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Species distribution models (SDMs) have become an essential tool in ecology,

biogeography, evolution, and more recently, in conservation biology. How to generalize

species distributions in large undersampled areas, especially with few samples, is a

fundamental issue of SDMs. In order to explore this issue, we used the best available

presence records for the Hooded Crane (Grus monacha, n=33), White-naped Crane (Grus

vipio, n=40), and Black-necked Crane (Grus nigricollis, n=75) in China as three case

studies, employing four powerful and commonly used machine learning algorithms to map

the breeding distributions of the three species: TreeNet (Stochastic Gradient Boosting,

Boosted Regression Tree Model), Random Forest, CART (Classification and Regression

Tree) and Maxent (Maximum Entropy Models) Besides, we developed an ensemble forecast

by averaging predicted probability of above four models results. Commonly-used model

performance metrics (Area under ROC (AUC) and true skill statistic (TSS)) were employed

to evaluate model accuracy. Latest satellite tracking data and compiled literature data

were used as two independent testing datasets to confront model predictions. We found

Random Forest demonstrated the best performance for the most assessment method,

provided a better model fit to the testing data, and achieved better species range maps for

each crane species in undersampled areas. Random Forest has been generally available

for more than 20 years, and by now, has been known to perform extremely well in

ecological predictions. However, while increasingly on the rise its potential is still widely

underused in conservation, (spatial) ecological applications and for inference. Our results

show that it informs ecological and biogeographical theories as well as being suitable for

conservation applications, specifically when the study area is undersampled. This method

helps to save model-selection time and effort, and it allows robust and rapid assessments
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and decisions for efficient conservation.
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24

25 ABSTRACT

26 Species distribution models (SDMs) have become an essential tool in ecology, biogeography, 

27 evolution, and more recently, in conservation biology. How to generalize species distributions in 

28 large undersampled areas, especially with few samples, is a fundamental issue of SDMs. In order 

29 to explore this issue, we used the best available presence records for the Hooded Crane (Grus 

30 monacha, n=33), White-naped Crane (Grus vipio, n=40), and Black-necked Crane (Grus 

31 nigricollis, n=75) in China as three case studies, employing four powerful and commonly used 

32 machine learning algorithms to map the breeding distributions of the three species: TreeNet 

33 (Stochastic Gradient Boosting, Boosted Regression Tree Model), Random Forest, CART 

34 (Classification and Regression Tree) and Maxent (Maximum Entropy Models) Besides, we 

35 developed an ensemble forecast by averaging predicted probability of above four models results. 

36 Commonly-used model performance metrics (Area under ROC (AUC) and true skill statistic 

37 (TSS)) were employed to evaluate model accuracy. Latest satellite tracking data and compiled 

38 literature data were used as two independent testing datasets to confront model predictions. We 

39 found Random Forest demonstrated the best performance for the most assessment method, 

40 provided a better model fit to the testing data, and achieved better species range maps for each 

41 crane species in undersampled areas. Random Forest has been generally available for more than 

42 20 years, and by now, has been known to perform extremely well in ecological predictions. 

43 However, while increasingly on the rise its potential is still widely underused in conservation, 

44 (spatial) ecological applications and for inference. Our results show that it informs ecological and 

45 biogeographical theories as well as being suitable for conservation applications, specifically when 

46 the study area is undersampled. This method helps to save model-selection time and effort, and it 
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47 allows robust and rapid assessments and decisions for efficient conservation.  

48 Keywords: Species distribution models (SDMs), Random Forest, Generality (transferability), Rare 

49 species, Undersampled areas, Hooded Crane (Grus monacha), White-naped Crane (Grus vipio), 

50 Black-necked Crane (Grus nigricollis) 
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74 INTRODUCTION

75 Species distribution models (SDMs) are empirical ecological models that relate species 

76 observations to environmental predictors (Guisan & Zimmermann, 2000, Drew et al., 2011). 

77 SDMs have become an increasingly important and now essential tool in ecology, biogeography, 

78 evolution and, more recently, in conservation biology (Guisan et al., 2013), management 

79 (Cushman & Huettmann, 2010), impact assessments (Humphries & Huettmann, 2014) and climate 

80 change research (Lei et al., 2011). To generalize and infer from a model, or model transferability 

81 is defined as geographical or temporal cross-applicability of models (Thomas & Bovee 1993; 

82 Kleyer 2002; Randin et al., 2006). It is one important feature in SDMs, a base-requirement in 

83 several ecological and conservation biological applications (Heikkinen et al., 2012). In this study, 

84 we used generality (transferability) as the concept of generalizing distribution from sampled areas 

85 to unsampled areas (extrapolation beyond the data) in one study area.  

86 Detailed distribution data for rare species in large areas are rarely available in SDMs (Pearson 

87 et al., 2007; Booms et al., 2010). However, they are the most needed for their conservation to be 

88 effective. Collecting and assembling distribution data for species, especially for rare or endangered 

89 species in remote wilderness areas is often a very difficult task, requiring a large amount of human, 

90 time and funding source (Gwena et al., 2010; Ohse et al., 2009). 

91 Recent studies have suggested that machine-learning (ML) methodology, may perform better 

92 than the traditional regression-based algorithms (Elith et al., 2006). TreeNet (boosting; Friedman 
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93 2002), Random Forest (bagging; Breiman, 2001), CART (Breiman et al., 1984) and Maxent 

94 (Phillips et al., 2004) are considered to be among the most powerful machine learning algorithms 

95 and for common usages (Elith et al., 2006; Wisz et al., 2008; Williams et al., 2009; Lei et al., 2011) 

96 and for obtaining powerful ensemble models (Araújo and New 2007; Hardy et al., 2011). Although 

97 Heikkinen et al. (2012) compared the four SDMs techniques� transferability in their study, they 

98 did not test with rare species and few samples in undersampled areas. It is important to understand 

99 that the software platform of the former three algorithms (Boosted Regression Trees, Random 

100 Forest and CARTs) applied by Heikkinen et al. (2012) from the R software (�BIOMOD� 

101 framewok) comes without a GUI and lacks sophisticated optimization and fine-tuning, but as they 

102 are commonly used though by numerous SDM modelers. Instead, we here run these models in the 

103 Salford Predictive Modeler (SPM) by Salford Systems Ltd. These algorithms in SPM are further 

104 optimized and improved by one of the algorithm�s original co-authors (especially for TreeNet and 

105 Random Forest). It runs with a convenient GUI, and produces a number of descriptive results and 

106 graphics which are not available in the R version. While this is a commercial software, it is usually 

107 available on a 30 days trial version (which suffices for most model runs we know. As well, some 

108 of the features of the randomForest R package, most notably the ability to produce partial 

109 dependence plots (Herrick 2013), are not directly implemented yet in SPM7 (but they can 

110 essentially be obtained by running TreeNet in a Random Forest model).

111 Model generality (transferability) testing could offer particularly powerful for model 

112 evaluation (Randin et al., 2006). Independent observations from training data set has been 

113 recommended as a more proper evaluations of models (Fielding & Bell 1997; Guisan and 

114 Zimmermann 2000). So the use of an independent geographically (Fielding & Haworth, 1995) or 

115 temporally (Boyce et al., 2002; Araujo et al., 2005b) testing data set is encouraged to assess the 
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116 generality of different SDMs techniques. Data from museum specimen, published literature 

117 (Graham et al., 2004) as well as tracking are good source to assess model generality 

118 (transferability) performance. In addition, how the distribution map links with reality data, 

119 especially in undersampled areas where modelers want to make predictions should definitely be 

120 as a metric to assess model performance and generalization. Arguably, if model predictions 

121 perform very well there, great progress is provided. Whereas, predictions on existing knowledge 

122 and data offers less progress. The model prediction and conservation frontier obviously sits in the 

123 unknown. 

124 In this study, we modeled the best-available data for three species in East Asia as test cases: 

125 Hooded Cranes (Grus monacha, n=33), White-naped Cranes (Grus vipio, n=40) and Black-necked 

126 Cranes (Grus nigricollis, n=75). Four machine-learning models (TreeNet, Random Forest, CART 

127 and Maxent) were applied to map breeding distributions for these three crane species which 

128 otherwise lack empirically derived distribution information. In addition, two kinds of independent 

129 testing data sets (latest satellite tracking data, and compiled literature data (Threatened Birds of 

130 Asia: Collar et al., 2001) were obtained to test the transferability of the four model algorithms. 

131 The purpose of this investigation is to explore whether there is a SDM technique among the four 

132 algorithms that could generate reliable and accurate distributions with high generality for rare 

133 species using few samples but in large undersampled areas? Results from this research could be 

134 useful for the detection of rare species and enhance fieldwork sampling in large undersampled 

135 areas which would save money and effort, as well as the conservation management of those 

136 species.
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137 MATERIALS AND METHODS

138 Species data 

139 In our 13 combined years of field work, we have collected 33 Hooded Crane nests (2002-2014), 

140 40 White-naped Crane nests (2009-2014)，and 75 Black-necked Crane nests (2014) (see Fig. 1), 

141 during breeding seasons. We used these field samples (nests) to represent species presence points 

142 referenced in time and space. 

143 Put Fig. 1 here

144

145 Figure 1 Study areas for three species cranes.

146 Environmental variables

147 We used 21 environmental layers at a 30-s resolution in GIS format and that were known to 

148 correlate with bird distribution and as proxies of habitats predictors. They included bio-climatic 

149 factors (bio_1-7, bio_12-15), topographical factors (altitude, slope, and aspect), water factors 
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150 (distance to river, distance to lake, and distance to coastline), inference factors (distance to road, 

151 distance to rail road, and distance to settlements), and land cover factors (for detailed information, 

152 see Table 1). Most of these factors were obtained from open access sources. Bio-climate factors 

153 were obtained from the WorldClim database, while aspect and slope layer were derived from the 

154 altitude layer in ArcGIS, which was also initially obtained from the WorldClim database. Road, 

155 railroad, river, lake and coastline and settlement maps were obtained from the Natural Earth 

156 database. The land cover map was obtained from the ESA database. We also made models with 

157 all 19 bio-climate variables and 10 other environmental variables, and then reduced predictors by 

158 AIC, BIC, varclust, PCA and FA analysis. When we compared the distribution maps overlaying 

159 with independent data set generated by Random Forest model, we found the model based on 21 

160 predictors have the best performance for Hooded Cranes, and the best level for White-naped Crane 

161 and Black-necked Cranes (see Supplement S1). Therefore, we decided to constructed models with 

162 21 predictors for the all three cranes and four machine-learning techniques. All spatial layers of 

163 these environmental variables were resampled to a resolution of 30-s to correspond to that of the 

164 bioclimatic variables and for a meaningful high-resolution management scale.

165 Put Table 1 here

166 Table 1 Environmental GIS layers used to predict breeding distributions of three cranes. 

Environmental 

Layers

Description Source Website

Bio_1 Annual mean Temperature 

( )℃ WorldClim http://www.worldclim.org/

Bio_2 Monthly mean (max temp - 

min temp)

 ( )℃ WorldClim http://www.worldclim.org/
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Bio_3 Isothermality (BIO2/BIO7) 

(*100 )℃ WorldClim http://www.worldclim.org/

Bio_4 Temperature seasonality 

(standard deviation *100 )℃ WorldClim http://www.worldclim.org/

Bio_5 Max temperature of 

warmest month ( )℃ WorldClim http://www.worldclim.org/

Bio_6 Min temperature of Coldest 

month ( )℃ WorldClim http://www.worldclim.org/

Bio_7 Annual temperature range 

(BIO5-BIO6) ( )℃ WorldClim http://www.worldclim.org/

Bio_12 Annual precipitation (mm) WorldClim http://www.worldclim.org/

Bio_13 Precipitation of wettest 

month (mm)

WorldClim http://www.worldclim.org/

Bio_14 Precipitation of driest 

month (mm)

WorldClim http://www.worldclim.org/

Bio_15 Precipitation seasonality 

(mm)

WorldClim http://www.worldclim.org/

Altitude Altitude (m) WorldClim http://www.worldclim.org/

Aspect Aspect (°) Derived from 

Altitude

http://www.worldclim.org/

Slope Slope Derived from 

Altitude

http://www.worldclim.org/

Landcover Land cover ESA http://www.esa-landcover-cci.org/

Disroad Distance to roads (m) Road layer 

from Natural 

Earth

http://www.naturalearthdata.com/

Disrard Distance to railways (m) Railroad http://www.naturalearthdata.com/
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layer from 

Natural Earth

Disriver Distance to rivers (m) River layer 

from Natural 

Earth

http://www.naturalearthdata.com/

Dislake Distance to lakes (m) Lake layer 

from Natural 

Earth

http://www.naturalearthdata.com/

Discoastline Distance to coastline (m) Coastline 

layer from 

Natural Earth

http://www.naturalearthdata.com/

Dissettle Distance to settlements (m) Settle layer 

from Natural 

Earth

http://www.naturalearthdata.com/

167 Model development

168 We created TreeNet, Random Forest, CART, Maxent models and ensemble model (averaged 

169 value of the former four model results) for Hooded Cranes, White-naped Cranes and Black-naped 

170 Cranes. These four model algorithms are considered to be among the most accurate machine 

171 learning methods (more information about these four models can be seen in the references by 

172 Breiman et al., 1984, Breiman 2001, Friedman 2002, Phillips et al., 2004, Hegel et al., 2010). The 

173 first three machine learning models are binary (presence-pseudo absence) models and were 

174 handled in Salford Predictive Modeler 7.0 (SPM). For more details on TreeNet, Random Forest 

175 and CART in SPM, we refer readers to the user guide document online (https://www.salford-

176 systems.com/products/spm/userguide). Several implementations of these algorithms exist. 

177 Approximately 10,000 �pseudo-absence� locations were selected by random sampling across the 

178 study area for each species using the freely available Geospatial Modeling Environment (GME; 
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179 Hawth�s Tools; Beyer 2013; see Booms et al., 2010 and Ohse et al., 2009 for examples). We 

180 extracted the habitat information from the environmental layers for presence and pseudo-absence 

181 points for each crane, and then constructed models in SPM with these data. In addition, we used 

182 balanced class weights, and 1000 trees were built for all models to find an optimum within, others 

183 used default settings. 

184 For the predictions, we created a �lattice� (equally spaced points across the study area; 

185 approximately 5×5 km spacing for the study area). For the lattice, we extracted information from 

186 the same environmental layers (Table 1) as described above for each point and then used the model 

187 to predict (�score�) bird presence for each of the regular lattice points. For visualization, we 

188 imported the dataset of spatially referenced predictions (�score file�) into GIS as a raster file and 

189 interpolated for visual purposes between the regular points using inverse distance weighting (IDW) 

190 to obtain a smoothed predictive map of all pixels for the breeding distributions of the three cranes 

191 (as performed in Booms et al., 2010 and Ohse et al., 2009). The fourth algorithm we employed, 

192 Maxent, is commonly referred to as a presence-only model; we used Maxent 3.3.3k (it can be 

193 downloaded for free from http://www.cs.princeton.edu/~schapire/maxent/) to construct our 

194 models. To run Maxent, we followed the 3.3.3e tutorial for ArcGIS 10 (Young et al., 2011) and 

195 used default settings. 

196 Testing data and model assessment 

197 We applied two types of testing data in this study: one consisted of satellite tracking data, and 

198 the other was represented by data from the literature. Satellite tracking data were obtained from 4 

199 individual Hooded Cranes and 8 White-naped Cranes that were tracked in the breeding regions at 

200 stopover sites (for more details regarding the information for tracked cranes, please see 

201 Supplement S2). The satellite tracking devices could provide 24 data points per day (Databases 
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202 could be available upon request). Here, we chose points that had a speed of less than 5 km/h during 

203 the period from 1st May to 31th June for Hooded Cranes and 15th April to 15th June for White-naped 

204 Cranes as the locations of the breeding grounds for these two cranes. The total numbers of tracking 

205 data points were 4,963 and 7,712 (Hooded Cranes and White-naped Crane, respectively. We didn�t 

206 track Black-necked Cranes, so there was no tracking testing data for this species). The literature 

207 data for this study were obtained by geo-referencing the location points of detections from 1980-

208 2000 (ArcGIS 10.1) from Threatened Birds of Asia: the BirdLife International Red Data Book 

209 (Collar et al., 2001). From this hardcopy data source, we were able to obtain and digitize 27 

210 breeding records for Hooded Cranes, 43 breeding records for White-naped Cranes, and 53 breeding 

211 records for Black-necked Cranes (see Fig. 2a, 2b, 2c). We digitized the only crane data for these 

212 three species in East-Asia into a database.

213 In addition, we generated 3,000 random points for Hooded Cranes and White-naped Cranes, 

214 and 5,000 random points for Black-necked Cranes as testing absence points in their respective 

215 study areas. And then, the literature locations (additional presence points for testing) and random 

216 points location (testing absence points) that contrasted with the associated predictive value of RIO 

217 extracted from the relative prediction map, which were used to calculate receiver operating 

218 characteristic (ROC) curves and the true skill statistic (TSS) (Hijmans and Graham, 2006). The 

219 area under the ROC curve (AUC) is commonly used to evaluate models in species distributional 

220 modeling (Manel et al., 2001, McPherson et al., 2004). TSS was also used to evaluate model 

221 performance; we used TSS because it has been increasingly applied as a simple but robust and 

222 intuitive measure of the performance of species distribution models (Allouche et al., 2006).

223 Put Fig.2 here

224
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227

228 Figure 2 Detailed study areas showing the presence of and testing data used for the three cranes. 

229 2a) Hooded Cranes, 2b) White-naped Cranes, 2c) Black-necked Cranes.

230 To assess models transferability, we extracted the predictive value of the relative index of 

231 occurrence (RIO) for testing data sets from the prediction maps using GME. We then constructed 

232 resulting violin plots for these extracted RIOs to visualize their one-dimensional distribution. This 

233 method allowed us to examine the degree of generalizability based on the local area with samples 

234 to predict into undersampled areas that are otherwise unsampled in the model development (=areas 

235 without training data). In addition, AUC is also commonly used to assess model transferability in 

236 our study referring Randin et al. (2006). 
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237 RESULTS

238 Model performance

239 The results for AUC and TSS, two metrics commonly used to evaluate model accuracy, are 

240 listed in Table 2. For the four SDMs technique, our results showed that the AUC values for 

241 Random Forest were always highest (>0.625), ranking this model in first place, followed by 

242 Maxent (>0.558), and then either CART or TreeNet (>=0.500). TSS showed us consistent results, 

243 as was the case for AUC, and Random Forest performed the best (>0.250) followed by Maxent 

244 (>0.137) for all three crane species, CART took the third place for Black-necked Cranes, and 

245 TreeNet performed better than CART for White-naped Cranes. And the results showed there was 

246 a trend that the value of these three metrics increased with an increase of nest site samples (33 to 

247 75, Hooded Crane to Black-necked Crane, see Table. 2). Comparing the results of Random Forest 

248 with ensemble model, we found their performance were close. Random Forest obtained better 

249 model for Hooded Cranes and White-naped Cranes cases, ensemble model performed better for 

250 Black-necked Cranes.

251 Put Table 2 here

252 Table 2 AUC and TSS values for four machine learning models and their ensemble model with 

253 three crane species based on literature testing data.

Species distribution modelAccuracy metric 

(samples) TreeNet Random 

Forest

CART Maxent Ensemble

Hooded Crane (Grus monacha, n=33 sites)

AUC 0.504 0.625 0.500 0.558 0.558
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TSS 0.000 0.250 0.000 0.137 0.117

White-naped Crane (Grus vipio, n=40 sites)

AUC 0.605 0.754 0.564 0.712 0.754

TSS 0.210 0.509 0.128 0.424 0.508

Black-necked Crane (Grus nigricollis, n=75 sites)

AUC 0.528 0.830 0.672 0.805 0.843

TSS 0.055 0.660 0.345 0.611 0.686

254 Model generalization

255 Violin plots for RIOs with overlaid satellite tracking data (Fig. 3) showed that Random Forest 

256 for Hooded Cranes and White-naped Cranes performed better than the other three models. In the 

257 Hooded Crane models (Fig. 3a), the RIO for most satellite tracking data indicated that TreeNet, 

258 and CART predicted with a value around 0; Ensemble model demonstrated a slightly higher value 

259 than the other three models but was still much lower than Random Forest. Fig. 3b indicates the 

260 same situation than found in Fig. 3a: Random Forest still performed better than the other three 

261 models (median values in Random Forests were close to 1.00). TreeNet had a median RIO value 

262 of approximately 0.71, followed by Maxent (median was 0.37) and then ensemble and CART. 

263 While some tracking points had a low RIO value in TreeNet, the majority of RIO values for CART 

264 remained in the 0.20 range.

265 Put Fig. 3 here
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266

267 Figure 3 Violin plots of the Relative Index of Occurrence (RIO) for four SDMs and ensemble 

268 model for Hooded Cranes and White-naped Cranes based on satellite tracking data. 3a) violin plots 

269 of Hooded Cranes, 3b) violin plots of White-naped Cranes.

270 Violin plots of the RIOs values for the three cranes extracted for the literature data from the 

271 prediction maps (Fig. 4) demonstrated consistent trends (Fig. 3), indicating that Random Forest 

272 performed best across all models of the three species. In Fig. 4a, the RIO values for Random Forest 

273 ranged from 0 to 0.48, and most RIO values were below 0.1; the RIO values for the other three 

274 SDMs method were 0, the ensemble model performed a little bit better. As showed in Fig. 4b, most 

275 RIO values for Random Forest were below 0.7, and the median value was approximately 0.20, 

276 followed by Maxent and then CART. The violin plots for Black-necked Cranes (Fig. 4c) indicated 

277 that TreeNet performed the worst, although there were some pixels that had high RIO values, 
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278 followed by ensemble and then Maxent. The best performer was still Random Forest, and its RIOs 

279 were distributed evenly to a certain extent with a median value of 0.44. The results of AUC, as 

280 mentioned in �Model performance� part (Table 2), showed consistent results with violin plots, 

281 Random Forest always get the highest value and has the best generalization.

282 Put figure 4 here

283

284 Figure 4 Violin plots of Relative Index of Occurrence (RIO) values for four SDMs and ensemble 

285 model for three cranes based on calibration data from Threatened Birds of Asia. 4a) Violin plots 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2517v1 | CC BY 4.0 Open Access | rec: 11 Oct 2016, publ: 11 Oct 2016



286 for Hooded Cranes, 4b) violin plots for White-naped Cranes, 4c) violin plots for Black-necked 

287 Cranes.

288 Spatial assessment using a testing data overlay prediction map

289 An assessment of niche prediction beyond the local area where samples were located represents 

290 a real test of the generalizability of the model predictions in undersampled areas. This approach 

291 was used to evaluate whether testing data (satellite tracking data and literature data) locations 

292 matched predictions of the potential distribution area, as a spatial assessment of model 

293 performance. It�s a spatial and visual method to show the transferability of SDMs from sampled 

294 to unsampled areas. From the results (Fig.s 5, 6 and 7. Digital version for each subgraph could be 

295 available request), we found that Random Forest demonstrated the strongest performance to handle 

296 generality (transferability), and a high fraction of testing data locations were predicted in the 

297 distribution areas of the three cranes (Fig.s 5b, 5g, 6b, 6g, 7b, 7g). The order of the generality of 

298 the remaining four models was: ensemble model followed by Maxent, CART and then TreeNet. 

299 Note, however, that the capacities of these models to predict well in undersampled areas were 

300 weaker than Random Forest, it holds particularly for areas that were further away from the sample 

301 areas (Fig.s 5, 6 and 7). In addition, we found that the generality increased with sample size (33 to 

302 75, Hooded Crane to Black-necked Crane, see Fig.s 5, 6 and 7). This means a higher sample size 

303 make models more robust and better to generalize from. 

304 Put Fig. 5 Here

305
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306

307 Figure 5 Prediction maps for Hooded Cranes and zoomed-in maps showing the four models (TreeNet, 
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308 Random Forest, CART and Maxent) and ensemble model in detail. 5a-5e) prediction map for Hooded 

309 Cranes, 5f-5j) zoomed-in map for Hooded Cranes. 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2517v1 | CC BY 4.0 Open Access | rec: 11 Oct 2016, publ: 11 Oct 2016



310

311 Figure 6 Prediction maps for White-naped Cranes and zoomed-in maps showing the four models (TreeNet, 
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312 Random Forest, CART and Maxent) and ensemble model in detail. 6a-6e) prediction map for White-naped 

313 Cranes, 6f-6j) zoomed-in map for White-naped Cranes. Put Fig. 6 Here
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314

315 Figure 7 Prediction maps for Black-necked Cranes and zoomed-in maps showing the four models (TreeNet, 
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316 Random Forest, CART and Maxent) and ensemble model in detail. 7a-7e) prediction map for Black-necked 

317 Cranes, 7f-7j) zoomed-in map for Black-necked Cranes. 

318 DISCUSSION

319 Model generality (transferability)

320 Estimating species distributions in undersampled areas is a fundamental problem in ecology, 

321 biogeography, biodiversity conservation and natural resource management (Drew et al., 2011). 

322 That is specifically true for rare and difficult to be detected species and which are usually high on 

323 the conservation priority. The use of SDMs has become the method for deriving such estimates 

324 (Guisan & Thuiller, 2005; Drew et al., 2011; Guisan et al., 2013) and could contribute to detect 

325 new populations of rare species. However, the application of a few samples to project a distribution 

326 area widely beyond the sample range is a greater challenge and has rarely been attempted in the 

327 literature. And only recently have conservationists realized its substantial value for pro-active 

328 decision making in conservation management (see work by Ohse et al., 2010; Drew et al., 2011; 

329 Kandel et al., 2015 etc.). Our results based on AUC, violin plots for RIOs and spatial assessment 

330 of testing data (satellite tracking data and literature data) all suggest there are difference in the 

331 generalization performance of different modeling techniques (TreeNet, Random Forest , CART 

332 and Maxent). 

333 Moreover, among the acknowledged four rather powerful and commonly used machne-learning 

334 techniques, Random Forest (bagging) in SPM usually had the best performance in each case. Our 

335 results are in agreement with those of Prasad et al. (2006), Cutler et al. (2007) and Syphard and 

336 Franklin (2009) indicating a superiority of Random Forest in such applications. However, initially 

337 it appears to run counter to the conclusions off recent paper (Heikkinen et al., 2012) with the poor 

338 transferability of Random Forest. But we propose this is due to the fact that many Random Forest 
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339 implementations exist (see the 100 classifier paper Fernández-Delgado et al., 2014). 

340 Here we applied Random Forest in SPM which has been optimized under one of the algorithm�s 

341 original co-authors, while Heikkinen et al. (2012) just run a basic Random Forest with BIOMOD 

342 framework in the R sofeware. The differences are known to be rather big (see Herrick 2013).

343 Furthermore, Maxent, a widely used SDM method enjoyed by many modelers (Phillips et al., 

344 2006; Peterson et al. 2007; Phillips and Dudík 2008; Li et al., 2015, etc.), didn�t perform so good 

345 in regards to transferability in this study. This contrasts to those of Elith et al. (2006) and Heikkinen 

346 et al. (2012), where Manxent and GBM perform well. We infer this may be caused by sample size 

347 used as training data. When the sample size increased (33 to 75), the AUC and TSS value of all 

348 models rose (Table 2). This indicates that higher sample sizes make models more robust and 

349 performing better. Sample sizes of 33 presence points still favor by Random Forest. 

350 In Random Forest, random samples from rows and variables are used to build hundreds of trees. 

351 Each individual tree is constructed from a bootstrap sample and split at each node by the best 

352 predictor from a very small, randomly chosen subset of the predictor variable pool (Herrick, 2013). 

353 These trees comprising the forest are each grown to maximal depth, and predictions are made by 

354 averaged trees through �voting� (Breiman et al., 2006). This algorithm avoiding overfitting by 

355 controlling the number of predictors randomly used at each split, using means of out-of-bag (OOB) 

356 samples to calculate an unbiased error rate. And also, Random Forest in SPM utilizes additional 

357 specific fine-tuning for best performance. 

358 RIOs of random points

359 In order to explore whether Random Forest created higher RIOs for prediction maps in each grid, 

360 which would result higher RIOs of testing data, we generated 3,000 random points for Hooded 

361 Cranes and White-naped Cranes, 5000 random points for Black-necked Cranes in their related 
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362 projected study areas. We made violin plots for RIOs of random points (Fig. 8), and found that 

363 more RIO values of random points for Maxent, Random Forest and ensemble models were close 

364 to the lower value, and then followed by TreeNet. The distribution shapes of Random Forest, 

365 Maxent and ensemble model are more similar to the real distribution of species in the real world. 

366 The RIOs of White-naped Crane extracted from the CART model distributed in the range of the 

367 low value. That means there were no points located in the high RIO areas of cranes, and which is 

368 unrealistic. Consequently, we argued that Random Forest did not create higher RIOs for prediction 

369 maps in each grid in our study. 

370                             Put Fig. 8 here
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371

372 Figure 8 Violin plots of Relative Index of Occurrence (RIO) values for four SDMs and ensemble 

373 model for three cranes based on calibration data from Threatened Birds of Asia. 4a) Violin plots 

374 for Hooded Cranes, 4b) violin plots for White-naped Cranes, 4c) violin plots for Black-necked 

375 Cranes.

376 Models with small sample sizes 

377 Conservation biologists are often interested in rare species and seek to improve their conservation. 
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378 These species usually have limited number of available occurrence records, which poses 

379 challenges for the creation of accurate species distribution models when compared with models 

380 developed with greater numbers of occurrences (Stockwell & Peterson, 2002; McPherson et al., 

381 2004; Hernandez et al., 2006). In this study, we used three crane species as case studies, and their 

382 occurrence records (nests) totaled 33, 40, and 75, respectively (considering the small numbers of 

383 samples and given that a low fraction of the area was sampled in the large projected area). In our 

384 models, we found that model fit (AUC and TSS, see Table 2) of Random Forest that had the highest 

385 index, while Maxent usually ranked second. In addition, we found that models with few presence 

386 samples can also generate accurate species predictive distributions (Fig. 3 to 7) with the Random 

387 Forest method. Of course, models constructed with few samples underlie the threat of being biased 

388 more because few samples usually had not enough information including all distribution gradients 

389 conditions of a species, especially for places far away from the location of training presence points. 

390 However, the potential distribution area predicted by SDMs could become as the place where 

391 scholars could look for the birds (additional fieldwork sampling). And also, these places could be 

392 used as diffusion or reintroduction areas! 

393 Evaluation methods 

394 In this study, we applied two widely-used assessment methods (AUC and TSS) in SDMs (Table 

395 2). For evaluation of these three values we used the approach recommended by Fielding & Bell 

396 (1997), and Allouche et al. (2006), we found our model usually didn�t obtain perfect performance, 

397 and some of them were fair. However, for macro-ecology this more than reasonable and ranks 

398 rather high. It�s a good conservation progress! We identified Random Forest as always the highest 

399 performing. These results are consistent with the results of violin plots of the Relative Index of 

400 Occurrence (RIO) using tracking as well as literature data (Fig.s 3, 4), and well as matching the 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2517v1 | CC BY 4.0 Open Access | rec: 11 Oct 2016, publ: 11 Oct 2016



401 spatial assessment results (Fig.s 5-7). And we recommend when modelers assess model 

402 performance they should not only depend alone on some metric (such as AUC and TSS), but also 

403 should base their assessments on the combined use of visualization and expert knowledge. That 

404 means modelers should also assess how the species distribution map actually looks and how it 

405 links with real data (see Huettmann & Gottschalk 2011). Spatial assessment metrics from 

406 alternative data should matter the most. Expert experience and ecological common knowledge of 

407 the species of interest could sometimes also be highly effective (Drew & Perera, 2011), albeit 

408 nonstandard, evaluation methods (see Kandel et al., 2015 for an example). Additionally, one 

409 alternative method for rapid assessment we find is to use a reliable SDM, and thus Random Forest 

410 may be a good choice in the future given our consistent results (Fig.s 3 to 7, Tables 3 to 5) in this 

411 study, which involved three species, a vast landscape to conserve, and only limited data. Our work 

412 helps to inform conservation decisions for cranes in Northeast Asia.

413 Limitations and future work

414 Our study is not without limitations: 1) so far, only three species of cranes are used as a test case 

415 in our study. That�s because nest data for rare species in remote areas are usually sparse; 2) all our 

416 species study areas are rather vast and confined to East-Asia. For future, we would apply Random 

417 Forest in more species and in more geography conditions with different distributed feature for a 

418 first rapid assessment and baseline mandatory for better conservation. Then we would apply our 

419 prediction results in specifically targeted fieldwork sampling campaigns and assess the model 

420 accuracy with field survey results (ground-truthing) and more new satellite tracking data. This is 

421 to be fed directly into the conservation management process. 
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