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Abstract

Interactions among global change stressors and their effects at large scales are often proposed, but
seldom evaluated. This situation is primarily due to lack of comprehensive, sufficiently long-term,
and spatially-extensive datasets. Seagrasses, which provide nursery habitat, improve water quality,
and constitute a globally-important carbon sink, are among the most vulnerable habitats on the
planet. Here, we unite 31-years of high-resolution aerial monitoring and water quality data to
elucidate the patterns and drivers of eelgrass (Zostera marina) abundance in Chesapeake Bay, USA,
one of the largest and most valuable estuaries in the world with an unparalleled history of
regulatory efforts. We show that eelgrass area has declined 29% in total since 1991, with wide-
ranging and severe ecological and economic consequences. We go on to identify an interaction
between decreasing water clarity and warming temperatures as the primary driver of this trend.
Declining clarity has gradually reduced eelgrass over the past two decades, primarily in deeper
beds where light is already limiting. In shallow beds, however, reduced visibility exacerbates the
physiological stress of acute warming, leading to recent instances of decline approaching 80%.
While degraded water quality has long been known to influence underwater grasses worldwide, we
demonstrate a clear and rapidly emerging interaction with climate change. We highlight the urgent
need to integrate a broader perspective into local water quality management, in the Chesapeake

Bay and in the many other coastal systems facing similar stressors.
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Introduction

Identifying the drivers of environmental change and predicting their consequences is the
preeminent scientific challenge of the Anthropocene (Halpern et al.,, 2008). Marine systems in
particular are experiencing rapid and often irreversible alterations as a consequence of human
activities (Lotze et al., 2006), and almost half of these changes can be attributed to multiple drivers
(Lotze et al.,, 2006; Halpern et al.,, 2008). Despite the increasing recognition that global and local
stressors often act jointly, rigorous empirical examples of this phenomenon are lacking at the large
scales relevant to both the observed change and human well-being. This absence is particularly
striking for temperate coastal ecosystems, which, ironically, support much of the world’s human
population. Instead, most of our understanding of coastal change comes from small-scale
experiments and observations (Crain et al., 2008, 2009), or from tropical systems such as coral
reefs (Gardner et al., 2003; De’ath et al., 2012). This knowledge gap vastly impedes our ability to
predict and avert the impacts of global change on key population centers, particularly given the fact

that stressors, and corresponding management actions, often occur at much larger scales.

Seagrasses in particular are extremely sensitive to global change, with losses exceeding
25% worldwide in just the last century (Orth et al., 2006; Waycott et al., 2009). Because of its global
distribution close to major anthropogenic influences, and its habit of forming monospecific stands
in shallow zones, eelgrass (Zostera marina) is acutely vulnerable to environmental stressors
(Waycott et al., 2009). Consequently, it has experienced declines in many locations, including in
northern Europe (Giesen et al., 1990; Frederiksen et al., 2004), the northwestern Atlantic (Beem &
Short, 2009; Costello & Kenworthy, 2011), and the western coast of the US, particularly San
Francisco Bay (Short & Wyllie-Echeverria, 1996). Nowhere, though, has eelgrass experienced more

significant losses than in Chesapeake Bay, USA (Orth & Moore, 1983).
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The Chesapeake Bay is one of the largest, most well-managed, and economically productive
coastlines in the world, and is projected to support 20 million people by 2020 (Orth et al, 2017, in
review). Eelgrass has played a prominent role in both the ecology and economy of Chesapeake Bay,
providing numerous functions and services, including nursery habitat for valuable fisheries species
and shoreline stabilization (Table 1) (Orth et al., 2017, in review). The abundance of eelgrass in
Chesapeake Bay has fluctuated dramatically over the last century, with pandemic wasting disease
driving a well-documented decline in the 1930s, and recovery occurring through the 1960s
(Cottam, 1934; Orth & Moore, 1984). It was during a single summer in 1972, however, that Tropical
Storm Agnes - and the accompanying freshwater discharge - extirpated over 50% of the eelgrass
population. This was a major disturbance from which Chesapeake Bay eelgrass populations have

never truly recovered (Fig. 1) (Orth & Moore, 1983; Orth et al., 2010).

Alongside increasing industrialization of the region in the 1960s, there emerged interest in
the impact of human activities on eelgrass in Chesapeake Bay: specifically, nutrient runoff from
agriculture, and the consequent eutrophication of nearshore waters (Orth & Moore, 1984; Kemp et
al., 2005). Several recent correlative analyses have proposed that declining water quality and
subsequent changes in light availability may be the preeminent agent preventing recovery of
eelgrass in Chesapeake Bay after Agnes (Orth et al, 2010; Patrick & Weller, 2015). At the same time,
parallel investigations conducted in only a single sub-estuary have uncovered a potential role for
rising temperatures alongside reduced visibility in driving a recent decade-long decline of eelgrass
(Moore & Jarvis, 2008; Moore et al., 2014). Together, these studies suggest a role for multiple
influences on the trajectory of Chesapeake Bay eelgrass, although their effects have yet to be

generalized to the regional scale.

In this study, we use 31-years of high-resolution aerial imagery and water quality data to
document the continued decline of eelgrass across the entirety of Chesapeake Bay, and directly link

changes in its distribution to multiple anthropogenic stressors acting on the region. The scale,

4
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duration, comprehensiveness, and complementarity of these two datasets are unprecedented, and
provide a unique opportunity to understand the specific drivers of habitat decline in a highly

populated coastal system.

Methods

Eelgrass Monitoring

Eelgrass bed area and density were derived from aerial imagery acquired on an annual
basis from 1984 through 2015, except for 1988, from the Virginia Institute of Marine Science
Submersed Aquatic Vegetation Monitoring Program (http://www.vims.edu/bio/sav).
Panchromatic photography at a scale of 1:24,000; 60% flightline overlap and 20% sidelap was
acquired with a standard mapping camera for 1984 - 2014. Multi-spectral imagery was acquired in
2014 and 2015 using a digital mapping camera with a ground sample distance of 24 cm. Acquisition
conditions, including tidal stage, plant growth, sun angle, atmospheric transparency, water

turbidity, and wind, were selected to optimize the visibility of eelgrass beds (Dobson et al., 1995).

Mapping of eelgrass beds was initially accomplished by manually tracing seagrass bed
outlines onto translucent United States Geological Survey 7.5-minute quadrangle maps directly
from the photographs, and then digitizing bed boundaries into a Geographic Information System
(GIS) dataset for analysis. More recently, the aerial photography was scanned from negatives or
produced digitally from the sensor and orthorectified using ERDAS LPS image-processing software
(ERDAS, Atlanta GA). Eelgrass bed boundaries were then photo-interpreted directly on-screen
while maintaining a fixed scale using ESRI ArcMap GIS software (ESRI, Redlands CA). The spatial
accuracy of the dataset varies from approximately +24m for the earlier data to approximately +4m
for the recent data. Thematic accuracy has not been directly quantified, but has been improved

through the use of extensive field observations.
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108 A second species of seagrass, widgeongrass (Ruppia maritima), can co-occur with eelgrass
109  insome locations of the lower Bay, or in monospecific stands (Orth & Moore, 1986). Any beds
110  dominated by widgeongrass were excluded from the mapped area using expert knowledge, itself
111  based on field surveys of the general distribution of the two species conducted since 1978. Thus,

112  after the removal of these beds, we are confident that our analysis focuses specifically on eelgrass.

113 Water Quality Monitoring

114 Water quality data were obtained from the Chesapeake Bay Program’s (CBP) Water Quality

115 Database (http://www.chesapeakebay.net), which contains data collected in the tidal waters of

116  Chesapeake Bay by agencies including Maryland Department of Nature Resources and Virginia

117  Department of Environmental Quality. The program visits approximately 160 fixed monitoring

118  stations every two weeks, 28 of which were used for our analysis (Fig. S1). At each station, a

119  vertical hydrographic profile is collected using a multiparameter sonde with observations every 1-2
120  meters of water temperature, specific conductivity (to calculate salinity), and dissolved oxygen.

121  Secchi depth is observed in the field using a black-and-white Secchi disk attached to a measuring
122 line. In addition, at each station, water samples are collected at several depths and processed at a
123 laboratory to quantify concentrations of chlorophyll-a, total nitrogen, and total phosphorus. For
124  this analysis, we used data only from the surface layer, the top 0.5 or 1 m observation, assuming

125  these values best reflect conditions in the shallow water where eelgrass is present.

126 Methodological changes for chlorophyll-a, total nitrogen, and total phosphorus over the
127  course of the survey necessitated the implementation of correction factors. Specifically, for

128  nitrogen, the changes involved switching from a sum of nitrate, nitrite, and total Kjeldahl nitrogen
129  to total dissolved nitrogen plus particulate nitrogen at Virginia mainstem stations in 1988,

130  Maryland stations in 1998 and Virginia tributary stations in 1998. For phosphorus, the change

131  involved switching from a sum of total dissolved phosphorus plus particulate phosphorus to a
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direct measurement in the same years as the total nitrogen changes. For chlorophyll-a, the possible
changes occurred due to laboratories switches in the late 1990s, although it is likely this only
impacted Virginia tributary stations. For these three variables, we regressed the response at each
station against the identity of the processing laboratory and the method employed using simple
linear regression. We then extracted the residuals from this relationship, and visual assessment of
time series plots suggested that they adequately accounted for the a priori influence of lab and

method. The residuals for these three variables were carried through all subsequent analyses.

While these stations are largely in deep water, many prior studies have shown that they can
be adequately extrapolated to predict underwater vegetation in shallow areas (Li et al., 2007;
Rybicki & Landwehr, 2007; Ruhl & Rybicki, 2010; Gurbisz & Kemp, 2014; Patrick et al.,, 2014, 2016).
Even if the stations under- or over-represent conditions at shallow depths, the relative differences
among stations and years are preserved, such that any inferences about the directionality and

relative impact of the environmental variables should be unaffected.

Statistical Analysis

A cell-based model with a cell size of 30 m was used to facilitate the analysis. Within the
study area, ESRI ArcGIS software was used to code each 30 m cell in one of the following categories
on the Braun-Blanquet cover scale: none (0% cover), very sparse (<10% cover), sparse (11-40%
cover), moderate (41-70%), or dense (71-100%) (Paine, 1981). Additionally, we quantified the
depth of the cell extracted from the Chesapeake Bay, VA/MD (M130) Bathymetric Digital Elevation

Model (NOAA, http://estuarinebathymetry.noaa.gov/). For each grid cell, we then calculated the

over-water distance to the nearest CBP monitoring station, and grouped all cells based on their
nearest station, which we refer to as ‘subregions’ (Fig. S1). For each station, we calculated the total

density-weighted eelgrass cover as the sum of the bottom area of the nearest grid cells, weighted by
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the Braun-Blanquet density, and merged these with the environmental data. This procedure yielded

n = 684 observations for use in our modelling exercise.

We used the following generalized additive mixed model to identify the significant

predictors of eelgrass cover:

14
yij = XU *a+ ka(xij) +ZUbU +Zi,jbi + El'j
k=1

b; =N(0,¥,)

bij = N(0,03)

€ij = N(0,0I)
where the response y;; is the logio-transformed density-weighted total cover of eelgrass in
subregion i in year j, X;; is the design matrix of parametric components and « is the vector of fixed
effects parameters, f} () are the non-parametric smoothed functions of covariates x;;, Z;jis the
design matrix of the random effect of region i in year j and b;; is the corresponding vector of
random effects (for region designations, see Fig. S1), Z; ; is the design matrix of the random effect of
year j on the measurements for region i in year j and b; is the corresponding vector of random
effects, and €;; is the within-region and within-year error independent of the random effects. All
random effects and residual error are assumed to be normally distributed with a mean of 0, and

positive definite variance-covariance matrices ¥;, 022, and ¢?I.

For the non-parametric component:

P
Z fk(xl-j) = f;(Long, Lat) + f, (Coveri(j_l)) + f;(Habitat;) + f4(Ch1ai]-) + f5(Salinityij)
k=1

+ f6(seCChiij) + f7(TNU) + fS(TPU) + fg(Tempi(j_l)) + flO(MaXTempi(j_l))

+ fll (Secchiij, Tempi(j_l))

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.2544v2 | CC BY 4.0 Open Access | rec: 9 Jan 2017, publ: 9 Jan 2017




176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

where all predictors are modeled as smoothing functions using the default thin-plate regression
spline in the mgcv package in R (Wood, 2011). f; (Long, Lat) is a smoothed combination of spatial
coordinates using the UTM projection, and is meant to address any potential spatial autocorrelation
among the subregions. f, (Coveri(j_l)) represents eelgrass cover in subregion i in the previous year
j — 1, to account for the dependency of eelgrass cover from one year to the next. We fit this
predictor as a smoothed covariate in lieu of a fixed autoregressive structure, having tested various
combinations using model comparisons and visual examination of (partial) residual autocorrelation
functions, and finding them to be less supported than simply modeling the previous year’s eelgrass
cover. f3 (Habitatij) represents the total available bottom for eelgrass with subregion i extending to

1 m Mean Low Water.

The remaining predictors are environmental variables summarized from the CBP
Monitoring Program. Chlorophyll-g, salinity, Secchi depth, total nitrogen (TN), and total phosphorus
(TP) were calculated as means for February to June in subregion i of year j, as we expected eelgrass
to respond most strongly to these parameters during the growing season. The two predictors
pertaining to temperature, fo(Temp;(;_1y) + f1o(MaxTemp;;_y)), were calculated as the mean and
maximum values, respectively, from July to September of the previous year j — 1, since this is the
time during which eelgrass undergoes natural temperature-driven senescence in this region
(Moore & Jarvis, 2008). The final term is a combination of mean temperature and Secchi depth,
estimating their interactive influence on cover independent of their main effects using a tensor

product moment interaction smoother.

The model was constructed in R version 3.3.1 (R Development Core Team, 2016) using the
mgcv package (Wood, 2011). The model was fit using restricted maximum likelihood (REML) to
avoid overfitting and yield less biased estimates of the fixed effects, given the complexity of the

model and the size of the dataset. Model assumptions of normality of errors and constant variance
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were assessed visually. Model predictions and 95% confidence intervals were obtained using the
custom function EvaluateSmooths modified from StackOverflow?, and from a modified version of
the function pvisgam in the itsadug package (van Rij et al., 2016). We held a Type I error threshold
of @ = 0.05. All data and scripts necessary to reproduce the analyses and generate all graphics are

provided as supplementary files.

Ecosystem Services and Valuation

To estimate the potential ecological and economic losses associated with the decline of
eelgrass, we collated in situ measurements of functioning from Chesapeake Bay eelgrass beds of the

last decade (Table 1).

Data for estimation of total carbon loss were derived from in situ measurements of carbon

stock as part of the Zostera Experimental Network (http://zenscience.org). Sediment core tubes

(length: 50 cm, diameter: 50 mm) were forced to a depth of 30-40 cm into the sediment at a
minimum distance of 15 m from each other at Goodwin Island, York River, extracted, and returned
to the laboratory on ice. The samples were then dried and shipped to University of Southern
Denmark, where samples were analyzed for sediment 8§13 C, §15 N, PON and POC using a mass
spectrometer (Thermo Scientific, delta V advantage, isotope ratio mass spectrometer). The
measured isotope ratios were represented using the §-notation with Vienna Peedee belemnite as
reference material. Values of POC obtained by depth integration of the carbon density (mg C cm3)
of 0-25 cm sediment layers were converted to carbon stock per unit sediment (mg C cm-2), and
averaged across n = 3 samples. We then averaged across all samples to yield a mean and standard

deviation.

1 https://stackoverflow.com/questions /19735149 /is-it-possible-to-plot-the-smooth-components-of-a-gam-
fit-with-ggplot2
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Estimates of N> fixation were obtained from (Cole, 2011), which reports estimates of whole
system nitrogen flux, including the plant itself, epiphytes, and the sediment. In the publication, the
author reports N fixation rates as 3.9-5.8 g N m2 y-1. From this range, we obtained an average by

taking the difference and dividing by two, and adding it to the lesser value, yielding 4.85 g N m-2 y-1.

Estimates of epifaunal invertebrate biomass per unit area were obtained from a long-
running field survey at Goodwin Island, York River, Chesapeake Bay from 2004-2012 (Douglass et
al, 2010). Ten grab samples per month collected epifauna over an area equivalent to 400 cm? of
bottom. Animals in each sample were size fractionated and biomass was estimated in mg ash-free
dry mass using linear equations in (Edgar, 1990). These values were then averaged across all

months and years to produce a mean and standard errors.

Juvenile blue crab abundance per unit area was obtained from (Ralph et al., 2013). Values
were averaged across all sampling locations to yield approximately 24 individuals m-2, and
standard deviations derived from standard error of the mean multiplied by the square root of the
total sample size. To estimate economic losses associated with changes in blue crab abundance, a
market price of $US 3418 per metric ton was obtained from NOAA Office of Science and Technology
Annual Commercial Landing Statistics (NOAA Office of Science and Technology, 2014) for the most
recent available year (2014), including both hard- and soft-shelled individuals. We assumed an
average adult mass of 150 g, and a conservative 10% catchability arising from a combination of

post-juvenile mortality and fishing effort.

Estimates of silver perch production were obtained from (Sobocinski & Latour, 2015). We
used a mean value 0of 91.5 g m2 y1, and obtained standard errors from the range 77.8-117.8 gm2y-
L using the range rule, as above. Information on the fishery harvest of approximately 5900 mt y-!

from the period of 2004-2014 also came from (Sobocinski & Latour, 2015).
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244 Finally, estimates of total economic loss were obtained from (Costanza et al., 2014), and as
245  with all of the above estimates, assumes a ‘basic benefit transfer’ implying that the value of the
246  service remains consistent per unit area. These values integrate across a range of potentially

247  economically valuable services including provisioning of food and materials, bioprospecting,

248 regulation of air, water, and climate, nursery services, and cultural, recreational and spiritual

249  Dbenefits (de Groot et al.,, 2012). We used the 2011 valuation of $28,916 ha-! y-1 for combined

250  seagrass/algal beds, noting that eelgrass beds often accumulate vast quantities of macroalgae.

251 For all values, we extrapolated to the total area lost multiplied by the period of time
252 considered (30 years, if to present, or 22, if to the greatest observed loss). For nitrogen fixation and
253 silver perch production, standard deviations were approximated by taking the difference of the

254  range and dividing by 4, or the ‘range rule.’

255 Results

256 From a peakin 1991, representing the maximum recovery post-Agnes, total eelgrass cover
257  has declined by 29% to date (Fig. 2a). Moreover, the mean depth of eelgrass beds has declined by
258  0.12 m, or 26%, with most change occurring abruptly in 1997 (Fig. 2b). This change represents a
259  greater loss of deep beds, which were reduced by 50%, versus shallow beds, which actually

260  increased in cover by 35% (Fig. 2c). Eelgrass beds have therefore shifted 165 m closer to shore

261  since 1984 (Fig. 2d). Together, these results depict classic ‘habitat squeeze,” with eelgrass retreating
262  into shallow water refugia where conditions are still favorable for growth, and all but eliminated in

263  many areas >0.5 m depth where it was once abundant.

264 The widespread decline in eelgrass cover after 1991 appears to have been gradual until the
265  early 2000s, after which point several acute diebacks occurred (Fig. 2a). The most extreme loss
266 occurred in 2006, with a catastrophic 58% decline in total cover from the previous year, and a 78%

267  decline from peak cover. Interestingly, eelgrass appeared to recover rapidly after these declines.
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Following the 2006 die-back, eelgrass cover increased by 55% over the previous year, and by 2009,
had reached total cover exceeding that observed immediately prior to the die-back. A similar
scenario occurred in 2011, where a less severe but still substantial decline of 41% reached pre-die-
back area in less than two years. Our observations suggest eelgrass is responding to multiple
drivers, one halting its recovery in the early 1990s and impacting eelgrass over the longer term, and
another, more episodic driver beginning in the mid-2000s that relaxes enough to permit rapid

recovery.

To clarify the correlates of changes in eelgrass abundance, we constructed a generalized
additive mixed model (GAMM) incorporating 10 spatial, temporal, and environmental variables that
together explained 84.6% of the variance in eelgrass cover. Beyond the expected influence of space
and time, Secchi depth (an indicator of water clarity), mean water temperature of the preceding
summer, and their interaction were the only other significant predictors of eelgrass cover (P =

0.006, P<0.001, and P = 0.029; Fig. 3).

Decreasing Secchi depth (i.e., low visibility) is predicted to reduce eelgrass cover (Fig. 3a),
and has declined by 30 cm since the beginning of the survey (Fig. 3b). Light is the principal factor
governing eelgrass growth (Dennison, 1987), and our analysis confirms the long-running
hypothesis that reduced water clarity is driving the long-term decline of eelgrass in Chesapeake Bay
(Kemp et al., 2004; Orth et al., 2010), and in many other locations (Giesen et al., 1990; Short &
Wyllie-Echeverria, 1996). It also explains why deep beds have exhibited the strongest decline (Fig.
2c), as light penetration decreases exponentially with depth (Dennison, 1987). To confirm this, we
re-fit GAMMs for each depth strata to show that Secchi depth is the only significant predictor of

eelgrass cover at depths >0.5 m MLW (P = 0.020; Fig. S2).

Increasing mean summer temperatures also reduced eelgrass cover, but only when

exceeding 25°C (Fig. 3c), a well-described threshold for mortality in this species (Zimmerman et al.,
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1989; Reusch et al, 2005; Moore et al, 2014). Not only has the average summertime temperature
increased from 24.9 to 26.4°C since 1984, but the frequency of extreme mean temperatures (>28°C)
has also doubled in the last decade (Fig. 3d), generalizing recent conclusions about the role of
episodic heat events in driving localized diebacks (Moore & Jarvis, 2008). Thus, warming is the
most likely driver behind more recent declines (Fig. 2a), particularly in shallow waters where light
is not limiting (Fig. 2c). Indeed, GAMMs fit to individual depth strata show a significant effect of

temperature only at intermediate and shallow depths (0-5 m, P = 0.008 and P = 0.043; Fig. S2).

Most importantly, we show that temperature and clarity interactively reduce eelgrass cover
beyond what is expected from either alone (Fig. 4). A 2°C increase in temperature, which is the low
end of expectations for the Chesapeake Bay in the next 30 years (Najjar et al., 2010), would result in
a further decline in total eelgrass cover of 38%, holding all else constant. Similarly, if Secchi depth
continues its trajectory and is reduced by another 40% over the next 30 years, it would result in a
further decline of 84%. However, combined changes in temperature and Secchi depth would result
in an expected loss of 95%, or the near total eradication of eelgrass in the Chesapeake Bay. While
these values are based only on our model, and do not integrate any biology or account for
continued management actions to reduce inputs into the Bay, it demonstrates potential for

catastrophic losses as a result of the joint influence of these two stressors.

Finally, from independent in situ measurements in Chesapeake Bay eelgrass beds, we show
loss of eelgrass has had severe consequences for ecosystem functioning and the provision of
services relevant to human well-being (Table 1). For example, the total loss of carbon in sediments
is estimated at 693-1859 kt C. Given the current social cost of carbon (Domestic Policy Council,
2013), this equates to an expected economic loss of $US 96.5 - 259 million. Similarly, loss of
eelgrass is expected to lead to a reduction of 523-1403 million juvenile blue crabs. Assuming a
conservative 10% harvestable yield and the 2014 market price (NOAA Office of Science and

Technology, 2014), this equates to a total potential economic loss of $US 28.6 - 76.7 million. This
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value represents 1-2 years of the fishery, and even then does not account for consequent losses in
recruitment in subsequent years. Similarly, the expected loss of silver perch equates to 10-20 years

of the fishery (Sobocinski & Latour, 2015).

In all, an independent and integrated measure of economic valuation (Costanza et al., 2014)
places the total potential economic loss due to the decline of eelgrass in Chesapeake Bay at $US
1.51-2.54 billion. Although these values are estimates extrapolated from small-scale data
uninformed by the well-described variation in these services through time and space (Ralph et al,,
2013; Duffy et al,, 2015), and therefore must be interpreted with caution, they represent the best
available data for assessing the outcome of eelgrass decline for the ecological and economic well-

being of the Chesapeake Bay.

Discussion

Since the early 1990s, we show that eelgrass abundance in Chesapeake Bay has undergone
a steady deterioration, punctuated by periods of intense decline (Fig. 2a). We propose that the long-
term declines are a consequence of declining water clarity, which has all but eliminated eelgrass
beds deeper than 1 m where light is already limiting (Fig. 2c; Fig. S2). As the influence of clarity was
independent of nutrients or chlorophyll-a in our model, we propose that its effect stems from
increased sediment loading, resuspension, and dissolution of organic matter due to greater
watershed development and urbanization (Gallegos, 2001; Kemp et al, 2004; Orth et al., 2017 in
review). At the same, we demonstrate that increasing summertime temperatures are behind
episodic declines in 2005 and 2010, but are sufficiently infrequent, at this time, as to allow recovery
(Fig. 2a). Critically, high temperatures appear to impact shallow beds more than deep ones (Fig. S2),
suggesting that warming, and its interaction with clarity, is the most prominent threat for

remaining eelgrass in Chesapeake Bay.
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Warming has two implications for the persistence of eelgrass in Chesapeake Bay. First, it
has been shown that rising temperatures elevates respiratory load, increasing light requirements
for photosynthesis to balance metabolic demand, and exacerbating the negative effects associated
with decreasing clarity (Zimmerman et al., 1989; Zimmerman, 2006). Seagrasses, in general, have
among the highest light requirements of any extant plants, primarily because of the need to support
the large biomass of roots and rhizomes in a sedimentary environment of low to no oxygen
(Dennison et al., 1993). Thus, the relationship between maximum depth distribution and Secchi
depth has been well documented, particularly in Chesapeake Bay (Dennison et al.,, 1993). Consistent
with this hypothesis, we show a highly significant interaction between the two such that the
strongest declines in eelgrass are expected when temperature is maximal and Secchi depth is at its

minimum (Fig. 4).

Second, eelgrass propagates both sexually, via seeds, and asexually, via clonal growth. When
local populations die-back as a consequence of heat stress, the seedbank from the previous year
permits rapid recolonization. However, diebacks in two consecutive years would fail to replenish
the seedbank, as eelgrass seedlings in Chesapeake Bay flower in the second year of growth and
seeds do not remain viable for more than a year, excluding any possibility of recovery (Jarvis &
Moore, 2010). This scenario is not accounted for in our model and may result in the rapid and
unpredictable eradication of eelgrass far more quickly than our analytical scenarios would

otherwise suggest.

While eelgrass has stalled on its track of recovery since 1991, over the short-term it has
actually increased in abundance (Fig. 2A). We note, however, that cover observed at any point
during this survey is only a fraction of what it was prior to the 1970s (Fig. 1), and more critically, is
now restricted to only the most nearshore areas (Fig. 2C). Losses prior to this survey are also
known to have come from pulse events, namely storms and disease, and have generally recovered

within a decade or two (Orth & Moore, 1983; Orth et al.,, 2010). In contrast, we demonstrate a
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strong anthropogenic component in driving the continued and contemporary decline of eelgrass
through degradations in water quality, warming, and their interaction. Therefore, we temper
optimism of this recent upswing, and caution that without continued intervention to mitigate
human impacts, principally those that affect light availability, eelgrass is unlikely to even reach
coverage observed in the early 1990s, let alone historical maximums (Fig. 1). This point is critical
considering those maximums have been used to set management targets for cover of underwater

grasses in the polyhaline region of the Bay (Orth et al, 2010, 2017 in review).

Our study contributes to a general pattern of fragility among coastal ecosystems for which
long-term regional records exist, including the Great Barrier and Caribbean coral reefs (Gardner et
al., 2003; De’ath et al., 2012), kelp forests (Wernberg et al., 2016), salt marshes (Jefferies et al.,
2006), and mangroves (Fromard et al., 2004; Cavanaugh et al, 2014). It also provides the most
spatially and temporally comprehensive assessment of the patterns and drivers of decline in any
seagrass species (Waycott et al., 2009), and for one the largest, most productive, and valuable
estuaries in the world (Claggett, 2016). Most importantly, we generalize mechanisms of seagrass
decline derived from small-scale experiments and local observations to the scale of the entire
Chesapeake Bay, principally sensitivity to declining water clarity and physiological intolerance to
warming temperatures, as well as their interaction. This finding suggests that these mechanisms
may be scale invariant, and that experiments conducted in other systems could be reasonably
extrapolated to predict regional abundance of eelgrass elsewhere where physiological intolerances

are similar to those exhibited in Chesapeake Bay.

Instead of facilitating decline, as we demonstrate here, climate change has been shown to
mediate turnover in foundational species in many other examples, such as the ongoing replacement
of marshes by mangroves in the southeastern US (Cavanaugh et al.,, 2014). In contrast with our
study, there is no obvious candidate to supplant eelgrass in the Chesapeake Bay. Only one

underwater grass coexists with eelgrass in the region, widgeongrass (Ruppia maritima), but it is
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generally restricted to shallow waters and so far has failed to establish in any abundance in areas
vacated by eelgrass (Orth et al.,, 2010). Rather, lost beds have by and large reverted to bare
sediment, the least productive marine habitat (Duarte & Cebrian, 1996). Thus, the current crisis for
eelgrass in Chesapeake Bay represents an almost total loss of functionality, echoing recent findings
from systems such as coral reefs, where the transition to an algal-dominated state has reduced or

eliminated many of the same habitat and provisioning services (Graham & Nash, 2013).

Managers have long recognized that local-scale degradation of water clarity negatively
affects many species of underwater grasses, not just eelgrass, from the Chesapeake Bay to the Gulf
of Mexico, San Francisco Bay, and Australia (Giesen et al., 1990; Short & Wyllie-Echeverria, 1996;
Orth et al, 2006; Waycott et al., 2009). However, few if any implement strategies that account for
rising temperatures in attempting to avert losses due to reduced water quality, despite mounting
evidence of temperature-induced diebacks (Waycott et al., 2009), even in places as far north as the
Baltic Sea (Reusch et al., 2005). This failure may explain the accelerating decline of seagrass species
over the last century despite increasing awareness and intervention (Waycott et al., 2009). Since
climate change is a global phenomenon, we propose that managers must increase their water
quality targets at the local and regional levels to offset losses caused by global factors outside their
immediate control. Indeed, our model predictions show that given sufficient water clarity, eelgrass
could still persist in the face of increasing temperatures. Only by adopting such an integrative

perspective can we protect and restore eelgrass in the Chesapeake Bay, and elsewhere.
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556 Table 1: Loss of ecosystem services concurrent with loss of eelgrass. Values are means + 1 SD,
557  estimated based on change in eelgrass cover from its peak in 1991 to present, and to the maximum

558 observed loss in 2006.

Present loss Maximum loss
Service Response (1991-2015) (1991-2006)
Nutrient cycling Carbon stock (kt C) 693 £ 150 1859 + 401
N; fixation (kt N) 2.53+0.25 4.25+0.16
Secondary production Epifaunal biomass (Mt) 141.1+75.2 236.6 £ 126.1
and export
Blue crab density 523+ 600 1403 + 1609
(millions of juveniles)
Silver perch biomass 47.8+5.2 80.2+8.8
(kt)
Total economic loss Integrated value ($2011 $1.51 billion $2.54 billion
Us)

559
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562  Figure 1. Current (light green) and historical distribution (dark green) of eelgrass in
563  Chesapeake Bay. Historical distribution is prior to 1971, immediately preceding Tropical Storm

564  Agnes.
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Figure 2. Thirty-year trends in eelgrass cover and distribution. (a) Total cover (hectares) has
been decreasing since 1991. (b) Mean depth of eelgrass beds has been decreasing since 1996. (c)
The greatest loss has occurred in the deepest beds (Deep = >0.5 m, Mid = 0-0.5 m, Shallow = 0 m).

(d) Eelgrass has shifted 165 m closer to shore since 1984.
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Figure 3. Significant predictors of total eelgrass area based on a generalized additive mixed
model. (a) Predicted cover increases with increasing Secchi depth, a measure of water clarity.
Values on the y-axis represent the partial smoothed residuals accounting for the influence of the
other predictors in the model. Shaded areas indicate 95% confidence intervals. (b) Water clarity
has decreased by about 0.4 m over the past 30 years. Line denotes the predicted fit + 95% Cls from
simple linear regression. (c) Predicted cover decreases with increasing summer temperature. (d)
Mean summertime temperature (Jul-Sept) has increased over the past 30 years, with a more recent

rise in extreme temperature events (>28 °C, triangles).
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581  Figure 4. Interaction surface between temperature and Secchi depth from a generalized

582  additive mixed model. Eelgrass cover is predicted to decline when temperature is high and Secchi
583  depth is low (bottom right). Values on the y-axis represent the partial residuals of the tensor

584  product (ti) smoother accounting for the influence of the other predictors in the model.
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