

1
2 **Multiple stressors threaten the imperiled coastal foundation species eelgrass**
3 **(*Zostera marina*) in Chesapeake Bay, USA**
4 **Running head:** Interacting stressors reduce eelgrass

5
6 Jonathan S. Lefcheck^{1*}, David J. Wilcox¹, Rebecca R. Murphy², Scott R. Marion³, Robert J. Orth¹

7
8 ¹Virginia Institute of Marine Science, The College of William & Mary, Gloucester Point, VA 23062,
9 USA

10 ²University of Maryland Center for Environmental Science, Chesapeake Bay Program, Annapolis,
11 MD 21403, USA

12 ³Oregon Department of Fish & Wildlife, Marine Resources Program, Newport, OR 97365, USA

13
14 *Corresponding author. Email: jslefche@vims.edu. Phone: +1 804 684 7150. Mailing address: PO
15 Box 1346, Gloucester Point, VA 23062, USA

16
17 **Keywords:** seagrass, climate change, global warming, nutrients, eutrophication, remote sensing
18 **Type of paper:** Primary Research Article

19 **Abstract**

20 Interactions among global change stressors and their effects at large scales are often proposed, but
21 seldom evaluated. This situation is primarily due to lack of comprehensive, sufficiently long-term,
22 and spatially-extensive datasets. Seagrasses, which provide nursery habitat, improve water quality,
23 and constitute a globally-important carbon sink, are among the most vulnerable habitats on the
24 planet. Here, we unite 31-years of high-resolution aerial monitoring and water quality data to
25 elucidate the patterns and drivers of eelgrass (*Zostera marina*) abundance in Chesapeake Bay, USA,
26 one of the largest and most valuable estuaries in the world with an unparalleled history of
27 regulatory efforts. We show that eelgrass area has declined 29% in total since 1991, with wide-
28 ranging and severe ecological and economic consequences. We go on to identify an interaction
29 between decreasing water clarity and warming temperatures as the primary driver of this trend.
30 Declining clarity has gradually reduced eelgrass over the past two decades, primarily in deeper
31 beds where light is already limiting. In shallow beds, however, reduced visibility exacerbates the
32 physiological stress of acute warming, leading to recent instances of decline approaching 80%.
33 While degraded water quality has long been known to influence underwater grasses worldwide, we
34 demonstrate a clear and rapidly emerging interaction with climate change. We highlight the urgent
35 need to integrate a broader perspective into local water quality management, in the Chesapeake
36 Bay and in the many other coastal systems facing similar stressors.

37 **Introduction**

38 Identifying the drivers of environmental change and predicting their consequences is the
39 preeminent scientific challenge of the Anthropocene (Halpern *et al.*, 2008). Marine systems in
40 particular are experiencing rapid and often irreversible alterations as a consequence of human
41 activities (Lotze *et al.*, 2006), and almost half of these changes can be attributed to multiple drivers
42 (Lotze *et al.*, 2006; Halpern *et al.*, 2008). Despite the increasing recognition that global and local
43 stressors often act jointly, rigorous empirical examples of this phenomenon are lacking at the large
44 scales relevant to both the observed change and human well-being. This absence is particularly
45 striking for temperate coastal ecosystems, which, ironically, support much of the world's human
46 population. Instead, most of our understanding of coastal change comes from small-scale
47 experiments and observations (Crain *et al.*, 2008, 2009), or from tropical systems such as coral
48 reefs (Gardner *et al.*, 2003; De'ath *et al.*, 2012). This knowledge gap vastly impedes our ability to
49 predict and avert the impacts of global change on key population centers, particularly given the fact
50 that stressors, and corresponding management actions, often occur at much larger scales.

51 Seagrasses in particular are extremely sensitive to global change, with losses exceeding
52 25% worldwide in just the last century (Orth *et al.*, 2006; Waycott *et al.*, 2009). Because of its global
53 distribution close to major anthropogenic influences, and its habit of forming monospecific stands
54 in shallow zones, eelgrass (*Zostera marina*) is acutely vulnerable to environmental stressors
55 (Waycott *et al.*, 2009). Consequently, it has experienced declines in many locations, including in
56 northern Europe (Giesen *et al.*, 1990; Frederiksen *et al.*, 2004), the northwestern Atlantic (Beem &
57 Short, 2009; Costello & Kenworthy, 2011), and the western coast of the US, particularly San
58 Francisco Bay (Short & Wyllie-Echeverria, 1996). Nowhere, though, has eelgrass experienced more
59 significant losses than in Chesapeake Bay, USA (Orth & Moore, 1983).

60 The Chesapeake Bay is one of the largest, most well-managed, and economically productive
61 coastlines in the world, and is projected to support 20 million people by 2020 (Orth *et al.*, 2017, *in*
62 *review*). Eelgrass has played a prominent role in both the ecology and economy of Chesapeake Bay,
63 providing numerous functions and services, including nursery habitat for valuable fisheries species
64 and shoreline stabilization (Table 1) (Orth *et al.*, 2017, *in review*). The abundance of eelgrass in
65 Chesapeake Bay has fluctuated dramatically over the last century, with pandemic wasting disease
66 driving a well-documented decline in the 1930s, and recovery occurring through the 1960s
67 (Cottam, 1934; Orth & Moore, 1984). It was during a single summer in 1972, however, that Tropical
68 Storm Agnes – and the accompanying freshwater discharge – extirpated over 50% of the eelgrass
69 population. This was a major disturbance from which Chesapeake Bay eelgrass populations have
70 never truly recovered (Fig. 1) (Orth & Moore, 1983; Orth *et al.*, 2010).

71 Alongside increasing industrialization of the region in the 1960s, there emerged interest in
72 the impact of human activities on eelgrass in Chesapeake Bay: specifically, nutrient runoff from
73 agriculture, and the consequent eutrophication of nearshore waters (Orth & Moore, 1984; Kemp *et*
74 *al.*, 2005). Several recent correlative analyses have proposed that declining water quality and
75 subsequent changes in light availability may be the preeminent agent preventing recovery of
76 eelgrass in Chesapeake Bay after Agnes (Orth *et al.*, 2010; Patrick & Weller, 2015). At the same time,
77 parallel investigations conducted in only a single sub-estuary have uncovered a potential role for
78 rising temperatures alongside reduced visibility in driving a recent decade-long decline of eelgrass
79 (Moore & Jarvis, 2008; Moore *et al.*, 2014). Together, these studies suggest a role for multiple
80 influences on the trajectory of Chesapeake Bay eelgrass, although their effects have yet to be
81 generalized to the regional scale.

82 In this study, we use 31-years of high-resolution aerial imagery and water quality data to
83 document the continued decline of eelgrass across the entirety of Chesapeake Bay, and directly link
84 changes in its distribution to multiple anthropogenic stressors acting on the region. The scale,

85 duration, comprehensiveness, and complementarity of these two datasets are unprecedented, and
86 provide a unique opportunity to understand the specific drivers of habitat decline in a highly
87 populated coastal system.

88 **Methods**

89 *Eelgrass Monitoring*

90 Eelgrass bed area and density were derived from aerial imagery acquired on an annual
91 basis from 1984 through 2015, except for 1988, from the Virginia Institute of Marine Science
92 Submersed Aquatic Vegetation Monitoring Program (<http://www.vims.edu/bio/sav>).
93 Panchromatic photography at a scale of 1:24,000; 60% flightline overlap and 20% sidelap was
94 acquired with a standard mapping camera for 1984 – 2014. Multi-spectral imagery was acquired in
95 2014 and 2015 using a digital mapping camera with a ground sample distance of 24 cm. Acquisition
96 conditions, including tidal stage, plant growth, sun angle, atmospheric transparency, water
97 turbidity, and wind, were selected to optimize the visibility of eelgrass beds (Dobson *et al.*, 1995).

98 Mapping of eelgrass beds was initially accomplished by manually tracing seagrass bed
99 outlines onto translucent United States Geological Survey 7.5-minute quadrangle maps directly
100 from the photographs, and then digitizing bed boundaries into a Geographic Information System
101 (GIS) dataset for analysis. More recently, the aerial photography was scanned from negatives or
102 produced digitally from the sensor and orthorectified using ERDAS LPS image-processing software
103 (ERDAS, Atlanta GA). Eelgrass bed boundaries were then photo-interpreted directly on-screen
104 while maintaining a fixed scale using ESRI ArcMap GIS software (ESRI, Redlands CA). The spatial
105 accuracy of the dataset varies from approximately $\pm 24\text{m}$ for the earlier data to approximately $\pm 4\text{m}$
106 for the recent data. Thematic accuracy has not been directly quantified, but has been improved
107 through the use of extensive field observations.

108 A second species of seagrass, widgeongrass (*Ruppia maritima*), can co-occur with eelgrass
109 in some locations of the lower Bay, or in monospecific stands (Orth & Moore, 1986). Any beds
110 dominated by widgeongrass were excluded from the mapped area using expert knowledge, itself
111 based on field surveys of the general distribution of the two species conducted since 1978. Thus,
112 after the removal of these beds, we are confident that our analysis focuses specifically on eelgrass.

113 *Water Quality Monitoring*

114 Water quality data were obtained from the Chesapeake Bay Program's (CBP) Water Quality
115 Database (<http://www.chesapeakebay.net>), which contains data collected in the tidal waters of
116 Chesapeake Bay by agencies including Maryland Department of Nature Resources and Virginia
117 Department of Environmental Quality. The program visits approximately 160 fixed monitoring
118 stations every two weeks, 28 of which were used for our analysis (Fig. S1). At each station, a
119 vertical hydrographic profile is collected using a multiparameter sonde with observations every 1-2
120 meters of water temperature, specific conductivity (to calculate salinity), and dissolved oxygen.
121 Secchi depth is observed in the field using a black-and-white Secchi disk attached to a measuring
122 line. In addition, at each station, water samples are collected at several depths and processed at a
123 laboratory to quantify concentrations of chlorophyll-*a*, total nitrogen, and total phosphorus. For
124 this analysis, we used data only from the surface layer, the top 0.5 or 1 m observation, assuming
125 these values best reflect conditions in the shallow water where eelgrass is present.

126 Methodological changes for chlorophyll-*a*, total nitrogen, and total phosphorus over the
127 course of the survey necessitated the implementation of correction factors. Specifically, for
128 nitrogen, the changes involved switching from a sum of nitrate, nitrite, and total Kjeldahl nitrogen
129 to total dissolved nitrogen plus particulate nitrogen at Virginia mainstem stations in 1988,
130 Maryland stations in 1998 and Virginia tributary stations in 1998. For phosphorus, the change
131 involved switching from a sum of total dissolved phosphorus plus particulate phosphorus to a

132 direct measurement in the same years as the total nitrogen changes. For chlorophyll-*a*, the possible
133 changes occurred due to laboratories switches in the late 1990s, although it is likely this only
134 impacted Virginia tributary stations. For these three variables, we regressed the response at each
135 station against the identity of the processing laboratory and the method employed using simple
136 linear regression. We then extracted the residuals from this relationship, and visual assessment of
137 time series plots suggested that they adequately accounted for the *a priori* influence of lab and
138 method. The residuals for these three variables were carried through all subsequent analyses.

139 While these stations are largely in deep water, many prior studies have shown that they can
140 be adequately extrapolated to predict underwater vegetation in shallow areas (Li *et al.*, 2007;
141 Rybicki & Landwehr, 2007; Ruhl & Rybicki, 2010; Gurbizz & Kemp, 2014; Patrick *et al.*, 2014, 2016).
142 Even if the stations under- or over-represent conditions at shallow depths, the relative differences
143 among stations and years are preserved, such that any inferences about the directionality and
144 relative impact of the environmental variables should be unaffected.

145 *Statistical Analysis*

146 A cell-based model with a cell size of 30 m was used to facilitate the analysis. Within the
147 study area, ESRI ArcGIS software was used to code each 30 m cell in one of the following categories
148 on the Braun-Blanquet cover scale: none (0% cover), very sparse (<10% cover), sparse (11-40%
149 cover), moderate (41-70%), or dense (71-100%) (Paine, 1981). Additionally, we quantified the
150 depth of the cell extracted from the Chesapeake Bay, VA/MD (M130) Bathymetric Digital Elevation
151 Model (NOAA, <http://estuarinebathymetry.noaa.gov/>). For each grid cell, we then calculated the
152 over-water distance to the nearest CBP monitoring station, and grouped all cells based on their
153 nearest station, which we refer to as 'subregions' (Fig. S1). For each station, we calculated the total
154 density-weighted eelgrass cover as the sum of the bottom area of the nearest grid cells, weighted by

155 the Braun-Blanquet density, and merged these with the environmental data. This procedure yielded
156 $n = 684$ observations for use in our modelling exercise.

157 We used the following generalized additive mixed model to identify the significant
158 predictors of eelgrass cover:

159
$$y_{ij} = \mathbf{X}_{ij} * \alpha + \sum_{k=1}^p f_k(x_{ij}) + \mathbf{Z}_{ij} b_{ij} + \mathbf{Z}_{i,j} \mathbf{b}_i + \epsilon_{ij}$$

160
$$\mathbf{b}_i = N(\mathbf{0}, \Psi_1)$$

161
$$b_{ij} = N(0, \sigma_2^2)$$

162
$$\epsilon_{ij} = N(\mathbf{0}, \sigma^2 \mathbf{I})$$

163 where the response y_{ij} is the \log_{10} -transformed density-weighted total cover of eelgrass in
164 subregion i in year j , \mathbf{X}_{ij} is the design matrix of parametric components and α is the vector of fixed
165 effects parameters, $f_k(\cdot)$ are the non-parametric smoothed functions of covariates x_{ij} , \mathbf{Z}_{ij} is the
166 design matrix of the random effect of region i in year j and b_{ij} is the corresponding vector of
167 random effects (for region designations, see Fig. S1), $\mathbf{Z}_{i,j}$ is the design matrix of the random effect of
168 year j on the measurements for region i in year j and \mathbf{b}_i is the corresponding vector of random
169 effects, and ϵ_{ij} is the within-region and within-year error independent of the random effects. All
170 random effects and residual error are assumed to be normally distributed with a mean of 0, and
171 positive definite variance-covariance matrices Ψ_1 , σ_2^2 , and $\sigma^2 \mathbf{I}$.

172 For the non-parametric component:

173
$$\sum_{k=1}^p f_k(x_{ij}) = f_1(\text{Long}, \text{Lat}) + f_2(\text{Cover}_{i(j-1)}) + f_3(\text{Habitat}_i) + f_4(\text{Chla}_{ij}) + f_5(\text{Salinity}_{ij})$$

174
$$+ f_6(\text{Secchi}_{ij}) + f_7(\text{TN}_{ij}) + f_8(\text{TP}_{ij}) + f_9(\text{Temp}_{i(j-1)}) + f_{10}(\text{MaxTemp}_{i(j-1)})$$

175
$$+ f_{11}(\text{Secchi}_{ij}, \text{Temp}_{i(j-1)})$$

176 where all predictors are modeled as smoothing functions using the default thin-plate regression
177 spline in the *mgcv* package in R (Wood, 2011). $f_1(\text{Long}, \text{Lat})$ is a smoothed combination of spatial
178 coordinates using the UTM projection, and is meant to address any potential spatial autocorrelation
179 among the subregions. $f_2(\text{Cover}_{i(j-1)})$ represents eelgrass cover in subregion i in the previous year
180 $j - 1$, to account for the dependency of eelgrass cover from one year to the next. We fit this
181 predictor as a smoothed covariate in lieu of a fixed autoregressive structure, having tested various
182 combinations using model comparisons and visual examination of (partial) residual autocorrelation
183 functions, and finding them to be less supported than simply modeling the previous year's eelgrass
184 cover. $f_3(\text{Habitat}_{ij})$ represents the total available bottom for eelgrass with subregion i extending to
185 1 m Mean Low Water.

186 The remaining predictors are environmental variables summarized from the CBP
187 Monitoring Program. Chlorophyll-*a*, salinity, Secchi depth, total nitrogen (TN), and total phosphorus
188 (TP) were calculated as means for February to June in subregion i of year j , as we expected eelgrass
189 to respond most strongly to these parameters during the growing season. The two predictors
190 pertaining to temperature, $f_9(\text{Temp}_{i(j-1)}) + f_{10}(\text{MaxTemp}_{i(j-1)})$, were calculated as the mean and
191 maximum values, respectively, from July to September of the previous year $j - 1$, since this is the
192 time during which eelgrass undergoes natural temperature-driven senescence in this region
193 (Moore & Jarvis, 2008). The final term is a combination of mean temperature and Secchi depth,
194 estimating their interactive influence on cover independent of their main effects using a tensor
195 product moment interaction smoother.

196 The model was constructed in R version 3.3.1 (R Development Core Team, 2016) using the
197 *mgcv* package (Wood, 2011). The model was fit using restricted maximum likelihood (REML) to
198 avoid overfitting and yield less biased estimates of the fixed effects, given the complexity of the
199 model and the size of the dataset. Model assumptions of normality of errors and constant variance

200 were assessed visually. Model predictions and 95% confidence intervals were obtained using the
201 custom function *EvaluateSmooths* modified from StackOverflow¹, and from a modified version of
202 the function *pvisgam* in the *itsadug* package (van Rij *et al.*, 2016). We held a Type I error threshold
203 of $\alpha = 0.05$. All data and scripts necessary to reproduce the analyses and generate all graphics are
204 provided as supplementary files.

205 *Ecosystem Services and Valuation*

206 To estimate the potential ecological and economic losses associated with the decline of
207 eelgrass, we collated *in situ* measurements of functioning from Chesapeake Bay eelgrass beds of the
208 last decade (Table 1).

209 Data for estimation of total carbon loss were derived from *in situ* measurements of carbon
210 stock as part of the Zostera Experimental Network (<http://zencience.org>). Sediment core tubes
211 (length: 50 cm, diameter: 50 mm) were forced to a depth of 30-40 cm into the sediment at a
212 minimum distance of 15 m from each other at Goodwin Island, York River, extracted, and returned
213 to the laboratory on ice. The samples were then dried and shipped to University of Southern
214 Denmark, where samples were analyzed for sediment $\delta^{13}\text{C}$, $\delta^{15}\text{N}$, PON and POC using a mass
215 spectrometer (Thermo Scientific, delta V advantage, isotope ratio mass spectrometer). The
216 measured isotope ratios were represented using the δ -notation with Vienna PeeDee belemnite as
217 reference material. Values of POC obtained by depth integration of the carbon density (mg C cm^{-3})
218 of 0-25 cm sediment layers were converted to carbon stock per unit sediment (mg C cm^{-2}), and
219 averaged across $n = 3$ samples. We then averaged across all samples to yield a mean and standard
220 deviation.

¹ <https://stackoverflow.com/questions/19735149/is-it-possible-to-plot-the-smooth-components-of-a-gam-fit-with-ggplot2>

221 Estimates of N₂ fixation were obtained from (Cole, 2011), which reports estimates of whole
222 system nitrogen flux, including the plant itself, epiphytes, and the sediment. In the publication, the
223 author reports N₂ fixation rates as 3.9-5.8 g N m⁻² y⁻¹. From this range, we obtained an average by
224 taking the difference and dividing by two, and adding it to the lesser value, yielding 4.85 g N m⁻² y⁻¹.

225 Estimates of epifaunal invertebrate biomass per unit area were obtained from a long-
226 running field survey at Goodwin Island, York River, Chesapeake Bay from 2004-2012 (Douglass *et*
227 *al.*, 2010). Ten grab samples per month collected epifauna over an area equivalent to 400 cm² of
228 bottom. Animals in each sample were size fractionated and biomass was estimated in mg ash-free
229 dry mass using linear equations in (Edgar, 1990). These values were then averaged across all
230 months and years to produce a mean and standard errors.

231 Juvenile blue crab abundance per unit area was obtained from (Ralph *et al.*, 2013). Values
232 were averaged across all sampling locations to yield approximately 24 individuals m⁻², and
233 standard deviations derived from standard error of the mean multiplied by the square root of the
234 total sample size. To estimate economic losses associated with changes in blue crab abundance, a
235 market price of \$US 3418 per metric ton was obtained from NOAA Office of Science and Technology
236 Annual Commercial Landing Statistics (NOAA Office of Science and Technology, 2014) for the most
237 recent available year (2014), including both hard- and soft-shelled individuals. We assumed an
238 average adult mass of 150 g, and a conservative 10% catchability arising from a combination of
239 post-juvenile mortality and fishing effort.

240 Estimates of silver perch production were obtained from (Sobocinski & Latour, 2015). We
241 used a mean value of 91.5 g m⁻² y⁻¹, and obtained standard errors from the range 77.8-117.8 g m⁻² y⁻¹
242 ¹ using the range rule, as above. Information on the fishery harvest of approximately 5900 mt y⁻¹
243 from the period of 2004-2014 also came from (Sobocinski & Latour, 2015).

244 Finally, estimates of total economic loss were obtained from (Costanza *et al.*, 2014), and as
245 with all of the above estimates, assumes a 'basic benefit transfer' implying that the value of the
246 service remains consistent per unit area. These values integrate across a range of potentially
247 economically valuable services including provisioning of food and materials, bioprospecting,
248 regulation of air, water, and climate, nursery services, and cultural, recreational and spiritual
249 benefits (de Groot *et al.*, 2012). We used the 2011 valuation of \$28,916 ha⁻¹ y⁻¹ for combined
250 seagrass/algae beds, noting that eelgrass beds often accumulate vast quantities of macroalgae.

251 For all values, we extrapolated to the total area lost multiplied by the period of time
252 considered (30 years, if to present, or 22, if to the greatest observed loss). For nitrogen fixation and
253 silver perch production, standard deviations were approximated by taking the difference of the
254 range and dividing by 4, or the 'range rule.'

255 **Results**

256 From a peak in 1991, representing the maximum recovery post-Agnes, total eelgrass cover
257 has declined by 29% to date (Fig. 2a). Moreover, the mean depth of eelgrass beds has declined by
258 0.12 m, or 26%, with most change occurring abruptly in 1997 (Fig. 2b). This change represents a
259 greater loss of deep beds, which were reduced by 50%, versus shallow beds, which actually
260 increased in cover by 35% (Fig. 2c). Eelgrass beds have therefore shifted 165 m closer to shore
261 since 1984 (Fig. 2d). Together, these results depict classic 'habitat squeeze,' with eelgrass retreating
262 into shallow water refugia where conditions are still favorable for growth, and all but eliminated in
263 many areas >0.5 m depth where it was once abundant.

264 The widespread decline in eelgrass cover after 1991 appears to have been gradual until the
265 early 2000s, after which point several acute diebacks occurred (Fig. 2a). The most extreme loss
266 occurred in 2006, with a catastrophic 58% decline in total cover from the previous year, and a 78%
267 decline from peak cover. Interestingly, eelgrass appeared to recover rapidly after these declines.

268 Following the 2006 die-back, eelgrass cover increased by 55% over the previous year, and by 2009,
269 had reached total cover exceeding that observed immediately prior to the die-back. A similar
270 scenario occurred in 2011, where a less severe but still substantial decline of 41% reached pre-die-
271 back area in less than two years. Our observations suggest eelgrass is responding to multiple
272 drivers, one halting its recovery in the early 1990s and impacting eelgrass over the longer term, and
273 another, more episodic driver beginning in the mid-2000s that relaxes enough to permit rapid
274 recovery.

275 To clarify the correlates of changes in eelgrass abundance, we constructed a generalized
276 additive mixed model (GAMM) incorporating 10 spatial, temporal, and environmental variables that
277 together explained 84.6% of the variance in eelgrass cover. Beyond the expected influence of space
278 and time, Secchi depth (an indicator of water clarity), mean water temperature of the preceding
279 summer, and their interaction were the only other significant predictors of eelgrass cover ($P =$
280 0.006, $P < 0.001$, and $P = 0.029$; Fig. 3).

281 Decreasing Secchi depth (i.e., low visibility) is predicted to reduce eelgrass cover (Fig. 3a),
282 and has declined by 30 cm since the beginning of the survey (Fig. 3b). Light is the principal factor
283 governing eelgrass growth (Dennison, 1987), and our analysis confirms the long-running
284 hypothesis that reduced water clarity is driving the long-term decline of eelgrass in Chesapeake Bay
285 (Kemp *et al.*, 2004; Orth *et al.*, 2010), and in many other locations (Giesen *et al.*, 1990; Short &
286 Wyllie-Echeverria, 1996). It also explains why deep beds have exhibited the strongest decline (Fig.
287 2c), as light penetration decreases exponentially with depth (Dennison, 1987). To confirm this, we
288 re-fit GAMMs for each depth strata to show that Secchi depth is the only significant predictor of
289 eelgrass cover at depths >0.5 m MLW ($P = 0.020$; Fig. S2).

290 Increasing mean summer temperatures also reduced eelgrass cover, but only when
291 exceeding 25°C (Fig. 3c), a well-described threshold for mortality in this species (Zimmerman *et al.*,

292 1989; Reusch *et al.*, 2005; Moore *et al.*, 2014). Not only has the average summertime temperature
293 increased from 24.9 to 26.4°C since 1984, but the frequency of extreme mean temperatures (>28°C)
294 has also doubled in the last decade (Fig. 3d), generalizing recent conclusions about the role of
295 episodic heat events in driving localized diebacks (Moore & Jarvis, 2008). Thus, warming is the
296 most likely driver behind more recent declines (Fig. 2a), particularly in shallow waters where light
297 is not limiting (Fig. 2c). Indeed, GAMMs fit to individual depth strata show a significant effect of
298 temperature only at intermediate and shallow depths (0-5 m, $P = 0.008$ and $P = 0.043$; Fig. S2).

299 Most importantly, we show that temperature and clarity interactively reduce eelgrass cover
300 beyond what is expected from either alone (Fig. 4). A 2°C increase in temperature, which is the low
301 end of expectations for the Chesapeake Bay in the next 30 years (Najjar *et al.*, 2010), would result in
302 a further decline in total eelgrass cover of 38%, holding all else constant. Similarly, if Secchi depth
303 continues its trajectory and is reduced by another 40% over the next 30 years, it would result in a
304 further decline of 84%. However, combined changes in temperature and Secchi depth would result
305 in an expected loss of 95%, or the near total eradication of eelgrass in the Chesapeake Bay. While
306 these values are based only on our model, and do not integrate any biology or account for
307 continued management actions to reduce inputs into the Bay, it demonstrates potential for
308 catastrophic losses as a result of the joint influence of these two stressors.

309 Finally, from independent *in situ* measurements in Chesapeake Bay eelgrass beds, we show
310 loss of eelgrass has had severe consequences for ecosystem functioning and the provision of
311 services relevant to human well-being (Table 1). For example, the total loss of carbon in sediments
312 is estimated at 693-1859 kt C. Given the current social cost of carbon (Domestic Policy Council,
313 2013), this equates to an expected economic loss of \$US 96.5 – 259 million. Similarly, loss of
314 eelgrass is expected to lead to a reduction of 523-1403 million juvenile blue crabs. Assuming a
315 conservative 10% harvestable yield and the 2014 market price (NOAA Office of Science and
316 Technology, 2014), this equates to a total potential economic loss of \$US 28.6 – 76.7 million. This

317 value represents 1-2 years of the fishery, and even then does not account for consequent losses in
318 recruitment in subsequent years. Similarly, the expected loss of silver perch equates to 10-20 years
319 of the fishery (Sobocinski & Latour, 2015).

320 In all, an independent and integrated measure of economic valuation (Costanza *et al.*, 2014)
321 places the total potential economic loss due to the decline of eelgrass in Chesapeake Bay at \$US
322 1.51-2.54 billion. Although these values are estimates extrapolated from small-scale data
323 uninformed by the well-described variation in these services through time and space (Ralph *et al.*,
324 2013; Duffy *et al.*, 2015), and therefore must be interpreted with caution, they represent the best
325 available data for assessing the outcome of eelgrass decline for the ecological and economic well-
326 being of the Chesapeake Bay.

327 **Discussion**

328 Since the early 1990s, we show that eelgrass abundance in Chesapeake Bay has undergone
329 a steady deterioration, punctuated by periods of intense decline (Fig. 2a). We propose that the long-
330 term declines are a consequence of declining water clarity, which has all but eliminated eelgrass
331 beds deeper than 1 m where light is already limiting (Fig. 2c; Fig. S2). As the influence of clarity was
332 independent of nutrients or chlorophyll- α in our model, we propose that its effect stems from
333 increased sediment loading, resuspension, and dissolution of organic matter due to greater
334 watershed development and urbanization (Gallegos, 2001; Kemp *et al.*, 2004; Orth *et al.*, 2017 *in*
335 *review*). At the same, we demonstrate that increasing summertime temperatures are behind
336 episodic declines in 2005 and 2010, but are sufficiently infrequent, at this time, as to allow recovery
337 (Fig. 2a). Critically, high temperatures appear to impact shallow beds more than deep ones (Fig. S2),
338 suggesting that warming, and its interaction with clarity, is the most prominent threat for
339 remaining eelgrass in Chesapeake Bay.

340 Warming has two implications for the persistence of eelgrass in Chesapeake Bay. First, it
341 has been shown that rising temperatures elevates respiratory load, increasing light requirements
342 for photosynthesis to balance metabolic demand, and exacerbating the negative effects associated
343 with decreasing clarity (Zimmerman *et al.*, 1989; Zimmerman, 2006). Seagrasses, in general, have
344 among the highest light requirements of any extant plants, primarily because of the need to support
345 the large biomass of roots and rhizomes in a sedimentary environment of low to no oxygen
346 (Dennison *et al.*, 1993). Thus, the relationship between maximum depth distribution and Secchi
347 depth has been well documented, particularly in Chesapeake Bay (Dennison *et al.*, 1993). Consistent
348 with this hypothesis, we show a highly significant interaction between the two such that the
349 strongest declines in eelgrass are expected when temperature is maximal and Secchi depth is at its
350 minimum (Fig. 4).

351 Second, eelgrass propagates both sexually, via seeds, and asexually, via clonal growth. When
352 local populations die-back as a consequence of heat stress, the seedbank from the previous year
353 permits rapid recolonization. However, diebacks in two consecutive years would fail to replenish
354 the seedbank, as eelgrass seedlings in Chesapeake Bay flower in the second year of growth and
355 seeds do not remain viable for more than a year, excluding any possibility of recovery (Jarvis &
356 Moore, 2010). This scenario is not accounted for in our model and may result in the rapid and
357 unpredictable eradication of eelgrass far more quickly than our analytical scenarios would
358 otherwise suggest.

359 While eelgrass has stalled on its track of recovery since 1991, over the short-term it has
360 actually increased in abundance (Fig. 2A). We note, however, that cover observed at any point
361 during this survey is only a fraction of what it was prior to the 1970s (Fig. 1), and more critically, is
362 now restricted to only the most nearshore areas (Fig. 2C). Losses prior to this survey are also
363 known to have come from pulse events, namely storms and disease, and have generally recovered
364 within a decade or two (Orth & Moore, 1983; Orth *et al.*, 2010). In contrast, we demonstrate a

365 strong anthropogenic component in driving the continued and contemporary decline of eelgrass
366 through degradations in water quality, warming, and their interaction. Therefore, we temper
367 optimism of this recent upswing, and caution that without continued intervention to mitigate
368 human impacts, principally those that affect light availability, eelgrass is unlikely to even reach
369 coverage observed in the early 1990s, let alone historical maximums (Fig. 1). This point is critical
370 considering those maximums have been used to set management targets for cover of underwater
371 grasses in the polyhaline region of the Bay (Orth *et al.*, 2010, 2017 *in review*).

372 Our study contributes to a general pattern of fragility among coastal ecosystems for which
373 long-term regional records exist, including the Great Barrier and Caribbean coral reefs (Gardner *et*
374 *al.*, 2003; De'ath *et al.*, 2012), kelp forests (Wernberg *et al.*, 2016), salt marshes (Jefferies *et al.*,
375 2006), and mangroves (Fromard *et al.*, 2004; Cavanaugh *et al.*, 2014). It also provides the most
376 spatially and temporally comprehensive assessment of the patterns and drivers of decline in any
377 seagrass species (Waycott *et al.*, 2009), and for one the largest, most productive, and valuable
378 estuaries in the world (Claggett, 2016). Most importantly, we generalize mechanisms of seagrass
379 decline derived from small-scale experiments and local observations to the scale of the entire
380 Chesapeake Bay, principally sensitivity to declining water clarity and physiological intolerance to
381 warming temperatures, as well as their interaction. This finding suggests that these mechanisms
382 may be scale invariant, and that experiments conducted in other systems could be reasonably
383 extrapolated to predict regional abundance of eelgrass elsewhere where physiological intolerances
384 are similar to those exhibited in Chesapeake Bay.

385 Instead of facilitating decline, as we demonstrate here, climate change has been shown to
386 mediate turnover in foundational species in many other examples, such as the ongoing replacement
387 of marshes by mangroves in the southeastern US (Cavanaugh *et al.*, 2014). In contrast with our
388 study, there is no obvious candidate to supplant eelgrass in the Chesapeake Bay. Only one
389 underwater grass coexists with eelgrass in the region, widgeongrass (*Ruppia maritima*), but it is

390 generally restricted to shallow waters and so far has failed to establish in any abundance in areas
391 vacated by eelgrass (Orth *et al.*, 2010). Rather, lost beds have by and large reverted to bare
392 sediment, the least productive marine habitat (Duarte & Cebrián, 1996). Thus, the current crisis for
393 eelgrass in Chesapeake Bay represents an almost total loss of functionality, echoing recent findings
394 from systems such as coral reefs, where the transition to an algal-dominated state has reduced or
395 eliminated many of the same habitat and provisioning services (Graham & Nash, 2013).

396 Managers have long recognized that local-scale degradation of water clarity negatively
397 affects many species of underwater grasses, not just eelgrass, from the Chesapeake Bay to the Gulf
398 of Mexico, San Francisco Bay, and Australia (Giesen *et al.*, 1990; Short & Wyllie-Echeverria, 1996;
399 Orth *et al.*, 2006; Waycott *et al.*, 2009). However, few if any implement strategies that account for
400 rising temperatures in attempting to avert losses due to reduced water quality, despite mounting
401 evidence of temperature-induced diebacks (Waycott *et al.*, 2009), even in places as far north as the
402 Baltic Sea (Reusch *et al.*, 2005). This failure may explain the accelerating decline of seagrass species
403 over the last century despite increasing awareness and intervention (Waycott *et al.*, 2009). Since
404 climate change is a global phenomenon, we propose that managers must increase their water
405 quality targets at the local and regional levels to offset losses caused by global factors outside their
406 immediate control. Indeed, our model predictions show that given sufficient water clarity, eelgrass
407 could still persist in the face of increasing temperatures. Only by adopting such an integrative
408 perspective can we protect and restore eelgrass in the Chesapeake Bay, and elsewhere.

409 **Acknowledgments**

410 We thank the US Environmental Protection Agency Chesapeake Bay Program, National Oceanic
411 Atmospheric Administration Virginia Coastal Program, Virginia Department of Environmental
412 Quality, and Maryland Department of Natural Resources for providing long-term funding. We also
413 thank E. Röhr and C. Boström for blue carbon data, and W. Dennison, K. Moore, D. Rasher, and J.E.

414 Duffy for comments on previous drafts. This is contribution no. 3604 of the Virginia Institute of
415 Marine Science.

416 **References**

417 Beem NT, Short FT (2009) Subtidal eelgrass declines in the Great Bay Estuary, New Hampshire and
418 Maine, USA. *Estuaries and Coasts*, **32**, 202–205.

419 Cavanaugh KC, Kellner JR, Forde AJ, Gruner DS, Parker JD, Rodriguez W, Feller IC (2014) Poleward
420 expansion of mangroves is a threshold response to decreased frequency of extreme cold
421 events. *PNAS*, **111**, 723–7.

422 Claggett P (2016) Chesapeake Bay Program.
423 http://www.chesapeakebay.net/indicators/indicator/chesapeake_bay_watershed_population

424 Cole LW (2011) *Inputs and fluxes of nitrogen in the Virginia coastal bays: Effects of newly-restored
425 seagrasses on the nitrogen cycle*. University of Virginia, 1-129 pp.

426 Costanza R, de Groot R, Sutton P et al. (2014) Changes in the global value of ecosystem services.
427 *Global Environmental Change*, **26**, 152–158.

428 Costello CT, Kenworthy WJ (2011) Twelve-year mapping and change analysis of eelgrass (*Zostera
429 marina*) areal abundance in Massachusetts (USA) identifies statewide declines. *Estuaries and
430 Coasts*, **34**, 232–242.

431 Cottam C (1934) Past periods of eelgrass scarcity. *Rhodora*, **36**, 261–264.

432 Crain CM, Kroeker K, Halpern BS (2008) Interactive and cumulative effects of multiple human
433 stressors in marine systems. *Ecology Letters*, **11**, 1304–1315.

434 Crain CM, Halpern BS, Beck MW, Kappel C V. (2009) Understanding and managing human threats to
435 the coastal marine environment. *Annals of the New York Academy of Sciences*, **1162**, 39–62.

436 De'ath G, Fabricius KE, Sweatman H, Puotinen M (2012) The 27-year decline of coral cover on the
437 Great Barrier Reef and its causes. *PNAS*, **109**, 17995–9.

438 Dennison WC (1987) Effects of light on seagrass photosynthesis, growth and depth distribution.
439 *Aquatic Botany*, **27**, 15–26.

440 Dennison WC, Orth RJ, Moore KA et al. (1993) Assessing water quality with submersed aquatic
441 vegetation. *Bioscience*, **43**, 86–94.

442 Dobson JE, Bright EA, Ferguson RL et al. (1995) *NOAA coastal change analysis program (C-CAP):
443 guidance for regional implementation*. US Department of Commerce, National Oceanic and
444 Atmospheric Administration, National Marine Fisheries Service.

445 Domestic Policy Council (2013) Technical Support Document:-Technical Update of the Social Cost
446 of Carbon for Regulatory Impact Analysis-Under Executive Order 12866.

447 Douglass JG, France KE, Paul Richardson J, Duffy JE (2010) Seasonal and interannual changes in a
448 Chesapeake Bay eelgrass community: Insights into biotic and abiotic control of community
449 structure. *Limnology and Oceanography*, **55**, 1499–1520.

450 Duarte CM, Cebrián J (1996) The fate of marine autotrophic production. *Limnology and*
451 *Oceanography*, **41**, 1758–1766.

452 Duffy JE, Reynolds PL, Boström C et al. (2015) Biodiversity mediates top-down control in eelgrass
453 ecosystems: a global comparative-experimental approach. *Ecology Letters*, **18**, 696–705.

454 Edgar GJ (1990) The use of the size structure of benthic macrofaunal communities to estimate
455 faunal biomass and secondary production. *Journal of Experimental Marine Biology and Ecology*,
456 **137**, 195–214.

457 Frederiksen M, Krause-Jensen D, Holmer M, Laursen JS (2004) Long-term changes in area
458 distribution of eelgrass (*Zostera marina*) in Danish coastal waters. *Aquatic Botany*, **78**, 167–
459 181.

460 Fromard F, Vega C, Proisy C (2004) Half a century of dynamic coastal change affecting mangrove
461 shorelines of French Guiana. A case study based on remote sensing data analyses and field
462 surveys. *Marine Geology*, **208**, 265–280.

463 Gallegos CL (2001) Calculating optical water quality targets to restore and protect submersed
464 aquatic vegetation: Overcoming problems in partitioning the diffuse attenuation coefficient for
465 photosynthetically active radiation. *Estuaries*, **24**, 381–397.

466 Gardner TA, Cote IM, Gill JA, Grant A, Watkinson AR (2003) Long-term region-wide declines in
467 Caribbean corals. *Science*, **301**, 958–960.

468 Giesen WBJT, Vankatwijk MM, Denhartog C (1990) Eelgrass condition and turbidity in the Dutch
469 Wadden Sea. *Aquatic Botany*, **37**, 71–85.

470 Graham NAJ, Nash KL (2013) The importance of structural complexity in coral reef ecosystems.
471 *Coral Reefs*, **32**, 315–326.

472 de Groot R, Brander L, van der Ploeg S et al. (2012) Global estimates of the value of ecosystems and
473 their services in monetary units. *Ecosystem Services*, **1**, 50–61.

474 Gurbisz C, Kemp WM (2014) Unexpected resurgence of a large submersed plant bed in Chesapeake
475 Bay: Analysis of time series data. *Limnology and Oceanography*, **59**, 482–494.

476 Halpern BS, Walbridge S, Selkoe KA et al. (2008) A global map of human impact on marine
477 ecosystems. *Science*, **319**, 948–952.

478 Jarvis JC, Moore KA (2010) The role of seedlings and seed bank viability in the recovery of
479 Chesapeake Bay, USA, *Zostera marina* populations following a large-scale decline.
480 *Hydrobiologia*, **649**, 55–68.

481 Jefferies RL, Jano AP, Abraham KF (2006) A biotic agent promotes large-scale catastrophic change
482 in the coastal marshes of Hudson Bay. *Journal of Ecology*, **94**, 234–242.

483 Kemp MW, Batleson R, Bergstrom P et al. (2004) Habitat requirements for submerged aquatic
484 vegetation in Chesapeake Bay: Water quality, light regime, and physical-chemical factors.
485 *Estuaries*, **27**, 363–377.

486 Kemp WM, Boynton WR, Adolf JE et al. (2005) Eutrophication of Chesapeake Bay: historical trends
487 and ecological interactions. *Marine Ecology Progress Series*, **303**, 1–29.

488 Li X, Weller DE, Gallegos CL, Jordan TE, Kim H-C (2007) Effects of watershed and estuarine
489 characteristics on the abundance of submerged aquatic vegetation in Chesapeake Bay

490 subestuaries. *Estuaries and Coasts*, **30**, 840–854.

491 Lotze HK, Lenihan HS, Bourque BJ et al. (2006) Depletion, degradation, and recovery potential of
492 estuaries and coastal seas. *Science*, **312**, 1806–1809.

493 Moore KA, Jarvis JC (2008) Environmental factors affecting recent summertime eelgrass diebacks in
494 the lower Chesapeake Bay: implications for long-term persistence. *Journal of Coastal Research*,
495 135–147.

496 Moore KA, Shields EC, Parrish DB (2014) Impacts of varying estuarine temperature and light
497 conditions on *Zostera marina* (eelgrass) and its interactions with *Ruppia maritima*
498 (widgeongrass). *Estuaries and Coasts*, **37**, 20–30.

499 Najjar RG, Pyke CR, Beth M et al. (2010) Potential climate-change impacts on the Chesapeake Bay.
500 *Estuarine, Coastal and Shelf Science*, **86**, 1–20.

501 NOAA Office of Science and Technology (2014) Annual Commercial Landing Statistics.
502 https://www.st.nmfs.noaa.gov/pls/webpls/FT_HELP.SPECIES

503 Orth RJ, Moore KA (1983) Chesapeake Bay: An unprecedented decline in submerged aquatic
504 vegetation. *Science*, **222**, 51–53.

505 Orth RJ, Moore KA (1984) Distribution and abundance of submerged aquatic vegetation in
506 Chesapeake Bay: an historical perspective. *Estuaries*, **7**, 531–540.

507 Orth RJ, Moore KA (1986) Season and year-to-year variations in the growth of *Zostera marina* L.
508 (eelgrass) in the lower Chesapeake Bay. *Aquatic Botany*, **24**, 335–341.

509 Orth RJ, Carruthers TJB, Dennison WC et al. (2006) A global crisis for seagrass ecosystems.
510 *Bioscience*, **56**, 987–996.

511 Orth RJ, Marion SR, Moore KA, Wilcox DJ (2010) Eelgrass (*Zostera marina* L.) in the Chesapeake Bay
512 region of mid-Atlantic coast of the USA: Challenges in conservation and restoration. *Estuaries*
513 and Coasts, **33**, 139–150.

514 Orth RJ, Dennison WC, Lefcheck JS et al. (2017) Submersed aquatic vegetation in Chesapeake Bay:
515 sentinel species in a changing world. *In review*.

516 Paine DP (1981) *Aerial photography and image interpretation for resource management*.

517 Patrick CJ, Weller DE (2015) Interannual variation in submerged aquatic vegetation and its
518 relationship to water quality in subestuaries of Chesapeake Bay. *Marine Ecology Progress Series*
519 *Series*, **537**, 121–135.

520 Patrick CJ, Weller DE, Li X, Ryder M (2014) Effects of shoreline alteration and other stressors on
521 submerged aquatic vegetation in subestuaries of Chesapeake Bay and the mid-Atlantic coastal
522 bays. *Estuaries and Coasts*, **37**, 1516–1531.

523 Patrick CJ, Weller DE, Ryder M (2016) The relationship between shoreline armoring and adjacent
524 submerged aquatic vegetation in Chesapeake Bay and nearby Atlantic coastal bays. *Estuaries*
525 and Coasts, **39**, 158–170.

526 R Development Core Team (2016) R: A Language and Environment for Statistical Computing.

527 Ralph GM, Seitz RD, Orth RJ, Knick KE, Lipcius RN (2013) Broad-scale association between seagrass
528 cover and juvenile blue crab density in Chesapeake Bay. *Marine Ecology Progress Series*, **488**,

529 51–63.

530 Reusch TBH, Ehlers A, Hä默li A, Worm B (2005) Ecosystem recovery after climatic extremes
531 enhanced by genotypic diversity. *PNAS*, **102**, 2826–2831.

532 van Rij J, Wieling M, Baayen RH, van Rijn H (2016) itsadug: Interpreting Time Series and
533 Autocorrelated Data Using GAMMs.

534 Ruhl HA, Rybicki NB (2010) Long-term reductions in anthropogenic nutrients link to improvements
535 in Chesapeake Bay habitat. *PNAS*, **107**, 16566–16570.

536 Rybicki NB, Landwehr JM (2007) Long-term changes in abundance and diversity of macrophyte and
537 waterfowl populations in an estuary with exotic macrophytes and improving water quality.
538 *Limnology and Oceanography*, **52**, 1195–1207.

539 Short FT, Wyllie-Echeverria S (1996) Natural and human-induced disturbance of seagrasses.
540 *Environmental Conservation*, **23**, 17.

541 Sobocinski KL, Latour RJ (2015) Trophic transfer in seagrass systems : estimating seasonal
542 production of an abundant seagrass fish, *Bairdiella chrysoura*, in lower Chesapeake Bay.
543 *Marine Ecology Progress Series*, **523**, 157–174.

544 Waycott M, Duarte CM, Carruthers TJB et al. (2009) Accelerating loss of seagrasses across the globe
545 threatens coastal ecosystems. *PNAS*, **106**, 12377–81.

546 Wernberg T, Bennett S, Babcock RC et al. (2016) Climate-driven regime shift of a temperate marine
547 ecosystem. *Science*, **353**, 169–172.

548 Wood SN (2011) Fast stable restricted maximum likelihood and marginal likelihood estimation of
549 semiparametric generalized linear models. *Journal of the Royal Statistical Society B*, **73**, 3–36.

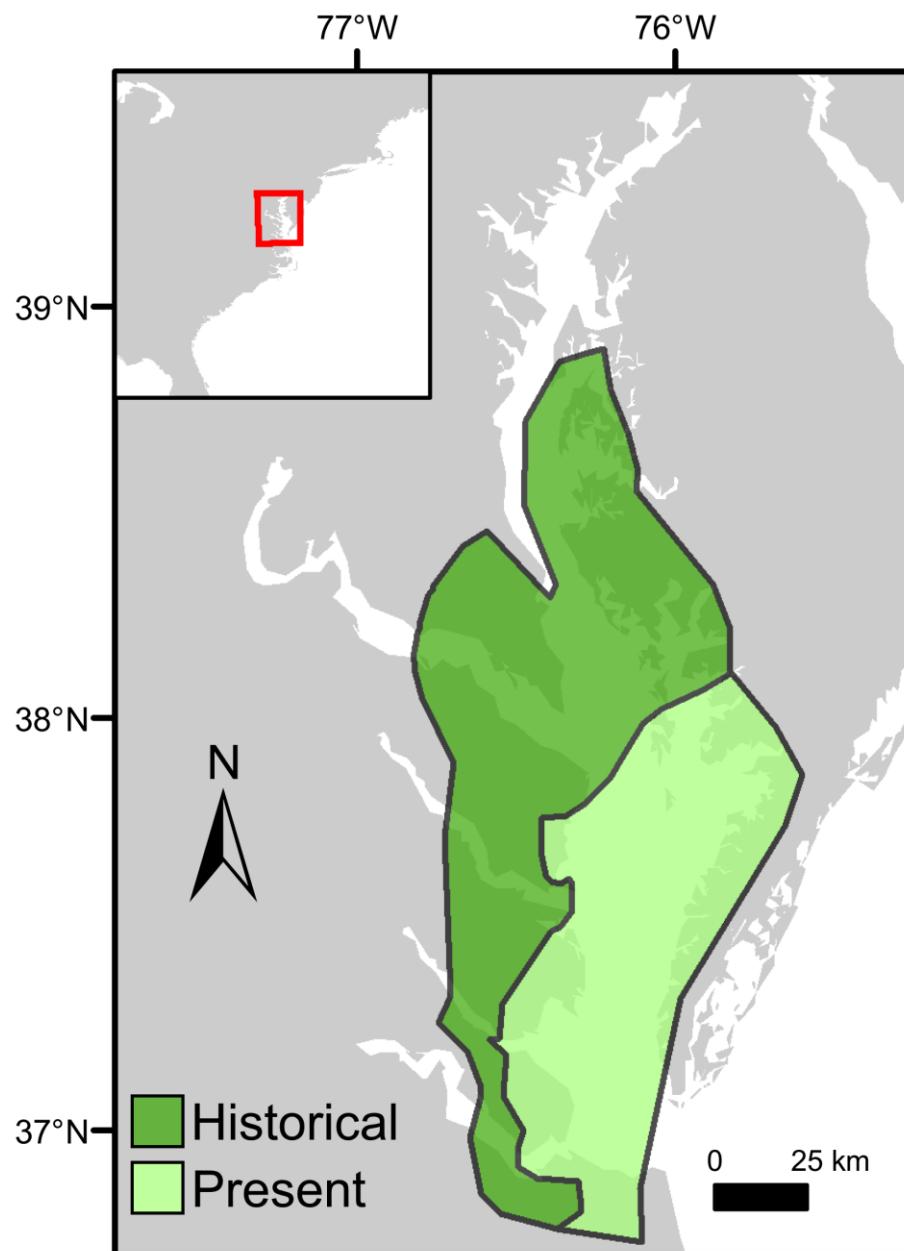
550 Zimmerman RC (2006) Light and Photosynthesis in Seagrass Meadows. In: *Seagrasses: Biology,*
551 *Ecology, and Conservation* (eds Larkum AWD, Orth RJ, Duarte CM), pp. 303–321. Springer,
552 Dordrecht, The Netherlands.

553 Zimmerman RC, Smith RD, Alberte RS (1989) Thermal acclimation and whole-plant carbon balance
554 in *Zostera marina* L. (eelgrass). *Journal of Experimental Marine Biology and Ecology*, **130**, 93–
555 109.

556 **Table 1: Loss of ecosystem services concurrent with loss of eelgrass.** Values are means \pm 1 SD,
557 estimated based on change in eelgrass cover from its peak in 1991 to present, and to the maximum
558 observed loss in 2006.

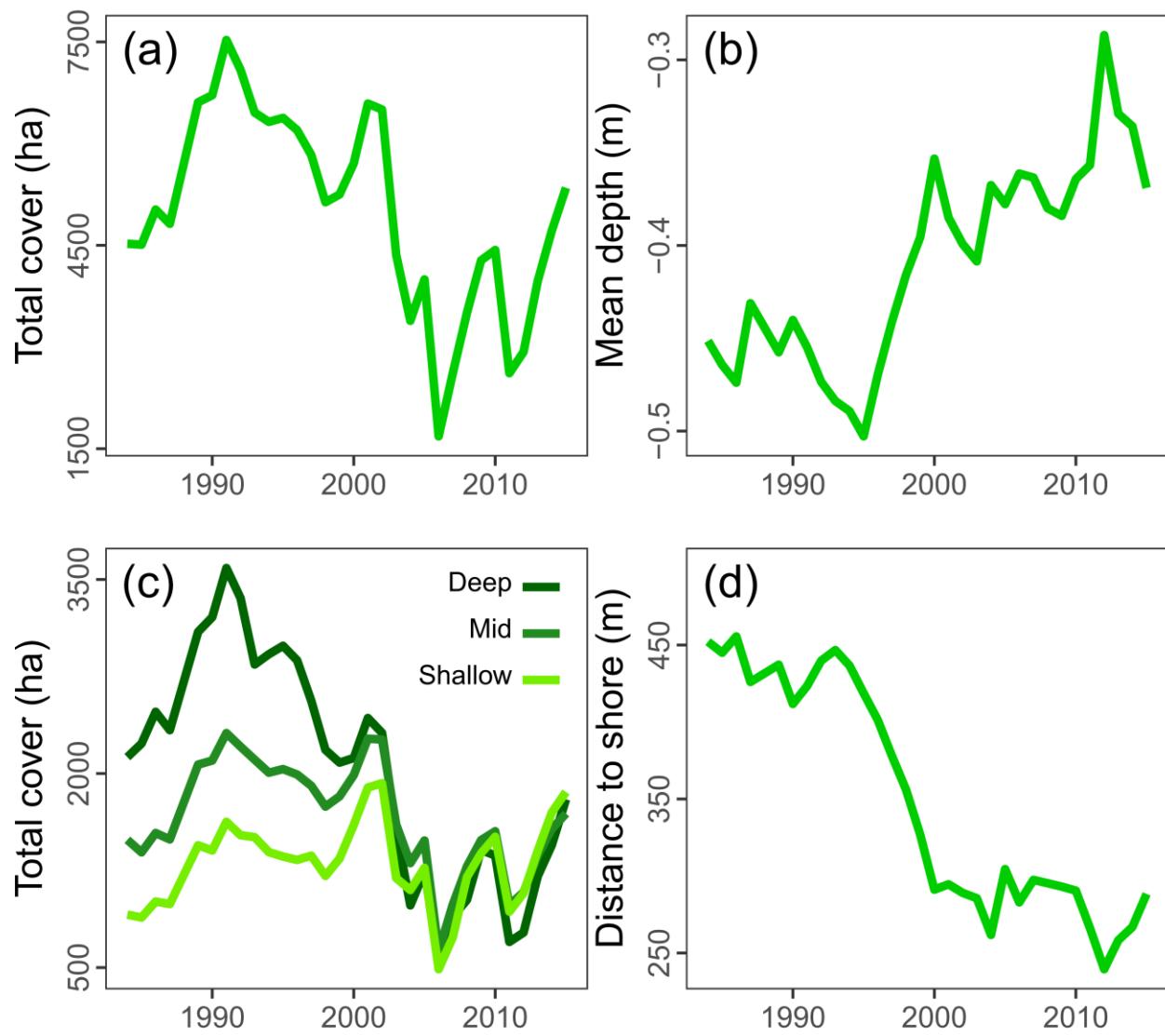
Service	Response	Present loss (1991-2015)	Maximum loss (1991-2006)
Nutrient cycling	Carbon stock (kt C)	693 \pm 150	1859 \pm 401
	N ₂ fixation (kt N)	2.53 \pm 0.25	4.25 \pm 0.16
Secondary production and export	Epifaunal biomass (Mt)	141.1 \pm 75.2	236.6 \pm 126.1
	Blue crab density (millions of juveniles)	523 \pm 600	1403 \pm 1609
	Silver perch biomass (kt)	47.8 \pm 5.2	80.2 \pm 8.8
Total economic loss	Integrated value (\$2011 US)	\$1.51 billion	\$2.54 billion

559

560 **Figure Legends**

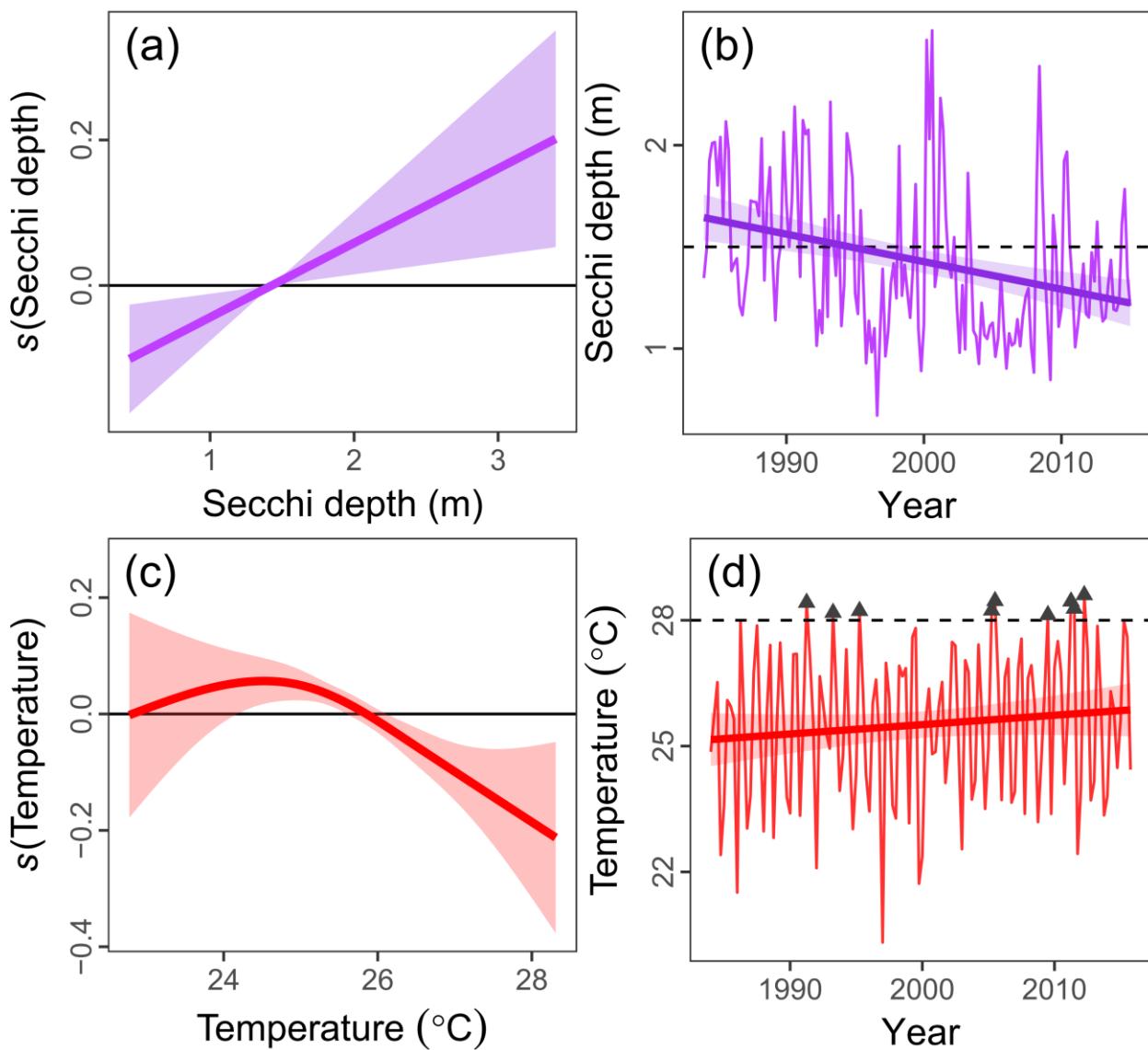
561

562 **Figure 1. Current (light green) and historical distribution (dark green) of eelgrass in**
563 **Chesapeake Bay.** Historical distribution is prior to 1971, immediately preceding Tropical Storm
564 Agnes.



565

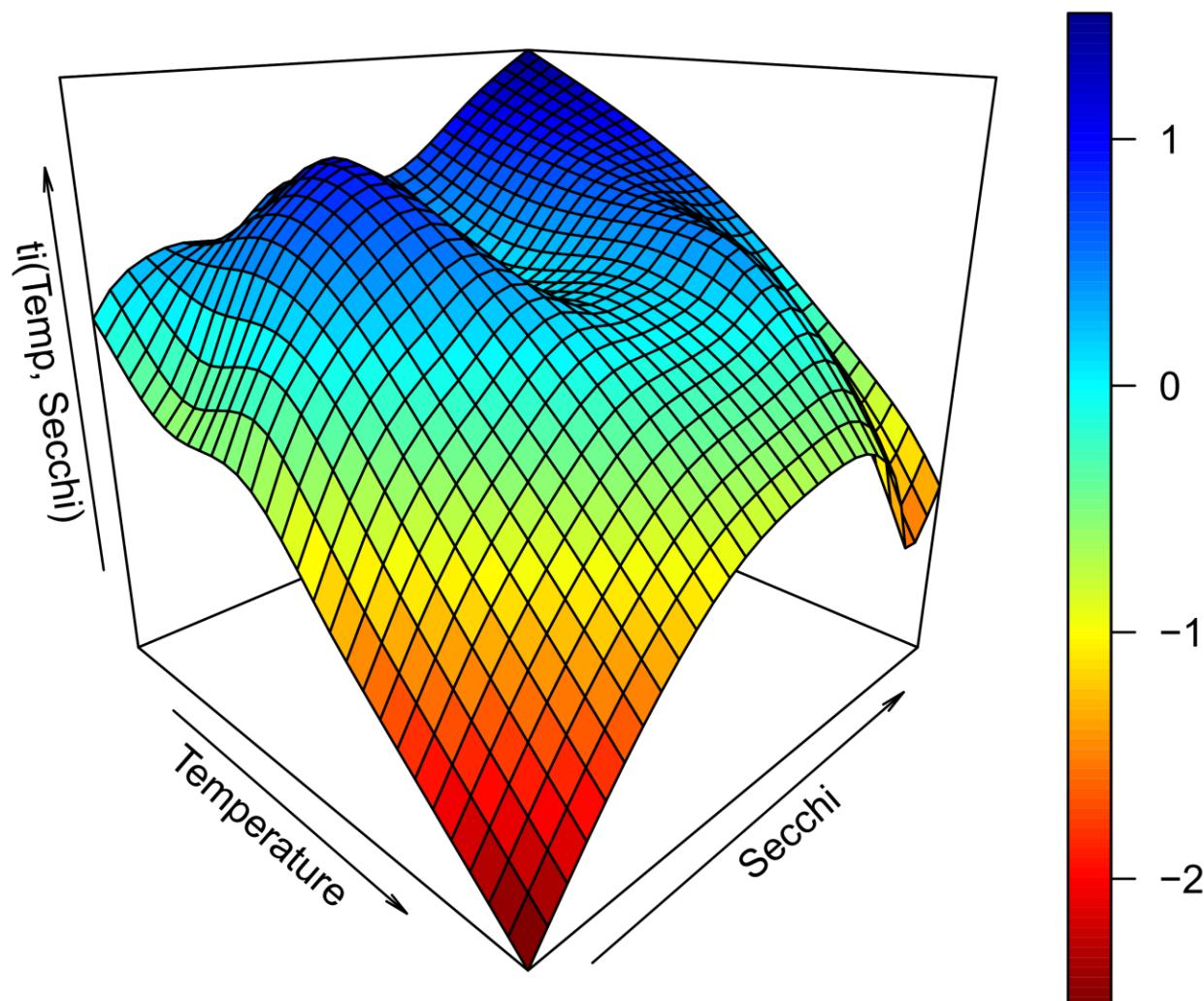
566 **Figure 2. Thirty-year trends in eelgrass cover and distribution.** **(a)** Total cover (hectares) has
567 been decreasing since 1991. **(b)** Mean depth of eelgrass beds has been decreasing since 1996. **(c)**
568 The greatest loss has occurred in the deepest beds (Deep = >0.5 m, Mid = 0-0.5 m, Shallow = 0 m).
569 **(d)** Eelgrass has shifted 165 m closer to shore since 1984.



570

571 **Figure 3. Significant predictors of total eelgrass area based on a generalized additive mixed**
572 **model. (a)** Predicted cover increases with increasing Secchi depth, a measure of water clarity.
573 Values on the y-axis represent the partial smoothed residuals accounting for the influence of the
574 other predictors in the model. Shaded areas indicate 95% confidence intervals. **(b)** Water clarity
575 has decreased by about 0.4 m over the past 30 years. Line denotes the predicted fit \pm 95% CIs from
576 simple linear regression. **(c)** Predicted cover decreases with increasing summer temperature. **(d)**
577 Mean summertime temperature (Jul-Sept) has increased over the past 30 years, with a more recent
578 rise in extreme temperature events ($>28^{\circ}\text{C}$, triangles).

579



580

581 **Figure 4. Interaction surface between temperature and Secchi depth from a generalized**
582 **additive mixed model.** Eelgrass cover is predicted to decline when temperature is high and Secchi
583 depth is low (bottom right). Values on the y-axis represent the partial residuals of the tensor
584 product (ti) smoother accounting for the influence of the other predictors in the model.