An exploratory study of the state of practice of performance
testing in Java-based open source projects

The usage of open source (0S) software is nowadays wide- spread across many industries
and domains. While the functional quality of OS projects is considered to be up to par with
that of closed-source software, much is unknown about the quality in terms of non-
functional attributes, such as performance. One challenge for OS developers is that, unlike
for functional testing, there is a lack of accepted best practices for performance testing. To
reveal the state of practice of performance testing in OS projects, we conduct an
exploratory study on 111 Java-based OS projects from GitHub. We study the performance
tests of these projects from five perspectives: (1) the developers, (2) size, (3) organization
and (4) types of performance tests and (5) the tooling used for performance testing. First,
in @ quantitative study we show that writing performance tests is not a popular task in OS
projects: performance tests form only a small portion of the test suite, are rarely updated,
and are usually maintained by a small group of core project developers. Second, we show
through a qualitative study that even though many projects are aware that they need
performance tests, developers appear to struggle implementing them. We argue that
future performance testing frameworks should provider better support for low-friction
testing, for instance via non-parameterized methods or performance test generation, as

well as focus on a tight integration with standard continuous integration tooling.
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ABSTRACT

The usage of open source (OS) software is nowadays wide-
spread across many industries and domains. While the func-
tional quality of OS projects is considered to be up to par
with that of closed-source software, much is unknown about
the quality in terms of non-functional attributes, such as
performance. One challenge for OS developers is that, un-
like for functional testing, there is a lack of accepted best
practices for performance testing.

To reveal the state of practice of performance testing in OS
projects, we conduct an exploratory study on 111 Java-based
OS projects from GitHub. We study the performance tests
of these projects from five perspectives: (1) the developers,
(2) size, (3) organization and (4) types of performance tests
and (5) the tooling used for performance testing.

First, in a quantitative study we show that writing per-
formance tests is not a popular task in OS projects: perfor-
mance tests form only a small portion of the test suite, are
rarely updated, and are usually maintained by a small group
of core project developers. Second, we show through a quali-
tative study that even though many projects are aware that
they need performance tests, developers appear to strug-
gle implementing them. We argue that future performance
testing frameworks should provider better support for low-
friction testing, for instance via non-parameterized methods
or performance test generation, as well as focus on a tight
integration with standard continuous integration tooling.
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1. INTRODUCTION

The usage of open source (OS) software libraries and com-
ponents is by now widely spread across many, if not all, in-
dustries and domains. Studies claim that, from a functional
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perspective, the quality of OS software is on par with com-
parable closed-source software [1]. OS projects have largely
converged against accepted best practices [5] (e.g., unit test-
ing) and widespread standard tooling for functional testing,
such as JUnit in the Java ecosystem.

However, the quality of OS software in terms of non-
functional attributes, such as reliability, scalability, or per-
formance, is less well-understood. For example, Heger et
al. [10] state that performance bugs in OS software go undis-
covered for a longer time than functional bugs, and fixing
them takes longer. One reason for the longer fixing time
may be that performance bugs are notoriously hard to re-
produce [26].

As many OS software libraries (such as 7 apache/log4j or
the 7 apache/commons collection of libraries) are used almost
ubiquitously across a large span of other OS or industrial
applications, a performance bug in such a library can lead
to widespread slowdowns. Hence, it is of utmost importance
that the performance of OS software is well-tested.

Despite this importance of performance testing for OS
software, our current understanding of how developers are
conducting performance, stress, or scalability tests is lack-
ing. There is currently no study that analyzes whether and
how real projects conduct performance testing, which tools
they use, and what OS software developers struggle with.
As such, there exist no guidelines for how OS developers
should test the performance of their projects.

In this paper, we conduct an exploratory study on the
state of practice of performance testing in Java-based OS
software. We study 111 Java-based projects from GitHub
that contain performance tests. We focus on five perspec-
tives:

1. The developers who are involved in performance
testing. In most studied OS projects, a small group of
core developers creates and maintains the performance
tests. Our findings suggest that in general, there are
no developers in the studied OS projects that focus
solely on performance testing.

2. The extend of performance testing. In most stud-
ied OS projects, the performance tests are small in
terms of lines of code, and do not change often. We
did not observe a statistically significant difference in
the size of the performance tests of projects that make
claims about their performance (e.g., “fastest imple-
mentation of X”) and projects that do not make such
claims.

3. The organization of performance tests. The Java
OS software community has not yet converged against
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a common understanding of how to conduct and or-
ganize performance tests. Developers freely mix per-
formance tests with unit tests and code comments are
used to describe how a performance test should be ex-
ecuted.

4. The types of performance tests. Half of the stud-
ied OS projects have one or two performance smoke
tests for testing the performance of the main function-
ality of a project. 36% of the studied projects use mi-
crobenchmarks for performance testing. Less popular
types of performance tests are one-shot performance
tests (i.e., tests that focus on one very specific per-
formance issue), performance assertions and implicit
performance tests (i.e., measurements that are done
during the execution of functional tests).

5. The tooling and frameworks used for perfor-
mance tests. While there exist dedicated tools and
frameworks for performance tests, the adoption of these
tools and frameworks is not widespread in the Java OS
software community. Only 16% of the studied projects
uses a dedicated framework such as JMH or Caliper.

Our findings imply that practitioners who use OS software

in their projects must thoroughly test the consequences of
doing so on the performance of their own projects, as de-
velopers should not assume that OS software necessarily
follows stringent performance testing practices. From our
exploratory study follows that writing performance tests is
not a popular task in OS projects. Performance tests form
only a small portion of the test suite, are rarely updated, and
are usually maintained by a small group of core project de-
velopers. Further, we argue that future performance testing
frameworks should provider better support for low-friction
testing, for instance via non-parameterized methods or per-
formance test generation, as well as focus on a tight integra-
tion with standard continuous integration (CI) tooling.

The remainder of this paper is structured as follows. In

Section 2, we summarize related work. In Section 3, we
describe our exploratory study setup and research method-
ology. Section 4 contains our study results, followed by a
discussion of the main implications resulting from our work
in Section 5. Section 6 discusses the main threats to the va-
lidity of our study. Finally, Section 7 concludes the paper.

2. BACKGROUND AND RELATED WORK

In this section, we will discuss work that is related to
our exploratory study. The overall body of research on per-
formance testing is too broad to cover here in its entirety.
Therefore, we focus on work that has informed our study or
is particularly related to it.

Empirical Studies. As a non-functional quality attribute,
performance is often equally critical to the perceived value
of a program as functional correctness is. For instance, in a
cloud computing context, writing inefficient, low-performance
code often directly translates to higher operations costs, as
more cloud resources need to be used to deliver the same
end-user perceived quality (e.g., response time) [7]. Con-
sequently, (at least) two decades of research have led to
great insights into how to design and construct performance-
optimal systems [23]. A number of empirical studies have re-
cently analyzed the anatomy of reported performance prob-
lems [9, 15, 26], arguing that these problems take longer to
get reported and fixed than functional problems. Further,
recent research on performance regression mining (a research

method inspired by software repository mining that repeat-
edly benchmarks different revisions of a software system
to discover historical, unreported, performance bugs) has
shown that performance problems can originate from a wide
range of code changes, including simple updates of depen-
dencies [2,22]. A system following a similar basic operat-
ing principle is PerfImpact [18], which aims to find changes
and input combinations that lead to performance regres-
sions. PRA (performance risk analysis) is an approach used
to narow down commits that led to a (previously detected)
performance regression [13]. Baltes et al. [4] study how de-
velopers locate performance problems, and conclude that
standard tools do not provide sufficient support for under-
standing the runtime behavior of software.

Problems of Performance Testing. Early on, stud-
ies have reported that industrial practice in performance
testing is not on the same level as functional testing [25],
even for large, performance-sensitive enterprise applications.
Historically, performance testing has been made difficult by
two peculiarities. Firstly, performance testing of higher-level
programming languages, including interpreted languages or
those running in a virtual machine as in the case of Java, is
difficult due to the high number of confounding factors in-
troduced by features of the program runtime environment.
For instance, in the case of Java, just-in-time compilation,
hardware platforms, virtual machine implementations, or
garbage collection runs can all significantly impact test re-
sults [8]. Secondly, performance test results often depend
strongly on the used benchmarking workload, such as the
load patterns used for testing. Hence, writing expressive
performance tests requires careful identification and mod-
eling of representative workloads or production usage pat-
terns [3,14]. Unfortunately, representative workloads tend to
not be as stable as functional unit interfaces. Consequently,
workloads need continuous validation and maintenance [24].

Industrial Approaches. Besides these more academic
research attempts, there are also a number of industrial-
strength tools available in the domain of software perfor-
mance testing. For instance, Caliper, an older Java-based
framework from Google, allows developers to write perfor-
mance tests using a JUnit-like API, and provides some built-
in support for metric collection and aggregation. However,
many of the problems of benchmarking Java-based software
still exist when using Caliper. For this reason, OpenJDK
contains since version 7 a proprietary extension called the
Java Microbenchmarking Harness (JMH). Not unlike Caliper,
JMH allows developers to build performance tests using a
simple annotation-based syntax. However, given that JMH
is part of the Java virtual machine rather than a library,
JMH is able to control for some of the problems of Java
benchmarking. For instance, JMH is able to control for
Just-in-Time compilation or garbage collection runs. Both,
Caliper and JMH, are largely intended for low-level code
benchmarking. For performance testing on systems level
(especially for Web-based systems), a number of additional
tools are available that foster the definition and execution
of workloads, such as HTTP sessions. Arguably, the two
most prevalent OSS representatives of this class of tools are
Apache JMeter! and Faban?. Both allow the definition and
execution of complex workloads, and also contain facilities

"http://jmeter.apache.org
http://faban.org
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Figure 1: Overview of our exploratory study approach.

to collect performance test results. JMeter, for instance,
exports detailed performance test outcomes in an XML or
CSV file, which can then be used in other tools, such as
dashboards (e.g., the Performance plugin for the Jenkins CI
system? or for statistical analysis.

In our research, we contribute to the state of the art via
an exploratory study that establishes to what extend these
industrial tools, as well as the concepts and ideas originat-
ing from earlier research on performance testing, have been
adopted in Java-based OS software. Hence, our study serves
as a reality check and can guide future research directions.

3. EXPLORATORY STUDY SETUP

In this section, we describe the setup of our exploratory
study and our methodology for collecting data and identi-
fying performance tests. Figure 1 depicts the steps of our
methodology, which are detailed below.

3.1 Collecting Data

We aim to generate a data set of OS projects that con-
duct performance testing. We build a custom crawler for
GitHub which uses the GitHub search engine to search for
OS projects using a combination of search heuristics. Our
crawler searches for Java projects with tests in the path sr-
c/test, which use one or more terms in the test file name or
source code (i.e., “bench” or “perf”) or which imports known
performance testing frameworks, such as JMH or Caliper.
We have identified these search heuristics to be simple yet
reasonably robust ways to identify projects with performance
tests as part of a pre-study, where we manually inspected
known projects with performance tests, e.g., & apache/log4j
or 7 ReactiveX/RxJava. Our crawler extracts an initial
data set of 1697 candidate projects. From those candidate
projects, we filter forked projects and projects with less than
10 “stars” or less than 50 commits on GitHub, resulting in a
data set of 154 projects.

Finally, we manually identify and discard false positives,
i.e., projects that match our search heuristics but, upon
manual inspection, turn out to not contain performance
tests after all. Examples for false positives include projects
that have domain objects containing the word “bench”; or
projects that themselves implement performance testing frame-
works (surprisingly, these projects often do not provide per-

https://wiki.jenkins-ci.org/display /JENKINS/
Performance+Plugin

formance tests themselves). To foster the exploratory nature
of our study, we are inclusive in our manual filtering and use
a broad definition of “performance test”. For example, we
include projects in this step which simply report on runtime
performance as part of regular unit testing. After discarding
false positives, our data set finally consists of 111 Java-based
OS projects that actually contain performance tests.

In addition, we manually study the GitHub description
of the projects to classify them as performance-sensitive
(PS) or not performance sensitive (not PS). We categorize
projects as PS if they self-identify as the fastest implemen-
tation of a given functionality, or stress having high perfor-
mance in their project description. For example, the project
¢ nativelibs4java/BridJ describes itself as “blazing fast”,
which would classify the project as PS. Our expectation is
that PS projects dedicate more effort to performance testing
than non-PS projects to support the claims that PS projects
make about their performance. Using this metric, we clas-
sify 26 of our projects (14%) as PS, and 85 projects (76%)
as “not PS”.

Projects in the data set include a healthy mix of well-
known large projects (e.g., 0 apache/hbase) and smaller,
lesser-known ones (e.g., @ TridentSDK/Trident, a Java-based
Minecraft server). A summary of statistics about the projects
in the data set is provided in Figure 2. Data is reported as
available via GitHub at the time of collection, i.e., in July
2016. Furthermore, the entire data set is available an online
appendix®.

3.2 Identifying Tests

We manually identify which files contain performance tests
in the studied projects. First, we manually identify the test
suite of the project, which is src/test in most cases by con-
struction. However, in some projects, the src/test direc-
tory contains resource files that we manually exclude from
our study. We search the test files for Java source code
files that contain the terms “perf” or “bench” and we man-
ually validate that the tests are indeed performance tests.
Further, we sample the remaining test and source code in
an exploratory manner for additional performance tests not
identified via our heuristics. The set of identified test files
and performance test files is available in the online appendix.

“https://xleitix.github.io/appendix_perf_tests/
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Figure 2: Summary statistics of the 111 OS projects in the
data set. The subfigures show the age of the projects in
number of total commits, the popularity of the projects as
measured by the number of stars on GitHub and the number
of subscribers (“watchers”), and the number of individual
contributors.

3.3 Extracting Metrics

We extract several metrics that describe the effort that
is dedicated to the performance and functional test suites.
In the remainder of this section, we explain how we extract
these metrics. Our scripts for extracting and analyzing these
metrics are available in the online appendix.

3.3.1 Developer Metrics

We extract the names and number of commits of the devel-
opers who work on the performance tests, tests and project.
In addition, we compute the proportion of performance test
developers who are core (test) developers of the project.

e Names and number of commits of developers: We run
the command git shortlog -s -n HEAD %FILESY, for
each studied project to get a list of developers of files
#FILESY, that is ordered by the number of commits that
a developer made to those files. Table 1 shows exam-
ples of these lists for the 7 SoftInstigate/restheart
project.

e Proportion of performance test developers who are core
(test) developers: We calculate the number of perfor-
mance test developers who are in the top-n project
developers by the number of commits. We define n
as the number of performance test developers in the
project. Table 1 shows the performance test develop-
ers, test developers and project developers in ¢ Soft-
Instigate/restheart. The three performance test
developers are Andrea di Cesare, Maurizio Turatti and
gokrokvertskhov. However, only Andrea di Cesare and
Maurizio Turatti are in the top-3 of project develop-
ers, hence the proportion of performance test develop-

ers who are core developers is 0.67. The proportion
of test developers who are core developers is 0.5, as
Stephan Windmuller and gokrokvertskhovh are not in
the top-4 of project developers.

3.3.2 Test Size Metrics

We extract the source lines of code (SLOC) of the perfor-
mance tests and functional tests.

e Source Lines of code (SLOC): We run the command
line tool cloc® on the identified (performance) test files
and we grep the output for the Java SLOC, i.e., lines
of code without comments, in the test files.

o Number of commits: We calculate the sum of the num-
ber of commits per developer as described above to get
the number of commits that are made to the (perfor-
mance) tests.

4. PERFORMANCE TESTING PRACTICES
IN OPEN SOURCE SOFTWARE

We report on the results of our exploratory study on per-
formance testing in Java-based OS software from five per-
spectives: (1) the developers that are involved in perfor-
mance testing, (2) the extend of performance testing, in-
cluding the size of the performance test suite, (3) the or-
ganization of the performance test suite, (4) the types of
performance tests and (5) the tooling and frameworks used.
In this section, we discuss the motivation for and the results
of studying each of these five perspectives.

4.1 The Involved Developers

Motivation: Large-scale industrial projects may be able
to commit one or more dedicated engineers to performance
testing, who are experts in software performance engineer-
ing [20] (SPE). Contrary, even for many well-known OS
projects, such as the Apache web server [19], the team of
core developers who contribute the most to the project is
small. Hence, it seems unlikely that there are developers
who specialize in performance in most OS projects.

Approach: We conduct a quantitative study on the de-
velopers of the 111 studied OS projects using the developer
metrics that are described in Section 3.3.1 to investigate
whether OS projects have developers who specialize in per-
formance.

We use the Wilcoxon signed-rank test to compare distri-
butions of observations. The Wilcoxon signed-ranked test
is a non-parametrical statistical test of which the null hy-
pothesis is that two input distributions are identical. If the
p-value of the Wilcoxon test is smaller than 0.05, we con-
clude that the distributions are significantly different.

In addition, we calculate Cliff’s delta d [17] effect size to
quantify the difference in the distributions of observations.
A large value for d implies that the distributions differ at a
large scale. We use the following threshold for interpreting
d, as suggested by Romano et al. [21]:

negligible, if |d| < 0.147.

. small, if 0.147 < |d| < 0.33.
Effect size = . .
medium,  if 0.33 < |d| < 0.474.
large, if 0.474 < |d| < 1.

®http://cloc.sourceforge.net/
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Table 1: Developers of the 7 SoftInstigate/restheart
project.

Performance test developers Project developers

Name # of Commits Name # of Commits
Andrea di Cesare 27 Andrea di Cesare 743
Maurizio Turatti 9 Maurizio Turatti 261
gokrokvertskhov 1 Michal Suchecki 4

Ayman Abdel Ghany 2

Srdjan Grubor 2

Test developers Bence Ells L

Name # of Commits Blake hrlltcl}cll 1

Stephan Windmuller 1

Andrea di Cesare 113 The Gitter Badger 1

Maurizio Turatti 49 gokrokvertskhov 1
Stephan Windmuller 1
gokrokvertskhovh 1

Results: Performance test developers are usually
the core developers of the project. Figure 3 shows the
proportion of (performance) test developers who are in the
top-n list of developers based on the number of commits.
Figure 3 shows that in 50% of the studied projects, all per-
formance test developers are core developers of the project.
Figure 3 shows that the median proportion of test develop-
ers who are core developers is slightly lower. However, the
Wilcoxon signed-rank test shows that the two distributions
are not significantly different.

Performance tests are created and maintained by

one or two developers in most of the studied projects.

Figure 4 shows the number of performance test develop-
ers, test developers and project developers in each of the
studied projects. 50% of the studied projects have 2 or
less performance test developers, while the median num-
ber of developers in a project in our data set is 9. The
projects with the highest number of performance test de-
velopers are @ aseldawy/spatialhadoop (13 performance
test developers), 7 alibaba/druid and & franzinc/agraph-
java-client (7 each), ¢ apache/commons-ognl (6), and fi-
nally ¢ jasonrutherglen/HBASE-SEARCH (5).

In 53 of 111 studied projects (48%) the perfor-
mance tests are created and maintained by a single
developer. This is particularly interesting for 13 of these
53 projects, which have 10 or more developers in total. In
43 of the 53 projects, the performance tests are created by
the core developer of the project.

1 of 6 project developers work on the performance
tests at least once in 50% of the studied projects.
Figure 5 shows the proportion of performance test devel-
opers compared to the total number of developers and test
developers in the project. We observe that test developers
are not necessarily also responsible for performance testing.
In 50% of the studied projects, only 44% of the test develop-
ers worked on the performance tests as well. The Wilcoxon
signed-rank test shows that the distributions in Figure 5 are
significantly different with a large effect size.

In most studied OS projects, performance tests are cre-
ated and maintained by a single person or a small group
of core developers.

4.2 The Extend of Performance Testing
Motivation: The size of the performance test suite of a

project is an indication of the effort that the project dedi-

cates to performance testing. While there exist no guidelines
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for the ideal size of a performance test suite, intuitively, we
expect that projects that care about their performance have
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a larger performance test suite than other projects.

Approach: We conduct a quantitative study on the source
lines of code (SLOC) of the performance tests and functional
tests in the studied 111 OS projects using the SLOC metric
that is described in Section 3.3.2.

Note that we decide against using the cyclomatic com-
plexity as an indication of development effort. Over the
last years, the contribution of complexity metrics has been
under discussion in software engineering research [11, 27].
Therefore, we decide to use SLOC as an indication for the
effort that a project dedicates to performance testing and
additionally, we conduct a qualitative study on the contents
of the performance tests to study their complexity in Sec-
tion 4.4.

Results: Performance tests are small in most projects.

Figure 6 shows the SLOC for the performance tests and
functional tests. The two outliers in the boxplot are the
7 DeuceSTM/DeuceSTM and & madiator/HadoopUSC projects,
which have 9460 and 6802 SLOC in their performance tests.
The 2 DeuceSTM/DeuceSTM description on GitHub® mentions
that the included performance tests are known benchmarks,
and not specific to this project.

There is no significant difference between the per-
formance test suite size of PS and non-PS projects.
Figure 6 shows the SLOC for the (performance) tests in 26
PS projects and 85 non-PS projects. The Wilcoxon rank-
sum test shows that the number of SLOC in the performance
tests in PS and non-PS projects are not significantly differ-
ent. Our data does not show evidence that projects that
claim superior performance take extra measures in their per-
formance testing suites to justify these claims.

Performance tests form a small portion of the func-
tional tests in most projects. Figure 6 shows that the
median SLOC of performance tests is 246, which is a small
part of the median SLOC used for functional tests (3980).
We calculate that the median percentage of performance test
SLOC is only around 8%.

16 of 111 studied projects (14%) have a single per-
formance test commit. Figure 7 shows the number of
performance and functional test commits for each project.
In 16 projects, the performance tests are committed once
and never maintained after, which suggests that the perfor-
mance tests do not evolve together with the code in these
projects. The median number of commits for the perfor-
mance tests is 7, which indicates that many projects do
not actively maintain performance tests. The outlier in our
study is ? h2oai/h20-2 with 242 performance test commits,
which is 18% of the total commits of this project at the time
of study.

In most studied OS projects, the performance test suite
is small and does not change often. While the mean
SLOC of performance tests is larger in projects that
claim high performance (PS), these results are not statisi-
cally significant.

4.3 The Organization of Performance Tests

Motivation: By construction, all 111 projects have at least
one performance test in place. However, we observe dur-
ing our quantitative study on the developers involved and

Shttps://github.com/DeuceSTM /DeuceSTM
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Figure 6: The number of (performance) test source lines
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the size of performance tests that the extent and rigor of
performance testing varies immensely between projects. To
investigate whether OS software developers follow specific
guidelines for organizing their performance tests, for exam-
ple, as is the case with unit tests for functional testing, we
study the organization of performance tests in OS projects.

Approach: We conduct a qualitative, exploratory study on

the organization of the performance tests of the 111 stud-
ied OS projects. The first author of this paper studies the
performance tests with regards to their file structure and in-
frastructure. The results are independently verified by the
second author. Both authors have more than five years of
experience in doing research on software performance. The
exploratory methodology that is used to conduct the quali-
tative study is as follows:

1. Scan the performance tests of a project for remarkable
observations, or for characteristics that are observed
in other projects.

2. For each observation, count the number of projects for
which this observation holds.
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3. Continue with the next project until all projects are

studied.

Results: The Java open source community has not
yet converged against a common understanding of
how to conduct performance tests. While there are
projects that appear to have a well-defined strategy for con-
ducting performance tests, most projects in our study lack
an evident performance testing vision, instead selecting what
to write performance tests for and how to write those tests
on a case-by-base basis. An example is 7 crosswire/js-
word, which has a single performance test for an isolated
implementation issue mixed with the project’s functional
test suite, and two more end-to-end benchmarks that are
implemented as stand-alone Java programs.

Generally, the vast majority of projects in our study are
not treating performance testing as a matter of similar im-
portance to functional testing, which is confirmed by the re-
sults of our quantitative study in Section 4.1 and 4.2. While
we observe that 103 projects in our study include unit test-
ing, usually following rather standardized best practices, the
performance testing approach of the same projects often ap-
pears less extensive and less standardized.

58 of 111 (52%) studied projects scatter perfor-
mance tests throughout their functional test suite.
Another problem that projects seem to struggle with is how
to organize and classify performance tests. 58 of the studied
111 (52%) projects, e.g., @ alibaba/simpleel, mix perfor-
mance tests freely with their functional test suite (i.e., per-
formance tests are in the same package, or even the same
test file, as functional tests). 48 of 111 (43%) projects have
separate test packages or categories that are related to per-
formance, load, or stress testing. Finally, in 6 projects, per-
formance tests are implemented as usage examples, and are
delivered along with other example applications. This is the
case for instance in the 7 apache/commons-math project.

10 of 111 (9%) studied projects use code comments
to communicate how a performance test should be
executed. We also observe that some developers struggle
with how to communicate to other project stakeholders how
to run performance tests, what good or healthy results for
specific tests are, and what environment these tests have
been run in previously. 10 projects, including the 2 nbron-
son/snaptree project, use code comments to communicate
run configurations, as illustrated in Listing 1.

public class RangeCheckMicroBenchmark {

,

Listing 1: nbronson/snaptree/../RangeCheckMicroBenchmark. java

In 4 projects, we even observe that they use code com-
ments to communicate previous benchmarking results. For
instance, performance tests in Z maxcom/lorsource list a
selection of previous run results in the footer of the source
code files, as shown in Listing 2.

public class ImageUtilBenchTest {

)

Listing 2: maxcom/lorsource/../ImageUtilBenchTest.java

5 of the 111 (5%) studied projects include empty
stubs for performance testing. These projects, includ-
ing the ¢ graphaware/neo4j-reco project, apparently planned
to write performance tests, but never actually finished im-
plementing them, leaving stubs in the project source code,
as in Listing 3.

package com.graphaware.reco.perf;

public class EnginePerfTest {
}

Listing 3: graphaware/neo4j-reco/../EnginePerfTest.java

There appears to be no common understanding of how
to conduct performance tests in Java OS software. De-
velopers have no standardized way of organizing, ex-
ecuting, and reporting on the results of performance
tests.

4.4 Types of Performance Tests

Motivation: The types of performance tests in a project
represent different mind sets and goals that developers have
when writing performance tests. Hence, by studying the
types of performance tests that a project uses, we get an in-
sight into the developer’s mind regarding performance test-
ing.

Approach: We conduct a qualitative study on the types
of performance tests used in each of the studied project fol-
lowing the same approach as described in Section 4.3. We
extract five types of performance tests, which are discussed
below. Note that none of the types represent “optimal per-
formance testing” per se. Instead, all types exhibit their own
advantages and disadvantages, upon which we comment in
our discussion.

Results: Type 1 — Performance Smoke Tests. We
use the term performance smoke tests for tests that are
written with a high level of abstraction, and typically mea-
sure the end-to-end execution time of the most important
end-user features for a limited number of example work-
loads. This type of test was the most common performance
testing approach that we observed in our study, and was
used by 55 of 111 (50%) projects. These projects typi-
cally implement a rather limited number of performance
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smoke tests, most commonly one or two. For example,
¥ lbehnke/hierarchical-clustering-java implements a
single performance test case with a randomized clustering
workload, as in Listing 4.

public class ClusterPerfTest {

private Long timeN(int n) {
Long t0 = System.currentTimeMillis();
Cluster cluster = randomCluster(n);
return System.currentTimeMillis() - tO;

}

QTest
public void testn() throws Exception {
for (int n = 2; n < 513; n=n * 2) {
Long t = timeN(n);
System.out.println("" + n + "\t" + t);
}
}

}

Listing 4:
lbehnke/hierarchical-clustering-java/../ClusterPerfTest. java

A similar example is @ kennycason/kumo, a library to pro-
duce word clouds, which implements just two performance
tests, one per major rendering strategy implemented in the
library. These smoke tests allow developers to quickly iden-
tify large, end-user visible performance regressions. An-
other advantage of performance smoke tests is that they
require little maintenance, as the end-user facing interfaces
that these tests are written against change rarely. This is
consistent with our quantitative results discussed in Sec-
tion 4.2, where we have shown that many projects rarely
or never change their performance tests. However, perfor-
mance smoke tests provide little support for detailed debug-
ging and metering of an application. Further, given that
these high-level tests can be expected to exhibit substantial
natural variability [16], small regressions cannot be detected
with statistical confidence.

Type 2 — Microbenchmarks. 36 of 111 (32%) stud-
ied projects use performance testing that is more in line
with unit testing, and strive to measure performance on a
detailed level for smaller units of program code, i.e., using
microbenchmarks. The microbenchmarking approach natu-
rally requires more extensive performance test suites. An
example of the microbenchmarking approach is the 7 Tri-
dentSDK/Trident project, as shown in Listing 5.

In this project, performance testing is implemented in
around 2500 SLOC using JMH and encompasses 49 separate
performance tests, which are each configured with more than
10 different workloads. Unlike performance smoke tests,
microbenchmarks allow developers to identify less severe
performance regressions, before they have a noticeable im-
pact on end-users. However, because microbenchmark suites
are often larger than performance smoke tests, they require
more time to develop and maintain, and typically take longer
to execute.

Type 3 — One-Shot Performance Tests. 17 (15%)
studied projects use what we dub one-shot performance tests.
These tests usually benchmark very detailed performance is-
sues, and appear to have been written primarily to support
development-time decision making or to debug a specific is-
sue. Such tests often compare different implementation al-
ternatives or multiple external libraries with similar func-
tionality, and appear to not be intended to be part of the

@State(Scope.Benchmark)
public class LatchTest {
private static final HeldValueLatch<HeldValueLatch<?>> LATCH
= HeldValueLatch.create();
@Param({ "1", "2", "4", "8", "i6", "32", "64",
"128", "256", "512", "1024" })
private int cpuTokens;

@Benchmark

public void down() {
Blackhole.consumeCPU(cpuTokens) ;
LATCH. countDown (LATCH) ;

}

@Benchmark
public void wait(Blackhole blackhole) {
Blackhole.consumeCPU(cpuTokens) ;
try {
blackhole.consume (LATCH.await());
} catch (InterruptedException e) {
e.printStackTrace();
}
}
¥

Listing 5: TridentSDK/Trident/../LatchTest.java

regression test suite of the project. Consequently, such tests
are often either implemented as stand-alone tests with their
own main-method, or, if they are implemented as unit tests,
set to @Ignore. An example snippet from the ¢ jenkin-
sci/remoting project that compares different regular ex-
pression pattern matching strategies is shown in Listing 6.

@Ignore(”This is not a test just a benchmark"+
"and is here for ease of running”)
public class RegExpBenchmark {

final Pattern pl =
Pattern.compile(" org\\.codehaus\\.groovy\\.runtime\\..*");
final Pattern p2 =
Pattern.compile(
"~org\\.apache\\.commons\\.collections\\.functors\\..*");
final Pattern p3 =
Pattern.compile("~.*org\\.apache\\.xalan\\..*");

Listing 6: jenkinsci/remoting/../RegExpBenchmark.java

Many examples of one-shot performance tests in our study
appear to be source code artifacts of previous debugging ses-
sions or discussions, rather than tests that provide continu-
ing value to the project.

Type 4 — Performance Assertions. A fourth vari-
ation of performance test that is used by 6 (5%) projects
in our study is the performance assertion. These tests are
the result of developers striving to align performance testing
with their functional test suite. Consequently, such tests are
exclusively written in conjunction with unit testing frame-
works such as JUnit, and often mixed with functional tests.
An example of this approach comes from ¢ anthonyu/Kept-
Collections in Listing 7. This example compares the per-
formance of two bytecode deserializers, and asserts that one
implementation is at least 4 times as fast as the alternative.
The same test file also contains similar tests for converters
of other data types, with assertions that are different but
seem similarly arbitrary

Presumably, the appeal of such performance assertions is
that they integrate naturally with the unit testing frame-
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QTest
public void testSerDeserIntPerf() throws Exception {
long startNanos = System.nanoTime();
for (int i = 0; i < 10000; i++)
Assert.assertEquals(i, Transformer.bytesToObject(
Transformer.objectToBytes(i, int.class), int.class));
final long elapsedl = System.nanoTime() - startNanos;

Transformer . STRINGIFIABLE_PRIMITIVES.remove(int.class);

startNanos System.nanoTime () ;
for (int i 0; i < 10000; i++)
Assert.assertEquals (i, Transformer.bytesToObject(
Transformer.objectToBytes(i, int.class), int.class));
final long elapsed2 = System.nanoTime() - startNanos;
Assert.assertTrue(elapsed2 > elapsedl);
Assert.assertTrue(elapsed2 > 4 * elapsedl);

}
Listing 7: anthonyu/KeptCollectionsTransformerTest.java

works that most OS projects already use (and with which
developers are comfortable). Unfortunately, performance as-
sertions are also relatively inflexible, require constant main-
tenance to ensure assertions remain useful, and are in dan-
ger of producing volatile failures due to external factors.
Further, parameterizing performance assertions (e.g., decid-
ing that the “right” speedup factor in the above example is
4) is fickle, as defining assertions conservatively means that
smaller regressions can easily slip through, while aggressive
assertions lead to many arbitrary test failures.

Type 5 — Implicit Performance Tests. 5 (5%) projects
in our study choose to not have dedicated performance test-
ing at all, but instead provide execution-time metrics as
part of primarily functional tests. Such metrics are often as
simple as writing performance data to System.out within a
subset or all unit tests. This low-friction approach to per-
formance testing has the advantage of exceedingly low ad-
ditional development effort. However, systematically using
the resulting data to track the performance of a project over
multiple builds or versions is difficult. Further, functional
tests are not necessarily optimized for performance measure-
ment (e.g., they often do not use representative workloads,
but rather workloads that implement the edge cases that are
most important for functional testing). Hence, the expres-
siveness of such implicit performance tests is arguably low
as compared to well-written dedicated performance tests.

Most studied OS projects use one or two performance
smoke tests, to test the performance of the main func-
tionality of the project, or a suite of microbenchmarks,
to test the performance of smaller parts of the project.

4.5 Tooling and Frameworks

Motivation: There exist several widely-spread tools and
frameworks, such as JUnit, for functional testing. In this
section, we investigate whether there are performance test-
ing tools that are similarly dominating in OS projects.

Approach: We conduct a qualitative study using the ap-
proach described in Section 4.3. We extract three general ap-
proaches that Java-based OS software uses for performance
testing.

Results: Approach 1 — Performance Unit Testing.
57 (51%) projects in our study use their unit testing frame-
work, typically JUnit, to write and run performance tests.
These tests are unusual in that they typically do not ac-

tually “assert” anything (except in the case of performance
assertions, as discussed above). Instead, such performance-
related unit tests often just run an example workload and
print metrics, either to System.out or to a file. An example
from o7 fasseg/exp4j, a simple Math calculator, is shown in
Listing 8.

public class PerformanceTest {

private static final long BENCH_TIME = 21;
private static final String EXPRESSION =
"log(x) - y * (sqrt(x~cos(y)))";

QTest
public void testBenches() throws Exception {
StringBuffer sb = new StringBuffer();

int math = benchJavaMath();
double mathRate = (double) math / (double) BENCH_TIME;
fmt . format (
" %-22s | %25.2f | %22.2f %% |%n",
"Java Math", mathRate, 100f
);
System.out.print(sb.toString());

}

Ldsthlg 8: fasseg/exp4dj/../PerformanceTest.java

The main advantage of using a unit testing framework to
run performance tests is that this approach requires little
to no changes to the project build configuration, including
configuration of the CI server. Furthermore, developers do
not need to learn additional tools such as JMH.

However, unlike dedicated frameworks, unit testing frame-
works are not optimized for performance testing. Hence, the
intricacies of benchmarking modern virtual machine code [6]
(e.g., just-in-time compilation and garbage collection) can
easily influence performance testing results. Another prob-
lem is that performance tests often take substantial time to
execute. As a result, performance tests slow down the build
considerably if these tests are part of the regular unit test
suite of the project. Solutions to this issue include putting
performance unit tests into a different test category that is
excluded from standard builds, or setting performance tests
to @Ignore by default and only running them on-demand.

Given the apparent popularity of performance unit testing
in practice, it is unsurprising that some performance testing
frameworks actually extend JUnit to ease integration. One
example of such a tool is the JUnitBenchmarks framework”.
However, the authors have by now discontinued the project
and suggest using JMH instead.

Approach 2 — Stand-alone Performance Testing.
In 55 (50%) projects in our study, performance tests are
written as stand-alone Java programs. These projects es-
chew using any support framework for writing and execut-
ing tests. Instead, benchmark workloads, performance tests,
and data reporting are implemented from scratch and cus-
tomized for the project. These customizations can take the
form of a large number of programs intended to be run inde-
pendently (i.e., each with their own main method), simple
bash scripts that launch a benchmark run, or sophisticated
testing frameworks that appear to have required non-trivial
development effort. An example is @ rabbitmq/rabbitmg-
java-client, which built a dedicated command-line tool for
launching performance tests, implementing various scenar-

"https:/ /labs.carrotsearch.com/junit-benchmarks.html
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ios and workloads, and supporting more than 25 command
line options.

Writing performance tests as stand-alone Java programs
offers the advantage of great flexibility, and naturally avoids
“polluting” the project’s unit tests. However, stand-alone
performance tests need specific tooling or more complex
setup should they be integrated into the project build, e.g.,
on the CI server. Furthermore, building and maintaining
a sophisticated custom performance testing framework on a
per-project basis arguably leads to considerable additional
development effort.

It should be noted that many developers building such
stand-alone performance tests seem to be at least vaguely
aware of the problems of naively benchmarking Java code.
Attempted workarounds that these developers employ in-
clude excessively invoking System.gc(), or finding work-
loads using trial-and-error that avoid just-in-time compila-
tion for their specific system and used JVM. Furthermore,
some developers use code comments or strings of test data
to indicate doubt about the expressiveness of their perfor-
mance tests. The example in Listing 9 shows this from the
dustin/java-memcached-client project.

String object =
"This is a test of an object blah blah es, "
+ "serialization does not seem to slow things down so much.

"The gzip compression is horrible horrible performance, "

+
+ "so we only use it for very large objects. "
+ "I have not done any heavy benchmarking recently";

Listing 9:

dustin/java-memcached-client/../MemcachedThreadBench. java

Approach 3 — Dedicated Performance Testing Frame-

works. Finally, only 18 (16%) projects in the study use
dedicated performance testing frameworks. More detailedly,
JMH is used by 10 projects, and Google Caliper by 4. An
additional 4 projects are using lesser-known or more spe-
cialized frameworks, such as JUnitBenchmarks, Contiperf,
or Faban. However, not all of these projects use dedicated
performance testing frameworks for all their performance
tests. Some projects, for instance 7 apache/commons-csv,
have some newer performance tests written in JMH in addi-
tion to their JUnit-based legacy tests.

An interesting question is why, even among projects that
are per se interested in performance testing, so few elect to
use a dedicated performance testing framework (even go-
ing through the pain of manually building a custom perfor-
mance testing framework from scratch instead, as discussed
above). One potential explanation is that performance test-
ing frameworks may not be widely-known among developers.
Another explanation is that dedicated frameworks may be
perceived as too difficult to set up or to write tests with,
or that the benefits of a dedicated framework do no out-
weigh the disadvantages of writing tests in JUnit. Finally,
a possible explanation is that dedicated frameworks do not
integrate easily with standard build systems, such as Jenk-
ins. More research is needed to address the question of why
OS software developers do not use a dedicated performance
testing framework.

Most studied OS projects use either JUnit or simple
standalone programs for performance testing in lieu of
a dedicated performance testing framework.

S. IMPLICATIONS

In this section, we give an overview of the lessons that
we learned from our study, and we provide an interpretation
of what our results imply for practitioners, OS developers,
and academics who are working on topics that are related
to performance testing.

There is a lack of a “killer app” for performance
testing. First and foremost, a recurring observation in our
study is that performance testing in Java-based OS software
is neither as extensive nor as standardized as it is the case
for functional testing. While the lack of standardization was
already observed by Weyuker et al. in 2000 [25], our study
results indicate that even at the time of writing there is still
a long way to go before performance engineering truly be-
comes an integral part of the software development lifecycle
for OS software. We speculate that one reason for this ev-
ident lack of standardization is that there currently is no
“killer app” to conduct performance tests with in an easy,
yet powerful, way, similar to how JUnit has standardised
unit testing for Java.

Writing performance tests is not a popular task in
OS projects. In 48% of the studied projects, performance
tests are written by a single developer, who usually is a core
developer of the project. In addition, performance tests are
often written once and rarely or never updated after. These
observations suggest that performance testing is a daunting
and unpopular task in open source projects that does not
attract many external contributors. Potential reasons for
the small number of external contributors may include a
perceived difficulty of writing performance tests or a lack
of awareness in OS projects that performance tests are a
potential contribution to the project. However, our data
does not allow us to provide an answer to this question,
requiring further research.

OS developers want support for quick-and-dirty
performance testing. In performance testing research,
emphasis is typically put on providing the most accurate and
statistically rigorous performance results possible (e.g., con-
trolling for as many confounding factors as possible). Con-
trarily, in our study we observe that developers are often
willing to write “quick-and-dirty” performance tests, trad-
ing off accuracy of measurement for lower implementation
effort. For instance, many projects are either not aware of
or knowingly ignore the influence of the Java virtual ma-
chine on their performance tests, or report only arithmetic
mean values, ignoring standard deviations or outliers. The
apparent mismatch between what OS developers want and
what performance testing research is delivering may be an
explanation for the low adoption of existing performance
testing tools. We feel that there is unexplored potential
for future research on performance testing approaches that
particularly focus on being low-friction for developers, for
instance, through easy-to-use and non-parameterized meth-
ods, reusing existing code (e.g., existing unit tests) for per-
formance testing, or through automated performance test
generation.

Performance testing is multi-faceted. One potential
reason why no universal performance testing framework has
emerged yet is that performance testing is inherently multi-
faceted. We identify five different types of performance tests,
which are usually conducted with vastly different goals in
mind, consequently leading to different implementation and
tool selection choices. However, note that this is not dif-
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ferent to functional testing, where the difference between
unit testing, integration testing, or user acceptance testing
is well-understood in research and practice. We hope that
our study will serve as a first step towards a similar under-
standing of performance testing, ultimately leading to more
targeted tool support.

Integration into standard CI frameworks is key.
51% of the projects in our study are piggy-backing on their
unit testing frameworks to also conduct performance testing,
despite not actually using any assertions. The usage of unit
testing frameworks for performance testing indicates that
a straight-forward integration into standard build and CI
tooling, as provided by unit testing frameworks, is a key real-
world feature which current industrial performance testing
tools as well as research approaches do not sufficiently value.
Recent work by Horky et al. [12] on declarative performance
testing that integrates well with unit testing is a promising
direction for addressing this integration challenge.

6. THREATS TO VALIDITY

In this section, we discuss the most relevant threats to the
validity of our study.

External Validity. One of the external threats to our
results is generalization. While the goal of our exploratory
study is not to be exhaustive, we aimed at studying a wide
range of representative Java-based OS projects that conduct
performance testing. However, it is possible that our results
do not extend to projects that are written in different lan-
guages or industrial projects. In order to address this threat,
additional research on industrial projects and projects that
are written in different languages is necessary.

Our project selection may be biased by assuming that the
test code of a project is stored inside the src/test direc-
tory, following the conventions introduced by Apache Maven.
While this assumption seems reasonable for Java-based OS
projects, more research is needed for identifying an exhaus-
tive list of projects that have performance tests.

Construct Validity. There are several threats to the
construct validity of our study. First, we assume that the
performance tests of a project are stored as part of the
GitHub repository. We are aware that some OS projects
have externalized their benchmarking and performance test-
ing code to external projects. These projects are not con-
sidered by our research design.

Further, we use a manual identification process to identify
the performance tests in a project, which may in some cases
have led us to miss performance tests, especially if those are
stored in a non-standard location. To mitigate this threat,
the process was conducted by the two authors of the pa-
per, who both have more than five years of experience in
performance testing research.

In addition, in several projects, developers appear to be
using multiple GitHub profiles. As it is difficult to decide
whether these profiles are actually owned by the same devel-
oper, we treat them as owned by different developers. As a
result, our observations may be slightly overestimating the
number of developers that are engaged in performance test-
ing.

Finally, we count only the SLOC in Java files. If a project
uses a different language for its performance tests, the code
is not included in our study. We observed that only one of
the projects uses Scala for its performance tests.

7. CONCLUSION

In this paper, we have presented an exploratory study of
performance testing in OS Java projects. We have extracted
a data set of 111 projects from GitHub which conduct perfor-
mance testing. We used a combination of quantitative and
qualitative research methods to investigate the performance
tests used by these projects. We find that that the cur-
rent state of performance testing in Java-based OS projects
is not overly reassuring. Most projects contain few perfor-
mance tests, which are also hardly maintained. Projects do
not appear to receive many source code contributions related
to performance testing. Instead, performance tests are often
written as a one-time activity by a core developer. Further,
we note that projects approach performance testing from
different angles — while most projects focus particularly on
high-level performance smoke tests, others conduct more ex-
tensive microbenchmarking or even define a small number of
performance assertations using JUnit. While performance
testing frameworks exist, they are not used by most projects.
Instead, projects often either build more or less sophisti-
cated standalone test suites from ground up, or repurpose
their unit testing framework for performance testing.

Our study results imply that developers are currently miss-
ing a “killer app” for performance testing, which would likely
standarize how performance tests are conducted similar to
how JUnit has standardized unit testing. An ubiquitious
performance testing tool will need to support performance
tests on different levels of abstraction (smoke tests versus de-
tailed microbenchmarking), provide strong integration into
existing build and CI tools, and support both, extensive test-
ing with rigorous methods as well as quick-and-dirty tests
that pair reasonable expressiveness with being fast to write
and maintain even by developers who are not experts in
software performance engineering.

The main limitation of our work is that we have focused
exclusively on OS projects written in the Java program-
ming language. Hence, it is unclear to what extend our re-
sults generalize to other communities. This question should
be answered in a follow-up study. Further, more research
will be needed to investigate whether existing performance
testing tools such as JMH are indeed missing important
functionality as indicated above, or simply not well-known
enough in the OS community.
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