

and Evans, 2011; Scannella et al., 2014; Freedman Fowler and Horner, 2015; Fowler,
2016), the evolutionary mode whereupon lineages or populations transform
morphologically through time without branching into multiple contemporaneous species
(cladogenesis; also technically, speciation; sensu Cook, 1906).

948

949 The stratigraphic correlations and taxonomic plots presented here (S1 Table) 950 facilitate more broad investigations of the mode of evolution in Western Interior 951 dinosaurs. One of the striking results of the replotting of both geological formations and 952 dinosaur taxa is that many dinosaur clades form columns of short-duration species (or 953 perhaps more accurately, metaspecies; Archibald, 1994; Lee, 1995) which do not overlap 954 stratigraphically, a pattern which, if real, fails to reject the hypothesis of anagenesis. This 955 suggests that in Western Interior dinosaurs, much of the morphological change that we 956 observe through time might not all be related to the multiplication of species. If 957 cladogenesis was the most important driver of morphological change (Eldredge and 958 Gould, 1972), then we would expect to see stratigraphic overlap between different 959 morphologies. Although this does occur, it is not ubiquitous, and anagenesis should be 960 equally considered alongside cladogenesis as a valid hypothesis explaining 961 morphological change. Further support for anagenesis is that many stratigraphically 962 intermediate forms are also intermediate in morphology; this is best shown in 963 chasmosaurine ceratopsids of the upper Maastrichtian Hell Creek Formation (*Triceratops*; 964 Scannella et al., 2014), but also in the Pentaceratops lineage chasmosaurines of the 965 middle to upper Campanian (Kaiparowits Formation, Utah; Fruitland and Kirtland

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2554v2 | CC BY 4.0 Open Access | rec: 4 Sep 2017, publ: 4 Sep 2017

966 formations, New Mexico), and brachylophosaurin hadrosaurines of the middle

- 967 Campanian (Freedman Fowler and Horner, 2015).
- 968

969 It could be noted that if the error associated with radiometric dates is included, 970 then for some species it may not be possible to determine with total confidence whether 971 or not they were contemporaneous with their sister taxon (which would falsify 972 anagenesis). This criticism however, applies equally to any evolutionary hypothesis that 973 depends upon precise stratigraphic data for closely related taxa that are stratigraphically 974 similar ages, including the hypothesis of cladogenesis (the alternative to anagenesis), and 975 even biogeographic hypotheses (e.g., Sampson et al., 2010; 2013). It also could be argued 976 that a lack of stratigraphic overlap of sister taxa is simply an artifact of inadequate 977 sampling. These might well be true, but it does not mean that hypotheses should not be 978 formed and tested. In some examples where large datasets have been accumulated 979 (Scannella et al., 2014) the pattern has still been one of stratigraphic replacement rather 980 than overlap, with an increased number of stratigraphically intermediate specimens 981 exhibiting more intermediate morphologies. Increased sampling is evidently the best way 982 to test all hypotheses of anagenesis, cladogenesis, and biogeography in Western Interior 983 dinosaurs, but it would be " pusillanimous to avoid making our best efforts today because 984 they may appear inadequate tomorrow" (Simpson, 1944; p. xviii). 985

986 North-south biogeography and intracontinental faunal endemism

988	It has been proposed that during the Campanian, the Western Interior of North
989	America was divided into relatively small latitudinally arrayed faunal provinces, each
990	with a unique fauna (Sampson et al., 2010; 2013). This is based primarily on the
991	description of new genera and species of dinosaur collected from the Kaiparowits
992	Formation, Utah (e.g., Gates and Sampson, 2007; Sampson et al., 2010; 2013), and the
993	perception that the Kaiparowits Formation was deposited contemporaneously with other
994	dinosaur-bearing deposits (e.g., the Dinosaur Park Formation, Alberta; Fruitland and
995	Kirtland formations, New Mexico). However, review of the data used in the original
996	publication (Sampson et al., 2010) and recalibrations performed here reduce support for
997	this hypothesis.
998	
999	In 2005, Roberts et al. presented a thorough stratigraphic and sedimentological
999 1000	In 2005, Roberts et al. presented a thorough stratigraphic and sedimentological description of the Kaiparowits Formation, including three 40 Ar / 39 Ar dates (75.96 Ma;
999 1000 1001	In 2005, Roberts et al. presented a thorough stratigraphic and sedimentological description of the Kaiparowits Formation, including three 40 Ar / 39 Ar dates (75.96 Ma; 75.02 Ma; and 74.21 Ma) from a series of volcanic ashes throughout the unit. This
999 1000 1001 1002	In 2005, Roberts et al. presented a thorough stratigraphic and sedimentological description of the Kaiparowits Formation, including three ⁴⁰ Ar / ³⁹ Ar dates (75.96 Ma; 75.02 Ma; and 74.21 Ma) from a series of volcanic ashes throughout the unit. This provided a welcome opportunity to more precisely correlate the Kaiparowits Formation
9991000100110021003	In 2005, Roberts et al. presented a thorough stratigraphic and sedimentological description of the Kaiparowits Formation, including three ⁴⁰ Ar / ³⁹ Ar dates (75.96 Ma; 75.02 Ma; and 74.21 Ma) from a series of volcanic ashes throughout the unit. This provided a welcome opportunity to more precisely correlate the Kaiparowits Formation with similarly aged units in the Western Interior, permitting the testing of paleontological
 999 1000 1001 1002 1003 1004 	In 2005, Roberts et al. presented a thorough stratigraphic and sedimentological description of the Kaiparowits Formation, including three ⁴⁰ Ar / ³⁹ Ar dates (75.96 Ma; 75.02 Ma; and 74.21 Ma) from a series of volcanic ashes throughout the unit. This provided a welcome opportunity to more precisely correlate the Kaiparowits Formation with similarly aged units in the Western Interior, permitting the testing of paleontological hypotheses regarding the biogeography, phylogeny, and mode of evolution of their
 999 1000 1001 1002 1003 1004 1005 	In 2005, Roberts et al. presented a thorough stratigraphic and sedimentological description of the Kaiparowits Formation, including three ⁴⁰ Ar / ³⁹ Ar dates (75.96 Ma; 75.02 Ma; and 74.21 Ma) from a series of volcanic ashes throughout the unit. This provided a welcome opportunity to more precisely correlate the Kaiparowits Formation with similarly aged units in the Western Interior, permitting the testing of paleontological hypotheses regarding the biogeography, phylogeny, and mode of evolution of their dinosaur fauna.
 999 1000 1001 1002 1003 1004 1005 1006 	In 2005, Roberts et al. presented a thorough stratigraphic and sedimentological description of the Kaiparowits Formation, including three 40 Ar / 39 Ar dates (75.96 Ma; 75.02 Ma; and 74.21 Ma) from a series of volcanic ashes throughout the unit. This provided a welcome opportunity to more precisely correlate the Kaiparowits Formation with similarly aged units in the Western Interior, permitting the testing of paleontological hypotheses regarding the biogeography, phylogeny, and mode of evolution of their dinosaur fauna.
 999 1000 1001 1002 1003 1004 1005 1006 1007 	In 2005, Roberts et al. presented a thorough stratigraphic and sedimentological description of the Kaiparowits Formation, including three ⁴⁰ Ar / ³⁹ Ar dates (75.96 Ma; 75.02 Ma; and 74.21 Ma) from a series of volcanic ashes throughout the unit. This provided a welcome opportunity to more precisely correlate the Kaiparowits Formation with similarly aged units in the Western Interior, permitting the testing of paleontological hypotheses regarding the biogeography, phylogeny, and mode of evolution of their dinosaur fauna.
 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 	In 2005, Roberts et al. presented a thorough stratigraphic and sedimentological description of the Kaiparowits Formation, including three ⁴⁰ Ar / ³⁹ Ar dates (75.96 Ma; 75.02 Ma; and 74.21 Ma) from a series of volcanic ashes throughout the unit. This provided a welcome opportunity to more precisely correlate the Kaiparowits Formation with similarly aged units in the Western Interior, permitting the testing of paleontological hypotheses regarding the biogeography, phylogeny, and mode of evolution of their dinosaur fauna.

1010 Two Medicine Formation (Montana) and Fruitland and Kirtland formations (New Mexico)

NOT PEER-REVIEWED

46

Peer Preprints

1011	were representative of different species being endemic to small geographic ranges. Key
1012	evidence for this hypothesis was the presentation and discussion of the stratigraphic
1013	ranges of chasmosaurine ceratopsid dinosaurs, of which many taxa were shown to have
1014	overlapped (Sampson et al., 2010). This would mean that these taxa were
1015	contemporaneous, but apparently segregated geographically, thereby forming key support
1016	for intracontinental faunal endemism (Sampson et al., 2010).
1017	
1018	However, the chronostratigraphic data used to plot the stratigraphic ranges of
1019	chasmosaurine taxa (Sampson et al., 2010) contained an unexplained inconsistency
1020	related to the mixed use of unrecalibrated and recalibrated 40 Ar / 39 Ar dates. The
1021	stratigraphic ranges of chasmosaurines from the Kaiparowits Formation (Utahceratops
1022	and Kosmoceratops) were plotted as occurring from 76.3 to 75.5 Ma, and regarding the
1023	duration of the formation itself, Sampson et al. (2010, p.6) state "Laser-fusion 40Ar/39Ar
1024	ages indicate a late Campanian range for the formation, spanning 76.6–74.5 Ma and
1025	corresponding to the Judithian land vertebrate age (Fig. 7)", and cite Roberts et al. (2005)
1026	as the source for these ages. However, as shown above, the dates in Roberts et al. (2005)
1027	range from 75.96 to 74.21 Ma, i.e. the youngest date given by Roberts et al. (2005), 74.21
1028	Ma, is younger than the upper age limit of the entire formation (74.5 Ma) given by
1029	Sampson et al. (2010), which is clearly impossible. Furthermore, Roberts et al. (2005, p.
1030	312) explicitly state that "utilizing an average rock accumulation rate of 41 cm/ka, the ca.
1031	860-m-thick Kaiparowits Formation accumulated for ca. 2.1 Ma, from ca. 76.1 - 74.0
1032	Ma". This is therefore inconsistent with the taxon and formational ranges of Sampson et

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2554v2 | CC BY 4.0 Open Access | rec: 4 Sep 2017, publ: 4 Sep 2017

1035

1036	More information was later provided in a generalized stratigraphic column of the
1037	Kaiparowits Formation (Zanno et al., 2011), which presented four 40 Ar / 39 Ar dates

1038 (76.46 Ma; 75.97 Ma; 75.51 Ma; and again 75.51 Ma), three of which corresponded

1039 stratigraphically with the same horizons dated by Roberts et al. (2005), but with different

1040 numerical ages. Zanno et al. (2011) do not state that these are recalibrated dates, and

1041 instead cite Roberts (2007) as their source for three of these dates, but the dates in

1042 Roberts (2007), are the same as in Roberts et al. (2005), and do not correspond with the

1043 numbers given by Zanno et al. (2011). It is notable that the dates given by Zanno et al.

1044 (2011) are consistent with the age range given by Sampson et al. (2010), i.e. that they

1045 probably had the same, unexplained source.

1046

1047 The source of the new dates was only officially published in 2013, when Roberts 1048 et al. published a series of dates from the Kaiparowits Formation that were recalibrated 1049 (using the FCT standard and decay constant pairing of Kuiper et al., 2008; 28.2 Ma; and 1050 Min et al., 2000) from those published by Roberts et al. (2005; which used the 28.02 Ma 1051 age for the FCT standard; Renne et al., 1998). That the Sampson et al. (2010) 1052 Kaiparowits dates are indeed recalibrated is confirmed by Roberts et al. (2013; p.85) who 1053 state, "recalibration of Kaiparowits Formation ash beds demonstrates that the formation is 1054 approximately half a million years older than previously suggested, deposited ~76.6-74.5 1055 Ma.", i.e., exactly the same age duration as given by Sampson et al. (2010).

al. (2010; 76.6-74.5 Ma), and at the time of publication the origin of these dates remainedunexplained

48

1057	This demonstrates unequivocally that Sampson et al. (2010) used a mixture of
1058	40 Ar / 39 Ar dates calibrated to different standards to plot the stratigraphic occurrence of
1059	chasmosaurine taxa, creating the illusion that certain ataxa overlapped. Utahceratops and
1060	Kosmoceratops from the Kaiparowits Formation were the only taxa that were plotted
1061	based on radiometric dates recalibrated to the current standard (Kuiper et al., 2008).
1062	Other taxa from different units (Dinosaur Park Formation, Alberta; Fruitland and Kirtland
1063	formations, New Mexico) were plotted based on unrecalibrated dates which used
1064	previous standards, mostly that of Samson and Alexander (1987). This results in taxa
1065	from the Kaiparowits Formation being shown ~0.5 m.y. relatively older (Roberts et al.,
1066	2013) than they would have been if they had been plotted to the same standard as the taxa
1067	from the other units.
1068	
1069	When all the available dates are recalibrated to the same standards (as in the current
1070	
	work), the stratigraphic overlap between key taxa is no longer recovered. Only the lower
1071	work), the stratigraphic overlap between key taxa is no longer recovered. Only the lower part of the Kaiparowits Formation stratigraphically overlaps with the fossiliferous portion
1071 1072	work), the stratigraphic overlap between key taxa is no longer recovered. Only the lower part of the Kaiparowits Formation stratigraphically overlaps with the fossiliferous portion of the Dinosaur Park Formation (see S1 Table). This is important as the lower
1071 1072 1073	work), the stratigraphic overlap between key taxa is no longer recovered. Only the lower part of the Kaiparowits Formation stratigraphically overlaps with the fossiliferous portion of the Dinosaur Park Formation (see S1 Table). This is important as the lower Kaiparowits Formation does not yield the taxa purportedly endemic to southern Utah, and
1071 1072 1073 1074	work), the stratigraphic overlap between key taxa is no longer recovered. Only the lower part of the Kaiparowits Formation stratigraphically overlaps with the fossiliferous portion of the Dinosaur Park Formation (see S1 Table). This is important as the lower Kaiparowits Formation does not yield the taxa purportedly endemic to southern Utah, and fragmentary specimens suggest that taxa are shared between the upper part of the
 1071 1072 1073 1074 1075 	work), the stratigraphic overlap between key taxa is no longer recovered. Only the lower part of the Kaiparowits Formation stratigraphically overlaps with the fossiliferous portion of the Dinosaur Park Formation (see S1 Table). This is important as the lower Kaiparowits Formation does not yield the taxa purportedly endemic to southern Utah, and fragmentary specimens suggest that taxa are shared between the upper part of the Dinosaur Park and lower Kaiparowits Formations (Gates et al., 2013). Here it is
 1071 1072 1073 1074 1075 1076 	work), the stratigraphic overlap between key taxa is no longer recovered. Only the lower part of the Kaiparowits Formation stratigraphically overlaps with the fossiliferous portion of the Dinosaur Park Formation (see S1 Table). This is important as the lower Kaiparowits Formation does not yield the taxa purportedly endemic to southern Utah, and fragmentary specimens suggest that taxa are shared between the upper part of the Dinosaur Park and lower Kaiparowits Formations (Gates et al., 2013). Here it is considered more likely that differences between dinosaur species found in the Dinosaur
 1071 1072 1073 1074 1075 1076 1077 	work), the stratigraphic overlap between key taxa is no longer recovered. Only the lower part of the Kaiparowits Formation stratigraphically overlaps with the fossiliferous portion of the Dinosaur Park Formation (see S1 Table). This is important as the lower Kaiparowits Formation does not yield the taxa purportedly endemic to southern Utah, and fragmentary specimens suggest that taxa are shared between the upper part of the Dinosaur Park and lower Kaiparowits Formations (Gates et al., 2013). Here it is considered more likely that differences between dinosaur species found in the Dinosaur Park Formation and middle Kaiparowits Formation are mostly an artifact of sampling

NOT PEER-REVIEWED

Peer Preprints

1079	2016). Similarly, differences between the middle Kaiparowits taxa and those of the
1080	Fruitland and Kirtland formations, New Mexico, are also more parsimoniously explained
1081	by the slight difference in age of the units, with the Fruitland and Kirtland formations
1082	being slightly younger than the middle Kaiparowits Formation (Sullivan and Lucas, 2006;
1083	Lucas et al., 2016). Moreover, the recent identification of purportedly southern
1084	Pentaceratops-lineage chasmosaurines within the Dinosaur Park Formation, Alberta
1085	(Longrich, 2014; Fowler, 2016), demonstrates that this lineage was able to move between
1086	northern and southern regions in the middle Campanian.

1087

1088 Biostratigraphy

1089

1090	Cobban and Reeside (1952) used the ceratopsid dinosaur Triceratops as an index
1091	taxon of the latest Maastrichtian. Similarly, dinosaurs were part of the original Land
1092	Vertebrate Ages (LVA; Aquilian; Judithian; Edmontonian; Lancian) described by Russell
1093	(1964) before revision into North American Land Mammal Ages (NALMA; Russell,
1094	1975; Lillegraven & McKenna 1986; Cifelli et al., 2004). More recently, dinosaurs have
1095	been used to stratigraphically correlate Campanian and Maastrichtian units of the United
1096	States (Lawson, 1976; Lehman 1987, 2001; Sullivan, 2003), and were utilized by
1097	Sullivan and Lucas (2003, 2006) in their definition of the "Kirtlandian": an additional
1098	LVA roughly equivalent to the early deposition of the Bearpaw Shale and positioned in
1099	the gap between the Judithian and Edmontonian identified by Russell (1964; 1975).
1100	Dinosaurs were also strongly utilised for biostratigraphy in the definition or redefinition
1101	of 10 vertebrate biochrons for the Cretaceous of the Western Interior (Lucas et al., 2012).

1102

1103	The demonstration that individual dinosaur species form stratigraphically stacked
1104	sequences of non-overlapping taxa could make them useful for biostratigraphy. This
1105	might be seen as controversial, since generally dinosaur taxa are known from relatively
1106	few specimens and are arguably less abundant than mammals or other groups typically
1107	used in terrestrial biostratigraphy. However, at least some clades of dinosaurs would
1108	seem ideal for biostratigraphic correlation, especially if current hypotheses of rapid
1109	evolution are correct (e.g. Horner et al., 1992; Holmes et al., 2001; Scannella et al., 2014;
1110	Fowler, 2016). For example, the chasmosaurine dinosaur Triceratops has been
1111	demonstrated to evolve at least three different metaspecies through the duration of the
1112	Hell Creek Formation in Montana (Scannella et al., 2014). Although the duration of the
1113	Hell Creek Formation is not precisely known, two stratigraphically separated metaspecies
1114	of Triceratops (T. prorsus and T. sp.; Scannella et al., 2014) are recorded from the
1115	uppermost 30m, which has been recently demonstrated by Ar / Ar dates as representing
1116	~300 k.y. of deposition (Sprain et al., 2014; see S1 Table). If we are able to understand
1117	the stratigraphic distribution and ontogenetic variation of dinosaurs well enough, then
1118	conceivably many more clades may be biostratigraphically informative at resolutions of
1119	~300Ka (or less; see S1 Table).

1120

1121 Conclusions

1123	Understanding the paleobiology of extinct organisms requires explicit knowledge
1124	of their relative positions in time. In turn, this depends upon the accurate correlation of
1125	the geological formations from which fossil remains are recovered.
1126	
1127	Here, recalibrated radiometric dates are combined with existing stratigraphic data
1128	to create a comprehensive stratigraphic correlation chart for terrestrial units of the U.S
1129	Western Interior. This revised stratigraphic framework is intended to be a tool for use by
1130	other researchers to investigate dinosaur evolution. Recalibration of radiometric dates to
1131	the same standard should remove artifacts of miscorrelation, permitting a clearer search
1132	for evolutionary patterns. Conflicts between different kinds of stratigraphic data are
1133	highlighted, particularly where they may affect paleontological understanding.
1134	
1135	Future expansions of the chart will increase the geographic scope of formations covered,
1136	and include additional taxa.

1137

1138 Acknowledgements

1139

1140 Special thanks to my supervisor John Horner, David Eberth, Liz Freedman Fowler, Jack

1141 Wilson, Paul Renne, and Robert Sullivan. Thanks to David Bowen, Dennis Braman, Ray

1142 Butler, Peter Dodson, Federico Fanti, Jim Fassett, Joe Hartman, Rebecca Hunt-Foster,

- 1143 Neil Landman, Spencer Lucas, Jay Nair, Jason Noble, Ray Rogers, Julia Sankey, John
- 1144 Scannella, Courtney Sprain, David Varricchio, Anton Wroblewski, and everyone at the

NOT PEER-REVIEWED

1145	library project for discussion and sending me many essential papers. This manuscript w	vas
1146	improved by comments from David Evans, Jim Kirkland, Andrew McDonald, and	
1147	reviews from Spencer Lucas, Robert Sullivan, and two anonymous referees. Thanks to	
1148	various people at SVP2006 for their helpful comments and suggestions.	
1149		
1150	References	
1151		
1152		1.
1153	Archibald JD. Metataxon concepts and assessing possible ancestry using phylogenetic	
1154	systematics. Syst Biol. 1994;43: 27-40. doi:10.1093/sysbio/43.1.27	
1155		2.
1156	Atchley SC, Nordt LC, Dworkin SI. Eustatic control on alluvial sequence stratigraphy:	a
1157	possible example from the Cretaceous-Tertiary transition of the Tornillo Basin, Big Be	nd
1158	National Park, west Texas, U.S.A. Journal of Sedimentary Research. 2004;74: 391–404	4.
1159	doi:10.1306/102203740391	
1160		3.
1161	Baksi AK, Archibald DA, Farrar E. Intercalibration of 40Ar39Ar dating standards.	
1162	Chemical Geology. 1996;129: 307–324.	
1163		4.
1164	Beckinsale RD, Gale NH. A reappraisal of the decay constants and branching ratio of	
1165	40K. Earth and Planetary Science Letters. 1969;6: 289–294.	
1166		5.

1167	Befus KS, Hanson RE, Lehman TM, Griffin WR. Cretaceous basaltic phreatomagmatic
1168	volcanism in west Texas: maar complex at Pena Mountain, Big Bend National Park.
1169	Journal of Volcanology and Geothermal Research. 2008;173: 245–264.
1170	6.
1171	Bowen CF. The Stratigraphy of the Montana Group: With Special Reference to the
1172	Position and Age of the Judith River Formation in North-central Montana. US Geological
1173	Survey Professional Paper. 1915;90: 95–153.
1174	7.
1175	Breyer JA, Busbey III AB, Hanson RE, Befus KE, Griffin WR, Hargrove US, et al.
1176	Evidence for Late Cretaceous volcanism in Trans-Pecos Texas. The Journal of Geology.
1177	2007;115: 243–251. doi:10.1086/510640
1178	8.
1179	Brinkman DB, Russell AP, Eberth DA, Peng J. Vertebrate palaeocommunities of the
1180	lower Judith River Group (Campanian) of southeastern Alberta, Canada, as interpreted
1181	from vertebrate microfossil assemblages. Palaeogeography, Palaeoclimatology,
1182	Palaeoecology. 2004;213: 295–313.
1183	9.
1184	Brinkman DB. A review of nonmarine turtles from the Late Cretaceous of Alberta.
1185	Canadian Journal of Earth Sciences. 2003;40: 557-571.
1186	10.
1187	Campione NE, Evans DC. Cranial growth and variation in edmontosaurs (Dinosauria:
1188	Hadrosauridae): implications for Latest Cretaceous megaherbivore diversity in North
1189	America. PLoS ONE. 2011;6: e25186. doi:10.1371/journal.pone.0025186

1190	11	•
1191	Cebula GT, Kunk MJ, Mehnert HH, Naeser CW, Obradovich JD, Sutter JF. The Fish	
1192	Canyon Tuff, a potential standard for the 40Ar-39Ar and fission-track dating methods.	
1193	Terra Cognita. 1986;6: 139–140.	
1194	12	•
1195	Cifelli RL, Eberle JJ, Lofgren DL, Lillegraven JA, Clemens WA. Mammalian	
1196	biochronology of the latest Cretaceous. In: Woodburne MO, editor. Late Cretaceous and	
1197	Cenozoic Mammals of North America. New York: Columbia University Press; 2004. pp.	
1198	21–42.	
1199	13	•
1200	Cobban WA, Reeside JB. Correlation of the Cretaceous formations of the Western	
1201	Interior of the United States. Geological Society of America Bulletin. 1952;63: 1011-	
1202	1044.	
1203	14	•
1204	Cook OF. Factors of species-formation. Science. 1906;23: 506–507.	
1205	doi:10.1126/science.23.587.506	
1206	15	•
1207	Duffield WA, Dalrymple GB. The Taylor Creek Rhyolite of New Mexico: a rapidly	
1208	emplaced field of lava domes and flows. Bull Volcanol. 1990;52: 475–487.	
1209	doi:10.1007/BF00268927	
1210	16	

1211	Eaton JG. Biostratigraphic framework for the Upper Cretaceous rocks of the Kaiparowits
1212	Plateau, southern Utah. Geological Society of America Special Papers. 1991;260: 47-64.
1213	doi:10.1130/SPE260-p47
1214	17.
1215	Eberth DA, Deino AL. A geochronology of the non-marine Judith River Formation of
1216	southern Alberta. SEPM Theme Meeting, Mesozoic of the Western Interior. 1992. pp.
1217	24–25.
1218	18.
1219	Eberth DA, Braman DR. A revised stratigraphy and depositional history for the
1220	Horseshoe Canyon Formation (Upper Cretaceous), southern Alberta plains. Can J Earth
1221	Sci. 2012;49: 1053–1086. doi:10.1139/e2012-035
1222	19.
1223	Eberth DA, Hamblin AP. Tectonic, stratigraphic, and sedimentologic significance of a
1224	regional discontinuity in the upper Judith River Group (Belly River wedge) of southern
1225	Alberta, Saskatchewan, and northern Montana. Canadian Journal of Earth Sciences.
1226	1993;30: 174–200. doi:10.1139/e93-016
1227	20.
1228	Eberth DA. The geology. In: Currie PJ, Koppelhus EB, editors. Dinosaur Provincial Park:
1229	A spectacular ancient ecosystem revealed. Bloomington, Indiana: Indiana University
1230	Press; 2005. pp. 54–82.
1231	21.

1232	Eldredge N, Gould SJ. Punctuated equilibria: an alternative to phyletic gradualism. In:
1233	Schopf TJM, editor. Models in Paleobiology. San Francisco: Freeman Cooper; 1972. pp.
1234	82–115.
1235	22.
1236	Evans DC, Reisz RR. Anatomy and relationships of Lambeosaurus magnicristatus, a
1237	crested hadrosaurid dinosaur (Ornithischia) from the Dinosaur Park Formation, Alberta.
1238	Journal of Vertebrate Paleontology. 2007;27: 373-393.
1239	23.
1240	Evans DC, Ryan MJ. Cranial anatomy of Wendiceratops pinhornensis gen. et sp. nov., a
1241	centrosaurine ceratopsid (Dinosauria: Ornithischia) from the Oldman Formation
1242	(Campanian), Alberta, Canada, and the evolution of ceratopsid nasal ornamentation.
1243	PLOS ONE. 2015;10: e0130007. doi:10.1371/journal.pone.0130007
1244	24.
1245	Evans DC, Schott RK, Larson DW, Brown CM, Ryan MJ. The oldest North American
1246	pachycephalosaurid and the hidden diversity of small-bodied ornithischian dinosaurs.
1247	Nature Communications. 2013;4: 1828. doi:10.1038/ncomms2749
1248	25.
1249	Evans DC, Witmer LM, Horner JR. A new low-crested lambeosaurine hadrosaurid from
1250	the Dinosaur Park Formation of Sandy Point, eastern Alberta. International Hadrosaur
1251	Symposium abstracts volume. Drumheller, Alberta: Royal Tyrell Museum; 2011. pp. 48-
1252	49.
1253	26.

1254	Fowler D. Terrestrial Late Cretaceous stratigraphy of North America and the utility of
1255	ceratopsids in biostratigraphy. Society of Vertebrate Paleontology Annual Meeting.
1256	2006;26: 63A.
1257	27.
1258	Fowler DW. Dinosaurs and Time: Chronostratigraphic frameworks and their utility in
1259	analysis of dinosaur paleobiology. Ph.D. dissertation, Montana State University. 2016.
1260	28.
1261	Freedman Fowler EA, Horner JR. A new brachylophosaurin hadrosaur (Dinosauria:
1262	Ornithischia) with an intermediate nasal crest from the Campanian Judith River
1263	Formation of northcentral Montana. PLOS ONE. 2015;10: e0141304.
1264	doi:10.1371/journal.pone.0141304
1265	29.
1266	Gates TA, Lund EK, Boyd CA, DeBlieux DD, Titus AL, Evans DC, et al. Ornithopod
1267	dinosaurs from the Grand Staircase-Escalante National Monument region, Utah and their
1268	role in paleobiogeographic and macroevolutionary studies. Advances in Late Cretaceous
1269	Western Interior Basin Paleontology and Geology. In: Titus AL, Loewen MA, editors. At
1270	the top of the Grand Staircase: The Late Cretaceous of southern Utah. Bloomington,
1271	Indiana: Indiana University Press; 2013. pp. 463–481.
1272	30.
1273	Gates TA, Sampson SD. A new species of Gryposaurus (Dinosauria: Hadrosauridae)
1274	from the late Campanian Kaiparowits Formation, southern Utah, USA. Zoological
1275	Journal of the Linnean Society. 2007;151: 351-376. doi:10.1111/j.1096-

1277		31.
1278	Gill JR, Cobban WA. Stratigraphy and geologic history of the Montana Group and	
1279	equivalent rocks, Montana, Wyoming, and North and South Dakota. US Geological	
1280	Survey Professional Paper. 1973;776: 37.	
1281		32.
1282	Goodwin MB, Deino AL. The first radiometric ages from the Judith River Formation	
1283	(Upper Cretaceous), Hill County, Montana. Can J Earth Sci. 1989;26: 1384–1391.	
1284	doi:10.1139/e89-118	
1285		33.
1286	Gradstein FM, Agterberg FP, Ogg JG, Hardenbol J, Van Veen P, Thierry J, et al. A	
1287	Triassic, Jurassic and Cretaceous time scale. In: Berggren WA, Kent DV, Aubry MP,	
1288	Hardenbol J, editors. Geochronology Time Scales and Global Stratigraphic Correlation	n
1289	SEPM Special Publication No 54. Tulsa, Oklahoma: Society for Sedimentary Geology	<i>/</i> ;
1290	1995. pp. 95–126.	
1291		34.
1292	Gradstein FM, Ogg JG, Smith AG. A Geologic Time Scale 2004. Cambridge, UK:	
1293	Cambridge University Press; 2004.	
1294		35.
1295	Gradstein FM, Ogg JG, Schmitz M, Ogg G. The Geologic Time Scale 2012. Oxford, U	JK:
1296	Elsevier; 2012.	
1297		36.

1298	Hartman JH, Butler RD, Weiler MW, Schumaker KK. Context, naming, and formal	
1299	designation of the Cretaceous Hell Creek Formation lectostratotype, Garfield County,	
1300	Montana. Geological Society of America Special Papers. 2014;503: 89–121.	
1301	3'	7.
1302	Hicks JF, Johnson KR, Obradovich JD, Miggins DP, Tauxe L. Magnetostratigraphy of	
1303	Upper Cretaceous (Maastrichtian) to lower Eocene strata of the Denver Basin, Colorado	•
1304	Rocky Mountain Geology. 2003;38: 1–27.	
1305	3	8.
1306	Hicks JF, Johnson KR, Obradovich JD, Tauxe L, Clark D. Magnetostratigraphy and	
1307	geochronology of the Hell Creek and basal Fort Union Formations of southwestern Nort	h
1308	Dakota and a recalibration of the age of the Cretaceous-Tertiary boundary. Geological	
1309	Society of America Special Papers. 2002;361: 35-55.	
1310	31	9.
1311	Hicks JF, Obradovich JD, Tauxe L. A new calibration point for the Late Cretaceous time	•
1312	scale: The (40Ar/39Ar isotopic age of the C33r/C33n geomagnetic reversal from the	
1313	Judith River Formation (Upper Creataceous), Elk Basin, Wyoming, USA. Journal of	
1314	Geology. 1995;103: 243–256.	
1315	40	0.
1316	Hicks JF, Watabe M, Fastovsky DE, Johnson KR, Nichols DJ. Magnetostratigraphic	
1317	correlation of Late Cretaceous dinosaur-bearing localities, Nemegt Basin, Gobi Desert,	
1318	Mongolia. Abstracts with Programs - Geological Society of America. 1999;31: 234.	
1319	4	1.

1320	Holmes RB, Forster CA, Ryan M, Shepherd KM. A new species of Chasmosaurus
1321	(Dinosauria: Ceratopsia) from the Dinosaur Park Formation of southern Alberta.
1322	Canadian Journal of Earth Sciences. 2001;38: 1423-1438.
1323	42.
1324	Horner JR, Varricchio DJ, Goodwin MB. Marine transgressions and the evolution of
1325	Cretaceous dinosaurs. Nature. 1992;358: 59-61. doi:10.1038/358059a0
1326	43.
1327	Izett GA, Obradovich JD. 40Ar/39Ar age constraints for the Jaramillo normal subchron.
1328	Journal of Geophysical research. 1994;99: 2925–2934.
1329	44.
1330	Jinnah ZA. Tectonic and Sedimentary Controls, Age, and Correlation of the Upper
1331	Cretaceous Wahweap Formation, Southern Utah. In: Titus AL, Loewen MA, editors. At
1332	the Top of the Grand Staircase: The Late Cretaceous of Southern Utah. Bloomington,
1333	Indiana: Indiana University Press; 2013. pp. 57–73.
1334	45.
1335	Kirkland JI, Eaton JG, Brinkman DB. Elasmobranchs from Upper Cretaceous freshwater
1336	facies in southern Utah. At the top of the grand staircase: The Late Cretaceous of
1337	Southern Utah. Bloomington, Indiana: Indiana University Press; 2013. pp. 153–194.
1338	46.
1339	Krystinik LF, DeJarnett BB. Sequence stratigraphy of foreland basin deposits: outcrop
1340	and subsurface examples from the Cretaceous of North America. American Association
1341	of Petroleum Geologists Memoir. 1995;64: 11-25.
1342	47.

1343	Kuiper KF, Deino A, Hilgen FJ, Krijgsman W, Renne PR, Wijbrans JR. Synchronizing	
1344	rock clocks of earth history. Science. 2008;320: 500-504. doi:10.1126/science.1154339	9
1345		48.
1346	Lanphere MA, Dalrymple GB, Fleck RJ, Pringle MS. Intercalibration of mineral	
1347	standards for K-Ar and 40Ar/39Ar age measurements. EOS, Transactions of the	
1348	American Geophysical Union. 1990;71: 1–658.	
1349		49.
1350	LaRock JW. Sedimentology and taphonomy of a dinosaur bonebed from the Upper	
1351	Cretaceous (Campanian) Judith River Formation of north central Montana [Internet].	
1352	Montana State University. 2000.	
1353		50.
1354	Lawson DA. Tyrannosaurus and Torosaurus, Maastrichtian dinosaurs from Trans-Pecc	os,
1355	Texas. Journal of Paleontology. 1976;50: 158-164.	
1356		51.
1357	LeCain R, Clyde WC, Wilson GP, Riedel J. Magnetostratigraphy of the Hell Creek and	l
1358	lower Fort Union formations in northeastern Montana. Geological Society of America	
1359	Special Papers. 2014;503: 137–147. doi:10.1130/2014.2503(04)	
1360	:	52.
1361	Lee MSY. Species concepts and the recognition of ancestors. Historical Biology.	
1362	1995;10: 329–339. doi:10.1080/10292389509380528	
1363		53.

1364	Lehman TM, Coulson AB. A juvenile specimen of the sauropod dinosaur Alamosaurus	
1365	sanjuanensis from the Upper Cretaceous of Big Bend National Park, Texas. Journal of	
1366	Paleontology. 2002;76: 156-172. doi:10.1017/S0022336000017431	
1367		54.
1368	Lehman TM, Mcdowell FW, Connelly JN. First isotopic (U-Pb) age for the Late	
1369	Cretaceous Alamosaurus vertebrate fauna of west Texas, and its significance as a link	
1370	between two faunal provinces. Journal of Vertebrate Paleontology. 2006;26: 922–928.	
1371	doi:10.1671/0272-4634(2006)26[922:FIUAFT]2.0.CO;2	
1372		55.
1373	Lehman TM, Tomlinson SL. Terlinguachelys fischbecki, a new genus and species of se	a
1374	turtle (Chelonioidea: Protostegidae) from the Upper Cretaceous of Texas. Journal of	
1375	Paleontology. 2004;78: 1163-1178. doi:10.1017/S0022336000043973	
1376		56.
1377	Lehman TM. Late Maastrichtian paleoenvironments and dinosaur biogeography in the	
1378	Western Interior of North America. Palaeogeography, Palaeoclimatology, Palaeoecolog	gy.
1379	1987;60: 189–217. doi:10.1016/0031-0182(87)90032-0	
1380		57.
1381	Lehman TM. Paleosols and the Cretaceous/Tertiary transition in the Big Bend region of	f
1382	Texas. Geology. 1990;18: 362-364. doi:10.1130/0091-	
1383	7613(1990)018<0362:PATCTT>2.3.CO;2	
1384		58.

1385	Lehman TM. Late Cretaceous dinosaur provinciality. In: Tanke DH, Carpenter K, editors.
1386	Mesozoic Vertebrate Life. Bloomington, Indiana: Indiana University Press; 2001. pp.
1387	310–328.
1388	59.
1389	Lerbekmo JF, Braman DR. Magnetostratigraphic and biostratigraphic correlation of late
1390	Campanian and Maastrichtian marine and continental strata from the Red Deer Valley to
1391	the Cypress Hills, Alberta, Canada. Can J Earth Sci. 2002;39: 539-557. doi:10.1139/e01-
1392	085
1393	60.
1394	Lerbekmo JF. The Dorothy bentonite: an extraordinary case of secondary thickening in a
1395	late Campanian volcanic ash fall in central Alberta. Can J Earth Sci. 2002;39: 1745-
1396	1754. doi:10.1139/e02-079
1397	61.
1398	Lillegraven JA, McKenna MC. Fossil mammals from the "Mesaverde" Formation (Late
1399	Cretaceous, Judithian) of the Bighorn and Wind River basins, Wyoming : with definitions
1400	of Late Cretaceous North American land-mammal "ages." Mesaverde mammals.
1401	1986;2840: 1–68.
1402	62.
1403	Longrich NR, Sankey J, Tanke D. Texacephale langstoni, a new genus of
1404	pachycephalosaurid (Dinosauria: Ornithischia) from the upper Campanian Aguja
1405	Formation, southern Texas, USA. Cretaceous Research. 2010;31: 274–284.
1406	63.

1407	Longrich NR. The horned dinosaurs Pentaceratops and Kosmoceratops from the upper
1408	Campanian of Alberta and implications for dinosaur biogeography. Cretaceous Research.
1409	2014;51: 292-308. doi:10.1016/j.cretres.2014.06.011
1410	64.
1411	Lucas SG, Sullivan RM, Lichtig AJ, Dalman SG, Jasinski SE. Late Cretaceous dinosaur
1412	biogeography and endemism in the Western Interior Basin, North America: a critical re-
1413	evaluation. New Mexico Museum of Natural History and Science Bulletin. 2016;71:
1414	195–213.
1415	65.
1416	Lucas SG, Sullivan RM, Spielmann JA. Cretaceous vertebrate biochronology, North
1417	American Western Interior. Journal of Stratigraphy. 2012;36: 436–461.
1418	66.
1419	Malik AME. Sedimentology of the Judith River Formation in the Milk River Valley and
1420	the Little Rocky Mountains, Montana [Internet]. MS. 1990. Available:
1421	http://ecommons.usask.ca/handle/10388/etd-07112012-152552
1422	67.
1423	Mallon JC, Evans DC, Ryan MJ, Anderson JS. Megaherbivorous dinosaur turnover in the
1424	Dinosaur Park Formation (upper Campanian) of Alberta, Canada. Palaeogeography,
1425	Palaeoclimatology, Palaeoecology. 2012;350-352: 124-138.
1426	doi:10.1016/j.palaeo.2012.06.024
1427	68.
1428	McDougall I, Harrison TM. Geochronology and thermochronology by the 40Ar/39Ar
1429	method [Internet]. 2nd ed. Oxford, UK: Oxford University Press; 1999.

1430		<u> 5</u> 9.
1431	Meyers SR, Siewert SE, Singer BS, Sageman BB, Condon DJ, Obradovich JD, et al.	
1432	Intercalibration of radioisotopic and astrochronologic time scales for the Cenomanian-	
1433	Turonian boundary interval, Western Interior Basin, USA. Geology. 2012;40: 7-10.	
1434	doi:10.1130/G32261.1	
1435		70.
1436	Miall AD, Catuneanu O, Vakarelov BK, Post R. The Western Interior Basin. In: Andre	W
1437	D. Miall, editor. Sedimentary Basins of the World. Oxford, UK: Elsevier; 2008. pp. 329	9_
1438	362. Available: http://www.sciencedirect.com/science/article/pii/S1874599708000099	
1439		71.
1440	Min K, Mundil R, Renne PR, Ludwig KR. A test for systematic errors in 40 Ar/39 Ar	
1441	geochronology through comparison with U/Pb analysis of a 1.1-Ga rhyolite. Geochimic	ca
1442	et Cosmochimica Acta. 2000;64: 73–98.	
1443		72.
1444	Montgomery P, Hailwood EA, Gale AS, Burnett JA. The magnetostratigraphy of	
1445	Coniacian-late Campanian chalk sequences in southern England. Earth and Planetary	
1446	Science Letters. 1998;156: 209-224. doi:10.1016/S0012-821X(98)00008-9	
1447		73.
1448	Nordt L, Atchley S, Dworkin S. Terrestrial evidence for two greenhouse events in the	
1449	latest Cretaceous. GSA today. 2003;13: 4–9.	
1450		74.
1451	Obradovich JD. A Cretaceous time scale. Geological Association of Canada Special	
1452	Paper. 1993;39: 379–396.	

1453	7	15.
1454	Obradovich JD, Cobban WA. A time-scale for the Late Cretaceous of the Western	
1455	Interior of North America. Geological Association of Canada Special Paper. 1975;13:	
1456	31–54.	
1457	7	<i>'</i> 6.
1458	Obradovich JD. Geochronology of Laramide synorogenic strata in the Denver Basin,	
1459	Colorado. Rocky Mountain Geology. 2002;37: 165–171. doi:10.2113/gsrocky.37.2.165	
1460	7	7.
1461	Ogg JG, Hinnov LA. Cretaceous. In: Gradstein FM, Ogg JG, Schmitz MD, Ogg G,	
1462	editors. The Geologic Time Scale. Oxford, UK: Elsevier; 2012. pp. 793-853.	
1463	7	/8.
1464	Ogg JG. Geomagnetic polarity time scale. In: Gradstein FM, Ogg JG, Schmitz MD, Ogg	g
1465	G, editors. The Geologic Time Scale. Oxford, UK: Elsevier; 2012. pp. 85–113.	
1466	7	19.
1467	Peng J, Russell AP (Anthony P, Brinkman D. Vertebrate microsite assemblages	
1468	(exclusive of mammals) from the Foremost and Oldman formations of the Judith River	
1469	Group (Campanian) of southeastern Alberta: an illustrated guide. Provincial Museum of	f
1470	Alberta Natural History Occasional Paper. 2001;25: 1–54.	
1471	8	30.
1472	Prieto-Marquez A. New information on the cranium of Brachylophosaurus canadensis	
1473	(Dinosauria, Hadrosauridae), with a revision of its phylogenetic position. Journal of	
1474	Vertebrate Paleontology. 2005;25: 144–156.	
1475	8	81.

1476	Renne PR, Balco G, Ludwig KR, Mundil R, Min K. Response to the comment by WH	
1477	Schwarz et al. on "Joint determination of 40 K decay constants and 40 Ar*/40 K for the	;
1478	Fish Canyon sanidine standard, and improved accuracy for 40 Ar/39 Ar geochronology	"
1479	by PR Renne et al.(2010). Geochimica et Cosmochimica Acta. 2011;75: 5097–5100.	
1480	٤	32.
1481	Renne PR, Deino AL, Walter RC, Turrin BD, Swisher CC, Becker TA, et al.	
1482	Intercalibration of astronomical and radioisotopic time. Geology. 1994;22: 783-786.	
1483	doi:10.1130/0091-7613(1994)022<0783:IOAART>2.3.CO;2	
1484	8	33.
1485	Renne PR, Mundil R, Balco G, Min K, Ludwig KR. Joint determination of 40K decay	
1486	constants and 40Ar*/40K for the Fish Canyon sanidine standard, and improved accurac	y
1487	for 40Ar/39Ar geochronology. Geochimica et Cosmochimica Acta. 2010;74: 5349–536	57.
1488	doi:10.1016/j.gca.2010.06.017	
1489	8	34.
1490	Renne PR, Swisher CC, Deino AL, Karner DB, Owens TL, DePaolo DJ. Intercalibratio	n
1491	of standards, absolute ages and uncertainties in 40Ar/39Ar dating. Chemical Geology.	
1492	1998;145: 117-152. doi:10.1016/S0009-2541(97)00159-9	
1493	8	35.
1494	Rivera TA, Storey M, Zeeden C, Hilgen FJ, Kuiper K. A refined astronomically	
1495	calibrated 40 Ar/39 Ar age for Fish Canyon sanidine. Earth and Planetary Science	
1496	Letters. 2011;311: 420–426.	
1497	8	36.

1498	Roberts EM, Deino AL, Chan MA. 40Ar/39Ar age of the Kaiparowits Formation,
1499	southern Utah, and correlation of contemporaneous Campanian strata and vertebrate
1500	faunas along the margin of the Western Interior Basin. Cretaceous Research. 2005;26:
1501	307-318. doi:10.1016/j.cretres.2005.01.002
1502	87.
1503	Roberts EM, Sampson SD, Deino AL, Bowring S, Buchwaldt R. The Kaiparowits
1504	Formation: a remarkable record of Late Cretaceous terrestrial environments, ecosystems
1505	and evolution in western North America. In: Titus AL, Loewen MA, editors. At the Top
1506	of the Grand Staircase: The Late Cretaceous of Southern Utah. Bloomington, Indiana:
1507	Indiana University Press; 2013. pp. 85–106.
1508	88.
1509	Roberts EM. Facies architecture and depositional environments of the Upper Cretaceous
1510	Kaiparowits Formation, southern Utah. Sedimentary Geology. 2007;197: 207-233.
1511	doi:10.1016/j.sedgeo.2006.10.001
1512	89.
1513	Rogers RR, Kidwell SM, Deino AL, Mitchell JP, Nelson K, Thole JT. Age, correlation,
1514	and lithostratigraphic revision of the Upper Cretaceous (Campanian) Judith River
1515	Formation in its type area (north-central Montana), with a comparison of low-and high-
1516	accommodation alluvial records. The Journal of Geology. 2016;124: 99-135.
1517	90.
1518	Rogers RR, Kidwell SM. Associations of vertebrate skeletal concentrations and
1519	discontinuity surfaces in terrestrial and shallow marine records: a test in the Cretaceous
1520	of Montana. J Geol. 2000;108: 131–154.

1521	91.
1522	Rogers RR, Swisher III CC, Horner JR. 40Ar/39Ar age and correlation of the nonmarine
1523	Two Medicine Formation (Upper Cretaceous), northwestern Montana, USA. Canadian
1524	Journal of Earth Sciences. 1993;30: 1066–1075.
1525	92.
1526	Rogers RR. Marine facies of the Judith River Formation (Campanian) in the type area,
1527	north-central Montana. Montana Geological Society: 1993 Field Conference Guidebook:
1528	Old Timers' Rendezvous Edition: Energy and Mineral Resources of Central Montana.
1529	1993; 61–69.
1530	93.
1531	Rogers RR. Nature and origin of through-going discontinuities in nonmarine foreland
1532	basin strata, Upper Cretaceous, Montana: implications for sequence analysis. Geology.
1533	1994;22: 1119–1122. doi:10.1130/0091-7613(1994)022<1119:NAOOTG>2.3.CO;2
1534	94.
1535	Rogers RR. Sequence analysis of the Upper Cretaceous Two Medicine and Judith River
1536	formations, Montana; nonmarine response to the Claggett and Bearpaw marine cycles.
1537	Journal of Sedimentary Research. 1998;68: 615-631. doi:10.2110/jsr.68.604
1538	95.
1539	Rowe T, Cifelli RL, Lehman TM, Weil A. The Campanian Terlingua local fauna, with a
1540	summary of other vertebrates from the Aguja Formation, Trans-Pecos Texas. Journal of
1541	Vertebrate Paleontology. 1992;12: 472-493. doi:10.1080/02724634.1992.10011475
1542	96.

1543	Russell LS. Mammalian faunal succession in the Cretaceous System of western North
1544	America. Geological Association of Canada Special Paper. 1975;13: 137–161.
1545	97.
1546	Russell LS. Cretaceous non-marine faunas of northwestern North America. Life Sciences
1547	Contributions, Royal Ontario Museum. 1964;61: 1-21.
1548	98.
1549	Ryan MJ, Russell AP, Hartman S. A new chasmosaurine ceratopsid from the Judith River
1550	Formation, Montana. In: Ryan MJ, Chinnery-Allgeier BJ, Eberth DA, editors. New
1551	Perspectives on Horned Dinosaurs The Royal Tyrrell Museum Ceratopsian Symposium.
1552	Bloomington, Indiana: Indiana University Press; 2010. pp. 181–188.
1553	99.
1554	Sageman BB, Singer BS, Meyers SR, Siewert SE, Walaszczyk I, Condon DJ, et al.
1555	Integrating 40Ar/39Ar, U-Pb, and astronomical clocks in the Cretaceous Niobrara
1556	Formation, Western Interior Basin, USA. Geological Society of America Bulletin.
1557	2014;126: 956–973. doi:10.1130/B30929.1
1558	100.
1559	Sahni A. The vertebrate fauna of the Judith River Formation, Montana. Bulletin of the
1560	American Museum of Natural History. 1972;147: 325-412.
1561	101.
1562	Sampson SD, Loewen M. Unraveling a radiation: a review of the diversity, stratigraphic
1563	distribution, biogeography, and evolution of horned dinosaurs. (Ornithischia :
1564	Ceratopsidae). In: Ryan MJ, Chinnery BJ, Eberth DA, editors. New Perspectives on

1565	Horned Dinosaurs The Royal Tyrrell Museum Ceratopsian Symposium. Bloomington,
1566	Indiana: Indiana University Press; 2010. pp. 405-427.
1567	102.
1568	Sampson SD, Loewen MA, Farke AA, Roberts EM, Forster CA, Smith JA, et al. New
1569	horned dinosaurs from Utah provide evidence for intracontinental dinosaur endemism.
1570	PLoS ONE. 2010;5: e12292. doi:10.1371/journal.pone.0012292
1571	103.
1572	Sampson SD, Loewen MA, Roberts EM, Getty MA. A new macrovertebrate assemblage
1573	from the Late Cretaceous (Campanian) of southern Utah. In: Titus AL, Loewen MA,
1574	editors. At the top of the Grand Staircase: the Late Cretaceous of Southern Utah.
1575	Bloomington, Indiana: Indiana University Press; 2013. pp. 599-620. Available:
1576	http://researchonline.jcu.edu.au/31093
1577	104.
1578	Sampson SD, Lund EK, Loewen MA, Farke AA, Clayton KE. A remarkable short-
1579	snouted horned dinosaur from the Late Cretaceous (late Campanian) of southern
1580	Laramidia. Proceedings of the Royal Society of London B: Biological Sciences.
1581	2013;280: 20131186. doi:10.1098/rspb.2013.1186
1582	105.
1583	Samson SD, Alexander Jr EC. Calibration of the interlaboratory 40Ar/39Ar dating
1584	standard, MMhb-1. Chemical Geology: Isotope Geoscience section. 1987;66: 27-34.
1585	doi:10.1016/0168-9622(87)90025-X
1586	106.

NOT PEER-REVIEWED

72

Peer Preprints

1587	Sankey JT. Faunal composition and significance of high-diversity, mixed bonebeds
1588	containing Agujaceratops mariscalensis and other dinosaurs, Aguja Formation (Upper
1589	Cretaceous), Big Bend, Texas. New Perspectives on Horned Dinosaurs The Royal Tyrrell
1590	Museum Ceratopsian Symposium. 2010; 520–37.
1591	107.
1592	Sarna-Wojcicki AM, Pringle Jr MS. Laser-fusion 40 Ar/39 Ar ages of the Tuff of Taylor
1593	Canyon and Bishop Tuff, E. California-W. Nevada. Eos Trans AGU. 1992;73: 43.
1594	108.
1595	Scannella JB, Fowler DW, Goodwin MB, Horner JR. Evolutionary trends in Triceratops
1596	from the Hell Creek Formation, Montana. Proceedings of the National Academy of
1597	Sciences. 2014;111: 10245–10250.
1598	109.
1599	Schmitz MD, Bowring SA. U-Pb zircon and titanite systematics of the Fish Canyon Tuff:
1600	an assessment of high-precision U-Pb geochronology and its application to young
1601	volcanic rocks. Geochimica et Cosmochimica Acta. 2001;65: 2571–2587.
1602	doi:10.1016/S0016-7037(01)00616-0
1603	110.
1604	Schmitz MD. Radiometric Ages used in GTS2012. In: Gradstein FM, Ogg JG, Schmitz
1605	MD, Ogg G, editors. The Geological Time Scale. Oxford, UK: Elsevier; 2012. pp. 1045-
1606	1082.
1607	111.
Peer Preprints

1608	Schoene B, Crowley JL, Condon DJ, Schmitz MD, Bowring SA. Reassessing the
1609	uranium decay constants for geochronology using ID-TIMS U-Pb data. Geochimica et
1610	Cosmochimica Acta. 2006;70: 426–445. doi:10.1016/j.gca.2005.09.007
1611	112.
1612	Schott RK, Evans DC, Williamson TE, Carr TD, Goodwin MB. The anatomy and
1613	systematics of Colepiocephale lambei (Dinosauria: Pachycephalosauridae). Journal of
1614	Vertebrate Paleontology. 2009;29: 771–786.
1615	113.
1616	Simpson GG. Tempo and mode in evolution. New York: Columbia University Press;
1617	1944. pp. 237.
1618	114.
1619	Singer BS, Jicha BR, Coe RS, Mochizuki N. An Earthtime chronology for the
1620	Matuyama-Brunhes geomagnetic field reversal. AGU Fall Meeting Abstracts. 2012;21.
1621	Available: http://adsabs.harvard.edu/abs/2012AGUFM.V21E06S
1622	115.
1623	Sprain CJ, Renne PR, Wilson GP, Clemens WA. High-resolution chronostratigraphy of
1624	the terrestrial Cretaceous-Paleogene transition and recovery interval in the Hell Creek
1625	region, Montana. Geological Society of America Bulletin. 2015;127: 393-409.
1626	doi:10.1130/B31076.1
1627	116.
1628	Stanton TW, Hatcher JB. Geology and paleontology of the Judith River beds. US
1629	Geological Survey Bulletin. 1905;257: 1–128.
1630	117.

Peer Preprints

1631	Steiger R, Jäger E. Subcommission on geochronology: convention on the use of decay
1632	constants in geo-and cosmochronology. Earth and Planetary Science Letters. 1977;36:
1633	359–362.
1634	118.
1635	Sullivan RM, Lucas SG. The Kirtlandian, a new land-vertebrate "age" for the Late
1636	Cretaceous of western North America. New Mexico Geological Society Guidebook.
1637	2003;54: 369–377.
1638	119.
1639	Sullivan RM, Lucas SG. The Kirtlandian land-vertebrate "age"-faunal composition,
1640	temporal position and biostratigraphic correlation in the nonmarine Upper Cretaceous of
1641	western North America. New Mexico Museum of Natural History and Science Bulletin.
1642	2006;35: 7–29.
1643	120.
1644	Sullivan RM. Revision of the dinosaur Stegoceras Lambe (Ornithischia,
1645	Pachycephalosauridae). Journal of Vertebrate Paleontology. 2003;23: 181-207.
1646	121.
1647	Villeneuve M. Radiogenic Isotope Geochronology. In: Gradstein FM, Ogg G, editors. A
1648	Geologic Time Scale 2004. Cambridge, UK: Cambridge University Press; 2004. pp. 87-
1649	95.
1650	122.
1651	Wagner JR, Lehman TM. An enigmatic new lambeosaurine hadrosaur (Reptilia:
1652	Dinosauria) from the Upper Shale member of the Campanian Aguja Formation of Trans-

Peer Preprints

1653	Pecos Texas. Journal of Vertebrate Paleontology. 2009;29: 605–611.
1000	

1654	doi:10.1671/039.029.0208
1054	u01.10.10/1/039.029.0200

1655		123.
1656	Wick SL, Lehman TM. A new ceratopsian dinosaur from the Javelina Formation	
1657	(Maastrichtian) of west Texas and implications for chasmosaurine phylogeny.	
1658	Naturwissenschaften. 2013;100: 667-682. doi:10.1007/s00114-013-1063-0	
1659		124.
1660	Zanno LE, Varricchio DJ, O'Connor PM, Titus AL, Knell MJ. A new troodontid	
1661	theropod, Talos sampsoni gen. et sp. nov., from the Upper Cretaceous Western Interi	or
1662	Basin of North America. PloS one. 2011;6: e24487.	

1663

1664 Supporting Information

1665

1666 **S1 Table. Stratigraphic Chart.** Stratigraphic correlation of Upper Cretaceous terrestrial

1667 strata of the North American Western Interior from the Santonian through to the K-Pg

1668 boundary. Dinosaur taxon ranges plotted on to correlated geological units.

1669

```
1670 S2 Table. Recalibration Sheet. This sheet shows recalibration calculations for over 200
```

1671 published Ar / Ar radiometric dates. These are recalibrated to the two current standards

- 1672 (Kuiper et al., 2008; Renne et al., 2011), shown on separate tabs. References are given
- 1673 within pop up notes for the respective recalibrated date(s).
- 1674

PeerJ Preprints

1675	S1 Text. References for Stratigraphic Chart. This text file lists all the references used
1676	in construction of the stratigraphic chart (Table S1).
1677	
1678	S2 Text. Comment Boxes for Stratigraphic Chart. This text file provides transcripts of
1679	all the pop-up comment boxes featured in the stratigraphic chart (Table S1). This file
1680	should be of use to readers who prefer the text in this larger format.
1681	
1682	S1 Figure. Stratigraphic Chart, graphic version. This is a image file version of the
1683	stratigraphic chart (S1 Table). It is an image only, provided for quick reference, and does
1684	not have embedded pop-up comments.
1685	
1686	S2 Figure. Geographic Location of Stratigraphic Sections featured on Stratigraphic
1687	Chart Table S1. This map shows the geographic location of the different stratigraphic
1688	sections shown in stratigraphic chart Table S1.
1689	
1690	