A tutorial on how to use Gradepro GDT Tool for writing reviews

This is a tutorial on how to use the GRADEPro GDT guidelines development tool for appraisal of articles. The tutorial assumes that the student has little experience of working with Gradepro and walks through in several steps how to use this tool. Grading of evidence is an essential action to be taken by practitioners of evidence based medicine and public health yet the tools are not very intuitive. Grading of evidence puts the focus of evidence appraisal on outcomes. Select outcomes first at most seven outcomes and use this tool to appraise articles and bodies of evidence. In this article, we shall use two articles -- one a primary study, and another, a Cochrane Review to critically appraise a body of evidence focused on health outcomes. We will then demonstrate that it is possible not only to appraise one outcome and an individual study but also bodies of studies such as that based on a Cochrane Meta analysis. Taking an example of grommet insertion for children with otitis media with effusion, we show the advantage of using a tool for setting up meta analysis and conducting web based analysis of literature data.
A tutorial on how to use Gradepro GDT Tool for writing your reviews

Arindam Basu
Prepared for HLTH301 class

October 9, 2016

Introduction

The purpose of this tutorial is to show you how to use Gradepro GDT tool to write your review paper. For this tutorial, I am going to use a simple question. We are going to review whether using grommets in ear is useful for the control of otitis media with effusion in children. It is a long document, read it slowly, and if needed, print out certain parts (do not print the whole document)

To give you a background to the problem, children often suffer from a condition where their pharyngotympanic tube (or Eustachian tube, a tube that connects our middle ear with our pharynx hence the name) get blocked due to cold or inflammation. When that happens, due to a partial drop in air pressure caused by the absorption of air from the blocked middle ear, fluid collects in the middle ear and the eardrums are drawn inwards. As a result, children suffer from earache, they cannot hear well. The condition is quite distressing.

In order to treat this condition, several options are available. A frequent option is to conduct a surgical intervention where a grommet is inserted into the middle ear and keep for six months till the air pressure in the ears are equalised. This is known as pressure equalising tube or grommet insertion. Another way is to ask the children to blow a small balloon and other breathing exercise. This breathing exercise helps them to equalise the pressure on both sides of the ET and helps to improve the situation. Yet another option is to use medications with or without surgery and breathing exercises. Each method is associated with costs, and inconveniences. The best method to choose from and should be justified from the perspective of evidence based health will be the one that will be associated with best possibility of the outcome or the outcome for which we will detect best quality of evidence with really good measures recorded. Remember that here we are looking at the outcomes.

We are going to solve this by posing a question and then answering it. The question we are going to explore by reviewing studies is whether one form of intervention is superior to another. Hence, we are going to search for studies using a defined set of questions, retrieve RCTs that have investigated whether in comparison with placebos or other interventions, insertion of grommets have been found to be useful for the management of these children.

In this tutorial, we are going to use the following steps to show you how to use Gradepro GDT to develop and export an evidence profile and assess studies. Hopefully, once you go through this exercise, you should be able to replicate the studies that you have selected for your own problems. This is a template on which you can work, and if there are other questions, feel free to ask us.
We will use the following steps:

1. Frame a PICO formatted question
2. We will run a simple, non-comprehensive search of the databases
3. We will identify roughly five RCTs or other studies of various designs
4. We will use these studies to fill in the GDT Gradepro tool webpage
5. We will generate the tables and export the tables to develop a summary estimate

Step I: Frame a PICO formatted question from the

Our base question is, “How effective is grommet insertion for the management of glue ear in children?” From here, we frame the PICO question as follows:

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>Children under ten years of age, all sex, all SES</td>
</tr>
<tr>
<td>I</td>
<td>Grommet or pressure equalising tube</td>
</tr>
<tr>
<td>C</td>
<td>Any other intervention</td>
</tr>
<tr>
<td>O</td>
<td>Hearing, middle ear, symptom relief earache</td>
</tr>
</tbody>
</table>

We are only going to search Pubmed for this research question. As you can see, to keep things simple, we only selected children below ten years of age. We have not specified any comparator. The comparator could be for instance placebo, or breathing exercises, or medications alone, and so on. Finally, for outcomes, we are going to work on the “Hearing” or “Middle Ear Pressure” as outcomes.

Step II: Search Pubmed with Boolean terms and combination of terms

We are only going to search Pubmed for this paper and for this purpose. We are going to use Boolean logic and combine the search terms for this purpose. The search terms are as follows

1. children
2. grommet or pressure equalising tube or pressure equalizing tube
3. breathing exercise or medications
4. otitis media with effusion or serous otitis media, or “OME”
5. Hearing OR earache

We are also going to limit our search to only English language publications, papers published in the last 10 years, and RCTs. We could, if we wanted, add more features or relax some criteria, but here the purpose is not to conduct a comprehensive review but more of a simple quick demonstration of what can be done. We are also going to show you here that you can use simple single studies to work with. You must use your own search terms and combine them so that you can get as comprehensive results as you can get. We will also from this list select most suitable articles we can get. We will obtain full text articles from Pubmed by selecting only those articles that are available through the Pubmed Central repository.
Table 1: Summary of Search Results

<table>
<thead>
<tr>
<th>Search</th>
<th>Query</th>
<th>Items found</th>
<th>Time of Search (Hour: Minutes: Seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.8</td>
<td>"Search Number1 AND Number2 AND (**"2006/10/07""[PDat] : **"2016/10/03""[PDat])"</td>
<td>24</td>
<td>06:28:16</td>
</tr>
<tr>
<td>Number6</td>
<td>"Search Number1 AND Number2 Filters: published in the last 10 years"</td>
<td>24</td>
<td>06:27:54</td>
</tr>
<tr>
<td>Number7</td>
<td>"Select 5 document(s)"</td>
<td>5</td>
<td>06:18:36</td>
</tr>
<tr>
<td>Number5</td>
<td>"Search Number1 AND Number2 Filters: Free full text; published in the last 10 years"</td>
<td>6</td>
<td>06:14:14</td>
</tr>
<tr>
<td>Number4</td>
<td>"Search Number1 AND Number2 Filters: Free full text"</td>
<td>10</td>
<td>06:14:09</td>
</tr>
<tr>
<td>Number3</td>
<td>"Search Number1 AND Number2"</td>
<td>59</td>
<td>06:14:03</td>
</tr>
<tr>
<td>Number2</td>
<td>"Search (hearing>Title/Abstract]) OR earache>Title/Abstract]"</td>
<td>84710</td>
<td>06:13:30</td>
</tr>
<tr>
<td>Number1</td>
<td>"Search ((grommet>Title/Abstract]) OR ""pressure equalizing tube"[Title/Abstract]) AND ""otitis media"[Title/Abstract]"</td>
<td>146</td>
<td>06:12:49</td>
</tr>
</tbody>
</table>

Step III: Get the full text articles

We will obtain full texts of the following two articles in our study:

Step IV: Step by step guide as to how to read the articles and fill in the boxes

First, read the articles (the art of reading articles correctly)

When you read the articles, always start with the last section of the introduction as in that section, the authors outline the purpose of the study and what they have done. Then, read the methods section very carefully and based on the methods section, try to find out if there are significant bias related issues that you will need to report. Then read the results section carefully to identify the main findings. In the results section, read the tables first and find out for yourself what results you should focus on. Then, read carefully the results as narrated in the text. These two information together will help you to enter data correctly in the boxes for the Gradepro GDT tool. Follow the screenshots with your own articles.

When you read a journal article with an intention to abstract information to fill in a GRADE GDT table, you need to dissect the article in different ways. Basically, instead of reading the article from top down (that is, reading the abstract first, and then the introduction section, the
methods section, the results section and the discussion section), you start with the most relevant sections where you can find information. Also, when you are going to abstract information from two or more articles, you will need to abstract information in such a way that you will need to combine the results of the two (or more) articles. This is the basis of conducting a systematic review and when you combine the results using numbers (such as the total number of participants in the studies and the results), you will be conducting what is known as a meta analysis, and then fill in the numbers. You can also come across systematic reviews and meta analyses from which you will like to extract or abstract information and that is fine. In that case, you will not need to do any calculations yourself, you can just take the estimations and calculations already present in that article and plug in the values.

In summary, if you want to abstract information from one article, you will need to abstract information from the results section and do not need to do much analyses yourself. If you want to combine more than one article, then you will need to combine information from the two or more articles yourself; if you’d like to abstract information from a systematic review or a meta analysis, then you will need to abstract information from the results section and put that information in the relevant boxes.

One more thing before we proceed. Note that you will need to fill in two sets of boxes. Working from left to right, you will start filling in the set of boxes that about profiles of evidence. In this set of boxes, you will fill in details about the quality of the studies you appraise. Here, your focus will be mainly on how the studies might have either increased the risk of biased observations in their results or improved on them. For example, if you are dealing with a bunch of studies that are randomized controlled trials (RCTs), then, you know that by their design, RCTs have minimized selection bias (because randomisation makes sure that people with certain conditions are equally distributed across the treatment groups). After you complete this section, you will see that GDT Gradepro will assign a star or a cross-mark within a circle category score to your body of studies or outcome category. Remember that all this exercise is about an outcome rather than a study. We often use a single study for that purpose to keep things simple, but more often than not, you will be able to use this system with two more studies.

Right of the boxes that address the quality of evidence, you have xx boxes where you input numbers (where numbers are available) to provide what is referred to as summary of findings. Again, the purpose of any evidence finding exercise is to see if you can calculate or estimate a reliable index or effect size in terms of absolute risk reduction (ARR). However, most of the times, authors who write papers based on their studies choose to present their findings in many different ways. Some authors would prefer to use Relative Risk Estimates by converting their outcome variables as binary variables. Binary variables are variables that are measured in terms of whether an outcome happened or did not happen (1 and 0, where 1 = outcome occurred and 0 = outcome did not happen). The effect measure for such outcomes are given in the form of Relative Risks (RRs) in Cohort studies. In Case control studies, the outcomes are necessarily in the form of 0s and 1s (controls = 0, and cases = 1), and the effect measure reported in case control studies are Odds Ratios. Odds Ratios are practically equivalent of Relative Risks. Odds Ratios indicate the relative Odds that an exposure occurred among the cases as opposed to the controls. Using formulae, you can convert such effect measures into measures of absolute change (you will need additional information such as prevalence estimates) such as absolute risks and percentage absolute risks.

On the other hand, many investigators tend to measure their exposure or interventions and outcomes in the form of continuous variables. For example, let’s say an investigator is studying the
association between drugs and control of diabetes. Diabetes is measured in terms of control of blood sugar level. Blood sugar level is measured by taking a sample of blood from the body of the participant and measuring the amount of glucose, or more commonly investigators rely on a measurement unit in terms of HbA1c (glycosylated haemoglobin); this means, investigators measure a unit of blood sugar or blood glycosylated haemoglobin that cannot be measured using a 0 and 1 scale, but rather, using something that can be measured on a scale. When you measure any entity on a scale, you typically, use metrics such as mean, median, for tracking its central tendencies (that is, what would be the average values), and standard deviation as measure of dispersion (or distribution about the average values). When they do that, the effect measures they present are not in terms of relative risks but in terms of absolute changes. Such changes can be in the form of mean difference (MD) between the groups, or mean standardised differences across the groups (MSD). A mean difference basically means that if they have taken pairs of groups, then for each group, the investigators would measure the mean value of the outcome they’d report and then the difference between the means would indicate the change. Whether a change is good or bad or high or low will depend on the context of the research. Read the research well enough to understand what is the context of the research and whether some changes would be desirable or undesirable in terms of making sure that an intervention worked or did not work. For instance, take the example of glucose control or diabetes control with drugs and alternative treatment. Investigators would measure the outcomes in terms of HbA1c, and this is in the form of a percentage. HbA1c is a measure that tells you the proportion of glucose bound to Haemoglobin (that binding is non-enzymatic and helps in the sense you will not need to factor in another chemical but just this one measure). The lower the value, the better the control. So, if one intervention were to bring down the levels of HbA1c lower than another, then that one intervention would be a favourable intervention. For example, let’s say you are comparing drug D with exercise E, and you found that drug D brought down the levels of HbA1c from 9 to 6 mmol/L on an average. This would mean that the reduction was 3 mmol/L, and for exercise E, the average reduction was from 9 to 7 mmol/L on an average for the population studied. From this information alone, you know that the reduction for drug D was 3 mmol/L, and for exercise regimen E, that reduction was 2 mmol/L. From this you’d infer that the drug was better in bringing down the Hba1c levels. How you would like to frame this is up to you. You may frame that the reduction in HbA1c level with drug D was higher than the reduction in HbA1c level with exercise E. Or you could state that participants achieved a lower level of HbA1c with drug D than they would with exercise E.

Concept of p-values, and confidence intervals

One more thing. To correctly fill in the boxes of summary of findings results, you will really need to understand the concepts of p-values and confidence intervals. We just discussed that there are broadly two ways in which investigators present the effect measure of an association between an exposure variable and an outcome. Now, irrespective of whether they report relative risk or whether they report mean difference (which is a central metric), investigators also report a band around such metric. That band tells you that while something is the most expected value or the central value, there is a lower and an upper boundary of that value as well that is possible. Take an example. Let’s say, in one of the above mentioned studies, the authors claim that the relative risk (RR) is 0.35 (95% CI: 0.15-0.75) for the risk of death from heart disease with respect to a certain drug (versus placebo). What does this information based on these three figures mean?

- The number 0.35 which is the relative risk tells you that compared with those who were
taking placebo, those who were taking drug D, would be at 0.35 (or about one third) the risk
of death from heart disease. You also know that the way they measured heart disease death
would be a binary variable, that is people either died or they survived

- The phrase 95% CI stands for “95% confidence interval”. This phrase tells you that if a study
 such as the one that the investigators conducted, were to be repeated a hundred times, then
 95 out of those 100 times, we would expect the true value of that effect measure would lie
 within a boundary reported on the right hand side of the phrase, as for instance, in this
 iteration it is 0.35, in another trial it can be something else, say something like 0.65, but it
 should be within this range.

- You also note that this 95% confidence interval (0.15-0.75) does not contain 1.0 in it. This
 is important for making a decision about this range of values. A relative risk of 1.0 indicates
 no effect. If this range included within it the value of 1.0, then it would mean that in a 100
 iterations of this study, we would not be able to rule out presence of the figure 1.0 in 95
 situations.

An analogous situation is when authors report p-values. For example you come across a paper where
the authors report that the OR for death from heart disease for people who did not participate
in exercise was 2.03 (p = 0.04). By now, you know (or you should know) the meaning of the
figure 2.03 (tells you that compared with those who took part in exercise, those who did not were
2.03 times likely to die from heart disease); what about p = 0.04? The p-value tells you that
the probability you got this figure by chance alone (that is if there would not be an association
between exercise and death from heart disease, and you did this study and found this association)
would be about four percent. Which indicates by convention, you can rule out the play of chance.
Do not confuse or conflate this with significance or non-significance (this a very common error).
Reserver the word “significance” for clinical or what is often referred to as substantive significance.

Hopefully, this will provide you with enough background to get started abstraction of data from
individual articles for putting into Gradepro tables. In the following sections, we will continue the
process of showing how to abstract data from the articles.

How to use Gradepro: Abstraction of One article

First, start with the opening screen.

In the next screen, select the active question.

Then double click on the active question (here, “Grommets vs. Others for hearing loss”). You
will see the next screen like as follows. On the left to right, the first row of boxes is the Quality
Assessments boxes and then the next row of boxes are the Summary of Findings boxes.

Quality Assessment box:

Summary of Findings set of boxes

Next, click on the icon that looks like a pencil within a box to open the “New outcome” window.
It should look like as follows when you open:

Let’s explain this. Write the name of the outcome that you want to study in the top box. Give
it an optional short name. Go to the methods section of the article or review you are using to fill in the “Assessed/measured with”. Read carefully as to how did they measure this outcome
and write this here. It can be a tool, a unit, or anything that you think is the most appropriate response. If it is applicable then, fill in the “Length of follow up”. Not all studies will use follow up measurements, and in those cases you can leave this blank. Only for studies such as Randomised controlled trials with follow up data or cohort studies or other types of longitudinal studies where the authors decided to follow up participants, write about follow up information. In the follow up information boxes, you have four choices: blank, mean, median, and range. Read the methods section and select the most appropriate response. Then select the drop down box on the right hand side and select the best response as to what is the best unit for follow up (days through patient-years; if others, then you will need to specify that other category).

Next, move to the type of outcome you are going to study. This is in the left hand box. A dichotomous outcome is one where the investigators have described the outcome in terms of whether an event occurred or did not occur; a continuous outcome is one where the investigators used a scale to measure the outcome; if you find that for this particular outcome, the investigators did not either use a dichotomous measure or a continuous measure, put narrative outcome. A narrative outcome will be one where the investigators just put some sentences or description of the outcome without measuring it using figures and numbers.

Finally, move to the box on the right, where pooled indicates pooled estimates. If you were to combine more than one article and decide that you would combine the results in some way, then pooled measurement is your option. On the other hand, if you want to report just the number of participants in the competing arms but do not want to present a pooled estimate that is also possible. You can also present a range of effects based on the number of different studies. You can also use a single study to report the findings. Lastly, you can also deal with situations where the
In this example, we are going to work with the following study:

You can download a copy of this study by clicking on the above DOI link. They studied many different outcomes, but for this example, we are going to focus on only one outcome, that of hearing loss (or how auto inflation improved hearing). So, our outcome window is going to look like as follows:

You can see that I have decided to include middle ear pressure here. For hearing I will need to add another outcome and continue. You can also see that the middle ear pressure for these children or participants were measured with Tympanometry and therefore I wrote that in the box. The length of follow up was 10 months and I have left this blank on the left hand side as there was no other information available. As middle ear pressures are expressed in Pascals or pressure units, therefore they are expressed as “continuous” variables. I have chosen to report the results of one study only, hence, I have kept it as a single study.
So, after filling up the boxes, it looked like this:

![Figure 7: Filled in Quality Assessment Box](image)

Several things to note here:

No. of studies = 1 as we only studied one study. If you choose to pool results from many studies, you should put that number.

Study design: here it is randomised controlled trial. For a single study you can choose to put what study design you like. If you deal with many studies, then all those studies must have the same study design.

Risk of Bias: Check and find out from the description of the study what biases are possible, and judge.

Inconsistency: Not an issue if you are working with one study; otherwise examine if the studies have a lot of variation in the results; if test, then inconsistent, if not, not inconsistent.

Imprecision: Look into how the study was conducted, if the description of the different measurements are not clear, then imprecise, otherwise not.

Indirectness: Gradepro allows you a tool to test this. click on the white box for entry and choose “Assess directness”.
This will bring up a window like this:

![Figure 8: Assessment of Directness of Evidence](image)

Fill in the boxes in this window and the tool will in the results of the indirectness. Read the methods section closely for the study and fill those in.

Finally, there are other considerations that you may want for assessment of the study. If you click on the relevant box below this entry, it will bring in a drop down box like below:

![Figure 9: Assessment of Other considerations](image)

Publication bias is only relevant if you were to abstract data from a systematic review or a meta analysis. Otherwise, put “undetected”. For studying whether this is a large effect, refer to the results and discussion section of the article and see if the results as described qualify for a large effect. Essentially, your own knowledge about the topic is a good guide. Whether a plausible
confounding factor would reduce the reported effect is relevant only if a confounding variable was not included in the study; for a randomized controlled trial, this is not an issue. Finally, look through the results section to test if there was dose response gradient. Basically, if with increasing levels of intervention or dosage in the exposure, you find corresponding increase or change in the outcome, then that would indicate that a dose response gradient is present. You will see that as soon as you fill in the quality appraisal bits, Gradepro GDT assigns a quality score to your article or your set of articles.

We next move to the summary of findings tables. They look like as follows:

![Summary of Findings](image)

Figure 10: Summary of Findings filled in

People present results in articles in different ways. In this case, the authors decided to put everything in a figure, see below:

![Presentation of Findings](image)

Figure 11: Presentation of Findings; the authors decided to present their findings in the form of a graph

After filling in the number of participants in the intervention and control group (22, and 23), we know that as they have used continuous variables for their measurement of effects/outcomes, therefore we have to report absolute differences. The window is as follows:

The paper authors reported that, “In Group A, the mean middle-ear pressure improved by 166daPa
Figure 12: Presentation of the effect estimate

(median 156, min 0, max 365, p<0.0001) after four weeks of treatment in comparison with 19 daPa (median 0, min 50, max 376, p = 0.31) in Group B after four weeks of follow-up. From here, we fill in the boxes as follows (do this exercise yourself):

Explanation:

You can see that at the beginning of the trial, they started with 22, and 23 participants (children). We could only report absolute differences (166 daPa improvement in the first group who received intervention versus only 19 daPa in the other group), so this means that the intervention group improved by 147 (166-19) daPa. But we do not know if this is mean or median, etc because that was not reported. They also did not provide any 95% confidence interval and this tool does not allow for p-values, so we can only report the overall difference for this particular outcome. We can state that this is a large difference which will strengthen our case for this particular outcome as grading of evidence.

The last entry is that of “importance” and we assign a value “critical” to it. It is critical as the main purpose of an autoinflation device for middle ear pressure improvement and therefore a direct measurement of middle ear pressure would make it a critical entry.

Finally, after we are done using this tool for entering our data, we can choose to export it to any of the formats that will serve our purpose. Click on the icon that looks like a box with an exit arrow, and this will bring up the following image:
This is how the final table looks like:

<table>
<thead>
<tr>
<th>Summary of findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>No of patients</td>
</tr>
<tr>
<td>Autoinflation</td>
</tr>
<tr>
<td>22</td>
</tr>
</tbody>
</table>

Import outcome(s)
<table>
<thead>
<tr>
<th>Design</th>
<th>Risk of bias</th>
<th>Adequate randomisation</th>
<th>Adequate allocation</th>
<th>Adequate blinding</th>
<th>Other considerations</th>
<th>Acupuncture</th>
<th>Others</th>
<th>Relative Risk (95% CI)</th>
<th>Absolute Risk Difference (95% CI)</th>
<th>Quality</th>
<th>Importance</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCT</td>
<td>Low</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Acupuncture</td>
<td>Others</td>
<td>0.85 (0.71 to 1.02)</td>
<td>0.15 (0.05 to 0.25)</td>
<td>Good</td>
<td>CRITICAL</td>
</tr>
</tbody>
</table>

CR Confidence interval
How to Add A Systematic Review or Meta Analysis

In this section we are going to explore how to abstract data from two or more studies. Typically, these studies are in the form of systematic reviews and meta analyses. Here, we are going to abstract information from a Cochrane Meta Analysis. You can find the meta analysis and the relevant reference here:

You can download a copy of the meta analysis we are working from by clicking the above link.

We will study the Browning paper and we will abstract data for hearing “improvement” as an outcome for grommet insertion as opposed to all other types of treatment as described in the meta analysis. In terms of hearing, the lower the score on audiometric tests, the better the hearing. The higher the score, the poorer the hearing as hearing is measured in terms of “loss” from a certain threshold value as measured by audiometry.

For the first few steps, we go through the same steps as before in case of a single study. We start with our project, then fill in the title as below:

Then, we will fill in the rest of the details. As always, with systematic reviews, it is helpful to review the results sections and use the tables to guide your data abstraction. In this case, from the above review, we will use the following two tables to indicate the short term (6-9 months follow up) and longer term (12 months follow up) hearing level results. Here are the two tables:

Now we start filling in the rest of the sections. At the end of the process, you will see that the figure will look like this:
A few notes:

1. Inconsistency, indirectness and imprecision are important issues to consider when you are working from a systematic review or a meta analysis. Inconsistency is not an issue when you are reviewing just one article.

2. You assess inconsistency from a meta analysis by reviewing the measure of heterogeneity. Check the I² statistic or the chi-square statistic and the associated p-value. If the p-value is high, that indicates that there is low heterogeneity in this meta analysis for the studies included and you can be satisfied that inconsistency is not an issue. If you would rather work with individual studies and pool together the results yourself, then you will have to estimate the I² statistic yourself.

3. Imprecision as we wrote above can be assessed from the results section by reviewing the point estimate and the 95% confidence interval wherever available.

4. Indirectness is based on the close reading of the methods section of the individual studies or in the meta analysis, read the study descriptions carefully to read how the intervention and the outcomes were measured.

As before, you can export the full table to a PDF document, or to other formats. Remember that these are new outcomes and therefore, these cannot be combined with another outcome that may or may not be related to this. In our case, we will have two separate sets of tables: one for middle ear pressure and one for the hearing.

So in this section we covered how you can use a systematic review or a meta analysis of RCTs to abstract information and put into GDT Gradepro.