A peer-reviewed version of this preprint was published in PeerJ on 26 January 2017.

View the peer-reviewed version (peerj.com/articles/2901), which is the preferred citable publication unless you specifically need to cite this preprint.

Evolution of gremlin 2 in cetartiodactyl mammals: gene loss coincides with lack of upper jaw incisors in ruminants

Juan C Opazo Corresp., 1, Kattina Zavala 1, Paola Krall 2, Rodrigo Arias 3

1 Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
2 Unidad de Nefrología, Universidad Austral de Chile, Valdivia, Chile
3 Instituto de Producción Animal, Universidad Austral de Chile, Valdivia, Chile

Corresponding Author: Juan C Opazo
Email address: jopazo@gmail.com

Understanding the processes that give rise to genomic variability in extant species is an active area of research within evolutionary biology. With the availability of whole genome sequences, it is possible to quantify different forms of variability such as variation in gene copy number, which has been described as an important source of genetic variability and in consequence of phenotypic variability. Most of the research on this topic has been focused on understanding the biological significance of gene duplication, and less attention has been given to the evolutionary role of gene loss. Gremlin 2 is a member of the DAN gene family and plays a significant role in tooth development by blocking the ligand-signaling pathway of BMP2 and BMP4. The goal of this study was to investigate the evolutionary history of gremlin 2 in cetartiodactyl mammals, a group that possesses highly divergent teeth morphology. Results from our analyses indicate that gremlin 2 has experienced a mixture of gene loss, gene duplication, and rate acceleration. Although the last common ancestor of cetartiodactyls possessed a single gene copy, pigs and camels are the only cetartiodactyl groups that have retained gremlin 2. According to the phyletic distribution of this gene and synteny analyses, we propose that gremlin 2 was lost in the common ancestor of ruminants and cetaceans between 56.3 and 63.5 million years ago as a product of a chromosomal rearrangement. Our analyses also indicate that the rate of evolution of gremlin 2 has been accelerated in the two groups that have retained this gene. Additionally, the lack of this gene could explain the high diversity of teeth among cetartiodactyl mammals; specifically, the presence of this gene could act as a biological constraint. Thus, our results support the notions that gene loss is a way to increase phenotypic diversity and that gremlin 2 is a dispensable gene, at least in cetartiodactyl mammals.
Evolution of gremlin 2 in cetartiodactyl mammals: gene loss coincides with lack of upper jaw incisors in ruminants

Juan C. Opazo¹, Kattina Zavala¹, Paola Krall², Rodrigo A. Arias³

¹Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile. ²Unidad de Nefrología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile. ³Instituto de Producción Animal, Facultad de Ciencias Agrarias, Universidad Austral de Chile, Valdivia, Chile

Corresponding author:

Juan C. Opazo

Email: jopazo@gmail.com
Abstract

Understanding the processes that give rise to genomic variability in extant species is an active area of research within evolutionary biology. With the availability of whole genome sequences, it is possible to quantify different forms of variability such as variation in gene copy number, which has been described as an important source of genetic variability and in consequence of phenotypic variability. Most of the research on this topic has been focused on understanding the biological significance of gene duplication, and less attention has been given to the evolutionary role of gene loss. Gremlin 2 is a member of the DAN gene family and plays a significant role in tooth development by blocking the ligand-signaling pathway of BMP2 and BMP4. The goal of this study was to investigate the evolutionary history of gremlin 2 in cetartiodactyl mammals, a group that possesses highly divergent teeth morphology. Results from our analyses indicate that gremlin 2 has experienced a mixture of gene loss, gene duplication, and rate acceleration. Although the last common ancestor of cetartiodactyls possessed a single gene copy, pigs and camels are the only cetartiodactyl groups that have retained gremlin 2. According to the phyletic distribution of this gene and synteny analyses, we propose that gremlin 2 was lost in the common ancestor of ruminants and cetaceans between 56.3 and 63.5 million years ago as a product of a chromosomal rearrangement. Our analyses also indicate that the rate of evolution of gremlin 2 has been accelerated in the two groups that have retained this gene. Additionally, the lack of this gene could explain the high diversity of teeth among cetartiodactyl mammals; specifically, the presence of this gene could act as a biological constraint. Thus, our results support the notions that gene loss is a way to increase phenotypic diversity and that gremlin 2 is a dispensable gene, at least in cetartiodactyl mammals.
Introduction

One of the main goals of evolutionary biology is to understand the genetic basis of phenotypic diversity. To address this question, scientists have made efforts to identify genes that are linked to phenotypes and to explore the phenotypic consequences of genetic variability. With the availability of whole genome sequences, it has been possible to compare different forms of variability, and variation in gene copy number has been described as an important source of genetic variability. To date, most of the research on this topic has been focused towards understanding the biological significance of gene duplication, and less attention has been given to the evolutionary role of gene loss (Olson, 1999; Albalat and Cañestro, 2016). In the literature, there are examples of gene loss being associated with positive impacts on fitness. For example, the loss of the CCR5 gene in humans is associated with resistance to AIDS (Dean et al., 1996), and the loss of hair keratin genes in cetaceans is interpreted as an adaptation associated with the transition from terrestrial to aquatic life (Nery et al., 2014; Yim et al., 2014). Thus, evolutionary studies of genes that possess a clear link to a given phenotype represent an opportunity to understand the phenotypic effects of gene loss and gene dispensability.

Gremlin 2, previously known as a protein related to Dan and Cerberus (PRDC), is a member of the DAN gene family, a group of extracellular bone morphogenetic protein (BMP) inhibitors, which was originally identified in a gene trap screen for developmentally significant genes (Minabe-Saegusa et al., 1998). Gremlin 2, as an antagonist of BMPs (Kattamuri et al., 2012), plays a role in several developmental processes including organogenesis, body patterning, and tissue differentiation. In embryonic stages, this gene is expressed in the reproductive, nervous, respiratory, musculoskeletal, and integumentary systems (Müller et al., 2006).
Alternatively, during adulthood, it is a widely expressed gene found in high levels in ovaries, brain, and spleen (Sudo et al., 2004).

In the literature, it has been shown that gremlin 2 interacts with BMP2 and BMP4 by blocking their ligand-signaling pathway (Sudo et al., 2004). Human genetic studies have indicated that gremlin 2 variation can influence one’s susceptibility of having a common tooth malformation (Kantaputra et al., 2015). Mutational analysis in seven out of 263 patients with different dental anomalies has revealed the presence of mutations predicted to cause disease. Five patients of this study carried the same heterozygous mutations (Ala13Val) while the other two were carriers of two different heterozygous missense mutations (Gln76Glu and Glu136Asp) (Kantaputra et al., 2015). This genetic study supports the notion that inheritance of hypodontia is autosomal dominant, and this is related to gremlin 2. Despite this, the study also gives evidence of incomplete penetrance and variable expressivity. Genetic experiments provide further support for the role of gremlin 2 in tooth development (Brommage et al., 2014); it has been shown that gremlin 2 deficient mice have upper and lower incisor teeth with markedly reduced breadth and depth, and the upper incisors are more severely affected than lower ones (Vogel et al., 2015).

According to Voget et al. (2015) no other significant phenotypic effects have been observed in grem2−/− individuals, indicating that this gene could be dispensable. From a developmental perspective, it has been shown that the pathway that controls tooth differentiation is conserved in most mammals other than cetaceans, xenarthrans, and phocid seals (Armfield et al., 2013). In dolphins, it has been shown that expression of BMP4, which is one of the main targets of gremlin 2 (Sudo et al., 2004), is extended to the caudal region of the developing jaw, a region where the fibroblast growth factor 8 gene (FGF8) is express in most mammals (Armfield et al., 2013). This developmental difference could be related to the divergent dental phenotype of
dolphins. Similar results have been found during epibranchial placode development (Kriebitz et al., 2009). Within the same mammalian clade, other groups also have different dental morphologies. For example, ruminants do not possess incisors in the upper jaw; instead they possess a dental pad. Canines are also absent in most ruminant species with the exception of elk and red deer. This particular dental phenotype has consequences in the way these animals process food, which is different compared to related species (herbivores) that possess incisors in the upper jaw (e.g. horse).

The main goal of this study was to investigate the evolutionary history of gremlin 2, a gene that plays a significant role in the tooth development, in cetartiodactyl mammals a group that possesses divergent tooth morphologies. Results from our analyses show that gremlin 2 has experienced a mixture of gene loss, gene duplication, and rate acceleration. Although the last common ancestor of cetartiodactyls possessed a single gene copy, pigs and camels are the only cetartiodactyl groups that have retained gremlin 2. According to the phyletic distribution of this gene and synteny analyses, we propose that gremlin 2 was lost in the common ancestor of ruminants and cetaceans between 56.3 and 63.5 million years ago as a product of a chromosomal rearrangement. Our analyses also indicate that the rate of evolution of gremlin 2 in pigs and camels has been accelerated, and the possession of gremlin 2 clearly differentiates these groups from all other cetartiodactyl mammals.

Materials and methods

DNA data collection and phylogenetic analyses

We annotated gremlin 2 genes in representative species of laurasiatherian mammals. Our study included representative species from the orders Carnivora: cat (*Felis catus*), Siberian tiger
(Panthera tigris), dog (Canis familiaris), ferret (Mustela putorius), Weddell seal (Leptonychotes weddellii), Pacific walrus (Odobenus rosmarus), panda (Ailuropoda melanoleuca); Perissodactyla: Przewalski’s horse (Equus ferus), horse (Equus caballus), donkey (Equus asinus), Eulipotyphla: European hedgehog (Erinaceus europaeus); Chiroptera: Black flying fox (Pteropus alecto), Megabat (Pteropus vampyrus), Egyptian fruit bat (Rousettus aegyptiacus); and Cetartiodactyla: pig (Sus Scrofa), alpaca (Vicugna pacos), dromedary (Camelus dromedarius) and Bactrian camel (Camelus bactrianus) (Supplementary Table S1). Mouse and kangaroo rat sequences were used as outgroups. Amino acid sequences were aligned using the L-INS-i strategy from MAFFT v.6 (Katoh and Standley, 2013). Nucleotide alignment was generated using the amino acid alignment as a template using the software PAL2NAL (Suyama et al., 2006). Phylogenetic relationships were estimated using maximum likelihood and Bayesian approaches. In both cases, second codon positions were excluded. We performed a maximum likelihood analysis to obtain the best tree using the program RAxML version 8 (Stamatakis, 2014) and assessed support for the nodes with 1,000 bootstrap pseudoreplicates. Bayesian searches were conducted in MrBayes v.3.1.2 (Ronquist and Huelsenbeck, 2003); two independent runs of six simultaneous chains for 20x10^6 generations were set, and every 2,500 generations were sampled using default priors. The run was considered to have reached convergence once the likelihood scores reached an asymptote and the average standard deviation of the split frequencies remained < 0.01. We discarded all trees that were sampled before convergence, and we evaluated support for the nodes and parameter estimates from a majority rule consensus of the last 4,000 trees.

Assessments of Conserved Synteny
We examined genes found up- and downstream of gremlin 2 in the laurasiatherian mammal representative species. Synteny analyses were conducted for dog (Canis familiaris), panda (Ailuropoda melanoleuca), horse (Equus caballus), donkey (Equus asinus), European hedgehog (Erinaceus europaeus), Megabat (Pteropus vampyrus), Egyptian fruit bat (Rousettus aegyptiacus), alpaca (Vicugna pacos), dromedary (Camelus dromedarius), pig (Sus scrofa), sheep (Ovis aries), goat (Capra hircus), cow (Bos taurus), minke whale (Balaenoptera acutorostrata), killer whale (Orcinus orca) and baiji (Lipotes vexillifer). Initial ortholog predictions were derived from the EnsemblCompara database (Herrero et al., 2016) and were visualized using the program Genomicus v85.01 (Muffato et al., 2010). In other cases, the genome data viewer platform from the National Center for Biotechnology information was used.

Results and Discussion

Phylogenetic relationships

We constructed a phylogenetic tree in which we included representative species of laurasiatherian mammals (Fig. 1). Our phylogenetic analysis recovered the monophyly of each laurasiatherian order included in our sampling (Fig. 1). Although the phylogenetic relationships among laurasiatherian mammals at the ordinal level are still a matter of debate, the most important departure from current hypotheses detected here was the sister group relationship between Eulipotyphla and Perissodactyla (Fig. 1); in most studies, eulipotyphlan species appear sister to all other laurasiatherian mammals (Nery et al., 2012; Foley et al., 2016). The synteny analysis provided further support for the identity of the gremlin 2 gene lineage in this group of mammals (Fig. 2); genes found downstream were well conserved in all examined species (Fig. 2). According to our survey, most species included in this study possessed four downstream
genes \((RGS7, FH, KMO\) and \(OPN3\)) that define the identity of this genomic region (Fig. 2).

Although the genes found upstream were more variable, they were to some degree more
conserved in the different groups (Fig. 2). For example, in both camelid species four upstream
genes \((RNF2, TRMT1L, SWT1\) and \(IVNS1ABP\)) were detected that were well conserved (Fig. 2).
Similar results were found for sheep, goat, cow, minke whale, killer whale, and baiji (Fig. 2).

161

Molecular rates and structural divergence in cetartiodactyls

162

The rate of molecular evolution, as measured here using branch lengths, was variable (Fig. 1),
though the most striking result was that of the accelerated evolution of the cetartiodactyl clade
(Fig. 1; green clade). To test whether the rate of gremlin 2 evolution in this group of species is
significantly higher, we performed a relative rate test (Tajima, 1989) using the software MEGA 7
(Kumar et al., 2016). We compared the rate of evolution of the five cetartiodactyl sequences
using the cat sequence as a reference and the mouse sequence as the outgroup. Results of this
analysis confirmed what was observed in our phylogenetic tree, i.e. the rate of evolution of
cetartiodactyls is significantly higher than that of other laurasiatherian mammals (Supplementary
table S2). To further investigate the evolutionary pattern of gremlin 2 in cetartiodactyls, we made
an amino acid alignment that included, in addition to the five cetartiodactyl sequences,
representative species of the laurasiatherian orders Perissodactyla, Carnivora, Chiroptera, and
Eulipotyphla. From this, we found that there are 13 synapomorphies that define the gremlin 2
genes in cetartiodactyls (Fig. 3). Among these, we identified 11 amino acid changes and two
deletions (Fig. 3). Of all of the amino acid substitutions, changes at positions 34 (Tyr to Arg),
109 (His to Pro), 131 (Thr to Ala), and 132 (Ser to Ala) represent changes affecting
hydrophobicity (Fig. 3). To determine whether or not the observed amino acid replacements in
cetartiodactyls would have structural consequences, we predicted the secondary protein structure using the EMBOSS garnier package (Rice et al., 2000) (Fig. 4). From this analysis, we identified three main regions in which the secondary structure of the proteins of cetartiodactyls would diverge compared to other laurasiatherian species and humans (Fig. 4). Interestingly, in these three regions, two structural patterns could be distinguished. The first pattern was found in the gremlin 2 sequences of pig, while the other pattern was identified in the three camelid species (alpaca, dromedary, and Bactrian camel)(Fig. 4). The first region spanned the alignment positions 23 to 61 and was characterized by changes from beta strands to coil structures at the N-terminal portion of the region and changes from alpha helices to coil and beta strand structures at the C-terminal portion of the region (Fig. 4). The second region was mapped between the residues 104 and 157 and was mainly characterized by changes from alpha helices to turn and coil structures at the N-terminal portion of the region, from beta strands to alpha helices in the middle portion of the region, and from alpha helices to turns and beta strands at the C-terminal portion of the region (Fig. 4). Finally, the third region where we found cetartiodactyls to be structurally divergent started at alignment position 166 and ended at position 170. In the three camelid species, this region was characterized by changes from turn structures to alpha helices, and in the two pig gremlin 2 sequences the turn structures changed to coil structures (Fig. 4).

Gene copy number variation and differential retention in cetartiodactyls

Most laurasiatherian species possess a single copy of the gene with the exception of pig (*Sus scrofa*) that has two copies on chromosome 10 (Fig. 5). As in all examined species, in pig, one of the copies (gremlin 2-T1) was found on the 5' side of the regulator of the G-protein signaling 7 gene (RGS7) (Fig. 2). The second copy (gremlin 2-T2) was found within the RGS7 gene,
specifically between exons 13 and 14 (Fig. 5). At the amino acid level both copies differed in
one amino acid (position 155); gremlin 2-T1 possessed an arginine, and gremlin 2-T2 possessed
a lysine.

Among cetartiodactyls, we observed that gremlin 2 was differentially retained (Fig. 2).
Species belonging to the suborders tylopoda (the group that includes camels, alpacas, vicuñas,
and guanacos) and suiformes (the group that includes pigs and peccaries) were the only groups in
which gremlin 2 was present (Fig. 2). In cetaceans and ruminants, gremlin 2 was not present.

Thus, according to the phyletic distribution of gremlin 2 within the main groups of
cetartiodactyls, the most likely scenario is that the deletion of the gene occurred between 56.3
and 63.5 million of years ago in the common ancestor of the clade that includes ruminants,
hippopotamuses, and cetaceans (Fig. 6). However, until information regarding gremlin 2 in
hippopotamuses is obtained, caution must be taken when interpreting these results. If, in the
future, the hippopotamus genome is found to possess gremlin 2, we can determine that two
independent gene losses occurred, one in the ancestor of ruminants and a second in the ancestor
of cetaceans. For now, a single gene loss event is assumed.

To gain insight into the genetic mechanisms that gave rise to the deletion of gremlin 2,
we compared the chromosomal location of genes found up- and downstream of gremlin 2 in
human, cow, and sheep (Fig. 7). We identified a chromosomal region of approximately 12Mb,
which in human was on the 5’ side of gremlin 2 (Fig. 7; pink box), while in cow and sheep it was
found in a different chromosome in relation to other genes that are linked to gremlin 2 (Fig. 7;
pink box). In cow, this region was moved from chromosome 16 to 28, while in sheep it was
moved from chromosome 12 to 25 (Fig. 7). As a consequence of this chromosomal
rearrangement, the regions that are located up- and downstream of the chromosome piece that
was moved are now located together in both cow and sheep (Fig. 7). Thus, in these species, the
gene that is found on the 5’ side of gremlin 2 (FMN2) was part of the chromosomal block that
was moved to a different chromosome (Fig. 7) whereas the gene located on the 3’ side (RGS7)
was not. From this, we suggest that one of the break points that gave rise to the chromosomal
rearrangement was the chromosomal region where gremlin 2 was located (Fig. 7).

From a biomedical perspective, the loss of gremlin 2 (e.g. in cow, sheep, goat, dolphins,
whales) represents a natural gene knockout (evolutionary mutant models according to (Albertson
et al., 2009)), thus presenting an outstanding opportunity to understand gremlin 2 biology. From
a physiological standpoint, this phenomenon is interesting as gremlin 2 plays a role in several
developmental processes, including organogenesis, body patterning, and tissue differentiation.

Thus, several questions regarding the mode of action of this gene could be investigated
considering the lack of this gene in certain species. For example, what happens with BMP2 and
BMP4 in the absence of gremlin 2? Are these BMPs free of any antagonist action? Or does
another member of the DAN gene family fulfill gremlin 2’s molecular role? From a phenotypic
perspective, it has been shown that BMP2 and BMP4 are involved in the signaling pathway that
regulates tooth development (Aberg et al., 1997; Nadiri et al., 2004). Genetic manipulation
experiments have shown that gremlin 2 deficient mice have upper and lower incisor teeth with
markedly reduced breadth and depth, and the upper incisors are more severely affected than the
lower ones (Kantaputra et al., 2015; Vogel et al., 2015). This supports the argument that the lack
of gremlin 2 contributes to the divergent dental phenotype of ruminants and cetaceans.

Ruminants do not have incisors in the upper jaw; instead they have a dental pad. With the
exception of elk and red deer, canines are also absent in most species. This particular dental
phenotype affects how ruminants eat, which differ from phylogenetically related species that
have incisors in the upper jaw (e.g. horse). For example, cows use their tongue to wrap and pull leaves into their mouths between the incisors of the lower jaw and the dental pad; thus, plants are not clearly cut during feeding. This contrasts with the feeding method of phylogenetically related species that have upper and lower incisors; these species cut plants and graze deeply. Once the food is in their mouths, cows swing their heads to chew the food slightly and mix it with saliva before swallowing. This lateral chewing action is required to cut plant tissues because molars and premolars of the maxillary jaw are wider than those located on the mandibular jaw.

Conversely, sheep use their lips and teeth as their primary tools for food prehension. Their lips are used to bring food into their mouths, and the incisors of the lower jaw in combination with the dental pad allow them to cut leaves. As a consequence, sheep can bite closer to the ground and have the ability to be more selective.

The loss of gremlin 2 in cetaceans is more complicated to interpret considering that one subgroup (toothed whales) has teeth while another subgroup (baleen whales) does not. To further complicate this scenario, it has been argued that it is impossible to define teeth homology between toothed whales and non-cetacean mammals (Armfield et al., 2013). From a developmental perspective, it has been demonstrated that the pathway that controls tooth differentiation and number in cetaceans is different from the typical mammalian pattern (Armfield et al., 2013). Particularly interesting is that the expression pattern of BMP4, one of the main targets of gremlin 2, differs between cetaceans and non-cetacean mammals (Sudo et al., 2004).

Finally, the case of hippopotamuses remains an open question until the genome is sequenced. However, we can speculate that, as has been shown in cetaceans, the tooth
Concluding remarks

Our results show that in cetartiodactyl mammals gremlin 2 has experienced a mixture of gene loss, gene duplication, and rate acceleration. Although the last common ancestor of cetartiodactyls possessed a single copy of the gene, species belonging to the suborders tylopoda (the group that includes camels, alpacas, vicuñas, and guanacos) and suiformes (the group that includes pigs and peccaries) are the only groups that have retained gremlin 2 (Fig. 6). These groups also experienced acceleration in the rate of evolution of this gene, and it is this that clearly differentiates them from all other laurasiatherians (Fig. 3). The fact that all amino acid changes that define the gremlin 2 gene in tylapoda and suiformes are present in both groups suggests that this gene and its corresponding protein were remodeled in the last common ancestor of cetartiodactyls and subsequently inherited by all descendant lineages (Fig. 6). After that, gremlin 2 was probably lost in the ancestor of ruminants, hippopotamuses, and cetaceans between 56.3 and 63.5 million of years ago (Fig. 6). By removing a biological constraint imposed by the presence of gremlin 2, the lack of this gene could explain teeth diversity in these groups of mammals. Thus, the results presented here support the argument that gene loss is a way to increase phenotypic diversity (Olson, 1999; Albalat and Cañestro, 2016) and that gremlin 2 is a dispensable gene at least in this group of mammals.

Acknowledgements
This work was funded by a grant from the Fondo Nacional de Desarrollo Científico y
Tecnológico (FONDECYT 1160627) to JCO.
Figure legends

Figure 1. Maximum likelihood phylogenetic tree depicting relationships among gremlin 2 genes in laurasiatherian mammals. Numbers on the nodes correspond to Bayesian posterior probabilities and maximum likelihood bootstrap support values. Sequences of mouse and kangaroo rat were used as outgroups.

Figure 2. Patterns of conserved synteny in the genomic regions that harbor gremlin 2 genes in laurasiatherian mammals. Upper panel: genomic region that harbors gremlin 2 genes. Lower panel: conserved synteny in the genomic region that would be the putative location of the gremlin 2 gene in ruminants and cetaceans.

Figure 3. An alignment of gremlin 2 amino acid sequences from laurasiatherian mammals. Amino acid positions in bold denote the 11 amino acid synapomorphies that define the sequences of pigs and camels.

Figure 4. An alignment of the predicted gremlin 2 secondary structure in laurasiatherian mammals and humans.

Figure 5. Schematic representation of the gremlin 2 syntenic region in pigs. One of the copies (gremlin 2-T1) is located on the 5’ side of the regulator of the G-protein signaling 7 gene (RGS7) whereas the second copy (gremlin 2-T2) is located within the RGS7 gene, specifically between exons 13 and 14.
Figure 6. An evolutionary hypothesis regarding the evolution of the gremlin 2 gene in cetartiodactyl mammals. According to this model, the last common ancestor of cetartiodactyls possessed a single copy of the gene. Species belonging to the suborders tylopoda, the group that includes camels, alpacas, vicuñas and guanacos, and suiformes, the group that includes pigs and peccaries, were the only groups that retained gremlin 2. According to the phyletic distribution of gremlin 2, we propose that this gene was lost in the common ancestor of ruminants, hippopotamuses, and cetaceans between 56.3 and 63.5 million of years ago as a product of a chromosomal rearrangement.

Figure 7. Schematic representation of the chromosomal regions that harbor genes located up- and downstream of gremlin 2. Upper panel: chromosomal region that harbors genes that are up- and downstream of gremlin 2 in humans. Middle panel: Chromosomal regions (chrs 16 and 28) that harbor genes that are located up- and downstream of the putative location of gremlin 2 in cow. Lower panel: Chromosomal regions (chrs 25 and 12) that harbor genes that are located up- and downstream of the putative location of gremlin 2 in sheep.

Olson, M.V., 1999. When less is more: gene loss as an engine of evolutionary change. Am J Hum Genet 64, 18-23.

Figure 1 (on next page)

Maximum likelihood phylogenetic tree depicting relationships among gremlin 2 genes in laurasiatherian mammals

Figure 1. Maximum likelihood phylogenetic tree depicting relationships among gremlin 2 genes in laurasiatherian mammals. Numbers on the nodes correspond to Bayesian posterior probabilities and maximum likelihood bootstrap support values. Sequences of mouse and kangaroo rat were used as outgroups.
Patterns of conserved synten in the genomic regions that harbor gremlin 2 genes in laurasiatherian mammals

Figure 2. Patterns of conserved synten in the genomic regions that harbor gremlin 2 genes in laurasiatherian mammals. Upper panel: genomic region that harbors gremlin 2 genes. Lower panel: conserved synten in the genomic region that would be the putative location of the gremlin 2 gene in ruminants and cetaceans.
Figure 3. An alignment of gremlin 2 amino acid sequences from laurasiatherian mammals. Amino acid positions in bold denote the 11 amino acid synapomorphies that define the sequences of pigs and camels.
<table>
<thead>
<tr>
<th>Animal</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pig</td>
<td>MFWKLSVSLILMAALEKVEADQARPAGISPSFKDGSPESTGRQ-LIKEVLIASSQAEALVVTERRYLRSDCKTQPLRQTVHEE</td>
</tr>
<tr>
<td>Pig</td>
<td>MFWKLSVSLILMAALEKVEADQARPAGISPSFKDGSPESTGRQ-LIKEVLIASSQAEALVVTERRYLRSDCKTQPLRQTVHEE</td>
</tr>
<tr>
<td>Alpaca</td>
<td>MFWKLSVSLILMAALEKVEADQARPAGISPSFKDGSPESTGRQ-LIKEVLIASSQAEALVVTERRYLRSDCKTQPLRQTVHEE</td>
</tr>
<tr>
<td>Bactrian camel</td>
<td>MFWKLSVSLILMAALEKVEADQARPAGISPSFKDGSPESTGRQ-LIKEVLIASSQAEALVVTERRYLRSDCKTQPLRQTVHEE</td>
</tr>
<tr>
<td>Dromedary</td>
<td>MFWKLSVSLILMAALEKVEADQARPAGISPSFKDGSPESTGRQ-LIKEVLIASSQAEALVVTERRYLRSDCKTQPLRQTVHEE</td>
</tr>
<tr>
<td>Donkey</td>
<td>MFWKLSVSLILMAALEKVEADQARPAGISPSFKDGSPESTGRQ-LIKEVLIASSQAEALVVTERRYLRSDCKTQPLRQTVHEE</td>
</tr>
<tr>
<td>Horse</td>
<td>MFWKLSVSLILMAALEKVEADQARPAGISPSFKDGSPESTGRQ-LIKEVLIASSQAEALVVTERRYLRSDCKTQPLRQTVHEE</td>
</tr>
<tr>
<td>Przewalski horse</td>
<td>MFWKLSVSLILMAALEKVEADQARPAGISPSFKDGSPESTGRQ-LIKEVLIASSQAEALVVTERRYLRSDCKTQPLRQTVHEE</td>
</tr>
<tr>
<td>Cat</td>
<td>MFWKLSVSLILMAALEKVEADQARPAGISPSFKDGSPESTGRQ-LIKEVLIASSQAEALVVTERRYLRSDCKTQPLRQTVHEE</td>
</tr>
<tr>
<td>Siberian tiger</td>
<td>MFWKLSVSLILMAALEKVEADQARPAGISPSFKDGSPESTGRQ-LIKEVLIASSQAEALVVTERRYLRSDCKTQPLRQTVHEE</td>
</tr>
<tr>
<td>Ferret</td>
<td>MFWKLSVSLILMAALEKVEADQARPAGISPSFKDGSPESTGRQ-LIKEVLIASSQAEALVVTERRYLRSDCKTQPLRQTVHEE</td>
</tr>
<tr>
<td>Dog</td>
<td>MFWKLSVSLILMAALEKVEADQARPAGISPSFKDGSPESTGRQ-LIKEVLIASSQAEALVVTERRYLRSDCKTQPLRQTVHEE</td>
</tr>
<tr>
<td>Pacific walrus</td>
<td>MFWKLSVSLILMAALEKVEADQARPAGISPSFKDGSPESTGRQ-LIKEVLIASSQAEALVVTERRYLRSDCKTQPLRQTVHEE</td>
</tr>
<tr>
<td>Weddell seal</td>
<td>MFWKLSVSLILMAALEKVEADQARPAGISPSFKDGSPESTGRQ-LIKEVLIASSQAEALVVTERRYLRSDCKTQPLRQTVHEE</td>
</tr>
<tr>
<td>Panda</td>
<td>MFWKLSVSLILMAALEKVEADQARPAGISPSFKDGSPESTGRQ-LIKEVLIASSQAEALVVTERRYLRSDCKTQPLRQTVHEE</td>
</tr>
<tr>
<td>Megabat</td>
<td>MFWKLSVSLILMAALEKVEADQARPAGISPSFKDGSPESTGRQ-LIKEVLIASSQAEALVVTERRYLRSDCKTQPLRQTVHEE</td>
</tr>
<tr>
<td>Egyptian rousette</td>
<td>MFWKLSVSLILMAALEKVEADQARPAGISPSFKDGSPESTGRQ-LIKEVLIASSQAEALVVTERRYLRSDCKTQPLRQTVHEE</td>
</tr>
<tr>
<td>Black flying fox</td>
<td>MFWKLSVSLILMAALEKVEADQARPAGISPSFKDGSPESTGRQ-LIKEVLIASSQAEALVVTERRYLRSDCKTQPLRQTVHEE</td>
</tr>
<tr>
<td>European hedgehog</td>
<td>MFWKLSVSLILMAALEKVEADQARPAGISPSFKDGSPESTGRQ-LIKEVLIASSQAEALVVTERRYLRSDCKTQPLRQTVHEE</td>
</tr>
</tbody>
</table>

Sequence:

<table>
<thead>
<tr>
<th>Animal</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pig</td>
<td>GCHRKTNLNRCYIQNSFTFPEPGSGSW=-GSFQSCAFCRFAGRAALVE1GCPGRPPHFHR1Q1KVQRKCMRSVTLSDESH-</td>
</tr>
<tr>
<td>Pig</td>
<td>GCHRKTNLNRCYIQNSFTFPEPGSGSW=-GSFQSCAFCRFAGRAALVE1GCPGRPPHFHR1Q1KVQRKCMRSVTLSDESH-</td>
</tr>
<tr>
<td>Alpaca</td>
<td>GCHRKTNLNRCYIQNSFTFPEPGSGSW=-GSFQSCAFCRFAGRAALVE1GCPGRPPHFHR1Q1KVQRKCMRSVTLSDESH-</td>
</tr>
<tr>
<td>Bactrian camel</td>
<td>GCHRKTNLNRCYIQNSFTFPEPGSGSW=-GSFQSCAFCRFAGRAALVE1GCPGRPPHFHR1Q1KVQRKCMRSVTLSDESH-</td>
</tr>
<tr>
<td>Dromedary</td>
<td>GCHRKTNLNRCYIQNSFTFPEPGSGSW=-GSFQSCAFCRFAGRAALVE1GCPGRPPHFHR1Q1KVQRKCMRSVTLSDESH-</td>
</tr>
<tr>
<td>Donkey</td>
<td>GCHRKTNLNRCYIQNSFTFPEPGSGSW=-GSFQSCAFCRFAGRAALVE1GCPGRPPHFHR1Q1KVQRKCMRSVTLSDESH-</td>
</tr>
<tr>
<td>Horse</td>
<td>GCHRKTNLNRCYIQNSFTFPEPGSGSW=-GSFQSCAFCRFAGRAALVE1GCPGRPPHFHR1Q1KVQRKCMRSVTLSDESH-</td>
</tr>
<tr>
<td>Przewalski horse</td>
<td>GCHRKTNLNRCYIQNSFTFPEPGSGSW=-GSFQSCAFCRFAGRAALVE1GCPGRPPHFHR1Q1KVQRKCMRSVTLSDESH-</td>
</tr>
<tr>
<td>Cat</td>
<td>GCHRKTNLNRCYIQNSFTFPEPGSGSW=-GSFQSCAFCRFAGRAALVE1GCPGRPPHFHR1Q1KVQRKCMRSVTLSDESH-</td>
</tr>
<tr>
<td>Siberian tiger</td>
<td>GCHRKTNLNRCYIQNSFTFPEPGSGSW=-GSFQSCAFCRFAGRAALVE1GCPGRPPHFHR1Q1KVQRKCMRSVTLSDESH-</td>
</tr>
<tr>
<td>Ferret</td>
<td>GCHRKTNLNRCYIQNSFTFPEPGSGSW=-GSFQSCAFCRFAGRAALVE1GCPGRPPHFHR1Q1KVQRKCMRSVTLSDESH-</td>
</tr>
<tr>
<td>Dog</td>
<td>GCHRKTNLNRCYIQNSFTFPEPGSGSW=-GSFQSCAFCRFAGRAALVE1GCPGRPPHFHR1Q1KVQRKCMRSVTLSDESH-</td>
</tr>
<tr>
<td>Pacific walrus</td>
<td>GCHRKTNLNRCYIQNSFTFPEPGSGSW=-GSFQSCAFCRFAGRAALVE1GCPGRPPHFHR1Q1KVQRKCMRSVTLSDESH-</td>
</tr>
<tr>
<td>Weddell seal</td>
<td>GCHRKTNLNRCYIQNSFTFPEPGSGSW=-GSFQSCAFCRFAGRAALVE1GCPGRPPHFHR1Q1KVQRKCMRSVTLSDESH-</td>
</tr>
<tr>
<td>Panda</td>
<td>GCHRKTNLNRCYIQNSFTFPEPGSGSW=-GSFQSCAFCRFAGRAALVE1GCPGRPPHFHR1Q1KVQRKCMRSVTLSDESH-</td>
</tr>
<tr>
<td>Megabat</td>
<td>GCHRKTNLNRCYIQNSFTFPEPGSGSW=-GSFQSCAFCRFAGRAALVE1GCPGRPPHFHR1Q1KVQRKCMRSVTLSDESH-</td>
</tr>
<tr>
<td>Egyptian rousette</td>
<td>GCHRKTNLNRCYIQNSFTFPEPGSGSW=-GSFQSCAFCRFAGRAALVE1GCPGRPPHFHR1Q1KVQRKCMRSVTLSDESH-</td>
</tr>
<tr>
<td>Black flying fox</td>
<td>GCHRKTNLNRCYIQNSFTFPEPGSGSW=-GSFQSCAFCRFAGRAALVE1GCPGRPPHFHR1Q1KVQRKCMRSVTLSDESH-</td>
</tr>
<tr>
<td>European hedgehog</td>
<td>GCHRKTNLNRCYIQNSFTFPEPGSGSW=-GSFQSCAFCRFAGRAALVE1GCPGRPPHFHR1Q1KVQRKCMRSVTLSDESH-</td>
</tr>
</tbody>
</table>
Figure 4 (on next page)

An alignment of the predicted gremlin 2 secondary structure in laurasiatherian mammals and humans

Figure 4. An alignment of the predicted gremlin 2 secondary structure in laurasiatherian mammals and humans.
Figure 5. Schematic representation of the gremlin 2 syntenic region in pigs. One of the copies (gremlin 2-T1) is located on the 5’ side of the regulator of the G-protein signaling 7 gene (RGS7) whereas the second copy (gremlin 2-T2) is located within the RGS7 gene, specifically between exons 13 and 14.
An evolutionary hypothesis regarding the evolution of the gremlin 2 gene in cetartiodactyl mammals

Figure 6. An evolutionary hypothesis regarding the evolution of the gremlin 2 gene in cetartiodactyl mammals. According to this model, the last common ancestor of cetartiodactyls possessed a single copy of the gene. Species belonging to the suborders tylopoda, the group that includes camels, alpacas, vicuñas and guanacos, and suiformes, the group that includes pigs and peccaries, were the only groups that retained gremlin 2. According to the phyletic distribution of gremlin 2, we propose that this gene was lost in the common ancestor of ruminants, hippopotamuses, and cetaceans between 56.3 and 63.5 million of years ago as a product of a chromosomal rearrangement.
Both gremlin 2 genes arose via duplication in the common ancestor of pigs and peccaries.
Figure 7 (on next page)

Schematic representation of the chromosomal regions that harbor genes located up- and downstream of gremlin 2

Figure 7. Schematic representation of the chromosomal regions that harbor genes located up- and downstream of gremlin 2. Upper panel: chromosomal region that harbors genes that are up- and downstream of gremlin 2 in humans. Middle panel: Chromosomal regions (chrs 16 and 28) that harbor genes that are located up- and downstream of the putative location of gremlin 2 in cow. Lower panel: Chromosomal regions (chrs 25 and 12) that harbor genes that are located up- and downstream of the putative location of gremlin 2 in sheep.