
 

A peer-reviewed version of this preprint was published in PeerJ
on 27 October 2017.

View the peer-reviewed version (peerj.com/articles/3944), which is the
preferred citable publication unless you specifically need to cite this
preprint.

Winter AS, Hathaway JJM, Kimble JC, Buecher DC, Valdez EW, Porras-
Alfaro A, Young JM, Read KJH, Northup DE. 2017. Skin and fur bacterial
diversity and community structure on American southwestern bats:
effects of habitat, geography and bat traits. PeerJ 5:e3944
https://doi.org/10.7717/peerj.3944

https://doi.org/10.7717/peerj.3944
https://doi.org/10.7717/peerj.3944


External bacterial diversity on bats in the southwestern United States:

Changes in bacterial community structure above and below ground

Ara S. Winter
1
, Jason C. Kimble

1
, Jesse M. Young

1
, Debbie C. Buecher

2
, Ernest W. Valdez

3
, 

Jennifer J. M. Hathaway
1
, Andrea Porras-Alfaro

4
, Kaitlyn J. H. Read, and Diana E. Northup

1
*

1
Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States 

of America

2
Buecher Biological Consulting, Tucson, Arizona, United States of America

3
United States Geological Survey, Fort Collins Science Center, Colorado; Biology Department, 

MSC03 2020, University of New Mexico, Albuquerque, New Mexico, United States of America

4
Department of Biological Sciences, Western Illinois University, Macomb, Illinois, United States

of America

*Corresponding author
E-mail: dnorthup@unm.edu

Abstract

Microorganisms that reside on and in mammals, such as bats, have the potential to influence their
host’s health and to provide potential defenses against invading pathogens. However, we have 
little to no understanding of the external bacterial microbiome on bats, or factors that influence 
the structure of these communities. The southwestern United States offers excellent sites for the 
study of external bat bacterial microbiomes due to the diversity of bat species, the variety of 
abiotic and biotic factors that may govern bat bacterial microbiome communities, and the lack of 
white-nose syndrome (a newly emergent fungal disease of bats) presence in the Southwest. We 
studied the extent to which changes in distributions of bacteria on external bat surfaces are a 
function of geographic location and ecoregion, and whether the sampled bats were caught in 
caves or surface-netted. To test these variables we used 16S rRNA gene 454 pyrosequencing 
from swabs of external skin and fur surfaces from 186 bats from 14 species sampled across 
southeastern New Mexico to northwestern Arizona. Community similarity patterns and random 
forest models, and generalized linear mixed-effects models show that factors such as location 
(e.g. cave-caught vs. surface-netted) and ecoregion are major contributors to the structure of 
bacterial communities on bats. Bats caught in caves had a distinct microbial community 
compared to those that were netted on the surface. Our results provide a first insight into the 
distribution of external bat bacteria in a WNS-free environment and provide a baseline of bat 
external microbiomes that can be explored for potential natural defenses against pathogens.
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Introduction
Recent studies of microbiota associated with humans and some other species have shown that 
external and internal microbiota play critical roles in maintaining the health and well-being of 
these organisms (Apprill et al, 2014, Human Microbiome Project Consortium, 2012). In contrast 
to humans, the nature of the microbiomes associated with bats, in particular with their external 
surfaces, is poorly studied. Furthermore, we know very little about what role bacteria play in 
defense against invading pathogenic microorganisms in bats, a diverse group of mammals that 
plays key roles in our agriculture and natural ecosystems.  

Second to rodents at 2,277 species, bats are the most numerous mammal in the world (Wilson 
and Reeder, 2005). They are represented by approximately 1,116 different species that occupy 
habitats ranging from the wet tropics of the equator to dry lowland deserts in temperate latitudes 
(Wilson and Reeder, 2005). There are approximately 45 species of bats that occur throughout the 
continental United States and in the Southwest there are approximately 28 different species 
belonging to Vespertilionidae, Molossidae, Phyllostomidae, and Mormoopidae. Many of these 
bat species are sympatric and syntopic, especially in New Mexico and Arizona (Findley et al. 
1975, Humphrey, 1975; Hall, 1981; Hoffmeister, 1986; Frey, 2004; Harvey et al., 2011) (Figure 
1). 

The high diversity of bats in the Southwest is attributed to the presence of some species 
occurring at the northern limits of their range from Mexico (Findley et al., 1975; Hoffmeister, 
1986; Frey, 2004). Species diversity is also attributed to the diverse topography of the Southwest 
(e.g., Colorado Plateau and Sky Islands) that contributes to suitable habitat for roosts that range 
from rock outcrops, crevices, caves, and lava caves to tree cavities and under exfoliating bark 
during different periods of the year (Bogan et al. 2003). Within the Southwest, the ecology, life 
histories, and morphology of each bat species during different times of the year are also diverse. 
For example, within Vespertilionidae, there are 21 species of bats that represent different body, 
wing, and ear sizes and shapes, that can affect flight speed and maneuverability, thus resulting in 
specialized feeding strategies within each species group (Findley et al., 1975; Frey, 2004; 
Hoffmeister, 1986; Harvey et al., 2011). Vespertilionidae includes many species that use 
hibernation (a unique trait used by many bat species in temperate regions) during winter months 
when they face greater thermoregulatory demands (cold temperatures) and reduced food 
resources. Hibernating bats also suppress their immune system, which would require more 
calories to sustain in deep hibernation. This evolutionary mechanism has served bats over time, 
but has now become a risk to their survival because of wildlife disease known as white-nose 
syndrome (WNS).

WNS, which was introduced into the eastern region of the United States 10 years ago (Frick et 
al., 2010), is caused by a psychrophilic, keratinophilic fungus (Pseudogymnoascus destructans) 
that attacks, during hibernation, the bats’ wings and uropatagium (tail membrane), thus degrading
the physiological function of a large surface area on the bats as the disease, as well as causing 
disruption to fat storage and water regulation. Currently, WNS has killed millions of hibernating 
bats in the East and is spreading westward. Given the high diversity of bat species in the western 
and southwestern United States, the potential threat to bat diversity at a regional-scale is very 
high. Arizona and New Mexico have nine species of Myotis, some of which are western analogs 
to eastern species currently impacted by WNS. It is therefore critical that we determine which 
western species will be negatively impacted by WNS prior to its predicted arrival (Maher et al., 
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2012) in order to target our monitoring for WNS. It is possible that certain bacteria present on 
some bat species can influence the progression and outcome of WNS (Hoyt et al. 2015).

Because P. destructans is a novel species for cave ecosystems in North America, it is likely 
affecting the natural external microbiome of bats and caves. Current microbiome studies on bats 
focus on the gut or fecal microbiome (Carrillo-Araujo et al., 2015; Borda et al., 2014), and 
knowledge on a regional-scale of the external bat microbiome in a WNS-free area is lacking. The
influence of local factors including abiotic and biotic variables in geographic patterns of the bat 
external microbiome at the local and regional-scale is needed in order to understand the potential
natural defenses of the natural external bat microbiota. 

In this study we sampled 186 bats collected from southeastern New Mexico to northwestern 
Arizona to gain insights into regional-scale patterns of external bat bacteria and the factors that 
drive these patterns. Specifically, we address two questions: First, to what extent are the changes 
in distributions of bat bacteria a function of geographic location, ecoregion (Omernik and 
Griffith, 2008), and climatic variables? Second, does being in a cave for 6-8 hours before 
sampling cause changes in the external bat microbiome? This is of importance given that bats are
susceptible to WNS while hibernating in caves and differential exposure to microbes might 
explain differing levels of susceptibility.

Methods   
Sampling. We sampled 186 bats belonging to 14 species (Myotis ciliolabrum, M. californicus, 
M. evotis, M. occultus, M. thysanodes M. velifer, M. volans, Corynorhinus townsendii, Eptesicus 
fuscus, Tadarida brasiliensis, Antrozous pallidus, Parastrellus hesperus, Lasionycteris 
noctivagans and Lasiurus   cinereus, S2) using 16S rRNA gene analysis for external microbiome 
identification. These samples came from five study locations in the Southwest: Grand Canyon-
Parashant National Monument (PARA), in Arizona, and Carlsbad Caverns National Park 
(CCNP), Fort Stanton-Snowy River Cave National Conservation Area (FS), El Malpais National 
Monument (ELMA), and Bureau of Land Management high grasslands (HGL) caves near 
Roswell, in New Mexico (Figure 2). Bat sample collection was allowed under the following 
permits: 2014 Arizona and New Mexico Game and Fish Department Scientific Collecting Permit
(SP670210, SCI#3423, SCI#3350), National Park Service Scientific Collecting Permit (CAVE-
2014-SCI-0012, ELMA-2013-SCI-0005, ELMA-2014-SCI-0001, PARA-2012-SCI-0003), Fort 
Collins Science Center Standard Operating Procedure (SOP) SOP#: 2013-01, and an Institutional
Animal Care and Use Committee (IACUC) Permit from the University of New Mexico (Protocol
#15-101307-MC) and from the National Park Service (Protocol 
#IMR_ELMA.PARA.CAVE.SEAZ_Northup_Bats_2015.A2).

Samples were collected from the spring to early autumn from 2011 through 2014. Cave-caught 
bats were either plucked from the walls of the caves in ELMA, FS, and HGL or netted in 
sterilized nets in Carlsbad Cavern in CCNP in a location along their flight path out of the cave. 
Cave-caught bats were typically sampled 6-8 hours after returning to the cave in the early 
morning. Surface-netted bats were netted after sundown using sterilized nets near water sources 
in CCNP, ELMA, FS, and PARA. All bats were handled with clean gloves and swabbed for DNA
before other measurements were taken to limit contamination by human-associated microbiota. 
Using a sterile swab moistened with Ringer’s Solution (Hille, 1984), the entire skin (i.e., ears, 
wings and uropatagia) and furred surfaces of each bat were thoroughly swabbed. While the bat 
biologist held the bat in appropriate positions to give access to the area to be swabbed, the 
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microbiologist rubbed each area with the sterile swab approximately 3-5 times, rotating the swab
as the action was performed.

Each swab was placed in a sterile 1.7 ml snap-cap microcentrifuge tube containing 100 ul of 
RNAlater, and immediately frozen in a liquid nitrogen dry shipper or placed on dry ice. Samples 
were transported to the University of New Mexico and stored in a -80°C freezer. Samples were 
sent to MR DNA Molecular Research LP, Shallowater, Texas (http://www.mrdnalab.com/) for 
genomic DNA extraction and 454 sequencing diversity assays of bacterial 16S rRNA genes. The 
186 samples were sequenced in nine runs. Barcoded amplicon sequencing processes were 
performed by MR DNA® under the trademark service (bTEFAP®). The 16S rRNA gene 
universal PCR primers 27F (5′– AGRGTTTGATCMTGGCTCAG -3′) and 519 R (5′–
GWATTACCGCGGCKGCTG-3′) (Englebrektson et al. 2010), were used in a single-step 30 
cycle PCR using the HotStarTaq Plus Master Mix Kit (Qiagen, USA) under the following 
conditions: 94°C for 3 minutes, followed by 28 cycles (5 cycle used on PCR products) of 94°C 
for 30 seconds, 53°C for 40 seconds and 72°C for 1 minute, after which a final elongation step at
72°C for 5 minutes was performed. Sequencing with the 27F primer was performed at MR DNA 
on a Roche 454 FLX titanium following the manufacturer’s guidelines.

Sequence Processing. All 454 reads were processed in QIIME (Caporaso, et al., 2010). Primer 
and linker sequences were removed before analysis. Bacterial sequences shorter than 200 bp or 
longer than 500 bp, or containing bases with a quality score lower than 30, were excluded. The 
quality control and trimming was computed using the split_libraries command. Bacterial samples
were denoised and clustered into operational taxanomic units (OTU) (at the 97% level) with 
pick_denovo_otus.py pipeline using the sumaclust option (Mercier et al., 2013). Chimera 
checking was done using usearch (Edgar, 2010) to detect artifacts created during sequencing. 
Taxonomy was assigned using SILVA123 database with uclust. Full QIIME workflow with all 
parameters used is available at: https://zenodo.org/record/17577#.

Alpha diversity analysis and normalization. Alpha diversity indices were carried out in QIIME
using alpha_diversity.py command. Rarefaction curves plotted against observed species, chao1, 
chao1 standard error, and Shannon are available in the supplemental data (S1). Transformation of
the count and richness data was carried out using the normalize_table.py in QIIME with both the 
DESeq2 and cumulative sum scaling (CSS) (Paulson, et al., 2013) options. The data was also 
rarified to a depth of 1500 for comparison purposes only. 

Distribution of major phyla on bats. Bar plots of major phylum of interest were run in ggplot. 
Proteobacteria were broken out into the following classes: Alphaproteobacteria, 
Betaproteobacteria, and Gammaproteobacteria. Each bar is the relative abundance of the phylum 
within a sample. Three plots (S4 a,b,c) show relative abundance by cave-caught or surface-
netted, by ecoregion (split by cave or surface), and by bat species (split by cave or surface). 

Testing grouping of categorical data. Random forest models were run in QIIME 
(supervised_learning.py) using 10-fold cross-validation with 1,000 trees. The random forest 
models were run to test if our classes of samples were predictive of the bacterial community 
composition. Random forest model, a type of supervised classification, was used to test the 
predictive power of the ecological classes. The goal of random forest model is to classify 
unlabeled communities based on a set of labeled training communities. This will generate a ratio 
of estimated generalization error and baseline error. A reasonable ratio of the estimated 
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generalization error compared to the baseline error should be two or greater, i.e. the random 
forests classifier does at least twice as well as random guessing for an unlabeled community. 

Differential abundance between categories. DESeq2 (Love et al., 2014) was used to identify 
taxa that were differentially proportional between cave-caught and surface-netted bats and across
ecoregions. DESeq2 was picked due to it’s ability to correct for large differences in sample 
library size without loss of statistical power or increase false positive rates. A custom script for 
running DESeq2 in R was used and last accessed March, 4th, 2016 is here: 
(http://userweb.  eng.  gla.  ac.  uk/  umer.  ijaz) by Umer Zeeshan Ijaz. 

Geographic distance and community similarity. Mantel tests were carried out on geographic 
distance using the vegan (Oksanen et al., 2007) package in R with 999 permutations. Multiple 
regression on distance matrices (MRM) was done in the ecodist (Goslee and Urban, 2007) 
package in R with 1,000 permutations. The paired geographic distance matrix for these analyses 
was calculated from the latitude and longitude using an R function written by Peter Rosenmai, 
last accessed at:   http://eurekastatistics.  com/  calculating-  a  -  distance-  matrix-  for-  geographic-  points-

using-  r March, 4th, 2016. Sorting of the distance matrix was done using the dendextend (Galili, 
2015) package. Retrieval of the paired scores (distance and similarity) was done using an R 
function from   http://stackoverflow.  com/  questions/21180464/distance-  matrix-  to-  data-  frame-  pairs-

in-  r, last accessed March, 4th, 2016. 

Ordination of bacteria OTUs. NMDS analysis was carried out using the phyloseq package 
( McMurdie and Holmes, 2013) and ggplot2 (Wickham, 2009) in R (R development core team, 
2012). The main analysis was focused on drivers of beta diversity across different categories. 
The large differences in bacterial counts between samples was dealt with by running DESeq2 on 
the whole dataset before running a non-metric dimensional scaling (NMDS) with the Bray-Curtis
distance. DESeq2 does a variance stabilized transformation of the data. However, NMDS is 
robust to large differences in counts so the DESeq2 transformation minimally changes the 
NMDS. The Bray-Curtis distance was used because it is invariant to changes in units and 
unaffected by additions of new communities, and NMDS was chosen because it uses rank orders 
and does not assume linear relationships. NMDS can make use of a variety of distance measures.

Modeling bacteria similarity and richness. Elevation data were taken from USGS NED1 
courtesy of the U.S. Geological Survey, mean annual precipitation and temperature from World 
Climate database 1.4 (http://www.worldclim.org), net primary productivity (NPP) was sourced 
from MOD17A3 (http://images.ntsg.umt.edu/alg_desc.php?caid=6139), soil organic carbon from
ORCDRC, and soil pH from PHIHOX (https://soilgrids.org/). Modeling of environmental 
parameters and grouping data were done in R using the rstanarm (Gabry and Goodrich, 2016) 
package using  a generalized linear mixed effects model (glmer). We choose a gaussian family; a 
normal, weakly informed prior (normal(location = 0, scale = 8)); and 10,000 iterations. Grouping
data were treated as random effects in a partial pooling model. Bacterial richness (response 
variable) was calculated from the variance stabilized data (VDS) from DESeq2 (which accounts 
for differences in library size, retains statistical power, and doesn’t remove samples or taxa) in 
phyloseq using the sample_sums on the DESeq2 VDS phyloseq object. The full model call in R 
was:
SEED <- 101
fit_partialpool_richness <- stan_glmer(vsd_richness ~ (1 | species) + (1|month_cat) + (1| 
ecoregion_iv) + elevation + mean_annual_prep_mm + mean_temp + log_npp + soil_org_c + 
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soil_ph, data = metadata, family = gaussian, adapt_delta = 0.95, prior = normal(location = 0, 
scale = 8), seed = SEED, iter=10000, cores=6)
The Rhat statistic was used to measure if the MCMC chains converged. Rhat measures the ratio 
of the average variance of the draws within each chain to the variance of the pooled draws across
chains. 

Associated taxa. Environmentally associated taxa were taken from Barber愃Ān et al. (2015), with 
the exception of the freshwater taxa (Newton et al., 2011) and cave taxa (from this study: 
Nitrospiraceae, Nitrospira, Acidimicrobiia, Rubrobacteria, Thermoleophilia , 
Acidobacteria-6, Nitriliruptoria, Sphingobacteriia, Gemm-1) which occurred in cave-caught bats.
Differences between associated taxa groupings were tested using Bayesian First Aid (Bååth, 
2013) with the Bayes t-test. 

Normalizing the data. Microbiome studies deal with differences in library sizes (number of 
sequences per sample) in a variety of ways. Once standard practice of rarefying data 
(subsampling to an even depth), developed for plants communities is statistically inadmissible 
for microbial abundance data. While many important discoveries were made with rarefied data, 
doing this: removes real data (removal of OTUs); removes samples that can be clustered 
meaningfully by other methods (NMDS, DESeq2); results in loss of statistical power; and 
increases false positive rates when comparing abundance data across categories (see McMurdie 
and Holmes, 2014 for further details). McMurdie and Holmes carried out these tests on simulated
data with known richness and abundances and real data sets. The authors also suggested better 
alternatives to rarefied data. 

In our data there are 111,199 total taxa present in the data. When the data are rarefied the number
of taxa drops to 40,163 and fifteen samples are removed. The DESeq2 transformation retains 
80,329 OTUs and the CSS retains 102,653 OTUs. Both previous methods retain all samples. In 
this data set presented here the DESeq2 and CSS transformed data both correlated highly (similar
correlation reported in Barber愃Ān, A, et al. 2015) with the rarefied (depth of 1500) data (Pearson's 
correlation 0.65 and 0.75, respectively). We used the DESeq2 transformed data for differential 
abundance across categories and ordination using NMDS. All other richness calculations used 
the CSS transformed data. 

Data and workflow availability. Biome files, QIIME mapping files, workflow, and R scripts are
available at https://github.com/bioinfonm/microBat/tree/batmicrobiom and are archived at 
https://zenodo.org/record/17577#. All raw sequence data with the quality files and mapping files 
are available at: https://zenodo.org/record/50976 . The full metadata table is available in the 
supplemental data (S2 table). A Binder (http://mybinder.  org/) ipython notebook with the full 
dataset is available at: https://github.  com/  bioinfonm/  bat_  microbiome_  plots . Cave names and 
location are encoded to protect park and BLM resources. The full cave names and sampling 
locations are protected by law by federal law and their respective agencies.

Results and Discussion
 

Microbial diversity on bats. Our study stands apart from culture-based studies and other next 
generation sequencing studies by focusing on the diversity of the external bacteria from 186 bats 
from 14 bat species across a broad range of environments. The number of reads after quality 
control range from 843 to 20,515 per sample. Sample coverage was measured by calculating the 
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Good's coverage, whose values (S4) ranged from 81% to 99%, with an average of 95.3%. 
Bacterial sequences that were unable to be assigned to the SILVA_123 database ranged from 
0.7% to 50% across all samples. Very small portions (0% - 0.25%) of the sequences in the data 
could not be assigned to a phylum, but were identified as bacterial. At the class level between 0%
to 0.55% could not be assigned to a class. Cave-caught bats were dominated by the phylum 
Actinobacteria (S1 a), whereas surface-netted bats were dominated by Cyanobacteria, 
Actinobacteria, and Alphaproteobacteria (S1 b). 

The data were tested using a random forest model to see if the data could be classified by our 
metadata categories. Random forest models were minimally successful for determining sampling
site (2.76), bat species (2.28) (see also S1 c for phylum distribution by bat species), and 
seasonality of sampling (2.61) associated with each sample. The models were successful for 
determining cave-caught or surface-netted with a ratio of 8.43 and ecoregion with a ratio of 3.20.
Since the random forest model takes the OTU counts as predictors and the metadata (i.e 
ecoregion) as classes, we can classify a given bat as cave-caught or surface-netted and from what
ecoregion it came from. The results from the random forest model confirmed visual differences 
that were seen in the phylum bar plots, along with the proportional changes in OTU abundance 
across ecoregions. 

Proportional changes in OTUs between cave-caught and surface-netted bats were quantified 
using DESeq2. Cave-caught bats had proportionally greater amounts of Actinobacteria and 
Nitrospirae compared to the surface-netted bats (Figure 3). Surface-caught bats had 
proportionally higher Synergistetes, Cyanobacteria, FBP, Armatimonadetes, Thermi, Firmicutes, 
Alphaproteobacteria, TM7, Betaproteobacteria, GAL15, Fusobacteria, SBR1093, and 
Tenericutes. Across all ecoregions there were many phyla that varied in their proportions (S5), 
including : Acidobacteria, Cyanobacteria, Firmicutes, Deltaproteobacteria, Chloroflexi, 
Gemmatimonadetes, Planctomycetes, Synergistes, Thermi, Armatimonadetes, FBP, 
Alphaproteobacteria, Tenericutes, Actinobacteria, Fusobacteria, Verrucomicrobia, 
Betaproteobacteria, Chlorobi, Nitrospirae, and Epsilonproteobacteria. Some of the variation 
among ecoregions is due to bats only being caught in the cave (Chihuahuan Basins and Playas) 
or netted on the surface (i.e. Mojave ecoregions), with the remaining ecoregions having mixed 
cave-caught and surface-netted. The variation across ecoregions is due to local bacteria being 
picked up on the bats as opposed to more cosmopolitan bacteria seen on all bats.

Many of the OTUs were restricted to relatively few samples with very few shared taxa (S6), 
while a few OTUs were found more widely.  Eighty percent of surface-netted bats shared 15 
OTUs at the genus level. In cave-caught bats, 80% of the samples shared only eight OTUs. 
Across 80% of all bats sampled only six OTUs were shared and they belonged to the classes 
Actinobacteria, Flavobacteria, and Gammaproteobacteria. These bacterial classes are widely 
distributed across a range of environments. Bats are exposed to bacteria common in air and soil, 
and chloroplasts. Given the ability of bacteria to disperse over long ranges, one might expect 
surface-netted bat bacterial communities to be more homogenous than caves, but this is not the 
case. As shown in the DESeq2 result (Figure 3) cave-caught bats’ external bacteria shift towards 
being dominated by Actinobacteria and Nitrospirae. 

In a culture-dependent study by Borda et al. (2014), common bacteria found in the air above 
guano piles included: Chryseomonas, Klebsiella, Micrococcus, Salmonella, Staphylococcus, and 
Streptococcus. Bacillus, Enterobacter, Enterococcus, Escherichia, Klebsiella, Pantoea, 
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Pseudomonas and Serratia were found in the gut of the short-nosed fruit bat (Daniel et al., 
2013). On the ocular surfaces (Leigue dos Santos et al., 2014) of 36 bats, the most common 
isolated bacteria were Staphylococcus, Bacillus, Corynebacterium, Shigella, Hafnia, Morganella,
and Flavobacterium. In our study many of the same bacterial genera were present on the external
surfaces of bats. The exception was the lack of Chryseomonas, Klebsiella, Salmonella, Pantoea, 
Serratia (found in six samples in low amounts), Shigella, and Hafnia in our samples. Habitat and
host species were primary drivers of bacteria diversity and taxa composition on captive 
neotropical bats (Lemieux-Labonté, et al., 2016).

Structuring of Community Similarity Patterns and Richness. The bacterial community 
composition was highly variable within sampling sites and across geographic regions (S1 b). 
Community similarity patterns (NMDS) and the random forest model show that factors such as 
location (e.g. cave-caught vs. surface-netted) and ecoregion help to structure the bacterial 
communities on bats (Figure 4 and 5). In addition, bacterial community similarity was related to 
geographic distance (Figure 6). Communities that were geographically close were more similar, 

as indicated by a Mantel test [Rm=0.09, P=0.003], but the regression coefficient was weak.

Other microbiome projects from continental scale soil microbiomes (Ma et al., 2016), to whales 
and shrimp, noted that factors such as net primary productivity (NPP), rainfall, temperature, soil 
properties, and seasonality were correlated with patterns of bacterial richness and similarity 
(Apprill et al., 2014; Larsen et al., 2015). The Bayesian model for community similarity (Figure 
7a and 7b) showed that regional variables (i.e. NPP, soil pH) were predictive for the MDS1 axis, 
but slightly less for the MDS2 axis. Three bats species contributed to the MDS1 (Myotis velifer, 
Myotis volans, Tadarida brasiliensis) and MDS2 (Myotis velifer, Myotis occultus, Myotis evotis) 
axes. The ecoregions Chihuahuan Basins and Playas, Chihuahuan Desert Slopes, and Conifer 
Woodlands and Savannas contributed to the MDS1 axis, while for the MDS2 axis the ecoregion 
contributed minimally. Cave-caught or surface-netted contributed to the MDS2 axis the most, 
while it minimally impacted the MDS1 axis. The Bayesian model for VDS corrected richness 
(Figure 7c) showed that regional variables (i.e NPP, soil pH), ecoregion, and months were 
predictive of richness. Bat species was also predictive of richness with values from ~ -60 to 90 
but not to the extent of regional variables. Variables that contributed to bacterial richness were: 
NPP, soil pH, Conifer Woodlands and Savannas, and Chihuahuan Basins and Playas. 

Climate, NPP, and soil makeup are highly linked, so it is difficult to tease apart which factors are 
directly responsible for structuring the bacterial community similarity and richness of bats. The 
month data (seasonality) is cofounded with whether during a given month bats were just cave-
caught or surface-netted. In addition, some species of bats dominated the samples during a given 
month. Therefore, it is unlikely that a seasonal signal for the external bat bacteria communities 
can be determined from this dataset. Full model results are available in S7. Future studies should 
be designed to target the specific effects of soil properties, climate variables, seasonality, and bat 
species richness on the external microbiome. 

Effects of cave and surface habitats on bacteria. Basic information on how roosting in a cave 
or flying on the surface affect a bat’s external microbiome is lacking.  This is particularly 
important to understand when addressing novel wildlife diseases, such as WNS, that may alter 
naturally occurring microbiomes. Because bats contract WNS while hibernating in caves, it is 
possible that the external microbiome offer natural defenses against WNS for some bat species 
(Hoyt et al., 2015). Thus, the overall distribution of bacteria among phyla changing between 
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cave-caught or surface-netted bats (Figure 3) after a period of 6-8 hours is important for bats 
vulnerable to WNS. Cave-caught bats have proportionally more Actinobacteria and Nitrospirae, 
while surface-netted bats had proportionally more Cyanobacteria, Firmicutes, and Synergistetes. 
Earlier studies in caves showed differences in community structure between surface soil and cave
samples. This was seen in a carbonate cave speleothems in Arizona (Ortiz, et al., 2014) and the 
photic and aphotic zone in samples from two caves in the Antarctic (Tebo, et al., 2015).

In addition to seeing the effects of roosting in the cave on the external microbiome, we expected 
the source of microbes to vary between cave-caught and surface-netted bats. To test this 
hypothesis, we identified specific bacterial taxa typically associated with environmental sources. 
We visualized source associated taxa using violin plots (Figure 8). Violin plots are similar to box 
plots, but also show the probability density at a given value. Environmentally associated taxa 
included sources from: plants (Chloroplasts), soil, insect, freshwater, and caves. We would 
expect that for bats netted on the surface there would be proportionally more surface-associated 
taxa than for cave-caught bats. For example, we would expect more plant or freshwater 
associated bacteria in bats netted on the surface. We did detect differences, using a Bayesian t-
test, in the mean proportions for plant-associated taxa (BEST mean difference for cave -0.11, 
95% CI -0.15 - -0.083) and weak evidence for cave-associated taxa (BEST mean difference for 
cave 0.058 , 95% CI 0.017-0.061). There was no evidence for differences between insect-, soil-, 
and freshwater-associated taxa proportions (BEST mean difference for cave -0.00047, -0.0077, 
and -0.0026, respectively). We hypothesize that the few samples with high freshwater associated 
taxa are likely bats who were netted shortly after dipping into local water sources. In addition, 
there were several samples (~20) with high numbers of insect-associated taxa; likely these 
belong to bats that recently fed on insects before being netted, or had a high parasite load. Future 
bat microbiome studies should test these hypotheses.

Conclusions

Overall, our results show that the external microbial communities on bats follow similar local 
and regional-scale bacteria patterns as noted in the eastern China soils study (Ma, et al., 2016), 
bat fecal and internal microbiome studies (Daniel et al., 2013; Borda et al., 2014; Leigue dos 
Santos et al., 2014), and share predictors with bat species richness in Arizona and New Mexico 
(S8). We might expect some of the microbial patterns to be driven by differences in rates of 
bacterial dispersion. Unmeasured variables can contribute to both local and regional patterns. For
example, average plant height and composition at a sampling site, and local bat foraging and 
roosting behavior might influence the bacterial communities on a smaller scale. From our study, 
we can show the importance of sourcing associated taxa with bats, such as foraging habits. Our 
data show that surface-caught bats carry proportionally more plant taxa (i.e. Chloroplasts), 
Cyanobacteria, and surface soil associated bacteria (Synergistetes, Armatimonadetes, and 
Firmicutes). ave roosting bats, on the other hand, have a greater proportion of Nitrospirae and 
Actinobacteria. 

The bacteria found on bats caught in the cave tend to be more homogeneous, i.e. collapsing into 
two dominant phyla. We think that bats in caves are exposed to cave bacteria and a reduced 
number of surface taxa. Therefore, bats caught in caves after spending 6-8 hours in the cave 
trended towards having more Actinobacteria, while other taxa (except Nitrospirae) were reduced 
in proportions when compared with surface-netted bats. In general, we conjecture that the 
number of species, life histories, morphology, and ecology of bats occurring in the Southwest is 
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diverse and at times can be complicated when trying to categorize species into defined groups. 
Therefore, there are many factors that can contribute to the presence of certain bacteria found on 
the external surfaces of the bats, both among and between species. However, it does appear that 
some of the aforementioned aspects of bats found in the Southwest give insight to unique trends 
observed in the bacteria found in this study. For example, bacterial richness of bats can be 
predicted by ecoregion, regional variables such as NPP and soil pH. While bat species does 
contribute to variation in bacterial richness, only a small number of species contribute to the 
differences in community similarity. 

Our results shed new light on the external microbiome of southwestern bat species and the extent
to which geographic, biotic, and abiotic factors influence the bacterial diversity patterns observed
on different bat species. These results provide an important baseline characterization of bat 
bacterial microbiomes in non-WNS affected area, and provide the basis for exploration of 
potential bacterial defenses possessed by different bat species.
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Figure 1.

Figure 1. Map of bat species richness in the United States (US) and Canada. Total number of bat 
species occurring in each area calculated by counting the number of overlapping species 
distributions, as represented by the US National Atlas Bat Ranges geospatial data set (available 
at https://catalog.data.gov/dataset/north-american-bat-ranges-direct-download). Warmer colors 
represent areas with higher species richness and cooler colors represent areas with lower species
richness. Map courtesy of P. Cryan, US Geological Survey.
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Figure 2.

Figure 2. Map showing the general locations of the sampling sites in the southwestern United 
States. PARA (Grand Canyon Parashant National Monument), ELMA (El Malpais National 
Monument), FS (Fort Stanton-Snowy River Cave National Conservation Area), HGL (High 
Grasslands), CCNP (Carlsbad Caverns National Park). Elevation base map by Stamen, CC-BY 
OpenStreetMap Terrain.
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Figure 3.

Figure 3. Differential abundance of OTUs between cave-caught and surface-netted bats using 
DESeq2. Two OTUs at the phylum level were higher in cave-caught bats: Actinobacteria and 
Nitrospira.
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Figure 4.

Figure 4. Similarity in the composition of the bacterial communities was quantified using 
NMDS (stress = 0.084) with the Bray-Curtis distance metric. Symbols are colored by location of 
capture. Samples closer together represent samples with more similar bacterial communities. The
samples tend to cluster by cave-caught or surface-netted.
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Figure 5.

Figure 5. Similarity in the composition of the bacterial communities was quantified using 
NMDS (stress = 0.084) with the Bray-Curtis distance metric. Symbols are colored by EPA 
Ecoregion IV. Samples closer together represent samples with more similar bacterial 
communities. The grey line represents the split between surface-netted and cave-caught bats.
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Figure 6.

Figure 6. Relationship between paired community similarity and distance scores. The slope is 
1.710e-07 with a corrected R2 of 0.04. Blue is the 95% confidence interval and grey is the 
predicted from the linear model.
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Figure 7.

Figure 7. Bayesian model (glmer) values of predictors for a) MDS1 and MDS2 (community 
similarity), and b) bacterial richness (total OTUs). 
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Figure 8.

Figure 8. Square root proportion of bacterial sequences identified as indicator taxa of cave-
caught or surface-netted bats. Scale is the proportion of the total number of OTUs in a sample.
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