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Abstract 

1. Plant cover data collected by monitoring schemes are often expressed on interval-

censored scales to reduce field effort. Existing statistical approaches to such data may 

not make full use of available information, or may both induce bias and assume more 

precision than may be warranted, e.g. by analysing mid-points and disregarding the 

spread of observations within a class. 

2. We compare four approaches to modelling such data: two established methods (the 

proportional odds model and generalised linear mixed models) and two novel methods 

that explicitly accommodate the interval-censored nature of much data on plant cover. 

Of the latter, the first is a maximum likelihood (ML) approach that incorporates 

knowledge of the metric interval in which each datum lies. The second uses a Bayesian 

approach to incorporate interval-censoring and random effects to account for variation 

in annual changes between sites. All four methods are compared using data simulated 

with parameter values derived from analysis of a long-term monitoring dataset. 

3. We demonstrate that model choice can influence the quality of statistical inference, 

particularly between models that make simplifications for convenience of fitting, and 

those which combine realistic distributional assumptions with accommodation of 

imprecise observations. A comparison of three of the methods demonstrated that all 

provide good accuracy and increasing precision over time. A comparison of power 

across the three frequentist approaches showed higher power for the novel ML 

approach. This is likely to be due to this non-hierarchical method underestimating 

residual variance. The Bayesian model is not directly comparable, but the measure of 

belief in a negative trend considered here was generally high, providing gradual 

increases in the believability of a decline with increasing time, number of sites, initial 

abundance, and larger effect sizes. 

4. Our results suggest that the use of hierarchical models for plant monitoring schemes, 

conveniently applied in a Bayesian context, will help to bring greater realism and 

sensitivity to assessments of population change, and allow the use of more of the 

underlying information contained within cover data. Interval-censored methods will 

also allow for the integration of long-term plant datasets collected according to different 

cover scales, as well as presence/absence data.
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Tweetable abstract 

Plant cover data may currently be modelled inefficiently. We explore two new approaches to 

getting the most out of interval-censored data. 
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Introduction 

Monitoring schemes are a key part of national and global initiatives to gather evidence on 

changes to biodiversity (Collen et al. 2013). Such schemes are often long-term, with periodic 

analyses of data expected to provide evidence for shifts or stability in the abundances or 

distributions of species (Magurran et al. 2010; Dornelas et al. 2013). Robust statistical design 

is therefore an essential part of any such scheme if the resulting models are to be widely 

accepted as credible indicators of biodiversity change by policy-makers, managers and other 

scientists (Lindenmayer & Likens 2010; Gitzen et al. 2012). An important part of such work is 

to determine (i) the level of any error or bias in the models adopted and (ii) what intensity of 

monitoring activity is sufficient to detect a statistically significant change in abundance if one 

has actually occurred; that is, suitable power analyses or equivalent are recommended as best 

practice (Jones 2013). 

Conducting an appropriate power analysis for a monitoring scheme involves deciding on a set 

of relevant scenarios to investigate, covering a range thought plausible once the proposed 

scheme is established. Important variables affecting the quality of inference include those that 

represent the underlying structure of the data, e.g. the number of years of monitoring, the 

number of sites monitored or the arrangement of repeated site visits in time and space (Urquhart 

2012), and those that represent the hypothetical effect that the monitoring is intended to 

capture, e.g. changes in species’ abundances or distributions within a specified time frame, 

which may be a constant change of a fixed number of organisms or area of cover per year, or 

a proportional change in such a measure. Temporal trends, of course, may also vary across 

sites. Simple, mathematically-explicit estimates of power are not available in such multi-

faceted studies, but, in a classical framework, simulation-based approaches to power analysis 

(Gelman & Hill 2007; Bolker 2008) have meant that ecologists have increasingly had a greater 

ability to capture the complex generating processes that often characterise data collected by 

monitoring schemes. These include the possibility of modelling variation in trends over time 

at different sites through the use of mixed models (Gelman & Hill 2007; Miller & Mitchell 

2014; Johnson et al. 2015). These approaches should help to ensure that the results obtained 

embody a greater realism; this may be particularly important for monitoring schemes, which 

often cover large geographic areas across which the drivers of change for particular species or 

habitats may vary. The inclusion of greater flexibility in the modelling of spatially-varying 

structures in power analyses is therefore likely to ensure that decisions made regarding the 

inauguration and funding of particular monitoring schemes are better informed (Miller & 
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Mitchell 2014), and may also help to avoid unrealistic expectations. A key challenge for such 

an approach is the derivation of realistic estimates of variance parameters to use in prospective 

analyses. Ideally pilot studies would always be conducted, although existing datasets collected 

using similar species and methodologies to those of the proposed schemes are also often used 

for convenience (e.g. Irvine & Rodhouse 2010; Lebuhn et al. 2013). 

Particularly where plants are concerned, an additional challenge may exist: plant species’ 

abundances are often recorded according to class-based scales, scales which typically attempt 

to discretise the visual cover assessments of surveyors. Interval-based cover, or ‘cover-

abundance’, scales typically encountered in vegetation science include those initiated by 

Daubenmire, Domin and Braun-Blanquet (Damgaard 2009, 2014; Kent 2012; Peet & Roberts 

2013). Here, the abundances of species within monitored areas or plots in a given year are only 

known each to fall within one of a certain number of exhaustive and mutually exclusive classes, 

ignoring potential errors of classification. To our knowledge, only one previous study (Irvine 

& Rodhouse 2010) has attempted to incorporate plant cover scales into a general approach to 

modelling for plot-based plant monitoring activity. Irvine & Rodhouse (2010) approached the 

problem from the point of view that plant cover scales are best treated as ordinal classifications, 

and, correspondingly, used the proportional odds model (Agresti 2002) to investigate the power 

to detect change in plant cover data collected using such scales, providing a general framework 

for such analyses. Indeed, ordinal models have sometimes been recommended as the most 

suitable approach to plant cover data collected using cover scales (Guisan & Harrell 2000). 

This is due to the fact that some of the most frequently used scales are not purely based on 

metric intervals; for example, some variants of the Domin scale define their lowest cover 

classes as combined cover-frequency scores, e.g. points 1 and 2 on one frequently used version 

of the Domin scale are given as “< 4%, 1 individual” and “< 4%, several individuals” 

respectively (Rodwell 1991). Some authors have provided transformations of such scales in 

order to provide approximate metric equivalents for all categories (Mueller-Dombois & 

Ellenberg 1974; van der Maarel 1979, 2007; Currall 1987); such an approach is attractive, 

because it would provide a means to combine information collected according to different 

cover scales, whilst also allowing the derivation of intuitive measures of change on the 

percentage cover scale (Damgaard 2009, 2014). However, it should also be pointed out that 

some vegetation scientists have objected to similar approaches in the context of descriptive 

multivariate analyses (Podani 2006), suggesting that such operations as substituting ordinal 

class memberships with, for example, mean values of percentage cover classes would 
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“increas[e] uncertainty in the data considerably” (Podani 2006); despite this, other workers 

have emphasised the progress that has been made in plant ecology by making such simplifying 

assumptions (van der Maarel 2007). 

If the intervals of the cover scale used have clear percentage-cover equivalencies, or these can 

be estimated through field trials, or otherwise agreed or approximated (Currall 1987; van der 

Maarel 2007; Damgaard 2009; Irvine & Rodhouse 2010), then a range of additional modelling 

techniques become available. Specifically, we suggest that techniques for modelling censored 

data can be applied to plant cover data collected using many of the standard scales widely used 

in plant ecology today, such as the variant of the Domin scale used in Britain and Ireland since 

its application to the British National Vegetation Classification (Rodwell 1991), the 

Daubenmire scale often used in North America, or the Braun-Blanquet scale popular in 

continental Europe (Peet & Roberts 2013). A metric interval-based approach should offer at 

least two advantages over the proportional odds model (in addition to the fact that it may allow 

for the combination of disparate data sources): it avoids the potentially unrealistic assumption 

of equal transition probabilities between cover classes intrinsic to this latter model; and, it 

enables the use of linear mixed modelling techniques when cover data are logit-transformed, 

allowing real estimates of trend to be estimated and providing the option of estimating 

hierarchical variance structures (Johnson et al. 2015). The modelling techniques that can be 

used include those within a Bayesian framework, making hierarchical models that combine the 

use of metric interval-censored data with random effects relatively straightforward to apply. A 

metric interval-censored approach may also be of broader relevance to scientists working with 

volunteers or land managers in other areas of environmental science, where other types of 

observation may be made according to interval scales with different types of censoring. For 

example, in citizen science, where volunteers may be requested to report some feature of the 

environment according to a scale that simplifies an underlying metric reality (e.g. Pocock & 

Evans 2014). 

The aim of this paper is to investigate different options for modelling interval-censored plant 

cover data, both in order to potentially increase the realism and information content of 

prospective power analyses for plant monitoring activity, and to broaden the toolbox of 

techniques available to vegetation scientists, whilst also highlighting potential trade-offs for 

error, bias and variance. We achieve this by comparing inferences resulting from: (1) a 

proportional odds model that treats cover data as ordinal classes (Irvine & Rodhouse 2010); (2) 

a hierarchical model with random effects using data representing overly precise observations 
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of plant cover, i.e. approaches that transform interval memberships into point estimates of 

cover (Currall 1987; van der Maarel 2007); (3) a novel, non-hierarchical, frequentist interval-

censored linear model; and (4) a novel hierarchical Bayesian interval-censored linear model. 

We provide R and JAGS code for the last two models respectively as supplementary material. 

We also discuss the appropriate circumstances under which our interval-censored models might 

be used over the approaches previously described in the literature. 

 

Methods 

Statistical Models 

Model numbers are as follows: Model 1: the proportional odds model, which assigns observed 

cover data to ordinal classes; Model 2: a generalised linear mixed model (GLMM) using data 

representing (overly) precise observations of plant cover; Model 3: a novel non-hierarchical 

frequentist interval-censored linear model; Model 4: a hierarchical Bayesian model with 

interval-censoring. All models fitted in this paper use a set of interval cover classes based on a 

commonly used variant of the Domin scale (Table 1). 

Models 1 and 2 

The proportional odds model and GLMMs have been described frequently in the literature 

(Agresti 2002; Gelman & Hill 2007; Irvine & Rodhouse 2010; Johnson et al. 2015). However, 

we reproduce them here for ease of comparison with Models 3 and 4. 

Model 1: The proportional odds model for ordinal cover data, where K is the total number of 

intervals, states that 

Eqn 1 𝑙𝑜𝑔𝑖𝑡[𝑃(𝐶𝑖,𝑗 ≤ 𝑘)] = 𝑙𝑜𝑔 [
𝑃(𝐶𝑖,𝑗 ≤ 𝑘)

𝑃(𝐶𝑖,𝑗 > 𝑘)
] = αk – β Yeari; 

𝑃(𝐶𝑖,𝑗 ≤ 𝑘) is the cumulative probability of an observation being in interval k or less (i.e. in 

any of the following intervals: 1, 2, …., K-1); 𝐶𝑖,𝑗 is the observed interval for the percentage 

cover at year i, site j; 𝛼𝑘 is the intercept for the kth interval (k = 1, 2, ....., K-1); 𝛽 is the slope 

for year. If the abundance increases over time (𝛽 > 0), such that a species moves up the category 

levels, then 𝑃(𝐶𝑖,𝑗 ≤ 𝑘) for k < K becomes smaller over time. 

Model 2: Generalised linear mixed model for raw cover data – the logit normal model:  

Eqn 2 𝑔𝑖𝑡(𝑝𝑖,𝑗) = log (
𝑝𝑖,𝑗

1−𝑝𝑖,𝑗
) ~ 𝑁(𝜇𝑖,𝑗 ,  𝜎2); 
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 𝑝𝑖,𝑗 describes the proportional cover of the given species at year i, site j; 𝜇𝑖,𝑗 =  𝛼𝑗 +  𝛽𝑗𝑌𝑒𝑎𝑟𝑖; 

𝛼𝑗 ~ 𝑁(𝜇𝛼, 𝜎𝛼
2) - random intercepts; 𝛽𝑗 ~ 𝑁(𝜇𝛽 , 𝜎𝛽

2) - random slopes; 𝜇𝛼 and  𝜇𝛽 are the mean 

intercept and slope on the logit scale. Model 1 was fitted using the R package ‘MASS’ v. 7.3-

43 (Venables & Ripley 2002), whilst Model 2 was fitted using the package ‘lme4’ v. 1.1-10 

(Bates et al. 2015). 

Model 3 – Censored data 

A non-hierarchical linear model was proposed by Walker et al. (2010) for interval-censored 

cover data. We extend this model here to derive our Model 3. We assume that the unknown 

percentage cover at site j in year i is expressed as a proportion pij and is observed only to lie 

within the interval (lij, uij) where lij ≥ 0 and uij ≤ 1. We then assume the logit-transformed 

proportion is normally distributed: 

Eqn 3 𝑙𝑜𝑔𝑖𝑡(𝑝𝑖𝑗) =  𝑙𝑜𝑔 [
𝑝𝑖𝑗

1− 𝑝𝑖𝑗
] ~ 𝑁(𝜇𝑖, 𝜎2) 

Then the probability of an observation lying within (lij, uij) is simply Ф(Uij) – Ф(Lij) where Ф(.) 

is the cumulative distribution function of a normal distribution and Uij and Lij are respectively 

equal to logit(uij) and logit(lij). Finally, to account for change over time, we define the expected 

coverage in year i via μi = α + βYeari with α and β additional parameters to be estimated. 

The adoption of interval-censored data in this way means that the model cannot be fitted via 

standard subroutines which might be used to fit random intercepts and a constant slope, or a 

simple generalised linear model, to point data. It is, however, straightforward to programme 

the log-likelihood for a set of interval-censored data and optimise to obtain maximum 

likelihood estimates of all parameters. R code for fitting Model 3 using the optimiser ‘optim’ 

(part of the base package ‘stats’ in R) is provided as supplementary material. 

We note also the flexibility of this approach: percentages recorded exactly (i.e. Lij = Uij) are 

readily accommodated should they be available, as are simple records of presence/absence, 

which can be considered to lie in the intervals (ϵ, 1) and (0, ϵ) respectively, where ϵ is some 

arbitrarily small value – nor is it necessary for all observations used to be recorded using a 

consistent set of category limits, thus allowing for the combined modelling of datasets collected 

using different cover scales. 

Model 4 – A hierarchical model for censored data 

Model 3 assumes a constant rate of change in the odds of plant cover (p/1-p) at all sites. It is 

appealing, and more realistic, to consider this slope as a random effect, varying spatially; site-
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dependent intercepts can be similarly treated. The censoring of the data, however, make this 

difficult in a frequentist framework. Such a hierarchical model is more readily fitted via 

Bayesian methods, which we introduce here as our Model 4; Model 4 therefore combines the 

treatment of random effects (Model 2) with interval-censoring (Model 3). The hierarchical 

Bayesian model for continuous interval-censored cover data has the same form as Equation 3, 

but with a modification to the specification of the expected proportion, so that 𝜇𝑖𝑗 =  𝛼𝑗 +

 𝛽𝑗 𝑌𝑒𝑎𝑟𝑖 where 𝛼𝑗 is the intercept at site j and 𝛽𝑗 is the slope, also at site j, with 𝛼𝑗 and 𝛽𝑗 

taking normal distributions. There is one slope and intercept per site for this model. 

All Bayesian models were run in JAGS v. 3.4.0 (Plummer 2013) using the package ‘R2jags’ 

v. 0.5-7 (Yu-Sung Su & Yajima 2015) to call the program from R. For this, the response can 

be re-expressed as logit(pij) ~ N(µij, τ), where τ is the precision (1/σ2). Vague normal priors 

were used for regression coefficients and uninformative gamma priors used for variance 

components, following standard advice (Gelman & Hill 2007). The total number of iterations 

for each of three chains was 50,000, with the first 10,000 values of each chain discarded as a 

burn-in; every fifth value in a chain was kept, resulting in 24,000 iterations being used for 

inference regarding posterior distributions. Values of the Brooks-Gelman statistic �̂� were 

checked for evidence of satisfactory convergence for all parameters within individual model 

runs before running models in a loop for the calculation of summary statistics (Brooks & 

Gelman 1998). 

Data simulation and scenarios 

Plant cover data with a hierarchical variance structure were simulated by adapting methods 

presented by Gelman & Hill (2007 pp. 449-454) and Bolker (2008 pp. 156-161). We simulated 

response data directly on the logit scale, assuming normal distributions. Data were simulated 

to match the hierarchical variance structure of Model 4, that is, the most complex and realistic 

of the models under consideration. We also investigated the effects on error, precision and bias 

induced by Models 2 and 3, in which more restrictive assumptions about the data structure are 

imposed. 

Countryside Survey data 

To ensure the greater realism of this exercise, the mean values for all standard deviation hyper-

parameters using for the simulation of response data were estimated from an existing UK long-

term plant monitoring programme, the Countryside Survey (CS; Carey et al. 2008). These 

surveys have been carried out in 1978, 1990, 1998/’99 and 2007, and involve visiting the same 
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fixed vegetation quadrats nested within a sample of 1 km squares dispersed across Great 

Britain. Both quadrat locations and 1 km squares were selected according to a stratified random 

sampling design. CS plant cover data used here were from 4 m2 (i.e. 2 × 2 m) plots nested 

within larger plots (known as ‘X’-plots within the CS; see Maskell et al. 2008 for a more 

detailed description of the data collection process). Within each quadrat, plant species presence 

is recorded and cover estimated to the nearest 5%, except in the range 1–10%, where unit cover 

estimates are made; species’ presences with cover < 1% are recorded as 0.1%. Here, a small 

value, ε = 0.0025, was added to, or subtracted from, cover values equal to 0 and 1 respectively 

to avoid undefined values when fitting logistic GLMMs (Warton & Hui 2011). For each species 

with at least one (non-zero) observation at each time point in the CS dataset, a varying-

intercept, varying-slope GLMM (Gelman & Hill 2007) was fitted to logit-transformed cover 

data from those quadrats surveyed in 1990, 1998/’99 and 2007 within the following widespread 

UK broad habitats: broad-leaved woodland; neutral grassland; calcareous grassland; and acid 

grassland. That is to say, a hierarchical version of Model 3 was used but data were considered 

as point estimates rather than as interval-censored observations; the ‘sites’ in the above model 

descriptions equal quadrats for the CS data, with no other spatial nesting considered. The R 

package ‘lme4’ (Bates et al. 2015) was used to fit all models to CS data. We also assessed the 

sensitivity of the estimation of the standard deviation hyper-parameters to the choice of species 

included in the model-fitting by restricting the data modelled to those species with at least two 

non-zero observations at all three time points (i.e. increasing the number of quadrats modelled 

for any one species, but reducing the number of species modelled overall). 

Across the 653 species so modelled, the median values for the residual standard deviation 

(0.80) and the intercept (0.15) and slope (0.05) random effect standard deviations were 

calculated and rounded to the nearest 0.05; these were the standard deviation hyper-parameters 

used in the data simulation step. The sensitivity analysis (models fitted for 343 species) gave 

median values of 0.85, 0.30 and 0.05 for these parameters; given that the main focus here is on 

the relative performance of the different models, given a particular dataset, we used the initial 

set of standard deviations for all simulations (Table 2). 

A simulation exercise 

For all models, the investigated values of key parameters are given in Table 2, resulting in 48 

different scenarios. These were chosen as realistic values linked to a new volunteer-based (i.e. 

‘citizen science’) plant monitoring scheme recently launched in the UK (Walker et al. 2015; 

Pescott et al. 2015). We restricted our investigation to declines to limit the number of scenarios 
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investigated. Proportional declines were specified in terms of an annual trend in the log-odds 

of plant cover, i.e. a linear trend on the logit scale, but a proportional decline on the scale of 

the odds of plant cover (p/1-p; Irvine & Rodhouse 2010). Declines were simulated from a range 

of initial starting percentage cover values (Table 2). For all scenarios we recorded the power 

to detect trend after 3, 5 and 10 years of monitoring under Models 1-3, assuming one visit per 

site per year. A one-sided α level of 5% was used across all models run within the frequentist 

mode of inference. 

Within a Bayesian framework power in the frequentist sense cannot be defined. Therefore, for 

Model 4, an indication of the strength of support for the inclusion of directional temporal 

change in the model was estimated by averaging the proportion of the posterior distribution for 

the slope coefficient (i.e. 𝜇𝛽) that was < 0 across all simulations. This can be conceptualised as 

the average belief in a negative trend of any magnitude given the data observed. Whilst we 

have chosen this simple summary statistic for the current investigation, the Bayesian approach 

is highly flexible, and the posterior distribution of a parameter can be divided into different 

sections to estimate the relative beliefs in parameter values of different magnitudes (see Brooks 

et al. 2008 and King et al. 2008 for conservation-oriented examples). Results are reported for 

100 simulations for all scenarios, irrespective of the mode of inference; the number of 

simulations was limited to 100 due to the computationally expensive nature of the Bayesian 

model. 

 

Results 

Statistical power, in the case of the frequentist models, increased with sample size, trend 

magnitude, time (i.e. duration of survey), and initial percentage cover (Figs 1, 2, 3). For Model 

1 (the proportional odds model), Model 2 (the GLMM using cover-class interval midpoints), 

and Model 3 (the frequentist interval-censored linear model), power typically reached 80% 

within 5 years for large proportional declines (75% and 90%), irrespective of initial percentage 

cover (Figs 1, 2, 3). This was partly dependent on the number of sites monitored, in that where 

only 15 sites were simulated, power required 7-8 years to reach 80% for 75% declines at low 

initial percentage cover (Figs 1, 2, 3). Across all models, power typically remained low for the 

smallest proportional decline (30%), with scenarios with 30 or 50 sites and/or larger starting 

covers rising above 80% power within 8-9 years. 
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Within this general pattern, there were important differences in power between models (Fig. 

4a, b, c), despite the fact that the underlying data were treated according to the same interval 

scale in each case. The GLMM fitted to the point estimates of cover derived from interval scale 

midpoints performed very similarly to the proportional odds model, with the 144 power 

estimates across all scenarios and time-points mapping closely to a 1:1 relationship between 

models, with no clear effect of trend magnitude or initial percentage cover on this relationship 

(Fig. 4a). The interval-censored linear model, however, exhibited higher power than both the 

GLMM and the proportional odds model for all scenarios where power had not reached 100% 

(Fig. 4b, c), particularly at intermediate values of the initial percentage cover and proportional 

decline parameters (Figs 1, 2, 3). The hierarchical Bayesian interval-censored model cannot be 

directly compared to the frequentist models, but the general trend in a belief in a negative slope 

of any magnitude matched the results from the frequentist models, in that a negative trend 

became a more believable feature of the underlying data with increasing sample size, trend 

magnitude, time and initial percentage cover (Fig. 5). One noteworthy feature of the Bayesian 

posterior summaries was the apparently reduced influence of all scenario variables (e.g. sample 

size etc.) on the strength of belief in a negative trend (Fig. 5), compared to the larger influence 

of these on frequentist power (Figs 1, 2, 3). For example, the Bayesian model indicated a greater 

than 75% belief in a decline after 6-7 years even with 30 sites and low covers; the frequentist 

models only approached higher levels of power for higher initial percentage covers, larger 

numbers of sites or longer periods of monitoring (Figs 1, 2, 3, 5). Similarly, the Bayesian 

posterior summaries exhibited relatively smooth increases in the believability of a negative 

trend over time, whereas the frequentist models tended to exhibit large jumps in power (Figs 

1, 2, 3, 5). These differences are due to the fact that the summaries of the Bayesian models 

focus on belief in a negative trend of any size, whereas the power of frequentist models requires 

a significant trend to be detected at the α = 0.05 level, creating a ‘stepped’ change in 

significance rather than a gradual increase in the believability of a phenomenon. Given that the 

declaration of significance in frequentist statistics depends on the degrees of freedom, and so 

the sample size, this difference in how the importance of results is judged is also likely to be 

behind the greater effect of the number of sites observed in the frequentist models (Figs 1, 2, 

3). However, it should also be recalled that the Bayesian curves are bounded below by about 

50%, given that an uninformative prior has 50% of its distribution below zero, meaning that 

the curves in Figure 5 are only able to vary over a smaller range. 
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For the models providing parameter estimates of the slope coefficient (Models 2, 3, 4), the 

clearest trend was the general reduction in error with the duration of monitoring, and the fact 

that the frequentist models gave lower error that the Bayesian model (Fig. 6, results presented 

for the 30 site scenario only). Bias did not show a clear pattern across models, and was 

generally low (Fig. 7, results presented for the 30 site scenario only). The precision of the slope 

coefficient estimates increased in accuracy with longer periods of monitoring (Fig. 7). The 95% 

confidence intervals of the slope coefficient estimates were smaller for Model 3 than Model 2 

(Figs 7a, b). The Bayesian 95% credible intervals were wider than the frequentist confidence 

intervals for any particular scenario; the Bayesian credible intervals also indicated increasing 

precision with longer periods of monitoring, as would be expected (Fig. 7c). 

 

Discussion 

Analytical approaches to plant cover data often recommend the use of proportional odds 

models (Guisan & Harrell 2000; Irvine & Rodhouse 2010), although the practice of using 

estimated percentage cover equivalents for cover intervals is also frequent, both for community 

and single species analyses (van der Maarel 1979, 2007; Currall 1987; van der Maarel & 

Franklin 2012). A clear advantage of analysing interval-based cover data using explicit values 

on a true metric scale is the ability to create more intuitive measures of trends in plant cover, 

however, the choice of model may have other important consequences. We investigated 

whether the choice of model for plant cover data resulted in significant changes to prospective 

power analyses, and assessed their impacts on error, bias and precision. In particular, we sought 

to quantify how the use of a linear modelling framework utilising interval-censoring, with or 

without the inclusion of random effects, could affect modelling outcomes. 

Unsurprisingly, the probability of detecting a true underlying trend increased as a function of 

sample size, trend magnitude and time; these are standard results from power analyses (e.g. 

Miller & Mitchell 2014; Johnson et al. 2015). Our results also showed that initial starting cover 

is an important determinant of power for a response variable on a proportional scale, 

irrespective of the model used.  This was also demonstrated by Irvine & Rodhouse (2010) for 

plant cover data analysed using the proportional odds model. Whilst the results presented here 

have been used to inform the development of a new abundance-based plant monitoring scheme 

for the UK (Walker et al. 2015; Pescott et al. 2015), increasing the flexibility of modelling 

approaches for plant cover data could have important consequence for ecological synthesis in 
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general, because much historical information on plant communities has been collected using 

interval-based cover scales (e.g. Dengler et al. 2011). The availability of flexible frameworks 

under which to combine data collected according to different cover scales may outweigh the 

costs of occasionally approximating metric boundaries for certain interval categories (van der 

Maarel 2007). Additionally, the fact that hierarchical variance structures can be more easily 

estimated within a linear modelling framework means that data varying across space and time 

can be more accurately modelled (Johnson et al. 2015). Our interval-censored models also 

explicitly acknowledge and utilise the uncertainty underlying actual estimates of plant cover 

collected using standard cover scales, potentially mitigating the objections of some workers 

who have pointed to the uncertainty created by approximating metric equivalents of ordinal 

scale classes by explicitly accounting for it (Podani 2006). Indeed, lower cover classes that are 

defined in terms of frequency and cover (e.g. the first two classes of the Domin scale referred 

to above; Rodwell 1991), could be grouped under our scheme, ensuring that only easily defined 

percentage cover groupings are used for modelling, reducing the need for workers to decide 

upon metric equivalents for all classes. The option to include presence/absence data alongside 

traditional interval-censored cover data is another advantage of our method. 

Our results suggest that the use of estimated interval midpoints in place of actual observations 

in a GLMM framework offers no clear advantages over the ordinal proportional odds model in 

terms of power; results from the maximum likelihood estimation based interval-censored 

model (Model 3) suggested more general increases in power. The power improvements seen 

with Model 3 were also mirrored in its slightly lower levels of error and increased precision. 

Whilst at first sight these facts might seem to favour Model 3 over the alternative modelling 

approaches, we should recall that the neglect of the hierarchical variance structure by Model 3 

is likely to lead to smaller standard errors, and so higher power, a result also obtained by 

Johnson et al. (2015) in the context of binomial and Poisson GLMMs. Neglecting the 

hierarchical variance structure is also likely to be responsible for the lower average error, given 

that Model 3 is not attempting to estimate slope coefficients that vary by site. However, 

marginal increases in error could also be seen as an inevitable corollary of the hierarchical 

models explored here (Models 2 and 4), in that the explicit modelling of random effects 

attempts to account for underlying variation across monitored sites, rather than assuming that 

it does not exist. Whilst this has led to slight increases in error and reduced precision in the 

current simulation exercise, in the real world, where trends may be the outcome of numerous 

environmental drivers, parameter estimates and measures of variance are more likely to be of 
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use when presented with their attendant uncertainties, particularly if this results in more 

realistic estimates of power; low levels of error are likely to have less significance for 

ecological inference. The fact that our Bayesian interval-censored model (Model 4) shows 

slightly higher average error, and reduced precision, compared to the GLMM using interval 

mid-points (Model 2), may be a result of the fact that the Bayesian model accounts for the 

increased uncertainty of plant cover observations within categories, an additional complexity 

which better reflects the limited state of our knowledge concerning the variable being 

modelled. In addition, conservationists using our Bayesian model would be able to quantify 

the strength of their belief in a particular trend, rather than requiring a significant result before 

a trend was accepted. In this case, a small amount of error attached to a particular point estimate 

of the median value of a parameter and reduced precision may be less important than the fact 

that a strength of belief, and associated uncertainty, can be attached to a range of trend estimates 

(Wade 2000; Brooks et al. 2008). 

We suggest that increased utilisation of the knowledge of interval boundaries associated with 

the popular ‘cover-abundance’ scales used in vegetation science is likely to be worthwhile. 

Whilst this may create challenges for scales where the lower categories are not explicitly 

defined in terms of percentage cover (Peet & Roberts 2013), it seems likely that standard 

approximations may often be able to be agreed (Mueller-Dombois & Ellenberg 1974; Currall 

1987; van der Maarel 2007). Indeed, the availability of percentage cover approximations for 

all cover scales would greatly facilitate opportunities for combining datasets using our 

methods. The availability of Bayesian options also provides a challenge to those formulating 

prospective power analyses. The results will be less clear cut, in that workers will have to think 

harder about what constitutes a desirable level of posterior belief in a trend parameter being 

beyond a certain size (Morrison 2007), but this is little different to advice offered to modellers 

using classical frameworks concerning the choice of effect size to investigate (Seavy & 

Reynolds 2007; Johnson et al. 2015). Indeed, we consider that the flexibility of the Bayesian 

approach is likely to be an advantage in this respect, because ‘out-of-the-box’ levels for power 

(e.g. 80%) cannot be chosen without thought (Di Stefano 2003; Morrison 2007). The approach 

may also serve to further highlight the fact that all power analyses rest on strong assumptions 

(Morrison 2007; Johnson et al. 2015), and to encourage users to highlight uncertainty as well 

as summary measures of power (Olsen et al. 1997). 

We suggest that the ability of workers to quantify beliefs in trends of different magnitudes is 

likely to be an advantage when communicating results or planning conservation actions 
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(Brooks et al. 2008). Here we have chosen the simplest Bayesian summary metric for 

illustration, but these can be tailored to the categories of most relevance to the species or system 

under study. Finally, we note that for monitoring programmes wishing to monitor multiple 

species, more sophisticated approaches to estimating power (or a Bayesian alternative) may be 

required; for example, any particular set of plots or larger sites will lead to variable occupancies 

amongst the target species of interest (Manley et al. 2004). 

  

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2532v1 | CC BY 4.0 Open Access | rec: 16 Oct 2016, publ: 16 Oct 2016



Models for plant cover data   

Acknowledgements 

We would like to thank Pete Henrys for providing useful comments on the manuscript. This work was funded 

as part of the National Plant Monitoring Scheme contract NEC05294 funded by the Joint Nature Conservation 

Committee (Peterborough, UK) and the Centre for Ecology & Hydrology (national capability funding through 

NERC). 

  

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2532v1 | CC BY 4.0 Open Access | rec: 16 Oct 2016, publ: 16 Oct 2016



Models for plant cover data   

References 

Agresti, A. (2002). Categorical Data Analysis, 2nd edn. Wiley-Blackwell, New York. 

Bates, D., Mächler, M., Bolker, B. & Walker, S. (2015). Fitting linear mixed-effects models using lme4. 

Journal of Statistical Software, 67, 1–48. 

Bolker, B.M. (2008). Ecological Models and Data in R. Princeton University Press, USA. 

Brooks, S.P., Freeman, S.N., Greenwood, J.J.D., King, R. & Mazzetta, C. (2008). Quantifying conservation 

concern–Bayesian statistics, birds and the red lists. Biological Conservation, 141, 1436–1441. 

Brooks, S.P. & Gelman, A. (1998). General Methods for Monitoring Convergence of Iterative Simulations. 

Journal of Computational and Graphical Statistics, 7, 434–455. 

Carey, P., Wallis, S., Chamberlain, P.M., Cooper, A., Emmett, B.A., Maskell, L.C., McCann, T., Murphy, J., 

Norton, L.R., Reynolds, B., Scott, A., Simpson, I.C., Smart, S.M. & Ullyett, J. (2008). Countryside 

Survey: UK Results from 2007. URL http://www.countrysidesurvey.org.uk/outputs/uk-results-2007 

[accessed 28 April 2015] 

Collen, B., Pettorelli, N., Baillie, J.E.M. & Durant, S.M. (Eds.). (2013). Biodiversity Monitoring and 

Conservation: Bridging the Gap between Global Commitment and Local Action. John Wiley & Sons, 

Cambridge, UK. 

Currall, J.E.P. (1987). A transformation of the Domin scale. Vegetatio, 72, 81–87. 

Damgaard, C. (2014). Estimating mean plant cover from different types of cover data: a coherent statistical 

framework. Ecosphere, 5, art20. 

Damgaard, C. (2009). On the distribution of plant abundance data. Ecological Informatics, 4, 76–82. 

Dengler, J., Jansen, F., Glöckler, F., Peet, R.K., De Cáceres, M., Chytrý, M., Ewald, J., Oldeland, J., Lopez‐

Gonzalez, G. & Finckh, M. (2011). The Global Index of Vegetation‐Plot Databases (GIVD): a new 

resource for vegetation science. Journal of Vegetation Science, 22, 582–597. 

Di Stefano, J. (2003). How much power is enough? Against the development of an arbitrary convention for 

statistical power calculations. Functional Ecology, 17, 707–709. 

Dornelas, M., Magurran, A.E., Buckland, S.T., Chao, A., Chazdon, R.L., Colwell, R.K., Curtis, T., Gaston, 

K.J., Gotelli, N.J., Kosnik, M.A., McGill, B., McCune, J.L., Morlon, H., Mumby, P.J., Øvreås, L., 

Studeny, A. & Vellend, M. (2013). Quantifying temporal change in biodiversity: challenges and 

opportunities. Proceedings of the Royal Society B: Biological Sciences, 280, 20121931. 

Gelman, A. & Hill, J. (2007). Data Analysis Using Regression and Multilevel/Hierarchical Models. 

Cambridge University Press, New York, NY. 

Gitzen, R.A., Millspaugh, J.J., Cooper, A.B. & Licht, D.S. (Eds.). (2012). Design and Analysis of Long-term 

Ecological Monitoring Studies. Cambridge University Press, Cambridge, UK. 

Guisan, A. & Harrell, F.E. (2000). Ordinal response regression models in ecology. Journal of Vegetation 

Science, 11, 617–626. 
PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2532v1 | CC BY 4.0 Open Access | rec: 16 Oct 2016, publ: 16 Oct 2016



Models for plant cover data   

Irvine, K.M. & Rodhouse, T.J. (2010). Power analysis for trend in ordinal cover classes: implications for long-

term vegetation monitoring. Journal of Vegetation Science, 21, 1152–1161. 

Johnson, P.C.D., Barry, S.J.E., Ferguson, H.M. & Müller, P. (2015). Power analysis for generalized linear 

mixed models in ecology and evolution. Methods in Ecology and Evolution, 6, 133–142. 

Jones, J.P.G. (2013). Monitoring in the real world. Biodiversity Monitoring and Conservation: Bridging the 

Gap between Global Commitment and Local Action (eds B. Collen, N. Pettorelli, J.E.M. Baillie & 

S.M. Durant). John Wiley & Sons, Chichester, West Sussex. 

Kent, M. (2012). Vegetation Description and Data Analysis: A Practical Approach, 2nd edn. Wiley-

Blackwell, Chichester, UK. 

King, R., Brooks, S.P., Mazzetta, C., Freeman, S.N. & Morgan, B.J.T. (2008). Identifying and diagnosing 

population declines: a Bayesian assessment of lapwings in the UK. Journal of the Royal Statistical 

Society: Series C (Applied Statistics), 57, 609–632. 

Lebuhn, G., Droege, S., Connor, E.F., Gemmill-Herren, B., Potts, S.G., Minckley, R.L., Griswold, T., Jean, 

R., Kula, E., Roubik, D.W., Cane, J., Wright, K.W., Frankie, G. & Parker, F. (2013). Detecting Insect 

Pollinator Declines on Regional and Global Scales. Conservation Biology, 27, 113–120. 

Lindenmayer, D. & Likens, G. (2010). Effective Ecological Monitoring. Csiro Publishing, Collingwood VIC. 

van der Maarel, E. (2007). Transformation of cover-abundance values for appropriate numerical treatment - 

Alternatives to the proposals by Podani. Journal of Vegetation Science, 18, 767–770. 

van der Maarel, E. (1979). Transformation of cover-abundance values in phytosociology and its effects on 

community similarity. Vegetatio, 39, 97–114. 

van der Maarel, E. & Franklin, J. (2012). Vegetation Ecology, 2nd edn. John Wiley & Sons, Chichester, UK. 

Magurran, A.E., Baillie, S.R., Buckland, S.T., Dick, J.M., Elston, D.A., Scott, E.M., Smith, R.I., Somerfield, 

P.J. & Watt, A.D. (2010). Long-term datasets in biodiversity research and monitoring: assessing 

change in ecological communities through time. Trends in Ecology & Evolution, 25, 574–582. 

Manley, P.N., Zielinski, W.J., Schlesinger, M.D. & Mori, S.R. (2004). Evaluation of a multiple-species 

approach to monitoring species at the ecoregional scale. Ecological Applications, 14, 296–310. 

Maskell, L.C., Norton, L.R., Smart, S.M., Scott, R., Carey, P., Murphy, J., Chamberlain, P.M., Wood, C.M., 

Barr, C.J. & Bunce, R.G.H. (2008). Countryside Survey. Vegetation Plots Handbook. NERC/Centre 

for Ecology & Hydrology, Lancaster. 

Miller, K.M. & Mitchell, B.R. (2014). A new tool for power analysis of fixed plot data: Using simulations and 

mixed effects models to evaluate forest metrics. Ecosphere, 5, art110. 

Morrison, L.W. (2007). Assessing the reliability of ecological monitoring data: power analysis and alternative 

approaches. Natural Areas Journal, 27, 83–91. 

Mueller-Dombois, D. & Ellenberg, H. (1974). Aims and Methods of Vegetation Ecology. John Wiley & Sons, 

New York. PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2532v1 | CC BY 4.0 Open Access | rec: 16 Oct 2016, publ: 16 Oct 2016



Models for plant cover data   

Olsen, T., Hayden, B.P., Ellison, A.M., Oehlert, G.W. & Esterby, S.R. (1997). Ecological resource 

monitoring: change and trend detection workshop. Bulletin of the Ecological Society of America, 78, 

11–13. 

Peet, R.K. & Roberts, D.W. (2013). Classification of Natural and Semi-natural Vegetation. Vegetation 

Ecology (eds J. Franklin & E. van der Maarel), pp. 28–70. Wiley-Blackwell, New York. 

Pescott, O.L., Walker, K.J., Pocock, M.J.O., Jitlal, M., Outhwaite, C.L., Cheffings, C.M., Harris, F. & Roy, 

D.B. (2015). Ecological monitoring with citizen science: the design and implementation of schemes 

for recording plants in Britain and Ireland. Biological Journal of the Linnean Society, 115, 505–521. 

Plummer, M. (2013). JAGS Version 3.4.0 User Manual. http://sourceforge.net/projects/mcmc-

jags/files/Manuals/3.x/jags_ user_manual.pdf.  

Pocock, M.J.O. & Evans, D.M. (2014). The Success of the Horse-Chestnut Leaf-Miner, Cameraria ohridella, 

in the UK Revealed with Hypothesis-Led Citizen Science. PLoS ONE, 9, e86226. 

Podani, J. (2006). Braun-Blanquet’s legacy and data analysis in vegetation science. Journal of Vegetation 

Science, 17, 113–117. 

Rodwell, J.S. (Ed.). (1991). British Plant Communities Volume 1. Woodlands and scrub. Cambridge 

University Press, Cambridge, UK. 

Seavy, N.E. & Reynolds, M.H. (2007). Is statistical power to detect trends a good assessment of population 

monitoring? Biological Conservation, 140, 187–191. 

Urquhart, N.S. (2012). The role of monitoring design in detecting trend in long-term ecological monitoring 

studies. Design and Analysis of Long-term Ecological Monitoring Studies (eds R.A. Gitzen, J.J. 

Millspaugh, A.B. Cooper & D.S. Licht), pp. 151–173. Cambridge University Press, Cambridge, UK. 

Venables, W.N. & Ripley, B.D. (2002). Modern Applied Statistics with S, 4th edn. Springer, USA. 

Wade, P.R. (2000). Bayesian methods in conservation biology. Conservation Biology, 14, 1308–1316. 

Walker, K., Dines, T., Hutchinson, N. & Freeman, S. (2010). Designing a new plant surveillance scheme for 

the UK. JNCC, Peterborough. 

Walker, K.J., Pescott, O.L., Harris, F., Cheffings, C., New, H., Bunch, N. & Roy, D.B. (2015). Making plants 

count. British Wildlife, 26, 243–250. 

Warton, D.I. & Hui, F.K.C. (2011). The arcsine is asinine: The analysis of proportions in ecology. Ecology, 

92, 3–10. 

Yu-Sung Su & Yajima, M. (2015). R2jags: Using R to Run ‘JAGS’. R package version 0.5-7. http://CRAN.R-

project.org/package=R2jags.  

  

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2532v1 | CC BY 4.0 Open Access | rec: 16 Oct 2016, publ: 16 Oct 2016



Models for plant cover data   

Tables 

Table 1. Domin classes and their equivalent cover/frequency values, with the cover values used in analyses. 

Domin class Frequency/cover values (%) Interpreted cover (%) 

(0) Absent 0.001 - 0.1 

1 <1, 1-2 individuals 0.1-1 

2 <1, several individuals 1-3 

3 1-4 3-5 

4 5-10 5-10 

5 11-25 10-25 

6 26-33 25-33 

7 34-50 33-50 

8 51-75 50-75 

9 76-90 75-90 

10 91-100 90-99 
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Table 2. Values of key parameters used in scenario simulations. 

Study variable Values investigated 

Initial species’ percentage cover (average) 5%, 10%, 20%, 40% 

Number of sites monitored per year 15, 30, 50 

Proportional declines in odds over 10 years 30%, 50%, 75%, 90% 

Slope (trend) variance 0.15 

Intercept (starting abundance) variance 0.05 

Residual variance 0.80 
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Figures 

 

Figure 1. Power for a proportional odds model (Model 1) to detect decreases with α = 0.05 across 100 simulations. Rows represent different 

proportional declines undergone over a 10 year period (the first number given in the individual graph headers). Columns (the second number given 

in the individual graph headers) represent different initial starting proportional covers. The dashed horizontal line indicates the conventionally 

desirable level of 80% power.
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Figure 2. Power for a GLMM using interval class midpoints (Model 2) to detect decreases with α = 0.05 across 100 simulations. Rows represent 

different proportional declines undergone over a 10 year period (the first number given in the individual graph headers). Columns (the second 

number given in the individual graph headers) represent different initial starting proportional covers. The dashed horizontal line indicates the 

conventionally desirable level of 80% power. 
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Figure 3. Power for an interval-censored linear model (Model 3) to detect decreases with α = 0.05 across 100 simulations. Rows represent different 

proportional declines undergone over a 10 year period (the first number given in the individual graph headers). Columns (the second number given 

in the individual graph headers) represent different initial starting proportional covers. The dashed horizontal line indicates the conventionally 

desirable level of 80% power. 
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Figure 4. Comparisons of power between frequentist models. (a) Model 1 (proportional odds model) versus Model 2 (GLMM using interval class midpoints); (b) Model 1 (proportional odds 

model) versus Model 3 (interval-censored linear model); (c) Model 2 (GLMM using interval class midpoints) versus Model 3 (interval-censored linear model).
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Figure 5. The average belief (proportion of the posterior distribution for the slope coefficient below zero) in a negative trend 

across 100 simulations from an interval-censored hierarchical Bayesian regression. Rows represent different proportional 

declines undergone over a 10 year period (the first number given in the individual graph headers). Columns (the second 

number given in the individual graph headers) represent different initial starting proportional covers. 
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Figure 6. Root mean squared errors for the slope coefficient estimates across all scenarios with 30 monitored sites. (a) 

GLMM using class interval midpoints (Model 2); (b) interval-censored frequentist model (Model 3); (c) Hierarchical 

Bayesian model (Model 4). Root mean squared errors in (c) were calculated using the medians of the posterior distributions 

of the slope coefficient. Points for each level of the proportional initial abundance are jittered to increase their visibility. 
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Figure 7. Estimated slope coefficient estimates versus simulated for the 30 site scenario for: (a) GLMM using class interval 

midpoints (Model 2); (b) interval-censored frequentist model (Model 3); (c) Hierarchical Bayesian model (Model 4). Point 

estimates in (c) are the medians of the posterior distributions of the slope coefficients. Error bars are 95% confidence 

intervals (Wald standard error-based naïve estimates in (a)), except in (c) where they are 95% credible intervals. The solid 

line is the line of equality between simulated and estimated values 
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