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Abstract  19 

Interactions among global change stressors and their effects at large scales are often proposed, but 20 

seldom evaluated. This situation is primarily due to lack of comprehensive, sufficiently long-term, 21 

and spatially-extensive datasets. Seagrasses, which provide nursery habitat, improve water quality, 22 

and constitute a globally-important carbon sink, are among the most vulnerable habitats on the 23 

planet. Here, we unite 31-years of high-resolution aerial monitoring and water quality data to 24 

elucidate the patterns and drivers of eelgrass (Zostera marina) abundance in Chesapeake Bay, USA, 25 

one of the largest and most valuable estuaries in the world with an unparalleled history of 26 

regulatory efforts. We show that eelgrass area has declined 29% in total since 1991, with wide-27 

ranging and severe ecological and economic consequences. We go on to identify an interaction 28 

between decreasing water clarity and warming temperatures as the primary driver of this trend. 29 

Declining clarity has gradually reduced eelgrass over the past two decades, primarily in deeper 30 

beds where light is already limiting. In shallow beds, however, reduced visibility exacerbates the 31 

physiological stress of acute warming, leading to recent instances of decline approaching 80%. 32 

While degraded water quality has long been known to influence underwater grasses worldwide, we 33 

demonstrate a clear and rapidly emerging interaction with climate change. We highlight the urgent 34 

need to integrate a broader perspective into local water quality management, in the Chesapeake 35 

Bay and in the many other coastal systems facing similar stressors.  36 
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Introduction 37 

Identifying the drivers of environmental change and predicting their consequences is the 38 

preeminent scientific challenge of the Anthropocene (Halpern et al., 2008). Marine systems in 39 

particular are experiencing rapid and often irreversible alterations as a consequence of human 40 

activities (Lotze et al., 2006), and almost half of these changes can be attributed to multiple drivers 41 

(Lotze et al., 2006; Halpern et al., 2008). Despite the increasing recognition that global and local 42 

stressors often act jointly, rigorous empirical examples of this phenomenon are lacking at the large 43 

scales relevant to both the observed change and human well-being. This absence is particularly 44 

striking for temperate coastal ecosystems, which, ironically, support much of the world’s human 45 

population. Instead, most of our understanding of coastal change comes from small-scale 46 

experiments and observations (Crain et al., 2008, 2009), or from tropical systems such as coral 47 

reefs (Gardner et al., 2003; De’ath et al., 2012). This knowledge gap vastly impedes our ability to 48 

predict and avert the impacts of global change on key population centers, particularly given the fact 49 

that stressors, and corresponding management actions, often occur at much larger scales. 50 

Seagrasses in particular are extremely sensitive to global change, with losses exceeding 51 

25% worldwide in just the last century (Orth et al., 2006; Waycott et al., 2009). Because of its global 52 

distribution close to major anthropogenic influences, and its habit of forming monospecific stands 53 

in shallow zones, eelgrass (Zostera marina) is acutely vulnerable to environmental stressors 54 

(Waycott et al., 2009). Consequently, it has experienced declines in many locations, including in 55 

northern Europe (Giesen et al., 1990; Frederiksen et al., 2004), the northwestern Atlantic (Beem & 56 

Short, 2009; Costello & Kenworthy, 2011), and the western coast of the US, particularly San 57 

Francisco Bay (Short & Wyllie-Echeverria, 1996). Nowhere, though, has eelgrass experienced more 58 

significant losses than in Chesapeake Bay, USA (Orth & Moore, 1983).  59 
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The Chesapeake Bay is one of the largest, most well-managed, and economically productive 60 

coastlines in the world, and is projected to support 20 million people by 2020 (Orth et al., 2017, in 61 

review). Eelgrass has played a prominent role in both the ecology and economy of Chesapeake Bay, 62 

providing numerous functions and services, including nursery habitat for valuable fisheries species 63 

and shoreline stabilization (Table 1) (Orth et al., 2017, in review). The abundance of eelgrass in 64 

Chesapeake Bay has fluctuated dramatically over the last century, with pandemic wasting disease  65 

driving a well-documented decline in the 1930s, and recovery occurring through the 1960s 66 

(Cottam, 1934; Orth & Moore, 1984). It was during a single summer in 1972, however, that Tropical 67 

Storm Agnes – and the accompanying freshwater discharge – extirpated over 50% of the eelgrass 68 

population. This was a major disturbance from which Chesapeake Bay eelgrass populations have 69 

never truly recovered (Fig. 1) (Orth & Moore, 1983; Orth et al., 2010).  70 

Alongside increasing industrialization of the region in the 1960s, there emerged interest in 71 

the impact of human activities on eelgrass in Chesapeake Bay: specifically, nutrient runoff from 72 

agriculture, and the consequent eutrophication of nearshore waters (Orth & Moore, 1984; Kemp et 73 

al., 2005). Several recent correlative analyses have proposed that declining water quality and 74 

subsequent changes in light availability may be the preeminent agent preventing recovery of 75 

eelgrass in Chesapeake Bay after Agnes (Orth et al., 2010; Patrick & Weller, 2015). At the same time, 76 

parallel investigations conducted in only a single sub-estuary have uncovered a potential role for 77 

rising temperatures alongside reduced visibility in driving a recent decade-long decline of eelgrass 78 

(Moore & Jarvis, 2008; Moore et al., 2014). Together, these studies suggest a role for multiple 79 

influences on the trajectory of Chesapeake Bay eelgrass, although their effects have yet to be 80 

generalized to the regional scale. 81 

In this study, we use 31-years of high-resolution aerial imagery and water quality data to 82 

document the continued decline of eelgrass across the entirety of Chesapeake Bay, and directly link 83 

changes in its distribution to multiple anthropogenic stressors acting on the region. The scale, 84 
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duration, comprehensiveness, and complementarity of these two datasets are unprecedented, and 85 

provide a unique opportunity to understand the specific drivers of habitat decline in a highly 86 

populated coastal system. 87 

Methods 88 

Eelgrass Monitoring 89 

Eelgrass bed area and density were derived from aerial imagery acquired on an annual 90 

basis from 1984 through 2015, except for 1988, from the Virginia Institute of Marine Science 91 

Submersed Aquatic Vegetation Monitoring Program (http://www.vims.edu/bio/sav).  92 

Panchromatic photography at a scale of 1:24,000; 60% flightline overlap and 20% sidelap was 93 

acquired with a standard mapping camera for 1984 – 2014. Multi-spectral imagery was acquired in 94 

2014 and 2015 using a digital mapping camera with a ground sample distance of 24 cm. Acquisition 95 

conditions, including tidal stage, plant growth, sun angle, atmospheric transparency, water 96 

turbidity, and wind, were selected to optimize the visibility of eelgrass beds (Dobson et al., 1995). 97 

Mapping of eelgrass beds was initially accomplished by manually tracing seagrass bed 98 

outlines onto translucent United States Geological Survey 7.5-minute quadrangle maps directly 99 

from the photographs, and then digitizing bed boundaries into a Geographic Information System 100 

(GIS) dataset for analysis. More recently, the aerial photography was scanned from negatives or 101 

produced digitally from the sensor and orthorectified using ERDAS LPS image-processing software 102 

(ERDAS, Atlanta GA). Eelgrass bed boundaries were then photo-interpreted directly on-screen 103 

while maintaining a fixed scale using ESRI ArcMap GIS software (ESRI, Redlands CA). The spatial 104 

accuracy of the dataset varies from approximately ±24m for the earlier data to approximately ±4m 105 

for the recent data. Thematic accuracy has not been directly quantified, but has been improved 106 

through the use of extensive field observations. 107 
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A second species of seagrass, widgeongrass (Ruppia maritima), can co-occur with eelgrass 108 

in some locations of the lower Bay, or in monospecific stands (Orth & Moore, 1986). Any beds 109 

dominated by widgeongrass were excluded from the mapped area using expert knowledge, itself 110 

based on field surveys of the general distribution of the two species conducted since 1978. Thus, 111 

after the removal of these beds, we are confident that our analysis focuses specifically on eelgrass. 112 

Water Quality Monitoring 113 

Water quality data were obtained from the Chesapeake Bay Program’s (CBP) Water Quality 114 

Database (http://www.chesapeakebay.net), which contains data collected in the tidal waters of 115 

Chesapeake Bay by agencies including Maryland Department of Nature Resources and Virginia 116 

Department of Environmental Quality. The program visits approximately 160 fixed monitoring 117 

stations every two weeks, 28 of which were used for our analysis (Fig. S1). At each station, a 118 

vertical hydrographic profile is collected using a multiparameter sonde with observations every 1-2 119 

meters of water temperature, specific conductivity (to calculate salinity), and dissolved oxygen.  120 

Secchi depth is observed in the field using a black-and-white Secchi disk attached to a measuring 121 

line. In addition, at each station, water samples are collected at several depths and processed at a 122 

laboratory to quantify concentrations of chlorophyll-a, total nitrogen, and total phosphorus. For 123 

this analysis, we used data only from the surface layer, the top 0.5 or 1 m observation, assuming 124 

these values best reflect conditions in the shallow water where eelgrass is present. 125 

Methodological changes for chlorophyll-a, total nitrogen, and total phosphorus over the 126 

course of the survey necessitated the implementation of correction factors. Specifically, for 127 

nitrogen, the changes involved switching from a sum of nitrate, nitrite, and total Kjeldahl nitrogen 128 

to total dissolved nitrogen plus particulate nitrogen at Virginia mainstem stations in 1988, 129 

Maryland stations in 1998 and Virginia tributary stations in 1998.  For phosphorus, the change 130 

involved switching from a sum of total dissolved phosphorus plus particulate phosphorus to a 131 
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direct measurement in the same years as the total nitrogen changes. For chlorophyll-a, the possible 132 

changes occurred due to laboratories switches in the late 1990s, although it is likely this only 133 

impacted Virginia tributary stations. For these three variables, we regressed the response at each 134 

station against the identity of the processing laboratory and the method employed using simple 135 

linear regression. We then extracted the residuals from this relationship, and visual assessment of 136 

time series plots suggested that they adequately accounted for the a priori influence of lab and 137 

method. The residuals for these three variables were carried through all subsequent analyses.  138 

While these stations are largely in deep water, many prior studies have shown that they can 139 

be adequately extrapolated to predict underwater vegetation in shallow areas (Li et al., 2007; 140 

Rybicki & Landwehr, 2007; Ruhl & Rybicki, 2010; Gurbisz & Kemp, 2014; Patrick et al., 2014, 2016). 141 

Even if the stations under- or over-represent conditions at shallow depths, the relative differences 142 

among stations and years are preserved, such that any inferences about the directionality and 143 

relative impact of the environmental variables should be unaffected. 144 

Statistical Analysis 145 

A cell-based model with a cell size of 30 m was used to facilitate the analysis. Within the 146 

study area, ESRI ArcGIS software was used to code each 30 m cell in one of the following categories 147 

on the Braun-Blanquet cover scale: none (0% cover), very sparse (<10% cover), sparse (11-40% 148 

cover), moderate (41-70%), or dense (71-100%) (Paine, 1981). Additionally, we quantified the 149 

depth of the cell extracted from the Chesapeake Bay, VA/MD (M130) Bathymetric Digital Elevation 150 

Model (NOAA, http://estuarinebathymetry.noaa.gov/). For each grid cell, we then calculated the 151 

over-water distance to the nearest CBP monitoring station, and grouped all cells based on their 152 

nearest station, which we refer to as ‘subregions’ (Fig. S1). For each station, we calculated the total 153 

density-weighted eelgrass cover as the sum of the bottom area of the nearest grid cells, weighted by 154 
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the Braun-Blanquet density, and merged these with the environmental data. This procedure yielded 155 

n = 684 observations for use in our modelling exercise. 156 

We used the following generalized additive mixed model to identify the significant 157 

predictors of eelgrass cover: 158 

𝑦𝑖𝑗 = 𝑿𝑖𝑗 ∗ 𝛼 + ∑ 𝑓𝑘(𝑥𝑖𝑗)

𝑝

𝑘=1

+ 𝒁𝑖𝑗𝑏𝑖𝑗 + 𝒁𝑖,𝑗𝒃𝒊 + 𝜖𝑖𝑗  159 

𝒃𝒊 = 𝑁(𝟎, 𝚿1) 160 

𝑏𝑖𝑗 = 𝑁(0, 𝜎2
2) 161 

𝜖𝑖𝑗 = 𝑁(𝟎, 𝜎2𝑰) 162 

where the response 𝑦𝑖𝑗  is the log10-transformed density-weighted total cover of eelgrass in 163 

subregion 𝑖 in year 𝑗, 𝑿𝑖𝑗 is the design matrix of parametric components and 𝛼 is the vector of fixed 164 

effects parameters, 𝑓𝑘(⋅) are the non-parametric smoothed functions of covariates 𝑥𝑖𝑗 , 𝒁𝑖𝑗is the 165 

design matrix of the random effect of region 𝑖 in year 𝑗 and 𝑏𝑖𝑗 is the corresponding vector of 166 

random effects (for region designations, see Fig. S1), 𝒁𝑖,𝑗 is the design matrix of the random effect of 167 

year 𝑗 on the measurements for region 𝑖 in year 𝑗 and 𝒃𝒊 is the corresponding vector of random 168 

effects, and 𝜖𝑖𝑗 is the within-region and within-year error independent of the random effects. All 169 

random effects and residual error are assumed to be normally distributed with a mean of 0, and 170 

positive definite variance-covariance matrices 𝚿1, 𝜎2
2, and 𝜎2𝑰.  171 

 For the non-parametric component: 172 

∑ 𝑓𝑘(𝑥𝑖𝑗)

𝑝

𝑘=1

= 𝑓1(Long, Lat) + 𝑓2(Coveri(j−1)) +  𝑓3(Habitat𝑖) + 𝑓4(Chl𝑎𝑖𝑗) + 𝑓5(Salinity𝑖𝑗)173 

+ 𝑓6(Secchi𝑖𝑗) + 𝑓7(TN𝑖𝑗) +  𝑓8(TP𝑖𝑗) +  𝑓9(Temp𝑖(𝑗−1)) + 𝑓10(MaxTemp𝑖(𝑗−1))174 

+ 𝑓11(Secchi𝑖𝑗, Temp𝑖(𝑗−1)) 175 
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where all predictors are modeled as smoothing functions using the default thin-plate regression 176 

spline in the mgcv package in R (Wood, 2011). 𝑓1(Long, Lat) is a smoothed combination of spatial 177 

coordinates using the UTM projection, and is meant to address any potential spatial autocorrelation 178 

among the subregions. 𝑓2(Coveri(j−1)) represents eelgrass cover in subregion 𝑖 in the previous year 179 

𝑗 − 1, to account for the dependency of eelgrass cover from one year to the next. We fit this 180 

predictor as a smoothed covariate in lieu of a fixed autoregressive structure, having tested various 181 

combinations using model comparisons and visual examination of (partial) residual autocorrelation 182 

functions, and finding them to be less supported than simply modeling the previous year’s eelgrass 183 

cover. 𝑓3(Habitat𝑖𝑗) represents the total available bottom for eelgrass with subregion 𝑖 extending to 184 

1 m Mean Low Water.  185 

The remaining predictors are environmental variables summarized from the CBP 186 

Monitoring Program. Chlorophyll-a, salinity, Secchi depth, total nitrogen (TN), and total phosphorus 187 

(TP) were calculated as means for February to June in subregion 𝑖 of year 𝑗, as we expected eelgrass 188 

to respond most strongly to these parameters during the growing season. The two predictors 189 

pertaining to temperature, 𝑓9(Temp𝑖(𝑗−1)) + 𝑓10(MaxTemp𝑖(𝑗−1)), were calculated as the mean and 190 

maximum values, respectively, from July to September of the previous year 𝑗 − 1, since this is the 191 

time during which eelgrass undergoes natural temperature-driven senescence in this region 192 

(Moore & Jarvis, 2008). The final term is a combination of mean temperature and Secchi depth, 193 

estimating their interactive influence on cover independent of their main effects using a tensor 194 

product moment interaction smoother. 195 

The model was constructed in R version 3.3.1 (R Development Core Team, 2016) using the 196 

mgcv package (Wood, 2011). The model was fit using restricted maximum likelihood (REML) to 197 

avoid overfitting and yield less biased estimates of the fixed effects, given the complexity of the 198 

model and the size of the dataset. Model assumptions of normality of errors and constant variance 199 
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were assessed visually. Model predictions and 95% confidence intervals were obtained using the 200 

custom function EvaluateSmooths modified from StackOverflow1, and from a modified version of 201 

the function pvisgam in the itsadug package (van Rij et al., 2016). We held a Type I error threshold 202 

of 𝛼 = 0.05. All data and scripts necessary to reproduce the analyses and generate all graphics are 203 

provided as supplementary files. 204 

Ecosystem Services and Valuation 205 

 To estimate the potential ecological and economic losses associated with the decline of 206 

eelgrass, we collated in situ measurements of functioning from Chesapeake Bay eelgrass beds of the 207 

last decade (Table 1).  208 

Data for estimation of total carbon loss were derived from in situ measurements of carbon 209 

stock as part of the Zostera Experimental Network (http://zenscience.org). Sediment core tubes 210 

(length: 50 cm, diameter: 50 mm) were forced to a depth of 30-40 cm into the sediment at a 211 

minimum distance of 15 m from each other at Goodwin Island, York River, extracted, and returned 212 

to the laboratory on ice. The samples were then dried and shipped to University of Southern 213 

Denmark, where samples were analyzed for sediment δ13 C, δ15 N, PON and POC using a mass 214 

spectrometer (Thermo Scientific, delta V advantage, isotope ratio mass spectrometer). The 215 

measured isotope ratios were represented using the δ-notation with Vienna Peedee belemnite as 216 

reference material. Values of POC obtained by depth integration of the carbon density (mg C cm-3) 217 

of 0-25 cm sediment layers were converted to carbon stock per unit sediment (mg C cm-2), and 218 

averaged across n = 3 samples. We then averaged across all samples to yield a mean and standard 219 

deviation. 220 

                                                             
1 https://stackoverflow.com/questions/19735149/is-it-possible-to-plot-the-smooth-components-of-a-gam-
fit-with-ggplot2 
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 Estimates of N2 fixation were obtained from (Cole, 2011), which reports estimates of whole 221 

system nitrogen flux, including the plant itself, epiphytes, and the sediment. In the publication, the 222 

author reports N2 fixation rates as 3.9-5.8 g N m-2 y-1. From this range, we obtained an average by 223 

taking the difference and dividing by two, and adding it to the lesser value, yielding 4.85 g N m-2 y-1.  224 

 Estimates of epifaunal invertebrate biomass per unit area were obtained from a long-225 

running field survey at Goodwin Island, York River, Chesapeake Bay from 2004-2012 (Douglass et 226 

al., 2010). Ten grab samples per month collected epifauna over an area equivalent to 400 cm2 of 227 

bottom. Animals in each sample were size fractionated and biomass was estimated in mg ash-free 228 

dry mass using linear equations in (Edgar, 1990). These values were then averaged across all 229 

months and years to produce a mean and standard errors. 230 

 Juvenile blue crab abundance per unit area was obtained from (Ralph et al., 2013). Values 231 

were averaged across all sampling locations to yield approximately 24 individuals m-2, and 232 

standard deviations derived from standard error of the mean multiplied by the square root of the 233 

total sample size. To estimate economic losses associated with changes in blue crab abundance, a 234 

market price of $US 3418 per metric ton was obtained from NOAA Office of Science and Technology 235 

Annual Commercial Landing Statistics (NOAA Office of Science and Technology, 2014) for the most 236 

recent available year (2014), including both hard- and soft-shelled individuals. We assumed an 237 

average adult mass of 150 g, and a conservative 10% catchability arising from a combination of 238 

post-juvenile mortality and fishing effort. 239 

 Estimates of silver perch production were obtained from (Sobocinski & Latour, 2015). We 240 

used a mean value of 91.5 g m-2 y-1, and obtained standard errors from the range 77.8-117.8 g m-2 y-241 

1 using the range rule, as above. Information on the fishery harvest of approximately 5900 mt y-1 242 

from the period of 2004-2014 also came from (Sobocinski & Latour, 2015). 243 
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 Finally, estimates of total economic loss were obtained from (Costanza et al., 2014), and as 244 

with all of the above estimates, assumes a ‘basic benefit transfer’ implying that the value of the 245 

service remains consistent per unit area. These values integrate across a range of potentially 246 

economically valuable services including provisioning of food and materials, bioprospecting, 247 

regulation of air, water, and climate, nursery services, and cultural, recreational and spiritual 248 

benefits (de Groot et al., 2012). We used the 2011 valuation of $28,916 ha-1 y-1 for combined 249 

seagrass/algal beds, noting that eelgrass beds often accumulate vast quantities of macroalgae. 250 

 For all values, we extrapolated to the total area lost multiplied by the period of time 251 

considered (30 years, if to present, or 22, if to the greatest observed loss). For nitrogen fixation and 252 

silver perch production, standard deviations were approximated by taking the difference of the 253 

range and dividing by 4, or the ‘range rule.’ 254 

Results 255 

From a peak in 1991, representing the maximum recovery post-Agnes, total eelgrass cover 256 

has declined by 29% to date (Fig. 2a). Moreover, the mean depth of eelgrass beds has declined by 257 

0.12 m, or 26%, with most change occurring abruptly in 1997 (Fig. 2b). This change represents a 258 

greater loss of deep beds, which were reduced by 50%, versus shallow beds, which actually 259 

increased in cover by 35% (Fig. 2c). Eelgrass beds have therefore shifted 165 m closer to shore 260 

since 1984 (Fig. 2d). Together, these results depict classic ‘habitat squeeze,’ with eelgrass retreating 261 

into shallow water refugia where conditions are still favorable for growth, and all but eliminated in 262 

many areas >0.5 m depth where it was once abundant. 263 

The widespread decline in eelgrass cover after 1991 appears to have been gradual until the 264 

early 2000s, after which point several acute diebacks occurred (Fig. 2a). The most extreme loss 265 

occurred in 2006, with a catastrophic 58% decline in total cover from the previous year, and a 78% 266 

decline from peak cover. Interestingly, eelgrass appeared to recover rapidly after these declines. 267 
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Following the 2006 die-back, eelgrass cover increased by 55% over the previous year, and by 2009, 268 

had reached total cover exceeding that observed immediately prior to the die-back. A similar 269 

scenario occurred in 2011, where a less severe but still substantial decline of 41% reached pre-die-270 

back area in less than two years. Our observations suggest eelgrass is responding to multiple 271 

drivers, one halting its recovery in the early 1990s and impacting eelgrass over the longer term, and 272 

another, more episodic driver beginning in the mid-2000s that relaxes enough to permit rapid 273 

recovery. 274 

To clarify the correlates of changes in eelgrass abundance, we constructed a generalized 275 

additive mixed model (GAMM) incorporating 10 spatial, temporal, and environmental variables that 276 

together explained 84.6% of the variance in eelgrass cover. Beyond the expected influence of space 277 

and time, Secchi depth (an indicator of water clarity), mean water temperature of the preceding 278 

summer, and their interaction were the only other significant predictors of eelgrass cover (P = 279 

0.006, P < 0.001, and P = 0.029; Fig. 3). 280 

Decreasing Secchi depth (i.e., low visibility) is predicted to reduce eelgrass cover (Fig. 3a), 281 

and has declined by 30 cm since the beginning of the survey (Fig. 3b). Light is the principal factor 282 

governing eelgrass growth (Dennison, 1987), and our analysis confirms the long-running 283 

hypothesis that reduced water clarity is driving the long-term decline of eelgrass in Chesapeake Bay 284 

(Kemp et al., 2004; Orth et al., 2010), and in many other locations (Giesen et al., 1990; Short & 285 

Wyllie-Echeverria, 1996). It also explains why deep beds have exhibited the strongest decline (Fig. 286 

2c), as light penetration decreases exponentially with depth (Dennison, 1987). To confirm this, we 287 

re-fit GAMMs for each depth strata to show that Secchi depth is the only significant predictor of 288 

eelgrass cover at depths >0.5 m MLW (P = 0.020; Fig. S2).  289 

Increasing mean summer temperatures also reduced eelgrass cover, but only when 290 

exceeding 25°C (Fig. 3c), a well-described threshold for mortality in this species (Zimmerman et al., 291 
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1989; Reusch et al., 2005; Moore et al., 2014). Not only has the average summertime temperature 292 

increased from 24.9 to 26.4°C since 1984, but the frequency of extreme mean temperatures (>28°C) 293 

has also doubled in the last decade (Fig. 3d), generalizing recent conclusions about the role of 294 

episodic heat events in driving localized diebacks (Moore & Jarvis, 2008). Thus, warming is the 295 

most likely driver behind more recent declines (Fig. 2a), particularly in shallow waters where light 296 

is not limiting (Fig. 2c). Indeed, GAMMs fit to individual depth strata show a significant effect of 297 

temperature only at intermediate and shallow depths (0-5 m, P = 0.008 and P = 0.043; Fig. S2). 298 

Most importantly, we show that temperature and clarity interactively reduce eelgrass cover 299 

beyond what is expected from either alone (Fig. 4). A 2°C increase in temperature, which is the low 300 

end of expectations for the Chesapeake Bay in the next 30 years (Najjar et al., 2010), would result in 301 

a further decline in total eelgrass cover of 38%, holding all else constant. Similarly, if Secchi depth 302 

continues its trajectory and is reduced by another 40% over the next 30 years, it would result in a 303 

further decline of 84%. However, combined changes in temperature and Secchi depth would result 304 

in an expected loss of 95%, or the near total eradication of eelgrass in the Chesapeake Bay. While 305 

these values are based only on our model, and do not integrate any biology or account for 306 

continued management actions to reduce inputs into the Bay, it demonstrates potential for 307 

catastrophic losses as a result of the joint influence of these two stressors. 308 

Finally, from independent in situ measurements in Chesapeake Bay eelgrass beds, we show 309 

loss of eelgrass has had severe consequences for ecosystem functioning and the provision of 310 

services relevant to human well-being (Table 1). For example, the total loss of carbon in sediments 311 

is estimated at 693-1859 kt C. Given the current social cost of carbon (Domestic Policy Council, 312 

2013), this equates to an expected economic loss of $US 96.5 – 259 million. Similarly, loss of 313 

eelgrass is expected to lead to a reduction of 523-1403 million juvenile blue crabs. Assuming a 314 

conservative 10% harvestable yield and the 2014 market price (NOAA Office of Science and 315 

Technology, 2014), this equates to a total potential economic loss of $US 28.6 – 76.7 million. This 316 
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value represents 1-2 years of the fishery, and even then does not account for consequent losses in 317 

recruitment in subsequent years. Similarly, the expected loss of silver perch equates to 10-20 years 318 

of the fishery (Sobocinski & Latour, 2015).  319 

In all, an independent and integrated measure of economic valuation (Costanza et al., 2014) 320 

places the total potential economic loss due to the decline of eelgrass in Chesapeake Bay at $US 321 

1.51-2.54 billion. Although these values are estimates extrapolated from small-scale data 322 

uninformed by the well-described variation in these services through time and space (Ralph et al., 323 

2013; Duffy et al., 2015), and therefore must be interpreted with caution, they represent the best 324 

available data for assessing the outcome of eelgrass decline for the ecological and economic well-325 

being of the Chesapeake Bay. 326 

Discussion 327 

Since the early 1990s, we show that eelgrass abundance in Chesapeake Bay has undergone 328 

a steady deterioration, punctuated by periods of intense decline (Fig. 2a). We propose that the long-329 

term declines are a consequence of declining water clarity, which has all but eliminated eelgrass 330 

beds deeper than 1 m where light is already limiting (Fig. 2c; Fig. S2). As the influence of clarity was 331 

independent of nutrients or chlorophyll-a in our model,  we propose that its effect stems from 332 

increased sediment loading, resuspension, and dissolution of organic matter due to greater 333 

watershed development and urbanization (Gallegos, 2001; Kemp et al., 2004; Orth et al., 2017 in 334 

review). At the same, we demonstrate that increasing summertime temperatures are behind 335 

episodic declines in 2005 and 2010, but are sufficiently infrequent, at this time, as to allow recovery 336 

(Fig. 2a). Critically, high temperatures appear to impact shallow beds more than deep ones (Fig. S2), 337 

suggesting that warming, and its interaction with clarity, is the most prominent threat for 338 

remaining eelgrass in Chesapeake Bay.  339 
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Warming has two implications for the persistence of eelgrass in Chesapeake Bay. First, it 340 

has been shown that rising temperatures elevates respiratory load, increasing light requirements 341 

for photosynthesis to balance metabolic demand, and exacerbating the negative effects associated 342 

with decreasing clarity (Zimmerman et al., 1989; Zimmerman, 2006). Seagrasses, in general, have 343 

among the highest light requirements of any extant plants, primarily because of the need to support 344 

the large biomass of roots and rhizomes in a sedimentary environment of low to no oxygen 345 

(Dennison et al., 1993). Thus, the relationship between maximum depth distribution and Secchi 346 

depth has been well documented, particularly in Chesapeake Bay (Dennison et al., 1993). Consistent 347 

with this hypothesis, we show a highly significant interaction between the two such that the 348 

strongest declines in eelgrass are expected when temperature is maximal and Secchi depth is at its 349 

minimum (Fig. 4).  350 

Second, eelgrass propagates both sexually, via seeds, and asexually, via clonal growth. When 351 

local populations die-back as a consequence of heat stress, the seedbank from the previous year 352 

permits rapid recolonization. However, diebacks in two consecutive years would fail to replenish 353 

the seedbank, as eelgrass seedlings in Chesapeake Bay flower in the second year of growth and 354 

seeds do not remain viable for more than a year, excluding any possibility of recovery (Jarvis & 355 

Moore, 2010). This scenario is not accounted for in our model and may result in the rapid and 356 

unpredictable eradication of eelgrass far more quickly than our analytical scenarios would 357 

otherwise suggest. 358 

While eelgrass has stalled on its track of recovery since 1991, over the short-term it has 359 

actually increased in abundance (Fig. 2A). We note, however, that cover observed at any point 360 

during this survey is only a fraction of what it was prior to the 1970s (Fig. 1), and more critically, is 361 

now restricted to only the most nearshore areas (Fig. 2C). Losses prior to this survey are also 362 

known to have come from pulse events, namely storms and disease, and have generally recovered 363 

within a decade or two (Orth & Moore, 1983; Orth et al., 2010). In contrast, we demonstrate a 364 
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strong anthropogenic component in driving the continued and contemporary decline of eelgrass 365 

through degradations in water quality, warming, and their interaction. Therefore, we temper 366 

optimism of this recent upswing, and caution that without continued intervention to mitigate 367 

human impacts, principally those that affect light availability, eelgrass is unlikely to even reach 368 

coverage observed in the early 1990s, let alone historical maximums (Fig. 1). This point is critical 369 

considering those maximums have been used to set management targets for cover of underwater 370 

grasses in the polyhaline region of the Bay (Orth et al., 2010, 2017 in review). 371 

Our study contributes to a general pattern of fragility among coastal ecosystems for which 372 

long-term regional records exist, including the Great Barrier and Caribbean coral reefs (Gardner et 373 

al., 2003; De’ath et al., 2012), kelp forests (Wernberg et al., 2016), salt marshes (Jefferies et al., 374 

2006), and mangroves (Fromard et al., 2004; Cavanaugh et al., 2014). It also provides the most 375 

spatially and temporally comprehensive assessment of the patterns and drivers of decline in any 376 

seagrass species (Waycott et al., 2009), and for one the largest, most productive, and valuable 377 

estuaries in the world (Claggett, 2016). Most importantly, we generalize mechanisms of seagrass 378 

decline derived from small-scale experiments and local observations to the scale of the entire 379 

Chesapeake Bay, principally sensitivity to declining water clarity and physiological intolerance to 380 

warming temperatures, as well as their interaction. This finding suggests that these mechanisms 381 

may be scale invariant, and that experiments conducted in other systems could be reasonably 382 

extrapolated to predict regional abundance of eelgrass elsewhere where physiological intolerances 383 

are similar to those exhibited in Chesapeake Bay. 384 

Instead of facilitating decline, as we demonstrate here, climate change has been shown to 385 

mediate turnover in foundational species in many other examples, such as the ongoing replacement 386 

of marshes by mangroves in the southeastern US (Cavanaugh et al., 2014). In contrast with our 387 

study, there is no obvious candidate to supplant eelgrass in the Chesapeake Bay. Only one 388 

underwater grass coexists with eelgrass in the region, widgeongrass (Ruppia maritima), but it is 389 
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generally restricted to shallow waters and so far has failed to establish in any abundance in areas 390 

vacated by eelgrass (Orth et al., 2010). Rather, lost beds have by and large reverted to bare 391 

sediment, the least productive marine habitat (Duarte & Cebrián, 1996). Thus, the current crisis for 392 

eelgrass in Chesapeake Bay represents an almost total loss of functionality, echoing recent findings 393 

from systems such as coral reefs, where the transition to an algal-dominated state has reduced or 394 

eliminated many of the same habitat and provisioning services (Graham & Nash, 2013). 395 

Managers have long recognized that local-scale degradation of water clarity negatively 396 

affects many species of underwater grasses, not just eelgrass, from the Chesapeake Bay to the Gulf 397 

of Mexico, San Francisco Bay, and Australia (Giesen et al., 1990; Short & Wyllie-Echeverria, 1996; 398 

Orth et al., 2006; Waycott et al., 2009). However, few if any implement strategies that account for 399 

rising temperatures in attempting to avert losses due to reduced water quality, despite mounting 400 

evidence of temperature-induced diebacks (Waycott et al., 2009), even in places as far north as the 401 

Baltic Sea (Reusch et al., 2005). This failure may explain the accelerating decline of seagrass species 402 

over the last century despite increasing awareness and intervention (Waycott et al., 2009). Since 403 

climate change is a global phenomenon, we propose that managers must increase their water 404 

quality targets at the local and regional levels to offset losses caused by global factors outside their 405 

immediate control. Indeed, our model predictions show that given sufficient water clarity, eelgrass 406 

could still persist in the face of increasing temperatures. Only by adopting such an integrative 407 

perspective can we protect and restore eelgrass in the Chesapeake Bay, and elsewhere. 408 

Acknowledgments 409 

We thank the US Environmental Protection Agency Chesapeake Bay Program, National Oceanic 410 

Atmospheric Administration Virginia Coastal Program, Virginia Department of Environmental 411 

Quality, and Maryland Department of Natural Resources for providing long-term funding. We also 412 

thank E. Röhr and C. Boström for blue carbon data, and W. Dennison, K. Moore, D. Rasher, and J.E. 413 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2544v2 | CC BY 4.0 Open Access | rec: 9 Jan 2017, publ: 9 Jan 2017



19 
 

Duffy for comments on previous drafts. This is contribution no. 3604 of the Virginia Institute of 414 

Marine Science. 415 

References 416 

Beem NT, Short FT (2009) Subtidal eelgrass declines in the Great Bay Estuary, New Hampshire and 417 
Maine, USA. Estuaries and Coasts, 32, 202–205. 418 

Cavanaugh KC, Kellner JR, Forde AJ, Gruner DS, Parker JD, Rodriguez W, Feller IC (2014) Poleward 419 
expansion of mangroves is a threshold response to decreased frequency of extreme cold 420 
events. PNAS, 111, 723–7. 421 

Claggett P (2016) Chesapeake Bay Program. 422 
http://www.chesapeakebay.net/indicators/indicator/chesapeake_bay_watershed_population  423 

Cole LW (2011) Inputs and fluxes of nitrogen in the Virginia coastal bays: Effects of newly-restored 424 
seagrasses on the nitrogen cycle. University of Virginia, 1-129 pp. 425 

Costanza R, de Groot R, Sutton P et al. (2014) Changes in the global value of ecosystem services. 426 
Global Environmental Change, 26, 152–158. 427 

Costello CT, Kenworthy WJ (2011) Twelve-year mapping and change analysis of aelgrass (Zostera 428 
marina) areal abundance in Massachusetts (USA) identifies statewide declines. Estuaries and 429 
Coasts, 34, 232–242. 430 

Cottam C (1934) Past periods of eelgrass scarcity. Rhodora, 36, 261–264. 431 

Crain CM, Kroeker K, Halpern BS (2008) Interactive and cumulative effects of multiple human 432 
stressors in marine systems. Ecology Letters, 11, 1304–1315. 433 

Crain CM, Halpern BS, Beck MW, Kappel C V. (2009) Understanding and managing human threats to 434 
the coastal marine environment. Annals of the New York Academy of Sciences, 1162, 39–62. 435 

De’ath G, Fabricius KE, Sweatman H, Puotinen M (2012) The 27-year decline of coral cover on the 436 
Great Barrier Reef and its causes. PNAS, 109, 17995–9. 437 

Dennison WC (1987) Effects of light on seagrass photosynthesis, growth and depth distribution. 438 
Aquatic Botany, 27, 15–26. 439 

Dennison WC, Orth RJ, Moore KA et al. (1993) Assessing water quality with submersed aquatic 440 
vegetation. Bioscience, 43, 86–94. 441 

Dobson JE, Bright EA, Ferguson RL et al. (1995) NOAA coastal change analysis program (C-CAP): 442 
guidance for regional implementation. US Department of Commerce, National Oceanic and 443 
Atmospheric Administration, National Marine Fisheries Service. 444 

Domestic Policy Council (2013) Technical Support Document:-Technical Update of the Social Cost 445 
of Carbon for Regulatory Impact Analysis-Under Executive Order 12866. 446 

Douglass JG, France KE, Paul Richardson J, Duffy JE (2010) Seasonal and interannual changes in a 447 
Chesapeake Bay eelgrass community: Insights into biotic and abiotic control of community 448 
structure. Limnology and Oceanography, 55, 1499–1520. 449 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2544v2 | CC BY 4.0 Open Access | rec: 9 Jan 2017, publ: 9 Jan 2017

http://www.chesapeakebay.net/indicators/indicator/chesapeake_bay_watershed_population


20 
 

Duarte CM, Cebrián J (1996) The fate of marine autotrophic production. Limnology and 450 
Oceanography, 41, 1758–1766. 451 

Duffy JE, Reynolds PL, Boström C et al. (2015) Biodiversity mediates top-down control in eelgrass 452 
ecosystems: a global comparative-experimental approach. Ecology Letters, 18, 696–705. 453 

Edgar GJ (1990) The use of the size structure of benthic macrofaunal communities to estimate 454 
faunal biomass and secondary production. Journal of Experimental Marine Biology and Ecology, 455 
137, 195–214. 456 

Frederiksen M, Krause-Jensen D, Holmer M, Laursen JS (2004) Long-term changes in area 457 
distribution of eelgrass (Zostera marina) in Danish coastal waters. Aquatic Botany, 78, 167–458 
181. 459 

Fromard F, Vega C, Proisy C (2004) Half a century of dynamic coastal change affecting mangrove 460 
shorelines of French Guiana. A case study based on remote sensing data analyses and field 461 
surveys. Marine Geology, 208, 265–280. 462 

Gallegos CL (2001) Calculating optical water quality targets to restore and protect submersed 463 
aquatic vegetation: Overcoming problems in partitioning the diffuse attenuation coefficient for 464 
photosynthetically active radiation. Estuaries, 24, 381–397. 465 

Gardner TA, Cote IM, Gill JA, Grant A, Watkinson AR (2003) Long-term region-wide declines in 466 
Caribbean corals. Science, 301, 958–960. 467 

Giesen WBJT, Vankatwijk MM, Denhartog C (1990) Eelgrass condition and turbidity in the Dutch 468 
Wadden Sea. Aquatic Botany, 37, 71–85. 469 

Graham NAJ, Nash KL (2013) The importance of structural complexity in coral reef ecosystems. 470 
Coral Reefs, 32, 315–326. 471 

de Groot R, Brander L, van der Ploeg S et al. (2012) Global estimates of the value of ecosystems and 472 
their services in monetary units. Ecosystem Services, 1, 50–61. 473 

Gurbisz C, Kemp WM (2014) Unexpected resurgence of a large submersed plant bed in Chesapeake 474 
Bay: Analysis of time series data. Limnology and Oceanography, 59, 482–494. 475 

Halpern BS, Walbridge S, Selkoe KA et al. (2008) A global map of human impact on marine 476 
ecosystems. Science, 319, 948–952. 477 

Jarvis JC, Moore KA (2010) The role of seedlings and seed bank viability in the recovery of 478 
Chesapeake Bay, USA, Zostera marina populations following a large-scale decline. 479 
Hydrobiologia, 649, 55–68. 480 

Jefferies RL, Jano AP, Abraham KF (2006) A biotic agent promotes large-scale catastrophic change 481 
in the coastal marshes of Hudson Bay. Journal of Ecology, 94, 234–242. 482 

Kemp MW, Batleson R, Bergstrom P et al. (2004) Habitat requirements for submerged aquatic 483 
vegetation in Chesapeake Bay: Water quality, light regime, and physical-chemical factors. 484 
Estuaries, 27, 363–377. 485 

Kemp WM, Boynton WR, Adolf JE et al. (2005) Eutrophication of Chesapeake Bay: historical trends 486 
and ecological interactions. Marine Ecology Progress Series, 303, 1–29. 487 

Li X, Weller DE, Gallegos CL, Jordan TE, Kim H-C (2007) Effects of watershed and estuarine 488 
characteristics on the abundance of submerged aquatic begetation in Chesapeake Bay 489 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2544v2 | CC BY 4.0 Open Access | rec: 9 Jan 2017, publ: 9 Jan 2017



21 
 

subestuaries. Estuaries and Coasts, 30, 840–854. 490 

Lotze HK, Lenihan HS, Bourque BJ et al. (2006) Depletion, degradation, and recovery potential of 491 
estuaries and coastal seas. Science, 312, 1806–1809. 492 

Moore KA, Jarvis JC (2008) Environmental factors affecting recent summertime eelgrass diebacks in 493 
the lower Chesapeake Bay: implications for long-term persistence. Journal of Coastal Research, 494 
135–147. 495 

Moore KA, Shields EC, Parrish DB (2014) Impacts of varying estuarine temperature and light 496 
conditions on Zostera marina (eelgrass) and its interactions with Ruppia maritima 497 
(widgeongrass). Estuaries and Coasts, 37, 20–30. 498 

Najjar RG, Pyke CR, Beth M et al. (2010) Potential climage-change impacts on the Chesapeake Bay. 499 
Estuarine, Coastal and Shelf Science, 86, 1–20. 500 

NOAA Office of Science and Technology (2014) Annual Commercial Landing Statistics. 501 
https://www.st.nmfs.noaa.gov/pls/webpls/FT_HELP.SPECIES  502 

Orth RJ, Moore KA (1983) Chesapeake Bay: An unprecedented decline in submerged aquatic 503 
vegetation. Science, 222, 51–53. 504 

Orth RJ, Moore KA (1984) Distribution and abundance of submerged aquatic vegetation in 505 
Chesapeake Bay: an historical perspective. Estuaries, 7, 531–540. 506 

Orth RJ, Moore KA (1986) Season and year-to-year variations in the growth of Zostera marina L. 507 
(eelgrass) in the lower Chesapeake Bay. Aquatic Botany, 24, 335–341. 508 

Orth RJ, Carruthers TJB, Dennison WC et al. (2006) A global crisis for seagrass ecosystems. 509 
Bioscience, 56, 987–996. 510 

Orth RJ, Marion SR, Moore KA, Wilcox DJ (2010) Eelgrass (Zostera marina L.) in the Chesapeake Bay 511 
region of mid-Atlantic coast of the USA: Challenges in conservation and restoration. Estuaries 512 
and Coasts, 33, 139–150. 513 

Orth RJ, Dennison WC, Lefcheck JS et al. (2017) Submersed aquatic vegetation in Chesapeake Bay: 514 
sentinel species in a changing world. In review. 515 

Paine DP (1981) Aerial photography and image interpetation for resource management. 516 

Patrick CJ, Weller DE (2015) Interannual variation in submerged aquatic vegetation and its 517 
relationship to water quality in subestuaries of Chesapeake Bay. Marine Ecology Progress 518 
Series, 537, 121–135. 519 

Patrick CJ, Weller DE, Li X, Ryder M (2014) Effects of shoreline alteration and other stressors on 520 
submerged aquatic vegetation in subestuaries of Chesapeake Bay and the mid-Atlantic coastal 521 
bays. Estuaries and Coasts, 37, 1516–1531. 522 

Patrick CJ, Weller DE, Ryder M (2016) The relationship between shoreline armoring and adjacent 523 
submerged aquatic vegetation in Chesapeake Bay and nearby Atlantic coastal bays. Estuaries 524 
and Coasts, 39, 158–170. 525 

R Development Core Team (2016) R: A Language and Environment for Statistical Computing. 526 

Ralph GM, Seitz RD, Orth RJ, Knick KE, Lipcius RN (2013) Broad-scale association between seagrass 527 
cover and juvenile blue crab density in Chesapeake Bay. Marine Ecology Progress Series, 488, 528 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2544v2 | CC BY 4.0 Open Access | rec: 9 Jan 2017, publ: 9 Jan 2017

https://www.st.nmfs.noaa.gov/pls/webpls/FT_HELP.SPECIES


22 
 

51–63. 529 

Reusch TBH, Ehlers A, Hämmerli A, Worm B (2005) Ecosystem recovery after climatic extremes 530 
enhanced by genotypic diversity. PNAS, 102, 2826–2831. 531 

van Rij J, Wieling M, Baayen RH, van Rijn H (2016) itsadug: Interpreting Time Series and 532 
Autocorrelated Data Using GAMMs. 533 

Ruhl HA, Rybicki NB (2010) Long-term reductions in anthropogenic nutrients link to improvements 534 
in Chesapeake Bay habitat. PNAS, 107, 16566–16570. 535 

Rybicki NB, Landwehr JM (2007) Long-term changes in abundance and diversity of macrophyte and 536 
waterfowl populations in an estuary with exotic macrophytes and improving water quality. 537 
Limnology and Oceanography, 52, 1195–1207. 538 

Short FT, Wyllie-Echeverria S (1996) Natural and human-induced disturbance of seagrasses. 539 
Environmental Conservation, 23, 17. 540 

Sobocinski KL, Latour RJ (2015) Trophic transfer in seagrass systems : estimating seasonal 541 
production of an abundant seagrass fish , Bairdiella chrysoura , in lower Chesapeake Bay. 542 
Marine Ecology Progress Series, 523, 157–174. 543 

Waycott M, Duarte CM, Carruthers TJB et al. (2009) Accelerating loss of seagrasses across the globe 544 
threatens coastal ecosystems. PNAS, 106, 12377–81. 545 

Wernberg T, Bennett S, Babcock RC et al. (2016) Climate-driven regime shift of a temperate marine 546 
ecosystem. Science, 353, 169–172. 547 

Wood SN (2011) Fast stable restricted maximum likelihood and marginal likelihood estimation of 548 
semiparametric generalized linear models. Journal of the Royal Statistical Society B, 73, 3–36. 549 

Zimmerman RC (2006) Light and Photosynthesis in Seagrass Meadows. In: Seagrasses: Biology, 550 
Ecology, and Conservation (eds Larkum AWD, Orth RJ, Duarte CM), pp. 303–321. Springer, 551 
Dordrecht, The Netherlands. 552 

Zimmerman RC, Smith RD, Alberte RS (1989) Thermal acclimation and whole-plant carbon balance 553 
in Zostera marina L. (eelgrass). Journal of Experimental Marine Biology and Ecology, 130, 93–554 
109.  555 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2544v2 | CC BY 4.0 Open Access | rec: 9 Jan 2017, publ: 9 Jan 2017



23 
 

Table 1: Loss of ecosystem services concurrent with loss of eelgrass. Values are means ± 1 SD, 556 

estimated based on change in eelgrass cover from its peak in 1991 to present, and to the maximum 557 

observed loss in 2006. 558 

Service Response 
Present loss 
(1991-2015) 

Maximum loss 
(1991-2006) 

Nutrient cycling Carbon stock (kt C) 693 ± 150 1859 ± 401 

 N2 fixation (kt N) 2.53 ± 0.25 4.25 ± 0.16 

Secondary production 
and export 

Epifaunal biomass (Mt) 141.1 ± 75.2 236.6 ± 126.1 

 Blue crab density  
(millions of juveniles) 

523 ± 600 1403 ± 1609 

 Silver perch biomass 
(kt) 

47.8 ± 5.2 80.2 ± 8.8 

Total economic loss Integrated value ($2011 
US) 

$1.51 billion $2.54 billion 

  559 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2544v2 | CC BY 4.0 Open Access | rec: 9 Jan 2017, publ: 9 Jan 2017



24 
 

Figure Legends 560 

 561 

Figure 1. Current (light green) and historical distribution (dark green) of eelgrass in 562 

Chesapeake Bay. Historical distribution is prior to 1971, immediately preceding Tropical Storm 563 

Agnes. 564 
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 565 

Figure 2. Thirty-year trends in eelgrass cover and distribution. (a) Total cover (hectares) has 566 

been decreasing since 1991. (b) Mean depth of eelgrass beds has been decreasing since 1996. (c) 567 

The greatest loss has occurred in the deepest beds (Deep = >0.5 m, Mid = 0-0.5 m, Shallow = 0 m). 568 

(d) Eelgrass has shifted 165 m closer to shore since 1984.  569 
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 570 

Figure 3. Significant predictors of total eelgrass area based on a generalized additive mixed 571 

model. (a) Predicted cover increases with increasing Secchi depth, a measure of water clarity. 572 

Values on the y-axis represent the partial smoothed residuals accounting for the influence of the 573 

other predictors in the model. Shaded areas indicate 95% confidence intervals. (b) Water clarity 574 

has decreased by about 0.4 m over the past 30 years. Line denotes the predicted fit ± 95% CIs from 575 

simple linear regression. (c) Predicted cover decreases with increasing summer temperature. (d) 576 

Mean summertime temperature (Jul-Sept) has increased over the past 30 years, with a more recent 577 

rise in extreme temperature events (>28 °C, triangles). 578 
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 579 

580 

Figure 4. Interaction surface between temperature and Secchi depth from a generalized 581 

additive mixed model. Eelgrass cover is predicted to decline when temperature is high and Secchi 582 

depth is low (bottom right). Values on the y-axis represent the partial residuals of the tensor 583 

product (ti) smoother accounting for the influence of the other predictors in the model. 584 
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