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We present a new supertree method that enables rapid estimation of a summary tree on the scale of

millions of leaves. This supertree method summarizes a collection of input phylogenies and an input

taxonomy. We introduce formal goals and criteria for such a supertree to satisfy in order to transparently

and justifiably represent the input trees. In addition to producing a supertree, our method computes

annotations that describe which grouping in the input trees support and conflict with each group in the

supertree.

We compare our supertree construction method to a previously published supertree construction method

by assessing their performance on input trees used to construct the Open Tree of Life version 4, and find

that our method increases the number of displayed input splits from 35,518 to 39,639 and decreases the

number of conflicting input splits from 2,760 to 1,357. The new supertree method also improves on the

previous supertree construction method in that it produces no unsupported branches and avoids

unnecessary polytomies.

This pipeline is currently used by the Open Tree of Life project to produce all of the versions of project's

"synthetic tree" starting at version 5. This software pipeline is called "propinquity". It relies heavily on

"otcetera" - a set of C++ tools to perform most of the steps of the pipeline. All of the components are

free software and are available on GitHub.
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ABSTRACT11

We present a new supertree method that enables rapid estimation of a summary tree on the scale

of millions of leaves. This supertree method summarizes a collection of input phylogenies and an

input taxonomy. We introduce formal goals and criteria for such a supertree to satisfy in order to

transparently and justifiably represent the input trees. In addition to producing a supertree, our method

computes annotations that describe which grouping in the input trees support and conflict with each

group in the supertree.
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We compare our supertree construction method to a previously published supertree construction method

by assessing their performance on input trees used to construct the Open Tree of Life version 4, and find

that our method increases the number of displayed input splits from 35,518 to 39,639 and decreases

the number of conflicting input splits from 2,760 to 1,357. The new supertree method also improves

on the previous supertree construction method in that it produces no unsupported branches and avoids

unnecessary polytomies.
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1 BACKGROUND28

The Open Tree of Life project seeks to build a platform for summarizing what is known29

about phylogenetic relationships across all of Life (Hinchliff et al., 2015). One primary goal30

of the project is to build a summary tree from a comprehensive taxonomic tree and a set31

of published trees. The summary tree is intended to transparently and justifiably represent32

phylogenetic information from these inputs. The taxonomic tree is derived from the Open33

Tree Taxonomy (OTT hereafter, publication in preparation). The phylogenetic inputs are34

published trees that have been curated to align the tips to OTT and to identify the correct35

rooting (see McTavish et al. 2015 for further details of the curation tools). Unlike OTT, these36

phylogenetic trees do not include all leaf taxa. The inputs (taxonomy and phylogenetic trees)37

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2538v1 | CC BY 4.0 Open Access | rec: 18 Oct 2016, publ: 18 Oct 2016



and the output summary supertree are all rooted. Here we describe the software pipeline38

(propinquity) that summarizes and integrates these smaller source trees and the taxonomy39

tree into a single supertree and the noteworthy tools for manipulating and solving supertrees40

in the otcetera package.41

1.1 Goals42

Translating the goals of the Open Tree of Life’s summary tree into an explicit set of criteria43

is not trivial. The summary supertree should represent the phylogenetic information from44

source trees in a transparent and justifiable fashion. We would like to allow users to correct45

errors in the supertree by improving the input information rather than requiring modification46

to the supertree algorithm. The pipeline was designed to create a tree which:47

1. displays no unsupported groups,48

2. defers to groupings from higher ranked trees in the case of conflict,49

3. contains no unnecessary polytomies, and50

4. displays as many groupings from input trees as possible.51

These goals are described more fully below. In order to accomplish transparency and52

justification, our pipeline also produces annotations files with information about conflict and53

support.54

1.1.1 Goal 1: Each grouping is supported by at least one input55

We require that each edge in the supertree be supported by at least one input tree edge.56

In addition to aiding interpretability, this requirement keeps the supertree from arbitrarily57

representing information that comes from none of the input trees. Of course, in a supertree58

analysis, the full tree will imply some relationships for subsets of the taxa that are not found59

in any input tree. So, the meaning of “supported by” needs some clarification.60

Notation, terminology, and the definition of “supported by” Let S denote a supertree, and61

Ti denote the ith input tree. The set of taxa that are mapped to the tips of the tree Ti is62

L(i). S(i) denotes the summary tree induced by tip nodes that are mapped to taxa in L(i)63

and the most recent common ancestor of those leaves, and any other node that is an ancestor64

of some but not all of these leaves. We say that edge j of the supertree is compatible with an65

input tree, Ti if edge j either is not included in the induced tree S(i) or none of the edges in66

Ti are in conflict with edge j in the induced tree.67

We can consider whether or not a node in an input tree is displayed by S. For any such68

node j there is a set of taxa that are mapped to the tips that descend from the node. This69

set of taxa is the “cluster” of taxa corresponding to node j; it can be denoted L(i, j). It will70

also be referred to as the “include set” of the node. The “exclude set” of j in Ti is the set of71

taxa in L(i) but not in L(i, j). If the cluster of taxa for any supertree node in S(i) is identical72

to L(i, j), then we say that S displays node j of Ti. We say that the summary tree displays73

edge j if the summary tree displays the child node of edge j. Operationally, we can find the74

most recent common ancestor (MRCA) node of L(i, j) in S; the summary tree displays j75

if and only if that MRCA node is not an ancestor of any member of the exclude set of j.76
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(a) Input tree 1 (b) Input tree 2

(c) Summary tree (d) Summary tree

Figure 1. An example demonstrating that our definition of “supported by” does not imply
entire composition of a grouping. (a) and (b) show 2 input trees and (c) and (d) depict trees
that each display each of the groupings in the input trees and which have no unsupported
nodes. The BUILD algorithm (section 8) would choose tree (d) that floats taxon E closer to
the root.

We say that node k of the summary tree is supported by node j in Ti if the summary tree77

displays node j, but if we contracted edge that separates k from its parent then the modified78

summary tree would no longer display node j.79

Note that stating that a node in the summary tree is supported by an input does not80

imply that every descendant of that node must be present in the input nor that every taxon81

that is not a descendant must be excluded in order to display the node. Consider the problem82

shown in figure 1; panels (1a) and (1b) show two input trees. Because taxa A and E do83

not occur together in either input, there is some uncertainty about where to place them.84

By our terminology, either output shown in (1c) or (1d) would be characterized as a tree85

that displays all of the input groupings and which has no unsupported groups. Clearly these86

criteria are insufficient to specify a unique solution, and users of the output tree need to87

be aware that it may be possible for some taxa to “float” to multiple positions. In figure 1,88

taxon E floats to different positions in (1c) and (1d), whereas taxon A does not.89

One of our aims in supertree construction is to minimize the amount of information in90

the supertree that does not come from input trees. We permit information that comes from91

combinations of input trees, but not any single input tree. However, we seek to exclude92

information that comes from none of the input trees. This motivates the criterion of not93
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(a) Input tree 1 (b) Input tree 2 (c) Input tree 3

(d) Summary tree (e) Summary tree (f) Summary tree

Figure 2. An example of 3 input trees shown in (a), (b), and (c) which do not conflict in a
pairwise manner, but cannot be jointly displayed in one tree. The 3 solution trees are shown
in panels (d-f). Panel (d) for ranking the tree in (c) lowest. Panel (e) shows the solution if
the tree in (b) has the lowest rank. Panel (f) shows the solution if the tree in (a) is ranked
lowest. Each of the solutions displays 2 of the 3 input groupings.

having any unsupported edges, since these edges could be removed without decreasing the94

support from any input tree.95

1.1.2 Goal 2: Tree ranking96

An appealing goal for the summarization would be to find the supertree that displays the97

largest number of input tree edges. As discussed in Huson et al. (pages 92 and 131; 2010) the98

maximum compatibility problem is known to be NP -hard via a reduction to Max-Clique99

(Karp, 1972). In addition to being computationally daunting, this formulation of the supertree100

problem does not provide biologists who use the summarization tool with an obvious avenue101

for fixing perceived problems with the summary tree. For example, a grouping that a biologist102

expected may not be present in the supertree, but it may not conflict with any of the input103

groupings which are displayed. This can happen because displaying both node a from T1 and104

node b from tree T2 in a summary tree may only be possible by displaying a grouping that is105

present in no input tree. All other factors being equal, if this implied grouping conflicts with106

input node c in tree T3, then c will not be displayed in the summary tree, but a biologist will107

not necessarily know how to fix this problem. One solution is to use a ranking of groupings. If108

an expert were quite confident in the c grouping, then she could assign that input node a high109

ranking. A supertree that used ranks could then recover this grouping even if its inclusion110

did not increase the total number of input nodes that are displayed by the summary tree.111

Figure (2) shows an example of 3 input trees for which there is no pairwise incompatibility,112

but no solution displays all of the input groups. Alternative rankings of inputs can result in113

one of three summary trees shown in panels (d-f).114
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Any approach to supertree construction must deal with the need to adjudicate between115

conflicting input trees. We choose to deal with conflict by ranking the input trees, and116

preferring to include edges from higher-ranked trees. The merits of using tree ranking are117

questionable because the system does not mediate conflicts based on the relative amount of118

evidence for each alternative. However, it is a reasonable starting point. It has the benefits119

of making it easy to see why some groups are included or not (transparency), and it allows120

simpler and cleaner algorithms.121

Note that if some edge c conflicts with a higher-ranked edge b, then c may still be included122

in the supertree. This can occur when the higher ranked edge b conflicts with a yet-higher123

ranked edge a, and thus b is not included. In that case, it will be possible for c to be124

represented in the summary tree. Thus, the fact that the summary tree displays an input125

edge does not imply that none of the higher ranked input trees conflict with that edge.126

In order to produce a comprehensive supertree, we also require a rooted taxonomy tree in127

addition to the ranked list of rooted input trees. Unlike other input trees, the taxonomy tree128

is required to contain all taxa, and thus has the maximal leaf set. We make the taxonomy129

tree the lowest ranked tree. In our current formulation, the taxonomy tree is also unique130

in that the taxonomy is the only source of taxonomic names. Each node in the taxonomy131

tree corresponds to a named group. Taxonomic groups may have the same name, but each132

node in the taxonomy tree is identified by a unique number (its OTT ID). Taxonomic groups133

are identified in the summary supertree by finding a branch (or “node”) that has exactly134

the same include|exclude relationship. The taxonomy supertree can meaningfully possess135

degree-two nodes. Although these nodes can be removed without affecting the relationships136

of the leaves, they do represent nested taxonomic groups that contain exactly one subgroup.137

The taxonomy is also used to determine which tips are terminal taxa.138

1.1.3 Goal 3: Contain no unnecessary polytomies139

The supertree should be as resolved as possible - in other words, it should have no unnecessary140

polytomies. Thus, for each input edge that is not included, we can point to a reason for141

non-inclusion by showing that the input edge conflicts with some edge of the summary tree.142

Note, that the requirement to not display unsupported groups leads to some “necessary”143

polytomies. For example any resolution of the polytomy shown in figure (2e) would continue to144

display the same two input groups. However, the additional grouping would be unsupported,145

because the unresolved tree already displays both input groups. Thus, the unresolved tree146

would be preferred by our criterion. However, collapsing either internal edge of the tree147

shown in figure (2d) would result in a tree which displays only one input grouping. This tree148

would contain an unnecessary polytomy, because the polytomy would permit refinement to149

the depicted tree which displays more input groupings.150

1.1.4 Goal 4: Display as many input nodes as feasible151

We also seek to construct a supertree that represents as many input tree nodes as possible.152

Since non-included input tree nodes must conflict with the supertree (or they would have153

been added), this criterion is the same as minimizing the number of input nodes that conflict154

with the supertree.155
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1.1.5 Summary of goals156

These optimality criteria help to define what it means for the supertree to represent the157

input trees, as well as justifying and explaining why various features of the supertree exist.158

The pipeline described below produces a supertree that satisfies the first three optimality159

criteria and is a greedy approximation of a solution to the fourth goal. It is not guaranteed160

to display as many input nodes as possible. Even if the summary tree does accomplish goal161

4, it is not necessarily a unique optimum. The pipeline takes a greedy approach to producing162

a summary tree by attempting to add groupings from the trees in order of the trees ranking.163

This can be viewed as a greedy solution to the problem of finding the tree with the maximum164

sum of displayed groups’ weighted scores criterion (MSDGWS, described in the appendix165

A) where the weights from the trees are so extreme that displaying one group from a highly166

ranked tree is preferred to displaying all of the groupings from lower ranked trees.167

2 DESCRIPTION OF THE SUPERTREE METHOD168

2.1 Preprocessing steps169

Propinquity was designed to function as a part of the Open Tree of Life software architecture,170

so the first few steps of the pipeline involve transforming artifacts from that project into a set171

of rooted trees and a phylogenetic taxonomy. The phylesystem API (McTavish et al., 2015)172

of Open Tree allows users to curate published estimates of trees and create ranked collections173

of these trees. Early steps in the propinquity pipeline manipulate the phylogenetic input174

trees to improve their usability and reliability. The first steps of the pipeline (see Figure175

3) collect a list of trees to include (in the phylo_input subdirectory) and store copies of176

these files (in the phylo_snapshot subdirectory) to make it easier to replicate the operation177

(because the collection of trees and the tree files change due to curation).178

2.1.1 Pruning questionable taxa from the taxonomy179

OTT is a hierarchy of taxonomic names that implies a phylogenetic taxonomy. An OTT ID180

has a position in the hierarchy, a taxonomic name, and set of references to the same name181

in different taxonomies. In addition, the ID may also be associated with a set of flags that182

can indicate that the taxon may be questionable. These flags can either encode information183

taken from an input taxonomy (for example, taxa the NCBI refers to as “unplaced” are184

assigned an “unplaced” flag) or can arise because of some form of conflict during taxonomy185

construction (for example, if two taxonomies disagree on the name for a taxon, then the186

taxon can be merged and the name will be retained without any descendants; this name will187

have an OTT ID, but will be flagged as “barren”). Propinquity prunes the OTT down to188

a more reliable taxonomy by pruning off parts of the tree that are flagged with suspicious189

flags. The set of flags that lead to a subtree of the taxonomy being pruned is under the190

control of the user (the set of flags used by the Open Tree of Life project can be found in191

the config.opentree.synth file in the propinquity repository). For the purpose of the rest192

of the pipeline, an OTT ID that has been pruned from the taxonomy will be treated in the193

same way as invalid OTT ID. The output of this step is stored in propinquity’s cleaned_ott194

subdirectory; this operation only needs to be performed when the OTT or the pruning flags195

change.196
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~/.opentree

implied full config

config

OTT Flags

collection_export.py

suppress_by_flag

prune_to_clean_mapped.py

OTT phylesystem

export_studies_from_collection.py

collection

cleaned_ott

otc-nonterminals-to-exemplars

otc-name-unnamed-nodes

phylo_input

phylo_snapshot

cleaned_phylo

otc-annotate-synth

exemplified_phylo

otc-uncontested-decompose

subproblems

otc-solve-subproblem

subproblem_solutions

otc-graft-solutions

grafted_solution

labelled_supertree

annotated_supertree

treemachineLITE

Figure 3. Organization of the propinquity pipeline. Each colored pentagon labels a program
(blue for otcetera-based tools and red for python scripts in the propinquity or peyotl
repository) that performs the important operations in each step; the number before the tool
name refers to the section in this paper that describes the operation. The output of each
step corresponds to a subdirectory of the propinquity system which will hold the output
artifacts for the step. Ovals are resources that are required (OTT and Open Tree’s
phylesystem repository). White pentagons are user-controlled inputs.
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2.1.2 Pruning problematically mapped tips from input phylogenetic trees197

Frequently, phylogenetic estimates are rooted using the outgroup criterion, which is an198

assumption about the monophyly of the ingroup taxa. Because the rooting of the branches199

in the outgroup portion of the tree is often uncertain, data curators can identify the ingroup200

node of the tree; propinquity uses this annotation to prune off the outgroup taxa.201

Frequently, not all tips in a phylogenetic input will have been mapped to a taxon in the202

current version OTT. Unmapped leaves are pruned from each phylogenetic input. In some203

cases, the OTT has changed and a taxon has been unambiguously mapped to another taxon.204

This can occur when multiple species in one version of the taxonomy are “lumped” into a205

single taxon in a subsequent version. OTT maintains a set of “forwarding” statements about206

IDs that have been removed but can be mapped to an existing taxon; propinquity uses these207

statements to update the OTU mapping of input trees.208

Finally some leaves are mapped to taxa that occur more than once in the tree, or taxa209

that have ancestors represented as tips of the tree. In these cases, leaves are pruned to assure210

that tips are mapped to unique taxa that are not nested. In the case of nested taxa, the211

tip mapped to the higher level taxon is pruned, and one of the lower level tips is retained.212

In the case of duplicate occurrences of an OTT taxon, propinquity checks to see if a data213

curator has selected one of the taxa to be the exemplar for the taxon. If this selection has214

not been made, then the node with the lexicographically lowest ID is chosen to exemplify the215

taxon. This choice is arbitrary, but repeatable. The pruned phylogenetic inputs are stored in216

a cleaned_phylo subdirectory of propinquity.217

2.1.3 Exemplifying tips mapped to higher taxa218

Many input trees have tips that are not terminal taxa, but higher-order taxonomic groups.219

It is not clear how to interpret a tip in a phylogenetic estimate that is labeled with the220

name of a higher taxon. Several scenarios can lead to these cases: the data for the tip221

could have been created by merging a chimeric set of character scores from constituent taxa;222

the species sampled may not have been identified to the lowest taxonomic rank; or the223

researcher may simply have used a higher taxonomic name because he/she assumed that the224

taxon is monophyletic and the higher level name would be more recognizable. Rather than225

allowing the ambiguity about interpretation of the higher-taxon mapped tips to propagate226

throughout the entire pipeline, we transform the input trees by replacing higher taxa at tips227

with a set of terminal-taxon exemplars for each taxon. One approach would be to simply228

determine all descendant terminal taxa and attach them as children of the problematic tip.229

However, this would create a clade rather than a tip; subsequent steps in the supertree would230

interpret the clade as a claim of monophyly for the taxon. The input tree may not have tested231

monophyly of the clade, so this interpretation is unwarranted. We avoid it by attaching232

exemplar taxa as child nodes of the higher taxonomic tip but then collapsing the edge between233

the former tip node and its parent. Thus, if A is a non-terminal taxon containing terminal234

descendants a1 and a2 and B is a non-terminal taxon containing terminal descendants b1235

and b2 we would replace the subtree ((A,B), c) with ((a1,a2, b1, b2), c) instead of the subtree236

(((a1,a2)A,(b1, b2)B), c).237

If a taxon is only present in the taxonomy (not in any of the input trees), then it can be238

pruned from the taxonomy for the construction of the supertree and then grafted back on to239

the summary tree later. Performing this pruning reduces the size of the supertree problem,240
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(a) Tree 1 (b) Tree 2 (c) Taxonomy Tree

Figure 4. Input trees and taxonomy tree

reducing the running time of the pipeline. Similarly, when we expand a higher taxon in the241

exemplification step, we can omit members of the taxon if they do not occur in any of the242

phylogenetic inputs. If there are no members of the higher taxon sampled in any other input243

tree, then we arbitrarily choose one terminal taxon to represent the higher taxon. During244

the exemplification step, a tool from otcetera (otc-nonterminals-to-exemplars) reads the245

taxonomy and all of the “cleaned” phylogenetic estimates from the previous step. Reading246

all of the inputs is necessary to assure that each higher taxon is replaced with the same set247

of exemplars regardless of which tree the higher taxon occurs in, and that the exemplars for248

a higher taxon is the union on the set of descendant terminal taxa that have been sampled249

in a phylogenetic input. Figure 5 shows an example of how the trees in figure 4 would be250

exemplified.251

We prune the taxonomy by removing tips that are not present in any input tree to produce252

the pruned taxonomy Tp. The tips pruned in this step will be grafted back onto the skeleton253

of the summary tree in a subsequent step. A terminal taxon that is represented only in the254

taxonomy can be pruned and then regrafted onto the solution without affecting which nodes255

are displayed by the final summary tree. Thus, this procedure does not impede our ability to256

find a good summary tree. Removing these tips produces a smaller input to the rest of the257

pipeline, which reduces running times. After producing the set of “exemplified” phylogenetic258

inputs, this tool exports a pruned down version of the taxonomy that only contains tips that259

are present in at least one phylogenetic input.260

2.2 Summary tree construction261

After the preprocessing steps, the inputs have been converted to a set of rooted phylogenetic262

estimates in which each leaf is mapped to a terminal taxon in the exemplified taxonomic tree.263

The goal of the remainder of the pipeline is to construct a tree that maximizes the sum of264

displayed groups’ weighted scores (MSDGWS) criterion. This is accomplished in four steps:265

(1) dividing the full problem into subproblems based on uncontested taxa, (2) constructing a266

summary solution for each subproblem by greedily creating a maximally-sized list of groupings267

that can all be displayed simultaneously; (3) grafting the subproblem solutions into a single268
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(a) Tree 1 (b) Tree 2 (c) Pruned taxonomy tree TP

Figure 5. Exemplified input trees and taxonomy tree from figure 4. E in tree1 is exemplified
by E1. Pruned taxa are E2, F2, and D. The taxa E and F are retained as monotypic taxa in
the pruned taxonomy TP , but are not shown in panel c. The red edge in the pruned
taxonomy tree is an uncontested higher taxon in the exemplified taxonomy (as explained in
section 2.2.1)

supertree; and (4) grafting (or “unpruning”) the taxonomy-only taxa onto the solution to269

produce a complete summary tree.270

2.2.1 Subproblem decomposition271

For the sake of efficiency, propinquity uses a divide-and-conquer approach to construct the272

supertree. Subproblems are identified by searching through the taxonomy tree to find any273

taxa that are not contested by any single input tree. Here we say that input tree Ti contests274

taxon x in the pruned taxonomy, if x is not monophyletic in any resolution of tree Ti. Thus,275

polytomies in an input tree are treated as soft polytomies, and a taxon is not contested276

merely because it is not displayed by an input tree.277

This operation is performed by the otc-uncontested-decompose tool in otcetera; see278

appendix B for a description of the algorithm. The output is a series of subproblems, each279

of which corresponds to a slice of the taxonomy and corresponding slices through each280

relevant input tree. Each uncontested non-terminal and non-root taxon will show up in two281

subproblems: it will be the root of its own subproblem and it will be tip in the subproblem282

that covers the next slice deeper in the tree. The red edge in figure 5c highlights the taxa283

that are not contested by the input shown in 5; figure 6 shows the subproblems that would284

be emitted as a result of this set of inputs. The supertree operation of Hinchliff et al. (2015)285

also used this otcetera-based decomposition step.286

Note that decomposition into uncontested groups does not necessarily allow us to find287

the tree that maximizes the MSDGWS score. For example, see figure 7; that example is288

a variant of the situation shown in figure 2. In this case the groupings from each of the289

phylogenetic estimates, shown in panels 7a and 7b, could be displayed. That solution is290

shown in panel 7d, it displays two of the three input splits, but is optimal because no solution291

displays all three input groupings and the depicted solution displays the two highest ranked292

groupings. However, neither of the trees shown in panels 7a or 7b contest the taxon B shown293

in the taxonomy panel 7c. Thus, when using our decomposition, the branches leading to taxa294

B1 and B2 in the input phylogenetic trees would be sliced during the decomposition, and295

10/23

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2538v1 | CC BY 4.0 Open Access | rec: 18 Oct 2016, publ: 18 Oct 2016



(a) Subproblem ABCD

(b) Subproblem root

Figure 6. Subproblems generated from the exemplified trees shown in figure 5. A trivial
statemen from the first tree that a taxon labelled ABCD is sister to E has been omitted,
because trees with only 2 leaves do not contain phylogenetic information.

relabeled to refer to taxon B. This taxonomically-informed interpretation of the inputs views296

the two phylogenetic inputs as in conflict; so the solution returned by propinquity would297

defer to the higher ranked tree. The tree shown in panel 7e would be returned. This example298

arises from the fact that the trees in 7a and 7b jointly contest taxon B, but neither contests299

taxon B when the trees are considered in isolation.300

Despite the fact that the use of otc-uncontested-decompose can worsen the final score301

of the summary tree, we use this approach in propinquity because it makes the construction302

of the tree faster and it is easy for users to correct issues caused by incorrect taxa being303

constrained to be monophyletic. By adding a tree (even a low-ranked tree) that contests304

a taxon to the corpus of input trees , then the next synthetic tree will no longer consider305

the taxon to be uncontested. Thus the procedure encourages curation of more phylogenetic306

inputs as a means of improving the summary tree.307

2.2.2 Subproblem solution308

When solving sub-problems, we sequentially incorporate splits from trees in order of ranking,309

retaining splits that are compatible with the current set of splits (Alg 1). The order of310

splits from the same tree is not specified by this approach, and we incorporate splits using311

one of the possible post-order traversals of the tree. We make use of the BUILD algorithm312

(Aho et al., 1981) to assess compatibility. This strategy avoids unnecessary polytomies,313

since splits of later input trees are only rejected from the summary supertree if they conflict314

with higher-priority splits. Finally, we use the BUILD algorithm to construct a supertree315

displaying all of the splits in the set of compatible splits. Using the BUILD algorithm to316

construct the subproblem summary tree satisfies criterion 3, because trees from the BUILD317

algorithm do not contain unsupported branches.318

The BUILD algorithm as originally stated by Aho et al. (1981) applies to a collection of319
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(a) (b) (c)

(d) (e)

Figure 7. An example with three input trees: the highest ranked phylogenetic input panel
(a), the second ranked phylogenetic input (b), and the taxonomy in panel (c). The summary
tree in panel (d) has the highest possible score, but the summary shown in panel (e) would
be returned from the pipeline that uses uncontested taxon decomposition.

Algorithm 1 ConsistentSplitsFromRankedList

Require: An ordered list of M splits, R= [R1,R2,R3, . . . ,R3, . . . ,RM ]
C = [R1]
for each split i in [2,3 . . .M ] do

T ← C+Ri . where ‘+’ means concatenating 2 lists
if BUILD(T ) does not return null then

C ← T

end if

end for

return C
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(a) Solution to subproblem ABCD (b) Solution to subproblem root

Figure 8. Solutions to the subproblems depicted in figure 6

rooted triplets. Instead of decomposing each input split into a collection of rooted triplets, we320

instead modify the BUILD algorithm to apply directly to larger rooted splits. The modified321

BUILD algorithm constructs a tree compatible with a collection of rooted splits, and returns322

failure if such a tree does not exist. This modified algorithm recovers the original BUILD323

algorithm if only rooted triplets are supplied as input. When larger splits are supplied as324

input, the results are the same as if each was was decomposed into all implied triplets. The325

modified build algorithm has order O(N2 + N2E + NL) where N is the number of splits326

passed in, E is the average size of the exclude group, and L is the total number of leaves. This327

simplifies to O(N2) if all splits are triplets. In this approach splits are either entirely retained328

or entirely discarded - consistent rooted triplets from conflicting splits are not retained.329

However, when unpruning taxonomy-only taxa (see below), we make an attempt to break330

ties in a way that preserves some partial information from conflicting splits by attaching taxa331

from conflicting splits at their common ancestor. Figure 8 shows the solutions that would332

be obtained by applying our modified version of the BUILD algorithm to the subproblems333

shown in figure 6.334

2.2.3 Solution grafting335

To produce a tree that spans all of the taxa sampled in the exemplified set of336

input trees, we graft the subproblem solutions into a single tree (stored as the337

grafted_solution/grafted_solution.tre by propinquity). Recall that each non-root338

uncontested taxon used for decomposition occurs as a leaf taxon in one subproblem and as a339

root taxon in one other subproblem. Thus, the grafting operation simply consists of reading340

all of the subproblem solutions into memory and then merging the nodes that are labeled341

with the same OTT ID.342

2.2.4 Unpruning unsampled taxa343

As described above, taxa that do not have any descendants in a sampled phylogenetic input344

are pruned from the taxonomy for the sake of efficiency. These taxa are reattached by an345

“unpruning step.” For those taxa that are compatible with the grafted tree, this step simply346

amounts to adding any unsampled taxonomic children to the node that represents the taxon347

in the grafted solution tree.348

However, a taxon may be incompatible with the grafted solution; we refer to such taxa349

as “broken taxa.” If a broken taxon contains some unsampled children, it is not clear350

where these unsampled children should be attached to the grafted solution. One approach351

13/23

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2538v1 | CC BY 4.0 Open Access | rec: 18 Oct 2016, publ: 18 Oct 2016



Figure 9. Grafted solution. The nodes E and F are monotypic here, but will end up being
polytypic after unpruning is performed.

would be to mimic the application of Algorithm 1 to the full (unpruned) taxonomic tree.352

This would be equivalent to collapsing each edge in the taxonomy that attaches a broken353

taxon to its parent. The unsampled children of broken taxa would attach at their least354

inclusive ancestral taxon which is unbroken. In cases of several adjacent taxa are bro-355

ken, this can lead to polytomies of very high degree deep in the tree. This can make the356

summary tree difficult to navigate. Thus, we have adopted an alternative solution. The357

otc-unprune-solution-and-name-unnamed-nodes tool from otcetera attaches the unsam-358

pled children of a broken taxa to the grafted solution as children of the MRCA of the sampled359

children.360

Figure 10 illustrates the two approaches to unpruning. Taxa G, M, and R (Fig 10a) are361

broken because they conflict with the grafted solution (Fig 10b); among these, only taxon362

R has children that were unsampled in the grafted solution. Ignoring all broken taxa when363

unpruning would cause the unsampled children (R4, R5, and R6) to attached directly at taxon364

N (as in the tree shown in Fig 10c), because that is the least inclusive unbroken ancestor of365

R. The tree illustrated in Fig 10d shows the tree that would be produced by propinquity; the366

children of the broken taxon R and instead attached at the MRCA of sampled children (R1,367

R2, and R3). Their attachment point does not correspond to any taxon in the taxonomic368

tree.369

2.2.5 Naming unnamed nodes370

In order to annotate each node in the summary supertree, it is first necessary that each node371

have a unique identifier. Nodes whose include group correspond exactly to the include group372

of a node in the taxonomy are given the same identifier as the corresponding taxonomy node.373

These identifiers are of the form ottX where X is an integer OTT ID. We generate a label of374

the form mrcaottX1ottX2 for an non-taxonomic node n where X1 and X2 are the OTT IDs375

for two leaves, n is the MRCA of these leaves, and X1 is the numerically smallest OTT ID376

that is a descendant of n, and X2 is the next the smallest ID that can be chosen to designate377

n as the MRCA. Because new taxa added to OTT will be given higher OTT IDs, the use of378

the lowest numbered OTT IDs as designators increases the chance that a node label can be379

encountered in a subsequent version of the tree (though the taxonomic content may change).380

The deterministic choice of designators also makes the labeling insensitive to branch rotation381
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(c) Unpruned tree - broken taxa removed
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(d) Unpruned tree with MRCA-attachment

Figure 10. Two approaches to unpruning. Taxa G and R in the taxonomy (a) are broken
because they conflict with the grafted solution (b). Removing these broken taxa from the
taxonomy before unpruning leads to taxa R4, R5, and R6 being attached directly at taxon
N, as in tree (c). In tree (d), the children of the broken taxon R are instead attached at the
MRCA of R1, R2, and R3. Our method follows the second approach.
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Figure 11. Unpruned tree with internal taxa. Nodes E2, F2, and D have been re-added to
the tree. The nodes E and F are no longer monotypic.

of the grafted solution tree.382

2.2.6 Annotation383

To reveal the connections between the groupings found in the a summary supertree and384

the input trees, propinquity uses a few Python scripts and the otc-annotate-synth tool385

from otcetera to create an annotations file describing the pipeline used and the connections386

between phylogenetic information in the inputs and the summary. The JSON file produced387

by otc-annotate-synth encodes a “nodes” property that holds a mapping between a node388

name for the summary tree (using the naming convention described in the previous section)389

and a node provenance object that categorizes the relationship between the node and the390

inputs. The node provenance object for node x uses several properties to categorize the391

relationship between the node and the inputs; each property in the node provenance object392

maps to a structure storing the tree ID and node IDs for the input tree nodes.393

Conceptually, this annotation operation is equivalent to considering every node j in394

each input tree i and the summary tree node x. Because the vast majority of nodes in the395

input studies will be compatible but not directly relevant to node x we do not list all of the396

compatible groupings. If node x is not included in the induced tree S(i), then none of the397

nodes of tree i will be referred to in the annotations for node x. Even if x is included in S(i),398

many of the nodes of Ti will be compatible with x while being relevant to other parts of the399

summary tree. The only input nodes listed for node x are with rooted taxon bipartitions400

which conflict with, are displayed by, or are resolved by the the rooted taxonomic bipartition401

associated with node x. All input nodes that cannot be displayed by any supertree that402

contains x are stored in a “conflicts_with” property of the node provenance object. If403

node j of Ti is displayed by the summary tree and x is part of the path of S(i) that displays404

the split between descendants of j and other taxa, then a reference to the node j will be in405

the node provenance object. The exact categorization of this annotation will depend on the406
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(a) Input tree T1 named
“tree1”

(b) Summary Tree S (c) Induced Tree S(1)

{

"nodes": {

"mrcaott1ott4": { "partial_path_of": { "tree1": "node15", ... } },

"ott10": { "partial_path_of": { "tree1": "node15", ... } },

"mrcaott5ott7": { "supported_by": { "tree1": "node16", ... } },

"ott1": { "terminal": { "tree1": "ott1", ... } },

"ott2": { "terminal": { "tree1": "ott2", ... } },

"ott5": { "terminal": { "tree1": "ott5", ... } },

"ott11": { "terminal": { "tree1": "ott5", ... } },

"ott7": { "terminal": { "tree1": "ott7", ... } }

},

...

}

(d) JSON annotations relating edges of (c) to edges of (a)

Figure 12. The relationship of edges in summary tree S (b) to edges in the input tree T1 (a).
Only edges of S that are present in the induced tree S(1) are represented by JSON
annotations (d). Taxon names are here suppressed in favor of OTT IDs, and edges are
referenced via their tipward nodes. Edges in S(1) that correspond to terminal edges of T1 are
orange; edges of S(1) that are supported by edges of T1 are blue; where multiple edges of
S(1) correspond to the same edge of T1 they are green. There is no conflict in this example.
Also, if this were output from propinquity, then each internal node of S would be supported
by other inputs trees that are not shown here.
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configuration of node x on the induced tree S(i):407

• if x is on a terminal path in the induced tree then node j will be listed in the “terminal”408

property;409

• if x is along an internal path that contains some nodes with out-degree equal to 1, then410

node j will be listed in the “partial_path_of” property; and411

• if x is along an internal path without any node of out-degree 1, then node j will be listed412

in the “supported_by” property, because node j supports the existence of grouping x413

in the sense that collapsing the edge that separates x from its parent would cause the414

summary tree to no longer display node j.415

These three relationships are illustrated in Figure 12. Finally, if Ti does not display x from416

S(i), but there exists an unresolved node j in Ti which could be resolved such that the tree417

would then display x, then a reference to node j will be listed in the “resolves” property of418

node x.419

The otcetera annotation tool can also detect cases in which including information from420

node j in Ti could further resolve a polytomy x in the summary tree; such a case would421

be annotated using the “resolved_by” property of x. However, because of our goal of422

excluding unnecessary polytomies, none of the nodes in propinquity’s summary tree will use423

this annotation when they are annotated with the set of input trees.424

2.2.7 Self-documentation425

An optional step in the propinquity pipeline (triggered by the executing the “make html”426

target) can compose an “index.html” file for each directory created during the pipeline427

to explain the artifacts held in that directory and report summary statistics about the428

summarization run.429

3 RESULTS430

We seek to assess the performance of our new supertree method by comparing it to the431

supertree method of Hinchliff et al. (2015). The method of Hinchliff et al. (2015) was used to432

construct the Open Tree of Life v4 (OTLv4). Therefore, in order to facilitate comparison, we433

applied our method to the same input trees and taxonomy used by OTLv4. We refer to the434

resulting supertree as OTLv4′ since it was constructed by applying the propinquity pipeline435

to the same inputs as OTLv4.436

3.1 Inputs437

The flag-cleaned version of OTT used in the construction of both supertrees contained438

2,424,255 leaves. The OTLv4 supertree was constructed from 482 phylogenetic inputs,439

containing a total of 45,385 leaves, of which 41,029 were unique. After flag-cleaning and440

exemplification by propinquity, these trees contained 40,323 unique tips. We used the same441

cleaning flags to trim the taxonomy and input trees when constructing OTLv4′, so OTLv4442

and OTLv4′ contain the same number of leaves.443
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Table 1. Representation of input splits in the OTLv4 tree and the OTLv4′ tree.

supported_by partial_path_of terminal conflicts_with resolved_by resolves

OTLv4 34,595 923 45,385 2,760 2,718 473
OTLv4 only 745 54 0 2,055 2,718 0
OTLv4′ 38,521 1,118 45,385 1,357 0 515
OTLv4′ only 4,671 249 0 652 0 42

Table 2. Representation of taxonomy splits in the OTLv4 tree and the OTLv4′ tree.

supported_by partial_path_of terminal conflicts_with resolved_by resolves

OTLv4 125,384 0 2,424,255 1,998 4 3,676
OTLv4 only 296 0 0 19 4 17
OTLv4′ 125,107 0 2,424,255 2,279 0 3,883
OTLv4′ only 19 0 0 300 0 224

3.2 Subproblems444

In the OTLv4′ summary tree, the decomposition procedure produced 5,406 subproblems, but445

only 1,422 of these were non-trivial to solve. If a subproblem contains only two tips it is446

trivial; 2,362 subproblems were trivial in this way. Similarly, if a subproblem contains only 2447

trees it is trivial to solve because the solution will simply be all of the groupings from the448

first tree combined with all of the groupings from the second tree that are compatible with449

the first tree; 3,052 subproblems were trivial in this way. The subproblem with the largest450

number of tips contained 946 tips. The largest subproblem, in terms of the number of input451

trees (including the taxonomic tree) that were relevant, had 16 trees. Without decomposition,452

the supertree problem would have had 482 input trees and 41,226 leaves.453

3.3 Representing input splits454

We performed an annotation of both the OTLv4 tree and the OTLv4′ tree as described in sec-455

tion 2.2.6 to assess the ability of our new supertree method to represent splits from input phy-456

logenies. Table 1 classifies the input phylogeny splits according to how they relate to a summ-457

mary tree, so that each input edge falls in one of supported_by, partial_path_of, terminal,458

conflicts_with, or resolved_by. For example, the numbers in the conflicts_with col-459

umn indicate the number of input splits j with at least one summary edge x such that the460

relation “x conflicts_with j” holds. The total number of non-terminal input phylogeny461

splits considered was 40,996.462

The number of displayed input splits (supported_by + partial_path_of) increased463

from 35,518 (for OTLv4) to 39,639 (for OTLv4′); an 11% increase. When examining which464

splits are displayed, we find that the OTLv4′ tree displays 4,920 input splits that are not465

displayed by the OTLv4 tree, whereas the OTLv4 tree displays only 799 input splits that are466

not displayed by the OTLv4′ tree. The number of input splits that conflict with the summary467

(conflicts_with) dropped from 2,760 to 1,357, a decrease of 1,403, or 51%. In accordance468

with the goal of not containing unnecessary polytomies, the number of input splits that do469

not conflict with the summary tree, but are not incorporated (resolved_by) dropped from470

2,718 to 0. We also find that the number of polytomies in input phylogenies that are resolved471

19/23

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2538v1 | CC BY 4.0 Open Access | rec: 18 Oct 2016, publ: 18 Oct 2016



by the summary tree increases from 473 for OTLv4 to 515 for OTLv4′.472

We also performed an annotation of the OTLv4 tree and the OTLv4′ tree to assess the473

degree to which these trees represent taxonomy splits (Table 2). The OTLv4′ tree conflicts474

with 281 more taxonomy splits than the OTLv4 tree. Since the taxonomy is the lowest ranked475

input tree, this increased conflict with the taxonomy is an expected result of incorporating476

more splits from higher-ranked input phylogenies.477

4 CONCLUSIONS478

Here we have described the motivation and methodology used by our new supertree method479

that is currently used by the Open Tree of Life project to build summary supertrees on the480

scale of millions of leaves. Our new method represented 11% more input phylogeny splits481

with 51% less conflict compared to the Open Tree of Life version 4 summary tree, when482

applied to the same inputs. Unlike the previous method (Hinchliff et al., 2015), our new483

method is guaranteed to incorporate input splits unless they conflict with the summary tree.484

The method is implemented in the Open Source software package propinquity. A modified485

version of the treemachine software which built the summary tree described in the Hinchliff486

et al. (2015) paper is used by the project to serve the tree produced by propinquity via Open487

Tree of Life APIs.488

The migration of summary tree construction from treemachine (used for version 4) to489

propinquity (for all versions from v5.0 to present) has increased the pace of synthesis tree490

releases from the Open Tree of Life project. This is partly because the newly available491

annotations feature has made it possible to identify which input trees are responsible for492

taxa being included or excluded from the summary tree. Additionally, the new propinquity493

software pipeline has decreased the decreased the computational time required to construct a494

supertree from several hours to about 8 minutes (after some preprocessing steps which only495

have to be performed when the input taxonomy changes). The amount of RAM required496

during tree construction has also decreased substantially.497
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A THE MAXIMUM SUM DISPLAYED GROUPS’ WEIGHTED520

SCORES CRITERION521

Let W is a weighting function that maps any input tree’s internal node to a non-negative522

number. If I(S, i, j) is an indicator function that is 1 if summary tree S displays the node523

V (i, j) and 0 otherwise then: SDGWS(S) =
∑

i

∑
j I(S, i, j)W(i, j) is the “sum of displayed524

groups’ weighted scores” for a tree where i indexes all of the input trees and j indexes each525

non-root internal node in tree i. Preference for this tree is referred to as the maximum526

sum displayed groups’ weighted scores criterion (MSDGWS criterion). The summary tree527

constructed by the propinquity pipeline is a greedy heuristic for finding a tree that maximizes528

this score when the weights for a node are determined by the tree’s weight and the difference529

in weighting is so large that displaying one node from a highly ranked tree is preferred to530

displaying all of the nodes in the trees with lower rank.531

B DESCRIPTION OF THE DECOMPOSITION ALGORITHM OF532

OTC-UNCONTESTED-DECOMPOSE533

The input is the a ranked list of input trees and comprehensive taxonomy.534

B.1 Creation of multigraph of the taxonomy with embedded trees535

The tool creates a multigraph by starting with a graph isomorphic to the taxonomic tree.536

The nodes and edges created in this step will be referred to as the “taxonomic graph.” Next,537

we add nodes and edges to that graph in a procedure that we refer to as “embedding” the538

input trees into the taxonomy. A node is introduced for each node in an input tree, and539

these nodes are mapped the MRCA nodes in the taxonomic graph. In other words, for any540

node y in an input tree with a cluster of descendants, C, we find the most tipward node541

z in the taxonomic graph that is an ancestor to all of the taxa in C; let m(y) = z refer to542

this mapping, and m′(z) = y refer to the reverse mapping. Each edge eij in a source tree i543

connects ancestor to its descendant, a(eij)→ d(eij). The edges are introduced into the graph.544

We also introduce new edges to create a from m(a(eij)) through its descendants to m(d(eij));545

we denote this path p(eij) and refer to the edges in the path as “embedding edges for tree i”.546

Note, that this is a path through the taxonomic nodes, while the edge eij connects source547

tree nodes. The mapping between eij and p(eij) is stored, and the edges are labelled with548

the index i so that it is clear which tree created them. Because the taxonomic tree is highly549
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unresolved, it is frequently the case that m(a(eij)) is the same node as m(d(eij)); in these550

cases the embedding edge is a loop. This situation occurs whenever edge eij can resolve part551

of the polytomy represented by a taxon.552

We treat the taxonomy as the lowest ranked input tree. The next step will collapse553

contested edges in the taxonomic graph. To retain all of the information from the taxonomy554

we embed the taxonomy into the taxonomic graph as if it were another input tree555

B.2 Detection of uncontested higher taxa556

After every input tree and the taxonomy tree have been embedded into the taxonomic graph,557

we perform postorder traversal over the taxonomic graph that underlies the multi-graph.558

For any internal node (each of which corresponds to a non-terminal taxon) we determine559

whether or not it is contested by examining each input tree. We can determine tree i contests560

the taxon represented by taxonomic node x by looking at the parents of all of the “exiting”561

embedding edges for tree i. These are the set of embedding edges that have x as a daughter562

and have a parent node that is not x (ergo a parent node that is taxonomically higher than563

x). If there are more than one parent nodes in this set of exiting embedding edges, then tree564

i contests that taxon. If there is only one parent node, then the all of the constituent taxa565

belonging to this taxon that are present in tree i have one parent that is more inclusive; this566

means that the input tree does not contest monophyly of the taxon.567

If the taxon is uncontested, then it may be the case that some input trees do not contest568

the taxon, but contain polytomies that could be resolved to display the taxon. The cases can569

be identified by finding multiple exiting embedding edges that have the same taxon y as their570

parent node. In these cases, a pseudo input tree node is created and becomes the parent571

node for these edges; this new node is then connected to y as if it had been an input edge.572

This operation is equivalent to resolving an input tree’s polytomy in favor of the monophyly573

of the uncontested taxon. This is the only way in which the input trees are modified during574

the decomposition.575

B.3 Collapsing contested taxa from the taxonomic graph576

If a taxonomic node x fails the “uncontested” test described in the previous section, then577

the node corresponding to the taxon is removed from the taxonomic graph and the set of578

edges (and mappings between input edges and embedded paths) is updated as if this taxon579

had not been present in when the taxonomic graph was created. This consists of detecting580

changing any edge in an embedding path that is adjacent to x by replacing the reference to x581

with a reference to its parent a(x). Note that we do not collapse the edge corresponding to582

this taxon in the part of the graph that represents the embedding of the taxonomy into the583

taxonomic graph. Thus, the taxonomy will still claim the monophyly of the taxon. This is584

relevant if the input grouping that contests taxon x is overruled (in the subproblem solution585

step) by a higher ranked split. In other words, the fact that the a taxon is contested during586

the decomposition is not a guarantee that the taxon will not be monophyletic in the final587

supertree.588

B.4 Emitting subproblems589

Whenever an uncontested taxon is identified, the appropriate slice of each input trees that590

intersect with the taxon is written to a file. Then the multigraph is simplified by slicing any591
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off the taxon. This slicing is accomplished by examing all of the exiting embedding edges592

for the taxon. The descendant taxa of each input tree is relabeled with the identifier of the593

contested taxa and all of that node’s descendants are removed. Thus this input node will act594

as as if it were a leaf mapped to the uncontested taxon. All descendants of the taxonomic595

graph are also pruned off.596
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