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Abstract  18 

Interactions among global change stressors and their effects at large scales are often proposed but 19 

seldom evaluated, in part due to lack of comprehensive, sufficiently long-term, and spatially-20 

extensive datasets. Seagrasses, which provide nursery habitat, improve water quality, and 21 

constitute a globally-important carbon sink, are among the most vulnerable habitats on the planet. 22 

Here, we unite 31-years of high-resolution aerial monitoring and water quality data to elucidate the 23 

patterns and drivers of eelgrass (Zostera marina) abundance in Chesapeake Bay, USA, one of the 24 

largest and most valuable estuaries in the world, with an unparalleled history of regulatory efforts. 25 

We show that eelgrass cover has declined 29% in total since 1991, with wide-ranging and severe 26 

ecological and economic consequences. We go on to identify an interaction between decreasing 27 

water clarity and warming temperatures as the primary driver of this trend. Declining clarity has 28 

gradually reduced eelgrass over the past two decades, primarily in deeper beds where light is 29 

already limiting. In shallow beds, however, reduced visibility exacerbates the physiological stress of 30 

acute warming, leading to recent instances of decline approaching 80%. While degraded water 31 

quality has long been known to influence underwater grasses worldwide, we demonstrate a clear 32 

and rapidly emerging interaction with climate change. We highlight the urgent need to integrate a 33 

broader perspective into local water quality management, in the Chesapeake Bay and in the many 34 

other coastal systems facing similar stressors.  35 
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Introduction 36 

Identifying the drivers of environmental change and predicting their consequences is the 37 

preeminent scientific challenge of the Anthropocene (Halpern et al., 2008).  Marine systems in 38 

particular are experiencing rapid and often irreversible alterations as a consequence of human 39 

activities (Lotze et al., 2006), and almost half of these changes can be attributed to multiple drivers 40 

(Lotze et al., 2006; Halpern et al., 2008). Despite the increasing recognition that global and local 41 

stressors often act jointly, rigorous empirical examples of this phenomenon are lacking at the large 42 

scales relevant to both the observed change and human well-being, particularly in temperate 43 

ecosystems where most of the world’s human population reside. Instead, most of our 44 

understanding comes from small-scale experiments and observations (Crain et al., 2008, 2009), or 45 

from tropical systems such as coral reefs (Gardner et al., 2003; De’ath et al., 2012). This knowledge 46 

gap vastly impedes our ability to predict and avert the impacts of global change, particularly given 47 

the fact that stressors, and corresponding management actions, occur at much larger scales. 48 

Seagrasses in particular are extremely sensitive to global change, with losses exceeding 49 

25% worldwide in just the last century (Orth et al., 2006; Waycott et al., 2009). Because of its global 50 

distribution close to major anthropogenic influences, and its habit of forming monospecific stands 51 

in shallow zones, eelgrass (Zostera marina) is acutely vulnerable to environmental stressors 52 

(Waycott et al., 2009). Consequently, it has experienced declines in many locations, including in 53 

northern Europe (Giesen et al., 1990; Frederiksen et al., 2004), the northwestern Atlantic (Beem & 54 

Short, 2009; Costello & Kenworthy, 2011), and the western coast of the US, particularly San 55 

Francisco Bay (Short & Wyllie-Echeverria, 1996) , but nowhere has it experienced more significant 56 

losses than in Chesapeake Bay, USA (Orth & Moore, 1983).  57 

The Chesapeake Bay is one of the largest, most well-managed, and economically productive 58 

coastlines in the world, and is projected to support 20 million people by 2020 (Claggett, 2016). 59 
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While the abundance of eelgrass in Chesapeake Bay is known to have fluctuated over the last 60 

century due to storms and a wasting disease (Orth & Moore, 1983; Orth et al., 2010), it was a single 61 

summer in 1972 that Tropical Storm Agnes extirpated over 50% of the population from which 62 

Chesapeake Bay has never recovered (Fig. 1). While several studies have hypothesized that 63 

declining water quality may be preventing recovery of eelgrass in Chesapeake Bay (Orth et al., 64 

2010; Patrick & Weller, 2015), and indeed may be driving its continued decline, the environmental 65 

drivers of this valuable habitat have yet to be confidently enumerated. In this study, we use 31-66 

years of high-resolution aerial imagery and water quality data to document the continued decline of 67 

eelgrass in Chesapeake Bay, and directly link changes in its distribution to multiple anthropogenic 68 

stressors. The scale, duration, comprehensiveness, and complementarity of these two datasets are 69 

unprecedented, and provide a unique opportunity to understand the specific drivers of habitat 70 

decline in highly populated coastal systems. 71 

Methods 72 

Submersed Aquatic Vegetation Monitoring 73 

Submersed aquatic vegetation (SAV) bed area and percent cover was derived from aerial 74 

imagery acquired on an annual basis from 1984 through 2015, except for 1988, from the Virginia 75 

Institute of Marine Science SAV Monitoring Program (http://www.vims.edu/bio/sav). 76 

Panchromatic photography at a scale of 1:24,000; 60% flightline overlap and 20% sidelap was 77 

acquired with a standard mapping camera for 1984 – 2014. Multi-spectral imagery was acquired in 78 

2014 and 2015 using a digital mapping camera with a ground sample distance of 24 cm. Acquisition 79 

conditions, including tidal stage, plant growth, sun angle, atmospheric transparency, water 80 

turbidity, and wind, were selected to optimize the visibility of seagrass beds (Dobson et al., 1995). 81 

Mapping of seagrass beds was initially accomplished by manually tracing seagrass bed 82 

outlines on to translucent United States Geological Survey 7.5-minute quadrangle maps directly 83 
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from the photographs, and then digitizing bed boundaries into a Geographic Information System 84 

(GIS) dataset for analysis. More recently, the aerial photography was scanned from negatives or 85 

produced digitally from the sensor and ortho-rectified using ERDAS LPS image-processing software 86 

(ERDAS, Atlanta GA). SAV bed boundaries were then photo-interpreted directly on-screen while 87 

maintaining a fixed scale using ESRI ArcMap GIS software (ESRI, Redlands CA). 88 

Water Quality Monitoring 89 

Water quality data were obtained from the Chesapeake Bay Program’s (CBP) Water Quality 90 

Database (http://www.chesapeakebay.net), which contains data collected in the tidal waters of 91 

Chesapeake Bay by agencies including Maryland Department of Nature Resources and Virginia 92 

Department of Environmental Quality. The program visits approximately 160 fixed monitoring 93 

stations every two weeks, 28 of which were used for our analysis (Fig. S2). At each station, a 94 

vertical hydrographic profile is collected using a multiparameter sonde with observations every 1-2 95 

meters of water temperature, specific conductivity (to calculate salinity), and dissolved oxygen.  96 

Secchi depth is observed in the field using a black-and-white Secchi disk attached to a measuring 97 

line. In addition, at each station, water samples are collected at several depths and processed at a 98 

laboratory to quantify concentrations of chlorophyll-a, total nitrogen, and total phosphorus. For 99 

this analysis, we used data only from the surface layer, the top 0.5 or 1 m observation, assuming 100 

these values most reflect conditions in the shallow water where eelgrass is present. 101 

Methodological changes for chlorophyll-a, total nitrogen, and total phosphorus over the 102 

course of the survey necessitated the implementation of a correction factors. Specifically, for 103 

nitrogen, the changes involved switching from a sum of nitrate, nitrite, and total Kjeldahl nitrogen 104 

to total dissolved nitrogen plus particulate nitrogen at Virginia mainstem stations in 1988, 105 

Maryland stations in 1998 and Virginia tributary stations in 1998.  For phosphorus, the change 106 

involved switching from a sum of total dissolved phosphorus plus particulate phosphorus to a 107 
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direct measurement in the same years as the total nitrogen changes. For chlorophyll-a, the possible 108 

changes occurred due to laboratories switches in the late 1990s, although it is likely this only 109 

impacted Virginia tributary stations. For these three variables, we regressed the response at each 110 

station against the identity of the processing laboratory and the method employed using simple 111 

linear regression. We then extracted the residuals from this relationship, and visual assessment of 112 

time series plots suggested that they adequately accounted for the a priori influence of lab and 113 

method. The residuals for these three variables were carried through all subsequent analyses.  114 

While these stations are primarily in deep water, many prior studies have shown that they 115 

can be adequately extrapolated to predict underwater vegetation in shallow areas (Li et al., 2007; 116 

Rybicki & Landwehr, 2007; Ruhl & Rybicki, 2010; Gurbisz & Kemp, 2014; Patrick et al., 2014, 2016). 117 

Even if the stations under- or over-represent conditions at shallow depths, the relative differences 118 

among stations and years are preserved, such that any inferences about the directionality and 119 

relative impact of the environmental variables should be unaffected. 120 

Statistical Analysis 121 

A cell-based model with a cell size of 30 m was used to facilitate the analysis. Within the 122 

study area, ESRI ArcGIS software was used to code each 30 m cell in one of the following categories 123 

on the Braun-Blanquet cover scale: none (0% cover), very sparse (<10% cover), sparse (11-40% 124 

cover), moderate (41-70%), or dense (71-100%) (Paine, 1981). Additionally, we quantified the 125 

depth of the cell extracted from the Chesapeake Bay, VA/MD (M130) Bathymetric Digital Elevation 126 

Model (NOAA, http://estuarinebathymetry.noaa.gov/). For each grid cell, we then calculated the 127 

over-water distance to the nearest CBP monitoring station, and grouped all cells based on their 128 

nearest station, which we refer to as ‘subregions’ (Fig. S2). For each station, we calculated the total 129 

eelgrass cover as the sum of the cover of the nearest grid cells, weighted by the Braun-Blanquet 130 
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density to yield a value of total bottom area covered, and merged these with the environmental 131 

data. This procedure yielded n = 684 observations for use in our modelling exercise. 132 

We used the following generalized additive mixed model to identify the significant 133 

predictors of eelgrass cover: 134 

𝑦𝑖𝑗 = 𝑿𝑖𝑗 ∗ 𝛼 + ∑ 𝑓𝑘(𝑥𝑖𝑗)

𝑝

𝑘=1

+ 𝒁𝑖𝑗𝑏𝑖𝑗 + 𝒁𝑖,𝑗𝒃𝒊 + 𝜖𝑖𝑗  135 

𝒃𝒊 = 𝑁(𝟎, 𝚿1) 136 

𝑏𝑖𝑗 = 𝑁(0, 𝜎2
2) 137 

𝜖𝑖𝑗 = 𝑁(𝟎, 𝜎2𝑰) 138 

where the response 𝑦𝑖𝑗  is the log10-transformed density-weighted total cover of eelgrass in 139 

subregion 𝑖 in year 𝑗, 𝑿𝑖𝑗 is the design matrix of parametric components and 𝛼 is the vector of fixed 140 

effects parameters, 𝑓𝑘(⋅) are the non-parametric smoothed functions of covariates 𝑥𝑖𝑗 , 𝒁𝑖𝑗is the 141 

design matrix of the random effect of subregion 𝑖 in year 𝑗 and 𝑏𝑖𝑗 is the corresponding vector of 142 

random effects, 𝒁𝑖,𝑗  is the design matrix of the random effect of year 𝑗 on the measurements for 143 

subregion 𝑖 in year 𝑗 and 𝒃𝒊 is the corresponding vector of random effects, and 𝜖𝑖𝑗 is the within-144 

subregion and within-year error independent of the random effects. All random effects and residual 145 

error are assumed to be normally distributed with a mean of 0, and positive definite variance-146 

covariance matrices 𝚿1, 𝜎2
2, and 𝜎2𝑰. 147 

 For the non-parametric component: 148 

∑ 𝑓𝑘(𝑥𝑖𝑗)

𝑝

𝑘=1

= 𝑓1(Long, Lat) + 𝑓2(Coveri(j−1)) +  𝑓3(Habitat𝑖) + 𝑓4(Chl𝑎𝑖𝑗) + 𝑓5(Salinity𝑖𝑗)149 

+ 𝑓6(Secchi𝑖𝑗) + 𝑓7(TN𝑖𝑗) +  𝑓8(TP𝑖𝑗) +  𝑓9(Temp𝑖(𝑗−1)) + 𝑓10(MaxTemp𝑖(𝑗−1))150 

+ 𝑓11(Secchi𝑖𝑗, Temp𝑖(𝑗−1)) 151 
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where all predictors are modeled as smoothing functions using the default thin-plate regression 152 

spline in the mgcv package in R (Wood, 2011). 𝑓1(Long, Lat) is a smoothed combination of spatial 153 

coordinates using the UTM projection, and is meant to address any potential spatial autocorrelation 154 

among the subregions. 𝑓2(Coveri(j−1)) represents eelgrass cover in subregion 𝑖 in the previous year 155 

𝑗 − 1, to account for the dependency of eelgrass cover from one year to the next. We fit this 156 

predictor as a smoothed covariate in lieu of a fixed autoregressive structure, having tested various 157 

combinations using model comparisons and visual examination of (partial) residual autocorrelation 158 

functions, and finding them to be less supported than simply modeling the previous year’s eelgrass 159 

cover. 𝑓3(Habitat𝑖𝑗) represents the total available bottom for eelgrass with subregion 𝑖 extending to 160 

1 m Mean Low Water.  161 

The remaining predictors are environmental variables summarized from the CBP 162 

Monitoring Program. Chlorophyll-a, salinity, Secchi depth, total nitrogen (TN), and total phosphorus 163 

(TP) were calculated as means for February to June in subregion 𝑖 of year 𝑗, as we expected eelgrass 164 

to respond most strongly to these parameters during the growing season. The two predictors 165 

pertaining to temperature, 𝑓9(Temp𝑖(𝑗−1)) + 𝑓10(MaxTemp𝑖(𝑗−1)), were calculated as the mean and 166 

maximum values, respectively, from July to September of the previous year 𝑗 − 1, since this is the 167 

time during which eelgrass undergoes natural temperature-driven senescence in this region 168 

(Moore & Jarvis, 2008). The final term is a combination of mean temperature and Secchi depth, 169 

estimating their interactive influence on cover independent of their main effects using a tensor 170 

product moment interaction smoother. 171 

The model was constructed in R version 3.3.1 (R Development Core Team, 2016) using the 172 

mgcv package (Wood, 2011). The model was fit using restricted maximum likelihood (REML) to 173 

avoid overfitting and yield less biased estimates of the fixed effects, given the complexity of the 174 

model and the size of the dataset. Model assumptions of normality of errors and constant variance 175 
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were assessed visually. Model predictions and 95% confidence intervals were obtained using the 176 

custom function EvaluateSmooths modified from1, and from a modified version of the function 177 

pvisgam in the itsadug package (van Rij et al., 2016). We held a Type I error threshold of 𝛼 = 0.05. 178 

All data and scripts necessary to reproduce the analyses and generate all graphics are provided as 179 

supplementary files. 180 

Ecosystem Services and Valuation 181 

 To estimate the potential ecological and economic losses associated with the decline of 182 

eelgrass, we collated in situ measurements of functioning from Chesapeake Bay eelgrass beds of the 183 

last decade (Table 1).  184 

Data for estimation of total carbon loss were derived from in situ measurements of carbon 185 

stock as part of the Zostera Experimental Network (http://zenscience.org). Sediment core tubes 186 

(length: 50 cm, diameter: 50 mm) were forced to a depth of 30-40 cm into the sediment at a 187 

minimum distance of 15 m from each other at Goodwin Island, York River, extracted, and returned 188 

to the laboratory on ice. The samples were then dried and shipped to University of Southern 189 

Denmark, where samples were analyzed for sediment δ13 C, δ15 N, PON and POC using a mass 190 

spectrometer (Thermo Scientific, delta V advantage, isotope ratio mass spectrometer). The 191 

measured isotope ratios were represented using the δ- notation with Vienna Peedee belemnite as 192 

reference material. Values of POC obtained by depth integration of the carbon density (mg C cm-3) 193 

of 0-25 cm sediment layers were converted to carbon stock per unit sediment (mg C cm-2), and 194 

averaged across n = 3 samples. We then averaged across all samples to yield a mean and standard 195 

deviation. 196 

                                                             
1 https://stackoverflow.com/questions/19735149/is-it-possible-to-plot-the-smooth-components-of-a-gam-
fit-with-ggplot2 
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 Estimates of N2 fixation were obtained from (Cole, 2011), which reports estimates of whole 197 

system nitrogen flux, including the plant itself, epiphytes, and the sediment. In the publication, the 198 

author reports N2 fixation rates as 3.9-5.8 g N m-2 y-1. From this range, we obtained an average by 199 

taking the difference and dividing by two, and adding it to the lesser value, yielding 4.85 g N m-2 y-1.  200 

 Estimates of epifaunal invertebrate biomass per unit area were obtained from a long-201 

running field survey at Goodwin Island, York River, Chesapeake Bay from 2004-2012 (Douglass et 202 

al., 2010). Ten grab samples per month collected epifauna over an area equivalent to 400 cm2 of 203 

bottom. Animals in each sample were size fractionated and biomass was estimated in mg ash-free 204 

dry mass using linear equations in (Edgar, 1990). These values were then averaged across all 205 

months and years to produce a mean and standard errors. 206 

 Juvenile blue crab abundance per unit area was obtained from (Ralph et al., 2013). Values 207 

were averaged across all sampling locations to yield approximately 24 individuals m-2, and 208 

standard deviations derived from standard error of the mean multiplied by the square root of the 209 

total sample size. A market price of $US 3418 per metric ton was obtained from NOAA Office of 210 

Science and Technology Annual Commercial Landing Statistics (NOAA Office of Science and 211 

Technology, 2014) for the most recent available year (2014), including both hard- and soft-shelled 212 

individuals. We assumed an average adult mass of 150 g, and a conservative 10% catchability 213 

arising from a combination of post-juvenile mortality and fishing effort. 214 

 Estimates of silver perch production were obtained from (Sobocinski & Latour, 2015). We 215 

used a mean value of 91.5 g m-2 y-1, and obtained standard errors from the range 77.8-117.8 g m-2 y-216 

1 using the range rule, as above. Information on the fishery harvest of approximately 5900 mt y-1 217 

from the period of 2004-2014 also came from (Sobocinski & Latour, 2015). 218 

 Finally, estimates of total economic loss were obtained from (Costanza et al., 2014), and as 219 

with all of the above estimates, assumes a ‘basic benefit transfer’ implying that the value of the 220 
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service remains consistent per unit area. These values integrate across a range of potentially 221 

economically valuable services including provisioning of food and materials, bioprospecting, 222 

regulation of air, water, and climate, nursery services, and cultural, recreational and spiritual 223 

benefits (de Groot et al., 2012). We used the 2011 valuation of $28,916 ha-1 y-1 for combined 224 

seagrass/algal beds, noting that seagrass beds often accumulate vast quantities of macroalgae. 225 

 For all values, we extrapolated to the total area lost multiplied by the period of time 226 

considered (30 years, if to present, or 22, if to the greatest observed loss). For nitrogen fixation and 227 

silver perch production, standard deviations were approximated by taking the difference of the 228 

range and dividing by 4, or the ‘range rule.’ 229 

Results 230 

From a peak in 1991, representing the maximum recovery post-Agnes, total eelgrass cover 231 

has declined by 29% to date (Fig. 2A). Moreover, the mean depth of eelgrass beds has declined by 232 

0.12 m, or 26%, with the majority of change occurring abruptly in 1997 (Fig. 2B). This change 233 

represents a greater loss of deep beds, which were reduced by 50%, versus shallow beds, which 234 

actually increased in cover by 35% (Fig. 2C). Eelgrass beds have therefore shifted 165 m closer to 235 

shore since 1984 (Fig. 2C). Together, these results depict a ‘habitat squeeze,’ with eelgrass 236 

retreating into shallow water refugia where conditions are still favorable for growth, and all but 237 

eliminated in many areas >0.5 m depth where it was once abundant. 238 

The widespread decline in eelgrass cover after 1991 appears to have been gradual until the 239 

early 2000s, after which point several acute diebacks occurred (Fig. 2A). The most extreme loss 240 

occurred in 2006, with a catastrophic 58% decline from the previous year, and a 78% decline from 241 

peak cover. Interestingly, eelgrass appeared to recover rapidly after these declines. Following the 242 

2006 die-back, eelgrass cover increased by 55% over the previous year, and by 2009, had reached 243 

cover exceeding that observed immediately prior to the die-back. A similar scenario occurred in 244 
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2011, where a less severe but still substantial decline of 41% reached pre-die-back cover in less 245 

than two years. Our observations suggest eelgrass is responding to multiple drivers, one halting its 246 

recovery in the early 1990s and impacting eelgrass over the longer term, and another, more 247 

episodic driver beginning in the mid-2000s that relaxes enough to permit rapid recovery. 248 

To clarify the correlates of eelgrass cover, we constructed a generalized additive mixed 249 

model (GAMM) incorporating 10 spatial, temporal, and environmental variables that together 250 

explained 84.6% of the variance in eelgrass cover. Beyond the expected influence of space and time, 251 

Secchi depth (an indicator of water clarity), mean water temperature of the preceding summer, and 252 

their interaction were the only other significant predictors of eelgrass cover (P = 0.006 and P < 253 

0.001, P = 0.029, Fig. 3). 254 

Decreasing Secchi depth (i.e., reduced clarity) is predicted to reduce eelgrass cover (Fig. 255 

3A), and has declined by 30 cm since the beginning of the survey (Fig. 3B). Light is the principal 256 

factor governing eelgrass growth (Dennison, 1987), and our analysis confirms the long-running 257 

hypothesis that reduced water clarity is driving the long-term decline of eelgrass in Chesapeake Bay 258 

(Michael Kemp et al., 2004; Orth et al., 2010), and in many other locations (Giesen et al., 1990; Short 259 

& Wyllie-Echeverria, 1996). It also explains why deep beds have exhibited the strongest decline 260 

(Fig. 2C), as light penetration decreases exponentially with depth (Dennison, 1987). To confirm 261 

this, we re-fit GAMMs for each depth strata, and show that Secchi depth is the only significant 262 

predictor of eelgrass cover at depths >0.5 m (P = 0.02, Fig. S1).  263 

Increasing mean summer temperatures also reduced eelgrass cover, but only when 264 

exceeding ≈25°C (Fig. 3C), a well-described threshold for mortality in this species (Reusch et al., 265 

2005). Not only has the average summertime temperature increased from 24.9 to 26.4°C since 266 

1984, but the frequency of extreme mean temperatures (>28°C) has doubled in the last decade (Fig. 267 

3D), generalizing recent conclusions about the role of episodic heat events in driving localized 268 
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diebacks (Moore & Jarvis, 2008). Thus, warming is the most likely candidate behind more recent 269 

declines (Fig. 2A), particularly in shallow waters where light is not limiting (Fig. 2C). Indeed, 270 

GAMMs fit to individual depth strata show a significant effect of temperature only at intermediate 271 

and shallow depths (0-5 m, P = 0.008 and P = 0.04, Fig. S1). 272 

Most importantly, we show that temperature and clarity interactively reduce eelgrass cover 273 

beyond what is expected from either alone (Fig. 2c, d, Fig. 4). A 2°C increase in temperature, which 274 

is the low end of expectations for the Chesapeake Bay in the next 30 years (Najjar et al., 2010), 275 

would result in a further decline of 38%, holding all else constant. Similarly, if Secchi depth 276 

continues on its trajectory and is reduced by another 40% over the next 30 years, it would result in 277 

a further decline of 84%. However, combined changes in temperature and Secchi depth would 278 

result in an expected loss of 95%, or the near total eradication of eelgrass in the Chesapeake Bay. 279 

While these values are based only on our model, and do not integrate any biology or take into 280 

account continued management actions to reduce inputs into the Bay, it demonstrates potential for 281 

catastrophic losses as a result of the joint influence of these two stressors. 282 

Finally, from independent in situ measurements in Chesapeake Bay eelgrass beds, we show 283 

loss of eelgrass has likely had severe consequences for ecosystem functioning and the provision of 284 

services relevant to human well-being (Table 1). For example, the total loss of carbon in sediments 285 

is estimated at 693-1859 kt C. Given the current social cost of carbon (Domestic Policy Council, 286 

2013), this equates to an expected economic loss of $US 96.5 – 259 million. Similarly, loss of 287 

eelgrass is expected to lead to a reduction of 523-1403 million juvenile blue crabs. Assuming a 288 

conservative 10% harvestable yield and the 2014 market price (NOAA Office of Science and 289 

Technology, 2014), this equates to a total potential economic loss of $US 28.6 – 76.7 million, which 290 

is 1-2 years of the fishery. Similarly, the expected loss of silver perch equates to 10-20 years of the 291 

fishery (Sobocinski & Latour, 2015). In all, an independent and integrated measure of economic 292 
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valuation (Costanza et al., 2014) places the total potential economic loss as a consequence of the 293 

decline of eelgrass in Chesapeake Bay at $US 1.51-2.54 billion.  294 

Although these values are estimates extrapolated from small-scale data uninformed by the 295 

well-described variation in these services through time and space (Duffy et al., 2015), and therefore 296 

must be interpreted with caution, they represent the best available data for assessing the outcome 297 

of eelgrass decline for the ecological and economic well-being of the Chesapeake Bay. 298 

Discussion 299 

Since the early 1990s, we show that eelgrass abundance in Chesapeake Bay has undergone 300 

a steady deterioration, punctuated by periods of intense decline (Fig. 2a). We propose that the long-301 

term declines are a consequence of declining water clarity, and has all but eliminated eelgrass beds 302 

deeper than 1 m where light is already limiting (Fig. 2c, Fig. S1). As the influence of clarity was 303 

independent of nutrients or chlorophyll-a in our model,  we propose that its effect stems from 304 

increased sediment loading, resuspension, and dissolution of organic matter due to greater 305 

watershed development and urbanization (Gallegos, 2001; Michael Kemp et al., 2004). At the same, 306 

we demonstrate that increasing summertime temperatures are likely behind episodic declines in 307 

2005 and 2010, but are sufficiently sporadic to allow recovery (Fig. 2a). Critically, high 308 

temperatures appear to impact shallow beds more than deep ones (Fig. S2), suggesting that 309 

warming, and its interaction with clarity, is the most prominent threat for remaining eelgrass in 310 

Chesapeake Bay.  311 

Warming has two implications for the persistence of eelgrass in Chesapeake Bay. First, it 312 

has been shown that rising temperatures elevates respiratory load, increasing light requirements 313 

for photosynthesis to balance metabolic demand, and exacerbating the negative effects associated 314 

with decreasing clarity (Moore et al., 2012). Consistent with this hypothesis, we show a highly 315 

significant interaction between the two such that the strongest declines are expected when 316 
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temperature is maximal and Secchi depth is at its minimum (Fig. 4). Second, eelgrass propagates 317 

both sexually, via seeds, and asexually, via clonal growth. When local populations die-back as a 318 

consequence of heat stress, the seedbank from the previous year permits rapid recolonization. 319 

However, diebacks in two consecutive years would eliminate the seedbank, as eelgrass seedlings 320 

flower in the second year of growth, excluding any possibility of recovery (Jarvis & Moore, 2010).  321 

While eelgrass has stalled on its track of recovery since 1991, over the short-term it has 322 

actually increased in abundance (Fig. 2A). We note, however, that cover observed at any point 323 

during this survey is only a fraction of what it was prior to the 1970s (Fig. 1), and more critically, is 324 

now restricted to only the most nearshore areas (Fig. 2C). Losses prior to this survey are also 325 

known to have come from pulse events, namely storms and disease, and have generally recovered 326 

within a decade or two (Orth & Moore, 1983; Orth et al., 2010). In contrast, we demonstrate a 327 

strong anthropogenic component in driving the continued and contemporary decline of eelgrass 328 

through degradations in water quality, warming, and their interaction. Therefore, we temper 329 

optimism of this recent upswing, and caution that without continued intervention to mitigate 330 

human impacts, principally those that affect light availability, eelgrass is unlikely to even reach 331 

coverage observed in the early 1990s, let alone historical maximums. This point is critical 332 

considering those maximums have been used to set management targets for cover of underwater 333 

grasses in the polyhaline region of the Bay (Orth et al., 2010). 334 

Our study contributes to a general pattern of fragility among coastal ecosystems for which 335 

long-term regional records exist, including the Great Barrier and Caribbean coral reefs (Gardner et 336 

al., 2003; De’ath et al., 2012), kelp forests (Wernberg et al., 2016), salt marshes (Jefferies et al., 337 

2006), and mangroves (Fromard et al., 2004; Cavanaugh et al., 2014). It also provides the most 338 

spatially and temporally comprehensive assessment of the patterns and drivers of decline in any 339 

seagrass species, and for one the largest, most productive, and valuable estuaries in the world 340 

(Claggett, 2016). Most importantly, we generalize mechanisms of seagrass decline derived from 341 
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small-scale experiments and local observations to the scale of the entire Chesapeake Bay, 342 

principally sensitivity to declining water clarity and physiological intolerance to warming 343 

temperatures, as well as their interaction. This finding suggests that these mechanisms may be 344 

scale invariant, and that experiments conducted in other systems could be reasonably extrapolated 345 

to predict regional abundance of eelgrass elsewhere (Reusch et al., 2005). 346 

Instead of facilitating decline, as we demonstrate here, climate change has been shown to 347 

mediate turnover in foundational species, for example the replacement of marshes by mangroves in 348 

the southeastern US (Cavanaugh et al., 2014). In contrast with our study, there is no obvious 349 

candidate to supplant eelgrass in the Chesapeake Bay. Only one underwater grass coexists with 350 

eelgrass in the region, widgeongrass (Ruppia maritima), but it is generally restricted to shallow 351 

waters and so far has failed to establish in any abundance in areas vacated by eelgrass (Orth et al., 352 

2010). Rather, lost beds have by and large reverted to bare sediment, the least productive marine 353 

habitat (Duarte & Cebrián, 1996). Thus, the current crisis for eelgrass in Chesapeake Bay represents 354 

an almost total loss of functionality, echoing recent findings from systems such as coral reefs, where 355 

the transition to an algal-dominated state has reduced or eliminated many of the same habitat and 356 

provisioning services (Graham & Nash, 2013). 357 

Managers have long recognized that local-scale degradation of water clarity negatively 358 

affects many species of underwater grasses, not just eelgrass, from the Chesapeake Bay to the Gulf 359 

of Mexico, San Francisco Bay, and Australia (Giesen et al., 1990; Short & Wyllie-Echeverria, 1996; 360 

Orth et al., 2006; Waycott et al., 2009). However, few if any implement strategies that account for 361 

rising temperatures in attempting to avert losses due to reduced water quality, despite mounting 362 

evidence of temperature-induced diebacks (Waycott et al., 2009), even in places as far north as the 363 

Baltic Sea (Reusch et al., 2005). This failure may explain the accelerating decline of seagrass species 364 

over the last century despite increasing awareness and intervention (Waycott et al., 2009). Since 365 

climate change is a global phenomenon, we propose that managers must increase their water 366 
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quality targets at the local level to offset losses caused by global factors outside their immediate 367 

control. Indeed, our model predictions show that given sufficient water clarity, eelgrass can still 368 

persist in the face of increasing temperatures. Only by adopting such an integrative perspective can 369 

we protect and restore eelgrass in the Chesapeake Bay, and elsewhere. 370 
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Table 1: Loss of ecosystem services concurrent with loss of eelgrass. Values are means ± 1 SD, 498 

estimated based on change in eelgrass cover from its peak in 1991 to present, and to the maximum 499 

observed loss in 2006. 500 

Service Response 
Present loss 
(1991-2015) 

Maximum loss 
(1991-2006) 

Nutrient cycling Carbon stock (kt C) 693 ± 150 1859 ± 401 

 N2 fixation (kt N) 2.53 ± 0.25 4.25 ± 0.16 

Secondary production 
and export 

Epifaunal biomass (Mt) 141.1 ± 75.2 236.6 ± 126.1 

 Blue crab density  
(millions of juveniles) 

523 ± 600 1403 ± 1609 

 Silver perch biomass 
(kt) 

47.8 ± 5.2 80.2 ± 8.8 

Total economic loss Integrated value ($2011 
US) 

$1.51 billion $2.54 billion 

  501 
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Figure Legends 502 

Figure 1. Current (light green) and historical distribution (dark green) of eelgrass in 503 

Chesapeake Bay. Historical distribution is prior to 1971, immediately preceding Tropical Storm 504 

Agnes. 505 

Figure 2. Thirty-year trends in eelgrass cover and distribution. (A) Total cover (hectares) has 506 

been decreasing since 1991. (B) Mean depth of eelgrass beds has been decreasing since 1996. (C) 507 

The greatest loss has occurred in the deepest beds (Deep = >0.5 m, Mid = 0-0.5 m, Shallow = 0 m). 508 

(D) Eelgrass has shifted 165 m closer to shore since 1984. 509 

Figure 3. Significant predictors of eelgrass cover based on a generalized additive mixed 510 

model. (A) Predicted eelgrass cover increases with increasing Secchi depth, a measure of water 511 

clarity. Values on the y-axis represent the partial smoothed residuals accounting for the influence of 512 

the other predictors in the model. Shaded areas indicate 95% confidence intervals. (B) Water 513 

clarity has decreased by about 0.4 m over the past 30 years. Line denotes the predicted fit ± 95% 514 

CIs from simple linear regression. (C) Predicted eelgrass cover decreases with increasing summer 515 

temperature. (D) Mean summer temperature has increased over the past 30 years, with a more 516 

recent rise in extreme temperature events (>28 °C, triangles). 517 

Figure 4. Interaction surface between temperature and Secchi depth from a generalized 518 

additive mixed model. Eelgrass is predicted to decline when temperature is high and Secchi depth 519 

is low (bottom right). Values on the y-axis represent the partial residuals of the tensor product (ti) 520 

smoother accounting for the influence of the other predictors in the model.  521 
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Figure 1  523 
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Figure 2  525 
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Figure 3  527 
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Figure 4  529 
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 530 

Figure S1. Significant predictors of eelgrass cover for multiple depth strata. Values are 531 

predicted fits from generalized linear mixed effects models. Shaded areas depict 95% confidence 532 

intervals, and are only shown for the significant predictors (P < 0.05). Deep = >0.5 m, Mid = 0-0.5 m, 533 

Shallow = 0 m Mean Low Water. (A) Only the deepest beds (>0.5 m) had a significant relationship 534 

with Secchi depth. (B) The intermediate and shallow beds (0-0.5 m) had a significant relationship 535 

with mean water temperature of the preceding summer.  536 
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 537 

Figure S2. The locations of eelgrass beds (red) and water quality monitoring stations (black 538 

dots) used in the analysis. Individual shaded polygons represent subregions used in the analysis. 539 

Shading indicates the larger regions of the Chesapeake Bay used as a random effect (Eastern Shore, 540 

Western Shore, Tangiers Island). 541 
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