A peer-reviewed version of this preprint was published in Peer]
on 1 March 2017.

View the peer-reviewed version (peerj.com/articles/3058), which is the
preferred citable publication unless you specifically need to cite this
preprint.

Redelings BD, Holder MT. 2017. A supertree pipeline for summarizing
phylogenetic and taxonomic information for millions of species. Peer]
5:€3058 https://doi.org/10.7717/peerj.3058

https://doi.org/10.7717/peerj.3058
https://doi.org/10.7717/peerj.3058

A supertree pipeline for summarizing phylogenetic and
taxonomic information for millions of species

Benjamin D Redelings ? , Mark T Holder ™ 234

Department of Biology, Duke University, Durham, NC, United States
Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, United States

Biodiversity Institute, University of Kansas, Lawrence, KS, United States

A~ W N

Heidelberg Institute for Theoretical Studies, Heidelberg, Germany

Corresponding Author: Mark T Holder
Email address: mtholder@ku.edu

We present a new supertree method that enables rapid estimation of a summary tree on the scale of
millions of leaves. This supertree method summarizes a collection of input phylogenies and an input
taxonomy. We introduce formal goals and criteria for such a supertree to satisfy in order to transparently
and justifiably represent the input trees. In addition to producing a supertree, our method computes
annotations that describe which grouping in the input trees support and conflict with each group in the
supertree.

We compare our supertree construction method to a previously published supertree construction method
by assessing their performance on input trees used to construct the Open Tree of Life version 4, and find
that our method increases the number of displayed input splits from 35,518 to 39,639 and decreases the
number of conflicting input splits from 2,760 to 1,357. The new supertree method also improves on the
previous supertree construction method in that it produces no unsupported branches and avoids
unnecessary polytomies.

This pipeline is currently used by the Open Tree of Life project to produce all of the versions of project's
"synthetic tree" starting at version 5. This software pipeline is called "propinquity". It relies heavily on
"otcetera" - a set of C++ tools to perform most of the steps of the pipeline. All of the components are
free software and are available on GitHub.

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.2538v1 | CC BY 4.0 Open Access | rec: 18 Oct 2016, publ: 18 Oct 2016

~ o o @ »

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

A supertree pipeline for summarizing phylogenetic
and taxonomic information for millions of species

Benjamin D. Redelings'? and Mark T. Holder?>+

! Department of Biology, Duke University, Durham NC, US

2Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence KS, US
3Biodiversity Institute, University of Kansas, Lawrence KS, US

“Heidelberg Institute for Theoretical Studies, Heidelberg, Germany

Corresponding author:
Mark T. Holder?3

Email address: mtholder@ku.edu

ABSTRACT

We present a new supertree method that enables rapid estimation of a summary tree on the scale
of millions of leaves. This supertree method summarizes a collection of input phylogenies and an
input taxonomy. We introduce formal goals and criteria for such a supertree to satisfy in order to
transparently and justifiably represent the input trees. In addition to producing a supertree, our method
computes annotations that describe which grouping in the input trees support and conflict with each
group in the supertree.

We compare our supertree construction method to a previously published supertree construction method
by assessing their performance on input trees used to construct the Open Tree of Life version 4, and find
that our method increases the number of displayed input splits from 35,518 to 39,639 and decreases
the number of conflicting input splits from 2,760 to 1,357. The new supertree method also improves
on the previous supertree construction method in that it produces no unsupported branches and avoids
unnecessary polytomies.

This pipeline is currently used by the Open Tree of Life project to produce all of the versions of project's
“synthetic tree” starting at version 5.This software pipeline is called “propinquity.”. It relies heavily on
“otcetera” - a set of C++ tools to perform most of the steps of the pipeline. All of the components are
free software and are available on GitHub.

1 BACKGROUND

The Open Tree of Life project seeks to build a platform for summarizing what is known
about phylogenetic relationships across all of Life (Hinchliff et al., 2015). One primary goal
of the project is to build a summary tree from a comprehensive taxonomic tree and a set
of published trees. The summary tree is intended to transparently and justifiably represent
phylogenetic information from these inputs. The taxonomic tree is derived from the Open
Tree Taxonomy (OTT hereafter, publication in preparation). The phylogenetic inputs are
published trees that have been curated to align the tips to OTT and to identify the correct
rooting (see McTavish et al. 2015 for further details of the curation tools). Unlike OTT, these
phylogenetic trees do not include all leaf taxa. The inputs (taxonomy and phylogenetic trees)

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.2538v1 | CC BY 4.0 Open Access | rec: 18 Oct 2016, publ: 18 Oct 2016

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

and the output summary supertree are all rooted. Here we describe the software pipeline
(propinquity) that summarizes and integrates these smaller source trees and the taxonomy
tree into a single supertree and the noteworthy tools for manipulating and solving supertrees
in the otcetera package.

1.1 Goals

Translating the goals of the Open Tree of Life’s summary tree into an explicit set of criteria
is not trivial. The summary supertree should represent the phylogenetic information from
source trees in a transparent and justifiable fashion. We would like to allow users to correct
errors in the supertree by improving the input information rather than requiring modification
to the supertree algorithm. The pipeline was designed to create a tree which:

1. displays no unsupported groups,

2. defers to groupings from higher ranked trees in the case of conflict,
3. contains no unnecessary polytomies, and

4. displays as many groupings from input trees as possible.

These goals are described more fully below. In order to accomplish transparency and
justification, our pipeline also produces annotations files with information about conflict and
support.

1.1.1 Goal 1: Each grouping is supported by at least one input

We require that each edge in the supertree be supported by at least one input tree edge.
In addition to aiding interpretability, this requirement keeps the supertree from arbitrarily
representing information that comes from none of the input trees. Of course, in a supertree
analysis, the full tree will imply some relationships for subsets of the taxa that are not found
in any input tree. So, the meaning of “supported by” needs some clarification.

Notation, terminology, and the definition of “supported by” Let S denote a supertree, and
T; denote the ith input tree. The set of taxa that are mapped to the tips of the tree T; is
L(7). S(i) denotes the summary tree induced by tip nodes that are mapped to taxa in £(i)
and the most recent common ancestor of those leaves, and any other node that is an ancestor
of some but not all of these leaves. We say that edge j of the supertree is compatible with an
input tree, T; if edge j either is not included in the induced tree S(7) or none of the edges in
T; are in conflict with edge j in the induced tree.

We can consider whether or not a node in an input tree is displayed by S. For any such
node 7 there is a set of taxa that are mapped to the tips that descend from the node. This
set of taxa is the “cluster” of taxa corresponding to node j; it can be denoted L£(i,7). It will
also be referred to as the “include set” of the node. The “exclude set” of 7 in T; is the set of
taxa in £(i) but not in £(i,7). If the cluster of taxa for any supertree node in S(4) is identical
to L(i,7), then we say that S displays node j of T;. We say that the summary tree displays
edge j if the summary tree displays the child node of edge j. Operationally, we can find the
most recent common ancestor (MRCA) node of £(7,7) in S; the summary tree displays j
if and only if that MRCA node is not an ancestor of any member of the exclude set of j.

2/23

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.2538v1 | CC BY 4.0 Open Access | rec: 18 Oct 2016, publ: 18 Oct 2016

v

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

oD oD

oC oE
B Q oC
A oB
(a) Input tree 1 (b) Input tree 2
oD oD
oC oE
—0 oE oC
—0
Q oB E:B
oA A
(c) Summary tree (d) Summary tree

Figure 1. An example demonstrating that our definition of “supported by” does not imply
entire composition of a grouping. (a) and (b) show 2 input trees and (c) and (d) depict trees
that each display each of the groupings in the input trees and which have no unsupported
nodes. The BUILD algorithm (section 8) would choose tree (d) that floats taxon E closer to
the root.

We say that node k of the summary tree is supported by node j in T; if the summary tree
displays node 7, but if we contracted edge that separates k from its parent then the modified
summary tree would no longer display node j.

Note that stating that a node in the summary tree is supported by an input does not
imply that every descendant of that node must be present in the input nor that every taxon
that is not a descendant must be excluded in order to display the node. Consider the problem
shown in figure 1; panels (1a) and (1b) show two input trees. Because taxa A and E do
not occur together in either input, there is some uncertainty about where to place them.
By our terminology, either output shown in (1c) or (1d) would be characterized as a tree
that displays all of the input groupings and which has no unsupported groups. Clearly these
criteria are insufficient to specify a unique solution, and users of the output tree need to
be aware that it may be possible for some taxa to “float” to multiple positions. In figure 1,
taxon E floats to different positions in (1c¢) and (1d), whereas taxon A does not.

One of our aims in supertree construction is to minimize the amount of information in
the supertree that does not come from input trees. We permit information that comes from
combinations of input trees, but not any single input tree. However, we seek to exclude
information that comes from none of the input trees. This motivates the criterion of not

3/23

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.2538v1 | CC BY 4.0 Open Access | rec: 18 Oct 2016, publ: 18 Oct 2016

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

110

111

112

113

114

oC oD oC
B C D
(a) Input tree 1 (b) Input tree 2 (c) Input tree 3
oD oC D
——C —o0D —EB
B Q oB
DA L 0A E

(d) Summary tree (e) Summary tree (f) Summary tree

Figure 2. An example of 3 input trees shown in (a), (b), and (c¢) which do not conflict in a
pairwise manner, but cannot be jointly displayed in one tree. The 3 solution trees are shown
in panels (d-f). Panel (d) for ranking the tree in (c) lowest. Panel (e) shows the solution if
the tree in (b) has the lowest rank. Panel (f) shows the solution if the tree in (a) is ranked
lowest. Each of the solutions displays 2 of the 3 input groupings.

having any unsupported edges, since these edges could be removed without decreasing the
support from any input tree.

1.1.2 Goal 2: Tree ranking

An appealing goal for the summarization would be to find the supertree that displays the
largest number of input tree edges. As discussed in Huson et al. (pages 92 and 131; 2010) the
maximum compatibility problem is known to be N P-hard via a reduction to Max-Clique
(Karp, 1972). In addition to being computationally daunting, this formulation of the supertree
problem does not provide biologists who use the summarization tool with an obvious avenue
for fixing perceived problems with the summary tree. For example, a grouping that a biologist
expected may not be present in the supertree, but it may not conflict with any of the input
groupings which are displayed. This can happen because displaying both node a from 77 and
node b from tree T in a summary tree may only be possible by displaying a grouping that is
present in no input tree. All other factors being equal, if this implied grouping conflicts with
input node c in tree T3, then ¢ will not be displayed in the summary tree, but a biologist will
not necessarily know how to fix this problem. One solution is to use a ranking of groupings. If
an expert were quite confident in the ¢ grouping, then she could assign that input node a high
ranking. A supertree that used ranks could then recover this grouping even if its inclusion
did not increase the total number of input nodes that are displayed by the summary tree.
Figure (2) shows an example of 3 input trees for which there is no pairwise incompatibility,
but no solution displays all of the input groups. Alternative rankings of inputs can result in
one of three summary trees shown in panels (d-f).

4/23

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.2538v1 | CC BY 4.0 Open Access | rec: 18 Oct 2016, publ: 18 Oct 2016

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

Any approach to supertree construction must deal with the need to adjudicate between
conflicting input trees. We choose to deal with conflict by ranking the input trees, and
preferring to include edges from higher-ranked trees. The merits of using tree ranking are
questionable because the system does not mediate conflicts based on the relative amount of
evidence for each alternative. However, it is a reasonable starting point. It has the benefits
of making it easy to see why some groups are included or not (transparency), and it allows
simpler and cleaner algorithms.

Note that if some edge ¢ conflicts with a higher-ranked edge b, then ¢ may still be included
in the supertree. This can occur when the higher ranked edge b conflicts with a yet-higher
ranked edge a, and thus b is not included. In that case, it will be possible for ¢ to be
represented in the summary tree. Thus, the fact that the summary tree displays an input
edge does not imply that none of the higher ranked input trees conflict with that edge.

In order to produce a comprehensive supertree, we also require a rooted taxonomy tree in
addition to the ranked list of rooted input trees. Unlike other input trees, the taxonomy tree
is required to contain all taxa, and thus has the maximal leaf set. We make the taxonomy
tree the lowest ranked tree. In our current formulation, the taxonomy tree is also unique
in that the taxonomy is the only source of taxonomic names. Each node in the taxonomy
tree corresponds to a named group. Taxonomic groups may have the same name, but each
node in the taxonomy tree is identified by a unique number (its OTT ID). Taxonomic groups
are identified in the summary supertree by finding a branch (or “node”) that has exactly
the same include|exclude relationship. The taxonomy supertree can meaningfully possess
degree-two nodes. Although these nodes can be removed without affecting the relationships
of the leaves, they do represent nested taxonomic groups that contain exactly one subgroup.
The taxonomy is also used to determine which tips are terminal taxa.

1.1.3 Goal 3: Contain no unnecessary polytomies

The supertree should be as resolved as possible - in other words, it should have no unnecessary
polytomies. Thus, for each input edge that is not included, we can point to a reason for
non-inclusion by showing that the input edge conflicts with some edge of the summary tree.
Note, that the requirement to not display unsupported groups leads to some “necessary”
polytomies. For example any resolution of the polytomy shown in figure (2e) would continue to
display the same two input groups. However, the additional grouping would be unsupported,
because the unresolved tree already displays both input groups. Thus, the unresolved tree
would be preferred by our criterion. However, collapsing either internal edge of the tree
shown in figure (2d) would result in a tree which displays only one input grouping. This tree
would contain an unnecessary polytomy, because the polytomy would permit refinement to
the depicted tree which displays more input groupings.

1.1.4 Goal 4: Display as many input nodes as feasible

We also seek to construct a supertree that represents as many input tree nodes as possible.
Since non-included input tree nodes must conflict with the supertree (or they would have
been added), this criterion is the same as minimizing the number of input nodes that conflict
with the supertree.

5/23

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.2538v1 | CC BY 4.0 Open Access | rec: 18 Oct 2016, publ: 18 Oct 2016

156

157

158

159

160

161

162

163

164

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

194

195

196

1.1.5 Summary of goals

These optimality criteria help to define what it means for the supertree to represent the
input trees, as well as justifying and explaining why various features of the supertree exist.
The pipeline described below produces a supertree that satisfies the first three optimality
criteria and is a greedy approximation of a solution to the fourth goal. It is not guaranteed
to display as many input nodes as possible. Even if the summary tree does accomplish goal
4, it is not necessarily a unique optimum. The pipeline takes a greedy approach to producing
a summary tree by attempting to add groupings from the trees in order of the trees ranking.
This can be viewed as a greedy solution to the problem of finding the tree with the maximum
sum of displayed groups’ weighted scores criterion (MSDGWS, described in the appendix
A) where the weights from the trees are so extreme that displaying one group from a highly
ranked tree is preferred to displaying all of the groupings from lower ranked trees.

2 DESCRIPTION OF THE SUPERTREE METHOD

2.1 Preprocessing steps

Propinquity was designed to function as a part of the Open Tree of Life software architecture,
so the first few steps of the pipeline involve transforming artifacts from that project into a set
of rooted trees and a phylogenetic taxonomy. The phylesystem API (McTavish et al., 2015)
of Open Tree allows users to curate published estimates of trees and create ranked collections
of these trees. Early steps in the propinquity pipeline manipulate the phylogenetic input
trees to improve their usability and reliability. The first steps of the pipeline (see Figure
3) collect a list of trees to include (in the phylo_input subdirectory) and store copies of
these files (in the phylo_snapshot subdirectory) to make it easier to replicate the operation
(because the collection of trees and the tree files change due to curation).

2.1.1 Pruning questionable taxa from the taxonomy

OTT is a hierarchy of taxonomic names that implies a phylogenetic taxonomy. An OTT ID
has a position in the hierarchy, a taxonomic name, and set of references to the same name
in different taxonomies. In addition, the ID may also be associated with a set of flags that
can indicate that the taxon may be questionable. These flags can either encode information
taken from an input taxonomy (for example, taxa the NCBI refers to as “unplaced” are
assigned an “unplaced” flag) or can arise because of some form of conflict during taxonomy
construction (for example, if two taxonomies disagree on the name for a taxon, then the
taxon can be merged and the name will be retained without any descendants; this name will
have an OTT ID, but will be flagged as “barren”). Propinquity prunes the OTT down to
a more reliable taxonomy by pruning off parts of the tree that are flagged with suspicious
flags. The set of flags that lead to a subtree of the taxonomy being pruned is under the
control of the user (the set of flags used by the Open Tree of Life project can be found in
the config.opentree.synth file in the propinquity repository). For the purpose of the rest
of the pipeline, an OTT ID that has been pruned from the taxonomy will be treated in the
same way as invalid OTT ID. The output of this step is stored in propinquity’s cleaned_ott
subdirectory; this operation only needs to be performed when the OTT or the pruning flags
change.

6/23

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.2538v1 | CC BY 4.0 Open Access | rec: 18 Oct 2016, publ: 18 Oct 2016

implied full config

collection_export.py

phylo_input

suppress_by_flag export_studies_from_collection.py

cleaned_ott

phylo_snapshot

prune_to_clean_mapped.py

cleaned_phylo

otc-nonterminals-to-exemplars

exemplified_phylo

otc-uncontested-decompose

subproblems

ote-solve-subproblem

subproblem_solutions

otc-graft-solutions

grafted_solution

otc-name-unnamed-nodes

labelled_supertree

otc-annotate-synth

annotated_supertree

treemachineLITE

Figure 3. Organization of the propinquity pipeline. Each colored pentagon labels a program
(blue for otcetera-based tools and red for python scripts in the propinquity or peyotl
repository) that performs the important operations in each step; the number before the tool
name refers to the section in this paper that describes the operation. The output of each
step corresponds to a subdirectory of the propinquity system which will hold the output
artifacts for the step. Ovals are resources that are required (OTT and Open Tree’s
phylesystem repository). White pentagons are user-controlled inputs.

7/23

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.2538v1 | CC BY 4.0 Open Access | rec: 18 Oct 2016, publ: 18 Oct 2016

197

198

199

201

202

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

236

237

238

239

240

2.1.2 Pruning problematically mapped tips from input phylogenetic trees

Frequently, phylogenetic estimates are rooted using the outgroup criterion, which is an
assumption about the monophyly of the ingroup taxa. Because the rooting of the branches
in the outgroup portion of the tree is often uncertain, data curators can identify the ingroup
node of the tree; propinquity uses this annotation to prune off the outgroup taxa.

Frequently, not all tips in a phylogenetic input will have been mapped to a taxon in the
current version OTT. Unmapped leaves are pruned from each phylogenetic input. In some
cases, the OTT has changed and a taxon has been unambiguously mapped to another taxon.
This can occur when multiple species in one version of the taxonomy are “lumped” into a
single taxon in a subsequent version. OTT maintains a set of “forwarding” statements about
IDs that have been removed but can be mapped to an existing taxon; propinquity uses these
statements to update the OTU mapping of input trees.

Finally some leaves are mapped to taxa that occur more than once in the tree, or taxa
that have ancestors represented as tips of the tree. In these cases, leaves are pruned to assure
that tips are mapped to unique taxa that are not nested. In the case of nested taxa, the
tip mapped to the higher level taxon is pruned, and one of the lower level tips is retained.
In the case of duplicate occurrences of an OT'T taxon, propinquity checks to see if a data
curator has selected one of the taxa to be the exemplar for the taxon. If this selection has
not been made, then the node with the lexicographically lowest ID is chosen to exemplify the
taxon. This choice is arbitrary, but repeatable. The pruned phylogenetic inputs are stored in
a cleaned_phylo subdirectory of propinquity.

2.1.3 Exemplifying tips mapped to higher taxa
Many input trees have tips that are not terminal taxa, but higher-order taxonomic groups.
It is not clear how to interpret a tip in a phylogenetic estimate that is labeled with the
name of a higher taxon. Several scenarios can lead to these cases: the data for the tip
could have been created by merging a chimeric set of character scores from constituent taxa;
the species sampled may not have been identified to the lowest taxonomic rank; or the
researcher may simply have used a higher taxonomic name because he/she assumed that the
taxon is monophyletic and the higher level name would be more recognizable. Rather than
allowing the ambiguity about interpretation of the higher-taxon mapped tips to propagate
throughout the entire pipeline, we transform the input trees by replacing higher taxa at tips
with a set of terminal-taxon exemplars for each taxon. One approach would be to simply
determine all descendant terminal taxa and attach them as children of the problematic tip.
However, this would create a clade rather than a tip; subsequent steps in the supertree would
interpret the clade as a claim of monophyly for the taxon. The input tree may not have tested
monophyly of the clade, so this interpretation is unwarranted. We avoid it by attaching
exemplar taxa as child nodes of the higher taxonomic tip but then collapsing the edge between
the former tip node and its parent. Thus, if A is a non-terminal taxon containing terminal
descendants a; and az and B is a non-terminal taxon containing terminal descendants b;
and be we would replace the subtree ((A, B),c) with ((a1,a2,b1,b2),c) instead of the subtree
<<<a17a2)/47 (b17b2)3)70)'

If a taxon is only present in the taxonomy (not in any of the input trees), then it can be
pruned from the taxonomy for the construction of the supertree and then grafted back on to
the summary tree later. Performing this pruning reduces the size of the supertree problem,

8/23

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.2538v1 | CC BY 4.0 Open Access | rec: 18 Oct 2016, publ: 18 Oct 2016

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

G A2
o A12

F root A Al
B E1 A3

A3 A2 L sasep——oD

A2 C —————oC

A1 B —————————8B

oF Al oG
(a) Tree 1 (b) Tree 2 (c) Taxonomy Tree

Figure 4. Input trees and taxonomy tree

reducing the running time of the pipeline. Similarly, when we expand a higher taxon in the
exemplification step, we can omit members of the taxon if they do not occur in any of the
phylogenetic inputs. If there are no members of the higher taxon sampled in any other input
tree, then we arbitrarily choose one terminal taxon to represent the higher taxon. During
the exemplification step, a tool from otcetera (otc-nonterminals-to-exemplars) reads the
taxonomy and all of the “cleaned” phylogenetic estimates from the previous step. Reading
all of the inputs is necessary to assure that each higher taxon is replaced with the same set
of exemplars regardless of which tree the higher taxon occurs in, and that the exemplars for
a higher taxon is the union on the set of descendant terminal taxa that have been sampled
in a phylogenetic input. Figure 5 shows an example of how the trees in figure 4 would be
exemplified.

We prune the taxonomy by removing tips that are not present in any input tree to produce
the pruned taxonomy T). The tips pruned in this step will be grafted back onto the skeleton
of the summary tree in a subsequent step. A terminal taxon that is represented only in the
taxonomy can be pruned and then regrafted onto the solution without affecting which nodes
are displayed by the final summary tree. Thus, this procedure does not impede our ability to
find a good summary tree. Removing these tips produces a smaller input to the rest of the
pipeline, which reduces running times. After producing the set of “exemplified” phylogenetic
inputs, this tool exports a pruned down version of the taxonomy that only contains tips that
are present in at least one phylogenetic input.

2.2 Summary tree construction

After the preprocessing steps, the inputs have been converted to a set of rooted phylogenetic
estimates in which each leaf is mapped to a terminal taxon in the exemplified taxonomic tree.
The goal of the remainder of the pipeline is to construct a tree that maximizes the sum of
displayed groups’ weighted scores (MSDGWS) criterion. This is accomplished in four steps:
(1) dividing the full problem into subproblems based on uncontested taxa, (2) constructing a
summary solution for each subproblem by greedily creating a maximally-sized list of groupings
that can all be displayed simultaneously; (3) grafting the subproblem solutions into a single

9/23

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.2538v1 | CC BY 4.0 Open Access | rec: 18 Oct 2016, publ: 18 Oct 2016

269

270

271

272

273

274

275

276

277

278

279

281

282

283

284

285

286

287

288

289

291

202

293

294

295

oF1

G oE1

C F1 A2
A12

B E1 A1

root A
A3 A2 A3
———0ABCD
A2 C [———=oC
Al B L———oB
oE1 A1 oG
(a) Tree 1 (b) Tree 2 (c) Pruned taxonomy tree Tp

Figure 5. Exemplified input trees and taxonomy tree from figure 4. E in treel is exemplified
by E1. Pruned taxa are E2, F2, and D. The taxa E and F are retained as monotypic taxa in
the pruned taxonomy Tp, but are not shown in panel c. The red edge in the pruned
taxonomy tree is an uncontested higher taxon in the exemplified taxonomy (as explained in
section 2.2.1)

supertree; and (4) grafting (or “unpruning”) the taxonomy-only taxa onto the solution to
produce a complete summary tree.

2.2.1 Subproblem decomposition

For the sake of efficiency, propinquity uses a divide-and-conquer approach to construct the
supertree. Subproblems are identified by searching through the taxonomy tree to find any
taxa that are not contested by any single input tree. Here we say that input tree 7T; contests
taxon x in the pruned taxonomy, if x is not monophyletic in any resolution of tree T;. Thus,
polytomies in an input tree are treated as soft polytomies, and a taxon is not contested
merely because it is not displayed by an input tree.

This operation is performed by the otc-uncontested-decompose tool in otcetera; see
appendix B for a description of the algorithm. The output is a series of subproblems, each
of which corresponds to a slice of the taxonomy and corresponding slices through each
relevant input tree. Each uncontested non-terminal and non-root taxon will show up in two
subproblems: it will be the root of its own subproblem and it will be tip in the subproblem
that covers the next slice deeper in the tree. The red edge in figure 5¢ highlights the taxa
that are not contested by the input shown in 5; figure 6 shows the subproblems that would
be emitted as a result of this set of inputs. The supertree operation of Hinchliff et al. (2015)
also used this otcetera-based decomposition step.

Note that decomposition into uncontested groups does not necessarily allow us to find
the tree that maximizes the MSDGWS score. For example, see figure 7; that example is
a variant of the situation shown in figure 2. In this case the groupings from each of the
phylogenetic estimates, shown in panels 7a and 7b, could be displayed. That solution is
shown in panel 7d, it displays two of the three input splits, but is optimal because no solution
displays all three input groupings and the depicted solution displays the two highest ranked
groupings. However, neither of the trees shown in panels 7a or 7b contest the taxon B shown
in the taxonomy panel 7c. Thus, when using our decomposition, the branches leading to taxa
B1 and B2 in the input phylogenetic trees would be sliced during the decomposition, and

10/23

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.2538v1 | CC BY 4.0 Open Access | rec: 18 Oct 2016, publ: 18 Oct 2016

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

oC oC

C
(% °B ABCD °B
% :A2

0A3 A3
l o)
0A2

B A A2
A1 Al

(a) Subproblem ABCD

—— oABCD —— oF
o
E ——oABCD
G L oG

(b) Subproblem root

Figure 6. Subproblems generated from the exemplified trees shown in figure 5. A trivial
statemen from the first tree that a taxon labelled ABC'D is sister to E has been omitted,
because trees with only 2 leaves do not contain phylogenetic information.

relabeled to refer to taxon B. This taxonomically-informed interpretation of the inputs views
the two phylogenetic inputs as in conflict; so the solution returned by propinquity would
defer to the higher ranked tree. The tree shown in panel 7e would be returned. This example
arises from the fact that the trees in 7a and 7b jointly contest taxon B, but neither contests
taxon B when the trees are considered in isolation.

Despite the fact that the use of otc-uncontested-decompose can worsen the final score
of the summary tree, we use this approach in propinquity because it makes the construction
of the tree faster and it is easy for users to correct issues caused by incorrect taxa being
constrained to be monophyletic. By adding a tree (even a low-ranked tree) that contests
a taxon to the corpus of input trees , then the next synthetic tree will no longer consider
the taxon to be uncontested. Thus the procedure encourages curation of more phylogenetic
inputs as a means of improving the summary tree.

2.2.2 Subproblem solution
When solving sub-problems, we sequentially incorporate splits from trees in order of ranking,
retaining splits that are compatible with the current set of splits (Alg 1). The order of
splits from the same tree is not specified by this approach, and we incorporate splits using
one of the possible post-order traversals of the tree. We make use of the BUILD algorithm
(Aho et al., 1981) to assess compatibility. This strategy avoids unnecessary polytomies,
since splits of later input trees are only rejected from the summary supertree if they conflict
with higher-priority splits. Finally, we use the BUILD algorithm to construct a supertree
displaying all of the splits in the set of compatible splits. Using the BUILD algorithm to
construct the subproblem summary tree satisfies criterion 3, because trees from the BUILD
algorithm do not contain unsupported branches.

The BUILD algorithm as originally stated by Aho et al. (1981) applies to a collection of

11/23

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.2538v1 | CC BY 4.0 Open Access | rec: 18 Oct 2016, publ: 18 Oct 2016

oC oB2 B2

B1 C

(a) (b) (c)

oB2 oC

(d) (e)

Figure 7. An example with three input trees: the highest ranked phylogenetic input panel
(a), the second ranked phylogenetic input (b), and the taxonomy in panel (c). The summary
tree in panel (d) has the highest possible score, but the summary shown in panel (e) would
be returned from the pipeline that uses uncontested taxon decomposition.

Algorithm 1 ConsistentSplitsFromRankedList
Require: An ordered list of M splits, R = [R1, Ra, R3,...,R3,..., Ry
C=[Ri]
for each split ¢ in [2,3... M] do
T+ C+R; > where ‘+’ means concatenating 2 lists
if BUILD(T) does not return null then
C+T
end if
end for
return C

12/23

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.2538v1 | CC BY 4.0 Open Access | rec: 18 Oct 2016, publ: 18 Oct 2016

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

oC

oABCD oB a
A3 | F
A A2 >root E
A12
Al oABCD
(a) Solution to subproblem ABCD (b) Solution to subproblem root

Figure 8. Solutions to the subproblems depicted in figure 6

rooted triplets. Instead of decomposing each input split into a collection of rooted triplets, we
instead modify the BUILD algorithm to apply directly to larger rooted splits. The modified
BUILD algorithm constructs a tree compatible with a collection of rooted splits, and returns
failure if such a tree does not exist. This modified algorithm recovers the original BUILD
algorithm if only rooted triplets are supplied as input. When larger splits are supplied as
input, the results are the same as if each was was decomposed into all implied triplets. The
modified build algorithm has order O(N?+ N?E + NL) where N is the number of splits
passed in, F is the average size of the exclude group, and L is the total number of leaves. This
simplifies to O(NN?) if all splits are triplets. In this approach splits are either entirely retained
or entirely discarded - consistent rooted triplets from conflicting splits are not retained.
However, when unpruning taxonomy-only taxa (see below), we make an attempt to break
ties in a way that preserves some partial information from conflicting splits by attaching taxa
from conflicting splits at their common ancestor. Figure 8 shows the solutions that would
be obtained by applying our modified version of the BUILD algorithm to the subproblems
shown in figure 6.

2.2.3 Solution grafting

To produce a tree that spans all of the taxa sampled in the exemplified set of
input trees, we graft the subproblem solutions into a single tree (stored as the
grafted_solution/grafted_solution.tre by propinquity). Recall that each non-root
uncontested taxon used for decomposition occurs as a leaf taxon in one subproblem and as a
root taxon in one other subproblem. Thus, the grafting operation simply consists of reading
all of the subproblem solutions into memory and then merging the nodes that are labeled
with the same OTT ID.

2.2.4 Unpruning unsampled taxa
As described above, taxa that do not have any descendants in a sampled phylogenetic input
are pruned from the taxonomy for the sake of efficiency. These taxa are reattached by an
“unpruning step.” For those taxa that are compatible with the grafted tree, this step simply
amounts to adding any unsampled taxonomic children to the node that represents the taxon
in the grafted solution tree.

However, a taxon may be incompatible with the grafted solution; we refer to such taxa
as “broken taxa.” If a broken taxon contains some unsampled children, it is not clear
where these unsampled children should be attached to the grafted solution. One approach

13/23

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.2538v1 | CC BY 4.0 Open Access | rec: 18 Oct 2016, publ: 18 Oct 2016

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

oC
AB B

A3

A2
>root A12

A1l

E

Figure 9. Grafted solution. The nodes E and F are monotypic here, but will end up being
polytypic after unpruning is performed.

would be to mimic the application of Algorithm 1 to the full (unpruned) taxonomic tree.
This would be equivalent to collapsing each edge in the taxonomy that attaches a broken
taxon to its parent. The unsampled children of broken taxa would attach at their least
inclusive ancestral taxon which is unbroken. In cases of several adjacent taxa are bro-
ken, this can lead to polytomies of very high degree deep in the tree. This can make the
summary tree difficult to navigate. Thus, we have adopted an alternative solution. The
otc-unprune-solution-and-name-unnamed-nodes tool from otcetera attaches the unsam-
pled children of a broken taxa to the grafted solution as children of the MRCA of the sampled
children.

Figure 10 illustrates the two approaches to unpruning. Taxa G, M, and R (Fig 10a) are
broken because they conflict with the grafted solution (Fig 10b); among these, only taxon
R has children that were unsampled in the grafted solution. Ignoring all broken taxa when
unpruning would cause the unsampled children (R4, R5, and R6) to attached directly at taxon
N (as in the tree shown in Fig 10c), because that is the least inclusive unbroken ancestor of
R. The tree illustrated in Fig 10d shows the tree that would be produced by propinquity; the
children of the broken taxon R and instead attached at the MRCA of sampled children (R1,
R2, and R3). Their attachment point does not correspond to any taxon in the taxonomic
tree.

2.2.5 Naming unnamed nodes

In order to annotate each node in the summary supertree, it is first necessary that each node
have a unique identifier. Nodes whose include group correspond exactly to the include group
of a node in the taxonomy are given the same identifier as the corresponding taxonomy node.
These identifiers are of the form ottX where X is an integer OTT ID. We generate a label of
the form mrcaott X7ott Xy for an non-taxonomic node n where X7 and Xs are the OTT IDs
for two leaves, n is the MRCA of these leaves, and X is the numerically smallest OTT ID
that is a descendant of n, and Xs is the next the smallest ID that can be chosen to designate
n as the MRCA. Because new taxa added to OTT will be given higher OTT IDs, the use of
the lowest numbered OTT IDs as designators increases the chance that a node label can be
encountered in a subsequent version of the tree (though the taxonomic content may change).
The deterministic choice of designators also makes the labeling insensitive to branch rotation

14/23

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.2538v1 | CC BY 4.0 Open Access | rec: 18 Oct 2016, publ: 18 Oct 2016

P2
£
P1
T2 ——eP2
E
B T1 P1
S2 M2
£
S B T
G
———— —0R6 S
—oN
Y 1 R3
——————oR4 M1
R
—————oR3 R2
- oR2 R
L oR1 .
(b) Grafted solution
M2
e
M1
(a) Taxonomy
oC oC
oR6 P2
P
oR5 P1
B B
oR4 M2
P2 T2
P T
P1 LN T1
—oN
M2 S2
s
T2 St
T
T L oR6
S2 oR5
S
St oR4
R3 oR3
M1 M1
Ri R1
(c) Unpruned tree - broken taxa removed (d) Unpruned tree with MRCA-attachment

Figure 10. Two approaches to unpruning. Taxa G and R in the taxonomy (a) are broken
because they conflict with the grafted solution (b). Removing these broken taxa from the
taxonomy before unpruning leads to taxa R4, R5, and R6 being attached directly at taxon
N, as in tree (c). In tree (d), the children of the broken taxon R are instead attached at the
MRCA of R1, R2, and R3. Our method follows the second approach.

15/23

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.2538v1 | CC BY 4.0 Open Access | rec: 18 Oct 2016, publ: 18 Oct 2016

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

404

405

406

G
F2

F1
E2

root Eq

D

C

>ABCD

B

A3

>
m m
o o

A2
A12
Al

Figure 11. Unpruned tree with internal taxa. Nodes E2, F2, and D have been re-added to
the tree. The nodes E and F are no longer monotypic.

of the grafted solution tree.

2.2.6 Annotation
To reveal the connections between the groupings found in the a summary supertree and
the input trees, propinquity uses a few Python scripts and the otc-annotate-synth tool
from otcetera to create an annotations file describing the pipeline used and the connections
between phylogenetic information in the inputs and the summary. The JSON file produced
by otc-annotate-synth encodes a “nodes” property that holds a mapping between a node
name for the summary tree (using the naming convention described in the previous section)
and a node provenance object that categorizes the relationship between the node and the
inputs. The node provenance object for node x uses several properties to categorize the
relationship between the node and the inputs; each property in the node provenance object
maps to a structure storing the tree ID and node IDs for the input tree nodes.
Conceptually, this annotation operation is equivalent to considering every node j in
each input tree ¢ and the summary tree node x. Because the vast majority of nodes in the
input studies will be compatible but not directly relevant to node x we do not list all of the
compatible groupings. If node z is not included in the induced tree S(i), then none of the
nodes of tree i will be referred to in the annotations for node x. Even if x is included in S(7),
many of the nodes of T; will be compatible with z while being relevant to other parts of the
summary tree. The only input nodes listed for node x are with rooted taxon bipartitions
which conflict with, are displayed by, or are resolved by the the rooted taxonomic bipartition
associated with node x. All input nodes that cannot be displayed by any supertree that
contains x are stored in a “conflicts_with” property of the node provenance object. If
node j of T; is displayed by the summary tree and x is part of the path of S(¢) that displays
the split between descendants of j and other taxa, then a reference to the node 5 will be in
the node provenance object. The exact categorization of this annotation will depend on the

16/23

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.2538v1 | CC BY 4.0 Open Access | rec: 18 Oct 2016, publ: 18 Oct 2016

mrcaott5ott7 mrcaott5ott7

ott7 % oott7

ott7 ott
wis ott11
 der7 ottd dott1000 otts oottd
ott2
node15 mrcaottiott4
ott1 oott2
ott10
(a) Input tree T named oot
treel (b) Summary Tree S (c) Induced Tree S(1)
{
"nodes": {
"mrcaottlottd4": { "partial path of": { "treel": '"nodelb", } 3,
"ottl0": { "partial path of": { "treel": '"nodelb", } 3,
"mrcaottbott7": { " " { "treel": '"nodel6", } 3,
"Ottl”: { " n { "treel" . "Ottl", } },
"Ott2" . { " n { "treel" . "Ott2" , } } s
"otth": {" " { "treel": 'otth", } 3,
"ott1l": { n " { "treel": "otth5" s } } s
||ott7ll . { n n { ||tree1|| : |lott7|l , } }

(d) JSON annotations relating edges of (c¢) to edges of (a)

Figure 12. The relationship of edges in summary tree S (b) to edges in the input tree 77 (a).
Only edges of S that are present in the induced tree S(1) are represented by JSON
annotations (d). Taxon names are here suppressed in favor of OTT IDs, and edges are
referenced via their tipward nodes. Edges in S(1) that correspond to terminal edges of T} are
orange; edges of S(1) that are supported by edges of T} are blue; where multiple edges of
S(1) correspond to the same edge of T} they are green. There is no conflict in this example.
Also, if this were output from propinquity, then each internal node of S would be supported
by other inputs trees that are not shown here.

17/23

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.2538v1 | CC BY 4.0 Open Access | rec: 18 Oct 2016, publ: 18 Oct 2016

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

434

435

436

440

441

442

443

configuration of node z on the induced tree S(7):

e if x is on a terminal path in the induced tree then node j will be listed in the “terminal”
property;

e if x is along an internal path that contains some nodes with out-degree equal to 1, then
node j will be listed in the “partial_path_of” property; and

e if z is along an internal path without any node of out-degree 1, then node j will be listed
in the “supported_by” property, because node j supports the existence of grouping x
in the sense that collapsing the edge that separates x from its parent would cause the
summary tree to no longer display node j.

These three relationships are illustrated in Figure 12. Finally, if T; does not display = from
S(7), but there exists an unresolved node j in 7; which could be resolved such that the tree
would then display z, then a reference to node j will be listed in the “resolves” property of
node x.

The otcetera annotation tool can also detect cases in which including information from
node j in T; could further resolve a polytomy z in the summary tree; such a case would
be annotated using the “resolved_by” property of . However, because of our goal of
excluding unnecessary polytomies, none of the nodes in propinquity’s summary tree will use
this annotation when they are annotated with the set of input trees.

2.2.7 Self-documentation

An optional step in the propinquity pipeline (triggered by the executing the “make html”
target) can compose an “index.html” file for each directory created during the pipeline
to explain the artifacts held in that directory and report summary statistics about the
summarization run.

3 RESULTS

We seek to assess the performance of our new supertree method by comparing it to the
supertree method of Hinchliff et al. (2015). The method of Hinchliff et al. (2015) was used to
construct the Open Tree of Life v4 (OTLv4). Therefore, in order to facilitate comparison, we
applied our method to the same input trees and taxonomy used by OTLv4. We refer to the
resulting supertree as OTLv4’ since it was constructed by applying the propinquity pipeline
to the same inputs as OTLv4.

3.1 Inputs

The flag-cleaned version of OTT used in the construction of both supertrees contained
2,424,255 leaves. The OTLv4 supertree was constructed from 482 phylogenetic inputs,
containing a total of 45,385 leaves, of which 41,029 were unique. After flag-cleaning and
exemplification by propinquity, these trees contained 40,323 unique tips. We used the same
cleaning flags to trim the taxonomy and input trees when constructing OTLv4’, so OTLv4
and OTLv4’ contain the same number of leaves.

18/23

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.2538v1 | CC BY 4.0 Open Access | rec: 18 Oct 2016, publ: 18 Oct 2016

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

469

470

471

Table 1. Representation of input splits in the OTLv4 tree and the OTLv4’ tree.

supported_by partial_path_of terminal conflicts_with resolved_by resolves

OTLv4 34,595 923 45,385 2,760 2,718 473
OTLv4 only 745 54 0 2,055 2,718 0

OTLv4/ 38,521 1,118 45,385 1,357 0 015
OTLv4 only 4,671 249 0 652 0 42

Table 2. Representation of taxonomy splits in the OTLv4 tree and the OTLv4’ tree.

supported_by partial_path_of terminal conflicts_with resolved_by resolves

OTLv4 125,384 0 2,424,255 1,098 1 3,676
OTLv4 only 296 0 0 19 1 17

OTILv4’ 125,107 0 2,424,255 2,279 0 3,883
OTLv4 only 19 0 0 300 0 224

3.2 Subproblems

In the OTLv4’ summary tree, the decomposition procedure produced 5,406 subproblems, but
only 1,422 of these were non-trivial to solve. If a subproblem contains only two tips it is
trivial; 2,362 subproblems were trivial in this way. Similarly, if a subproblem contains only 2
trees it is trivial to solve because the solution will simply be all of the groupings from the
first tree combined with all of the groupings from the second tree that are compatible with
the first tree; 3,052 subproblems were trivial in this way. The subproblem with the largest
number of tips contained 946 tips. The largest subproblem, in terms of the number of input
trees (including the taxonomic tree) that were relevant, had 16 trees. Without decomposition,
the supertree problem would have had 482 input trees and 41,226 leaves.

3.3 Representing input splits

We performed an annotation of both the OTLv4 tree and the OTLv4’ tree as described in sec-
tion 2.2.6 to assess the ability of our new supertree method to represent splits from input phy-
logenies. Table 1 classifies the input phylogeny splits according to how they relate to a summ-
mary tree, so that each input edge falls in one of supported_by, partial_path_of, terminal,
conflicts_with, or resolved_by. For example, the numbers in the conflicts_with col-
umn indicate the number of input splits 7 with at least one summary edge x such that the
relation “x conflicts_with 5”7 holds. The total number of non-terminal input phylogeny
splits considered was 40,996.

The number of displayed input splits (supported_by + partial_path_of) increased
from 35,518 (for OTLv4) to 39,639 (for OTLv4’); an 11% increase. When examining which
splits are displayed, we find that the OTLv4’ tree displays 4,920 input splits that are not
displayed by the OTLv4 tree, whereas the OTLv4 tree displays only 799 input splits that are
not displayed by the OTLv4’ tree. The number of input splits that conflict with the summary
(conflicts_with) dropped from 2,760 to 1,357, a decrease of 1,403, or 51%. In accordance
with the goal of not containing unnecessary polytomies, the number of input splits that do
not conflict with the summary tree, but are not incorporated (resolved_by) dropped from
2,718 to 0. We also find that the number of polytomies in input phylogenies that are resolved

19/23

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.2538v1 | CC BY 4.0 Open Access | rec: 18 Oct 2016, publ: 18 Oct 2016

472

474

475

476

477

481

482

483

484

485

486

487

488

489

490

491

492

494

495

496

497

498

500

501

502

503

504

505

506

507

508

509

510

by the summary tree increases from 473 for OTLv4 to 515 for OTLv4’.

We also performed an annotation of the OTLv4 tree and the OTLv4’ tree to assess the
degree to which these trees represent taxonomy splits (Table 2). The OTLv4’ tree conflicts
with 281 more taxonomy splits than the OTLv4 tree. Since the taxonomy is the lowest ranked
input tree, this increased conflict with the taxonomy is an expected result of incorporating
more splits from higher-ranked input phylogenies.

4 CONCLUSIONS

Here we have described the motivation and methodology used by our new supertree method
that is currently used by the Open Tree of Life project to build summary supertrees on the
scale of millions of leaves. Our new method represented 11% more input phylogeny splits
with 51% less conflict compared to the Open Tree of Life version 4 summary tree, when
applied to the same inputs. Unlike the previous method (Hinchliff et al., 2015), our new
method is guaranteed to incorporate input splits unless they conflict with the summary tree.
The method is implemented in the Open Source software package propinquity. A modified
version of the treemachine software which built the summary tree described in the Hinchliff
et al. (2015) paper is used by the project to serve the tree produced by propinquity via Open
Tree of Life APIs.

The migration of summary tree construction from treemachine (used for version 4) to
propinquity (for all versions from v5.0 to present) has increased the pace of synthesis tree
releases from the Open Tree of Life project. This is partly because the newly available
annotations feature has made it possible to identify which input trees are responsible for
taxa being included or excluded from the summary tree. Additionally, the new propinquity
software pipeline has decreased the decreased the computational time required to construct a
supertree from several hours to about 8 minutes (after some preprocessing steps which only
have to be performed when the input taxonomy changes). The amount of RAM required
during tree construction has also decreased substantially.

5 ACKNOWLEDGEMENTS

Thanks to Emily Jane McTavish, Karen Cranston, Jonathan Rees, Jim Allman, Cody
Hinchliff, Stephen Smith, and Joseph Brown for discussions and feedback. Thanks to NSF
grant 1208393 (DEB), part of the collaborative Open Tree of Life awards, the University of
Kansas, and the Heidelberg Institute for Theoretical Studies for funding.

REFERENCES

Aho, A. V., Sagiv, Y., Szymanski, T. G., and Ullman, J. D. (1981). Inferring a tree from
lowest common ancestors with an application to the optimization of relational expressions.
SIAM Journal on Computing, 10(3):405-421.

Hinchliff, C. E., Smith, S. A., Allman, J. F., Burleigh, J. G., Chaudhary, R., Coghill, L. M.,
Crandall, K. A., Deng, J., Drew, B. T., Gazis, R., Gude, K., Hibbett, D. S., Katz, L. A.,
Laughinghouse, H. D., McTavish, E. J., Midford, P. E., Owen, C. L., Ree, R. H., Rees,
J. A Soltis, D. E., Williams, T., and Cranston, K. A. (2015). Synthesis of phylogeny

20/23

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.2538v1 | CC BY 4.0 Open Access | rec: 18 Oct 2016, publ: 18 Oct 2016

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

and taxonomy into a comprehensive tree of life. Proceedings of the National Academy of
Sciences, 112(41):12764-12769.

Huson, D. H., Rupp, R., and Scornavacca, C. (2010). Phylogenetic networks: concepts,
algorithms and applications. Cambridge University Press.

Karp, R. M. (1972). Reducibility among combinatorial problems. In Complezity of computer
computations, pages 85—-103. Springer.

McTavish, E. J., Hinchliff, C. E., Allman, J. F., Brown, J. W., Cranston, K. A., Holder,
M. T., Rees, J. A.; and Smith, S. A. (2015). Phylesystem: a git-based data store for
community-curated phylogenetic estimates. Bioinformatics, page btv276.

A THE MAXIMUM SUM DISPLAYED GROUPS’ WEIGHTED
SCORES CRITERION

Let W is a weighting function that maps any input tree’s internal node to a non-negative
number. If I(S,4,7) is an indicator function that is 1 if summary tree S displays the node
V(i,7) and 0 otherwise then: SDGWS(S) = 32,37 1(S,4,5)W(i,j) is the “sum of displayed
groups’ weighted scores” for a tree where ¢ indexes all of the input trees and j indexes each
non-root internal node in tree i. Preference for this tree is referred to as the maximum
sum displayed groups’ weighted scores criterion (MSDGWS criterion). The summary tree
constructed by the propinquity pipeline is a greedy heuristic for finding a tree that maximizes
this score when the weights for a node are determined by the tree’s weight and the difference
in weighting is so large that displaying one node from a highly ranked tree is preferred to
displaying all of the nodes in the trees with lower rank.

B DESCRIPTION OF THE DECOMPOSITION ALGORITHM OF
OTC-UNCONTESTED-DECOMPOSE

The input is the a ranked list of input trees and comprehensive taxonomy.

B.1 Creation of multigraph of the taxonomy with embedded trees

The tool creates a multigraph by starting with a graph isomorphic to the taxonomic tree.
The nodes and edges created in this step will be referred to as the “taxonomic graph.” Next,
we add nodes and edges to that graph in a procedure that we refer to as “embedding” the
input trees into the taxonomy. A node is introduced for each node in an input tree, and
these nodes are mapped the MRCA nodes in the taxonomic graph. In other words, for any
node y in an input tree with a cluster of descendants, C, we find the most tipward node
z in the taxonomic graph that is an ancestor to all of the taxa in C; let m(y) = z refer to
this mapping, and m/(z) =y refer to the reverse mapping. Each edge ¢;; in a source tree ¢
connects ancestor to its descendant, a(e;;) — d(e;j). The edges are introduced into the graph.
We also introduce new edges to create a from m(a(e;;)) through its descendants to m(d(e;;));
we denote this path p(e;;) and refer to the edges in the path as “embedding edges for tree ”.
Note, that this is a path through the taxonomic nodes, while the edge e;; connects source
tree nodes. The mapping between e;; and p(e;;) is stored, and the edges are labelled with
the index i so that it is clear which tree created them. Because the taxonomic tree is highly

21/23

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.2538v1 | CC BY 4.0 Open Access | rec: 18 Oct 2016, publ: 18 Oct 2016

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

unresolved, it is frequently the case that m(a(e;j)) is the same node as m(d(e;;)); in these
cases the embedding edge is a loop. This situation occurs whenever edge e;; can resolve part
of the polytomy represented by a taxon.

We treat the taxonomy as the lowest ranked input tree. The next step will collapse
contested edges in the taxonomic graph. To retain all of the information from the taxonomy
we embed the taxonomy into the taxonomic graph as if it were another input tree

B.2 Detection of uncontested higher taxa

After every input tree and the taxonomy tree have been embedded into the taxonomic graph,
we perform postorder traversal over the taxonomic graph that underlies the multi-graph.
For any internal node (each of which corresponds to a non-terminal taxon) we determine
whether or not it is contested by examining each input tree. We can determine tree ¢ contests
the taxon represented by taxonomic node x by looking at the parents of all of the “exiting’
embedding edges for tree 7. These are the set of embedding edges that have x as a daughter
and have a parent node that is not = (ergo a parent node that is taxonomically higher than
x). If there are more than one parent nodes in this set of exiting embedding edges, then tree
1 contests that taxon. If there is only one parent node, then the all of the constituent taxa
belonging to this taxon that are present in tree i have one parent that is more inclusive; this
means that the input tree does not contest monophyly of the taxon.

If the taxon is uncontested, then it may be the case that some input trees do not contest
the taxon, but contain polytomies that could be resolved to display the taxon. The cases can
be identified by finding multiple exiting embedding edges that have the same taxon y as their
parent node. In these cases, a pseudo input tree node is created and becomes the parent
node for these edges; this new node is then connected to y as if it had been an input edge.
This operation is equivalent to resolving an input tree’s polytomy in favor of the monophyly
of the uncontested taxon. This is the only way in which the input trees are modified during
the decomposition.

)

B.3 Collapsing contested taxa from the taxonomic graph

If a taxonomic node x fails the “uncontested” test described in the previous section, then
the node corresponding to the taxon is removed from the taxonomic graph and the set of
edges (and mappings between input edges and embedded paths) is updated as if this taxon
had not been present in when the taxonomic graph was created. This consists of detecting
changing any edge in an embedding path that is adjacent to x by replacing the reference to x
with a reference to its parent a(z). Note that we do not collapse the edge corresponding to
this taxon in the part of the graph that represents the embedding of the taxonomy into the
taxonomic graph. Thus, the taxonomy will still claim the monophyly of the taxon. This is
relevant if the input grouping that contests taxon z is overruled (in the subproblem solution
step) by a higher ranked split. In other words, the fact that the a taxon is contested during
the decomposition is not a guarantee that the taxon will not be monophyletic in the final
supertree.

B.4 Emitting subproblems
Whenever an uncontested taxon is identified, the appropriate slice of each input trees that
intersect with the taxon is written to a file. Then the multigraph is simplified by slicing any

22/23

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.2538v1 | CC BY 4.0 Open Access | rec: 18 Oct 2016, publ: 18 Oct 2016

592

593

594

595

596

off the taxon. This slicing is accomplished by examing all of the exiting embedding edges
for the taxon. The descendant taxa of each input tree is relabeled with the identifier of the
contested taxa and all of that node’s descendants are removed. Thus this input node will act
as as if it were a leaf mapped to the uncontested taxon. All descendants of the taxonomic
graph are also pruned off.

23/23

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.2538v1 | CC BY 4.0 Open Access | rec: 18 Oct 2016, publ: 18 Oct 2016

