

A peer-reviewed version of this preprint was published in PeerJ
on 16 October 2017.

View the peer-reviewed version (peerj.com/articles/cs-135), which is the
preferred citable publication unless you specifically need to cite this
preprint.

Ramadani J, Wagner S. 2017. Are suggestions from coupled file changes
useful for perfective maintenance tasks? PeerJ Computer Science
3:e135 https://doi.org/10.7717/peerj-cs.135

https://doi.org/10.7717/peerj-cs.135
https://doi.org/10.7717/peerj-cs.135

Are Coupled File Changes Suggestions Useful?1

Jasmin Ramadani∗ and Stefan Wagner2

Institute of Software Technology, University of Stuttgart, Germany3

Abstract4

Background. Software maintenance is an important activity in the5

process of software engineering where over time maintenance team mem-6

bers leave and new members join. The identification of files being changes7

together frequently has been proposed several times. Yet, existing studies8

about these file changes ignore the feedback from developers as well as9

the impact on the performance of maintenance and rely on the analysis10

findings and expert evaluation.11

Methods. We conducted an experiment with the goal to investigate12

the usefulness of coupled file changes during maintenance tasks when de-13

velopers are inexperienced in programming or when they are new on the14

project. Using data mining on software repositories we can identify files15

that changed most frequently together in the past. We extract coupled16

file changes from the Git repository of a Java software system and join17

them with corresponding attributes from the versioning and issue tracking18

system and the project documentation. We present a controlled experi-19

ment involving 36 student participants where we investigate if coupled file20

change suggestions influence the correctness of the task solutions and the21

time to complete them.22

Results. The results show that coupled file change suggestions sig-23

nificantly increase the correctness of the solutions. However, there is only24

a small effect on the time to complete the tasks. We also derived a set of25

the most useful attributes based on the developers feedback.26

Discussion. Coupled file changes and a limited number of the pro-27

posed attributes are useful for inexperienced developers working on main-28

tenance tasks whereby although the developers using these suggestions29

solved more tasks, they still need time to organize and understand and30

implement this information.31

∗Corr. author: Jasmin Ramadani, Universitätsstr. 38, 70569 Stuttgart, Germany, phone

+49 711 685 884306, jasmin.ramadani@informatik.uni-stuttgart.de

1

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2492v1 | CC BY 4.0 Open Access | rec: 30 Sep 2016, publ: 30 Sep 2016

1 Introduction32

Software maintenance represents a very important part in software product33

development (Abran & Nguyenkim, 1991). Maintenance is often performed by34

maintenance programmers. Over time teams change when members leave and35

others join (Hutton & Welland, 2007). The members cannot be immediately36

productively included to solve maintenance tasks, so they need some support to37

successfully perform their tasks.38

Software development produces large amounts of data which is stored in39

software repositories. These repositories contain the artifacts developed during40

software evolution. After some time, this data becomes a valuable information41

source for solving maintenance tasks.42

One of the most used techniques for analyzing software repositories is data43

mining. The term mining software repositories (MSR) describes investigations44

of software repositories using data mining (Kagdi et al., 2007).45

Couplings have been defined as “the measure of the strength of association46

established by a connection from one module to another” (Stevens et al., 1974).47

Change couplings are also described as files having the same commit time, au-48

thor and modification description (Gall et al., 2003). Knowing, which files were49

frequently changed together can support developers in dealing with the large50

amount of information about the software product, especially if the developer51

is new on the project, the project started a long time ago or if the developer52

does not have significant experience in software development.53

1.1 Problem Statement54

Several researchers have proposed approaches to identify coupled file changes55

to give recommendations to developers (Bavota et al., 2013; Kagdi et al., 2006;56

Ying et al., 2004; Zimmermann et al., 2004). Existing studies, however, focus on57

the presentation of the mining results and expert investigations, and neglect the58

feedback of developers on the findings as well as the impact on the performance59

on maintenance tasks.60

1.2 Research Objectives61

The overall aim of our research is to investigate the usefulness of coupled file62

change suggestions in supporting developers working which are inexperienced,63

new on the projects or work on unfamiliar parts of the project. We provide64

suggestions for likely changes so that we can explore how useful the suggestions65

are for the developers.66

We identify frequent couplings between file changes based on the informa-67

tion gathered from the software project repository. We use the version control68

system, the issue tracking system and the project documentation archives as69

data sources for additional attributes. We join these additional information to70

the coupled changes we discover.71

2

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2492v1 | CC BY 4.0 Open Access | rec: 30 Sep 2016, publ: 30 Sep 2016

The usefulness of coupled file changes is defined by analyzing their influence72

on the correctness of the solutions and the effort for solving maintenance tasks.73

1.3 Contribution74

We present a controlled experiment on the usefulness of coupled change sug-75

gestions where each of the 36 participants try to solve 4 different maintenance76

tasks and report their feedback on the usefulness of the repository attributes.77

2 Related Work78

Many studies have been dedicated to investigate software repositories to find79

logically coupled changes, e.g. Bieman et al. (2003); Fluri et al. (2005); Gall80

et al. (2003). We identify two granularity levels, the first one investigates the81

couplings based on the file level (Kagdi et al., 2006; Ying et al., 2004) and the82

second one is a finer granularity level where the coupled changes are identified83

between parts of files like classes, methods or modules (Fluri et al., 2005; Kagdi84

et al., 2007; Zimmermann et al., 2006, 2004). In our study, we use coupled file85

change on a file level.86

Most studies dealing with identifying coupled changes use some kind of data87

mining for this purpose (German, 2004; Hattori et al., 2008; Kagdi et al., 2006;88

Shirabad et al., 2003; van Rysselberghe & Demeyer, 2004; Ying et al., 2004;89

Zimmermann et al., 2004). Especially the association rules technique is often90

used to identify frequent changes (Kagdi et al., 2006; Ying et al., 2004; Zim-91

mermann et al., 2004). This data mining technique uses various algorithms to92

determine the frequency of these changes. Most of the studies employ the Apri-93

ori algorithm (Kagdi et al., 2006; Zimmermann et al., 2004), however, other94

algorithms like the FP-Tree algorithm are also in use (Ying et al., 2004). We95

generate the coupled file changes using the frequent item sets analysis with a96

FP-growth algorithm.97

Most of the studies use a single data source where a kind of version control98

system is investigated, typically CVS or Subversion. There are few studies99

which investigate a Git version control system (Bird et al., 2009; Carlsson, 2013;100

Hassan & Holt, 2004). Other studies combine more than one data source to be101

investigated, like a version control system and an issue tracking system (Canfora102

& Cerulo, 2005; D’Ambros et al., 2009; Fischer et al., 2003; Wu et al., 2011)103

where the data extracted from these two sources is analyzed and the link between104

the changed files and issues is determined. We use three different sources for105

the additional attributes: Git versioning system, JIRA issue tracking system106

and the software documentation.107

To the best of our knowledge, there are few studies investigating how cou-108

plings align with developers’ opinions or feedbacks. Coupling metrics on the109

structural and the semantic level are investigated in Revelle et al. (2011). The110

developers were asked if they find these metrics to be useful. They show that111

feature couplings on a higher level of abstraction than classes are useful. The112

3

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2492v1 | CC BY 4.0 Open Access | rec: 30 Sep 2016, publ: 30 Sep 2016

developers’ perceptions of software couplings are investigated in Bavota et al.113

(2013). Here the authors examine how class couplings captured by different114

coupling measures like semantic, logical and others align with the developers115

perception of couplings.116

The interestingness of coupled changes is also studied in Ying et al. (2004).117

This study defines categorization of coupled changes interestingness according118

to the source code changes. In Ramadani & Wagner (2016), the feedback on119

the interestingness of coupled file changes and the attributes from the software120

repository have been investigated. In our experiment we extend the findings of121

this case study and investigate the usefulness of coupled file changes and the122

corresponding attributes.123

Various experiments involving maintenance tasks have been described in the124

literature. Nguyen et al. (2011) deal with assessing and estimating of software125

maintenance tasks. De Lucia et al. (2002) investigate the effort estimation for126

corrective software maintenance. Ricca et al. (2012) perform an experiment on127

maintenance in the context of model driven development. Chan (2008), inves-128

tigate the impact of programming and application specific knowledge on main-129

tenance effort. In our experiment, we investigate how the coupled file changes130

suggestions influence the correctness of performing maintenance tasks and the131

time effort needed to solve the tasks.132

3 Background133

3.1 Software Maintenance134

Software maintenance includes program or documentation changes to make the135

software system perform correctly or more efficiently (Shelly et al., 1998). Soft-136

ware maintenance has been defined in the IEEE 1219 Standard for Software137

Maintenance (IEEE, 1998) to be a software product modification after deliv-138

ery to remove faults, improve performance or adapt the environment. In the139

ISO/IEC 12207 Life Cycle Processes Standard (ISO/IEC, 1995), the mainte-140

nance is described as the process where the software code and documentation141

modification is performed due to some problem or improvement.142

3.1.1 Maintenance Categories143

Swanson (1976) defined three different categories of maintenance: corrective,144

adaptive and perfective. The ISO/IEC 14764 International Standard for Soft-145

ware Maintenance (ISO/IEC, 2000) updates this list with a fourth category, the146

preventive maintenance so we have the following maintenance categories (Pigoski,147

1996):148

• Corrective Maintenance: This type of maintenance tasks includes cor-149

rection of errors in systems. Here, software product modifications are150

performed after delivery to correct the discovered problems. It corrects151

4

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2492v1 | CC BY 4.0 Open Access | rec: 30 Sep 2016, publ: 30 Sep 2016

design, source code and implementation errors.152

153

• Adaptive Maintenance: It satisfies the changes in the environment and154

includes adding of new features or functions to the system. Software155

product modification are performed to ensure software product usability156

in changed environment.157

158

• Perfective Maintenance: It involves changes in the system which influence159

its efficiency. Also it includes an software product modification after de-160

livery to improve maintainability or performance.161

162

• Preventive Maintenance: Here, the changes in the system have been per-163

form to reduce the possibility of system failures in the future. It includes164

software product modification after delivery to detect and remove failures165

before they become effective.166

3.2 Data Mining167

3.2.1 Coupled File Changes168

To be able to discover coupled file changes using data mining, we introduce the169

data technique that we employ in our study. One of the most popular data170

mining techniques is the discovery of frequent item sets. To identify sets of171

items which occur together frequently in a given database is one of the most172

basic tasks in data mining (Han, 2005). Coupled changes describe a situation173

where someone changes a particular file and also changes another file afterwards.174

Let us say that the developer changes file f1 and then also frequently changes175

file f3. By investigating the transactions of changed files in the version control176

system commits we identify a set of files that changed together. Let us have177

the following three transactions: T1 = {f1, f2, f3, f7}, T2 = {f1, f3, f5, f6},178

T3 = {f1, f2, f3, f8}. From these three transactions, we isolate the rule that179

files f1 and f3 are found together: f1 and f3 are coupled. This means that180

when the developers changed file f1, they also changed file f3. If these files181

are found together frequently, it can help other persons by suggesting that if182

they change f1, they should also change f3. Let F = {f1, f2, ..., fd} be the set183

of all items (files) f in a transaction and T = {t1, t2, ..., tn} be the set of all184

transactions t . As transactions, we define the commits consisting of different185

files. Each transaction contains a subset of chosen items from F called item186

set. An important property of an item set is the support count δ which is the187

number of transactions containing an item. We call the item sets frequent if188

they have a support threshold minsup greater than a minimum specified by the189

user with190

0 ≤ minsup ≤ |F | (1)

5

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2492v1 | CC BY 4.0 Open Access | rec: 30 Sep 2016, publ: 30 Sep 2016

3.2.2 Data Mining Algorithm191

Various algorithms for mining frequent item sets and association rules have been192

proposed in literature (Agrawal & Srikant, 1994; Győrödi & Győrödi, 2004; Han193

et al., 2004). We use the FP-Tree-Growth algorithm to find the frequent change194

patterns. As opposed to the Apriori algorithm (Agrawal & Srikant, 1994) which195

uses a bottom up generation of frequent item set combinations, the FP-Tree-196

Growth algorithm uses partition and divide-and-conquer methods (Győrödi &197

Győrödi, 2004). This algorithm is faster and more memory efficient than the198

Apriori algorithm used in other studies. This algorithm allows frequent item199

set discovery without candidate item set generation.200

3.2.3 Change Grouping Heuristic201

There are different heuristics proposed for grouping file changes (Kagdi et al.,202

2006). We use a heuristic considering the file changes done by a single committer203

are related. We group the transactions of files committed only by a particular204

author. We do not relate the changes done by other committers.205

4 Experimental Design206

In this section we define the research questions, hypotheses and metrics used in207

our analysis.208

4.1 Study Goal209

We use the GQM approach (Basili et al., 1994) and its MEDEA extension210

(Briand et al., 2002) to define the study goal. The goal of the study is analyzing211

the usefulness of coupled file change suggestions. The objective is to compare the212

correctness of the solution and the time needed for a set of maintenance tasks213

between the group using coupled change suggestions and the group which does214

not use this kind of help. The purpose is to evaluate how effective are coupled215

file change suggestions regarding the correctness of the modified source code216

and the time required to perform the maintenance tasks. The viewpoint is from217

a software developers and the targeted environment is open source systems.218

4.2 Research Questions219

We investigate the usefulness of coupled file change suggestions and the joined220

attributed from the software repository. For that purpose we define the follow-221

ing research questions:222

223

RQ1: How useful are coupled file change suggestions in solving224

maintenance tasks?225

This research question needs to be answered to define the usefulness of the cou-226

pled file changes concept. We investigate if the coupled file change suggestions227

6

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2492v1 | CC BY 4.0 Open Access | rec: 30 Sep 2016, publ: 30 Sep 2016

influence the correctness of the maintenance tasks and how fast these tasks have228

been accomplished.229

230

RQ2: How useful are the attributes from the software repository231

in solving maintenance tasks?232

The second research question deals with the attributes from the versioning sys-233

tem, the issue tracking system and the documentation. We investigate the per-234

ceived usefulness of each attribute in the proposed attribute set to understand235

which attributes are good candidates to be provided to the developers.236

4.3 Hypotheses237

We formulate the following hypotheses to answer the research questions in our238

study. For RQ1 we define the following hypotheses:239

240

H0.1.1: There is no significant difference in the correctness of maintenance tasks241

solutions between the developers which used coupled file change suggestions and242

the developers not using these suggestions.243

HA.1.1: There is a significant difference in the correctness of maintenance tasks244

between the developers which used coupled file change suggestions and the one245

not using these suggestions.246

H0.1.2: There is no significant difference in the time to solve maintenance tasks247

between the developers which used coupled file change suggestions and the de-248

velopers not using these suggestions.249

HA.1.2: There is a significant difference in the time to solve maintenance tasks250

between the developers which used coupled file change suggestions and the one251

not using these suggestions.252

253

To answer RQ2 we formulate the following hypotheses:254

255

H0.2: There is no significant difference in the perceived usefulness among the256

attributes from the software repository in the current set of attributes.257

HA.2: There is a significant difference in the perceived usefulness among the258

attributes from the software repository in the current set of attributes.259

260

4.4 Experiment Variables261

We have defined the following dependent variables: the correctness of solution262

after the execution of the maintenance task, the time spent to perform the263

maintenance task and the usefulness of the repository attributes. For the first264

variable, the correctness of the task solution, we assign scores to each developer265

solution of the maintenance tasks.266

Our approach is similar to the one presented by Ricca et al. (2012) where267

the correctness of the solution for the maintenance task is manually assessed by268

defining scores from totally incorrect to completely correct task solution. We269

7

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2492v1 | CC BY 4.0 Open Access | rec: 30 Sep 2016, publ: 30 Sep 2016

define three scores: 0, if the developers did not execute or did not solve the270

task at all, 1 if the task was partially solved and 2 if the developer performed a271

complete solution of the maintenance task. The solutions are tested using unit272

tests to ensure the correctness of the edited source code.273

The second variable, the time for executing the maintenance tasks is mea-274

sured by examining the screen recordings. We mark the start time and the275

end time for every task. We calculate the difference to compute the total time276

needed to solve each task.277

For the third variable, the usefulness of the repository attributes, we use an278

ordinal scale to identify the feedback of the developers. The participants can279

choose between the following options for each attribute: very useful, somehow280

useful, neutral, not particularly useful and not useful. We code the usefulness281

feedback using the scoring presented in Table 1.

Table 1: Usefulness score

very
useful

somehow
useful

neutral
not particularly

useful
not useful

5 4 3 2 1

282

4.5 Experiment Design283

We distinguish two cases for the maintenance tasks: the first one includes tasks284

executed on Java Code in the Eclipse IDE without any suggestions and the285

second one includes tasks executed with additional coupled files suggestions286

and corresponding attributes from the repositories. We use a similar approach287

to the one presented by Ricca et al. (2012) and define two values: − for Eclipse288

only and + for the coupled file suggestions.289

We use a counterbalanced experiment design as described in Table 2. This290

ensures that all subjects work with both treatments: without and with coupled291

change suggestions. We split the subjects randomly in two groups working in292

two lab sessions of two hours each. In each session, the participants work on two293

tasks only with the task description and on two tasks where they receive the294

coupled file changes suggestions and the related attributes. The participants in295

the second lab have swapped the order of the tasks used during the first lab.296

Table 2: Experiment Design

Lab Tasks
Lab 1 Tasks 1-2 (–) Tasks 3-4 (+)

Lab 2 Tasks 1-2 (+) Tasks 3-4 (–)

8

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2492v1 | CC BY 4.0 Open Access | rec: 30 Sep 2016, publ: 30 Sep 2016

4.6 Objects297

The object of the study is an open source Java software called ASTPA. The298

source code and the repository were downloaded from SourceForge.1 The system299

is built mainly in Java by 12 developers at the University of Stuttgart during300

a software project between year 2013 and 2014. It represents an Eclipse based301

tool for hazard analysis.302

4.7 Subjects303

The experiment participants are 36 students from the Software Engineering304

course in their second semester at the University of Stuttgart (Germany). The305

students have basic Java programming and Eclipse knowledge and have not been306

related in any way with the software system investigated in the experiment.307

4.8 Material, Procedure and Environment308

All subjects received the following materials which can be found in the supple-309

mental material of this paper.310

• Tools and code: The participants received the Eclipse IDE to work with,311

the screen capturing tool and the source code they need to edit.312

313

• Questionnaires: The first questionnaire is performed at the start of the314

experiment and it is related to their programming background. The sec-315

ond questionnaire performed at the end of the experiment is about their316

feedback on the usefulness of coupled changes and the additional set of317

repository attributes.318

319

• Software documentation: We have provided the technical documentation320

for the software system including the data model and package descriptions.321

322

• Setup instructions: The participants received the instruction steps how to323

prepare the environment, where to find the IDE, the source code and and324

how to perform the experiment.325

326

• Maintenance tasks and description: Every participant received spread-327

sheets with four maintenance tasks and their free-text description.328

329

• Coupled file changes: The files changed together frequently used to solve330

a similar tasks have been provided to the group which uses coupled file331

changes. These sets of file suggestions do not represent the solutions for a332

1https://sourceforge.net/projects/astpa/

9

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2492v1 | CC BY 4.0 Open Access | rec: 30 Sep 2016, publ: 30 Sep 2016

particular task in the experiment and can contain more or less files than333

needed to solve the particular task.334

335

• Repository Attributes: The attribute set from the versioning system, the336

issue tracking system and the documentation about similar tasks per-337

formed in the system.338

The environment for the experiment tasks was Eclipse IDE on a Windows339

PC in both treatments. For each lab, we prepared an Eclipse project containing340

the Java source code of the ASTPA system. The project materials were made341

available to the subjects on a flash drive. The participants had a maximum of342

two hours to fill the questionnaires and perform the maintenance tasks.343

4.9 Maintenance Tasks344

The maintenance tasks represent quick program fixes that should be performed345

by the participants according to the maintenance requests (Basili, 1990). All346

four maintenance tasks are perfective and have been assigned to the participant347

groups in both groups. The tasks require the participants to add various en-348

hancements to the system whereby the changes do not influence the structure349

or the functionalities of the application. The tasks are related to simple changes350

of the user interface of the system.351

4.10 Maintenance Activities352

After receiving the task description, the participants investigate the source code353

of the application, identify the files where the change is needed and perform the354

change according to the requirement. The scenario for solving the provided355

maintenance tasks includes the following activities (Nguyen et al., 2011):356

• Task understanding: First of all, the participants need to read the task357

description and the instructions and prepare for the changes. They can358

ask if they need some clarification around the settings and the instructions.359

360

• Change specification: During this step, the participants locate the source361

code they need to change, try to understand and specify the code change.362

363

• Change design: This step includes the performing of the already specified364

source code changes and debugging the affected source code.365

366

• Change test: To specify the successfulness of the performed code changes,367

a unit test needs to be performed. This step is performed by the experi-368

ment organizers after the lab sessions.369

10

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2492v1 | CC BY 4.0 Open Access | rec: 30 Sep 2016, publ: 30 Sep 2016

4.11 Data Collection Procedure370

We collect data from several sources: the software repository of the system, the371

questionnaires, the provided task solutions and the screen capturing recordings.372

4.11.1 Software Repositories373

• Version Control System: The first data source we use is the log data374

from the version control system. The investigated project uses Git as a375

control management tool. It is an distributed versioning system allow-376

ing the developers to maintain their local versions of source code. The377

version control systems preserve the possibility to group changes into a378

single change set or a so-called atomic commit. It represents an atomic379

change set regardless of the number of directories, files or lines of code that380

change. A commit snapshot represents the total set of modified files and381

directories (Loeliger, 2009). We organize the data in a transaction form382

where every transaction represents the files which changed together in a383

single commit. From this data source we extract the coupled file changes384

and the commit related attributes.

Table 3: Repository Attributes Description

Attribute Name Attribute Description
Commit ID Unique ID of Git commit
Commit Message Free-text comment of the commit in Git
Commit Time Time-stamp of committed change in Git
Commit Author Person which executed the commit
Issue Description Free-text comment of issue to be solved
Issue Type Type of the issue: bug, feature
Issue Author Person who created the issue to be solved
Package Description Free-text description of the package: layer, feature

385

• Issue Tracking System: In issue tracking systems, important information386

is stored about the software changes or problems. In our case, the devel-387

opers used JIRA as issue tracking systems. The issue tracking systems388

data source is used to extract the issue related attributes.389

390

• Project Documentation: The software documentation gathered during the391

development process represents a rich source of data. The documentation392

contains the data model and code descriptions. From these documents,393

we discover the project structure. For example in the investigated project,394

the package containing the files described by the following path:395

astpa/controlstructure/figure/, contains the Java classes responsible396

for the control diagram figures of this software. We use the documentation397

to identify the package description.398

11

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2492v1 | CC BY 4.0 Open Access | rec: 30 Sep 2016, publ: 30 Sep 2016

The complete set of attributes we extract from the software repository are pre-399

sented in Table 3.400

4.11.2 Questionnaire401

The developers answer a number of multiple-choice questions. Using the first402

questionnaire, we investigate the developers’ programming background. We403

use a second questionnaire after the tasks being solved in order to gather the404

feedback on the usefulness of coupled changes and the additional attributes2.405

4.11.3 Tasks completion406

Similarly to other studies (Chan, 2008; Nguyen et al., 2011; Ricca et al., 2012),407

we define two factors which represent the completion of the maintenance tasks:408

• Correctness of solution: We determine the correctness of the solution by409

examining the changed source code if the solution satisfies the change re-410

quirements. We use the scoring presented previously where we summarize411

the points each developer gathers for every of the four tasks. The score412

is added next to each of the participant for both treatments, with and413

without using coupled file changes.414

415

• Time of task completion: It represents the total time in minutes spent416

solving the maintenance tasks. We use a screen capturing device to record417

the time for each participant that spend solving each of the four tasks.418

We record the time needed for each tasks in both treatments.419

4.12 Data Analysis Procedure420

To be able to test our hypotheses, we need to analyze the usefulness of the cou-421

pled file changes and the usefulness of the attributes from the software reposi-422

tory. We perform the analysis using SPSS statistical software.423

4.12.1 Usefulness of Coupled File Changes424

The main part of the analysis is the investigation of the usefulness of the coupled425

changes. For this purpose we compare the scores of each task solution and the426

amount of time needed for solving the tasks in both groups: without using427

coupled file suggestions and with using of coupled file suggestions. For the time428

needed for the solution, we use only the values for the accomplished tasks only.429

This way we assure that the values for the unsolved tasks do not corrupt the430

overall values for the time needed to successfully solve the tasks.431

To achieve this, we test the overall difference in the correctness of solving the432

tasks using the two-tailed Mann-Whitney U test. It is used to test hypotheses433

where two samples from same population have the same medians or that one of434

2The questionnaires are available in the supplemental material of this paper

12

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2492v1 | CC BY 4.0 Open Access | rec: 30 Sep 2016, publ: 30 Sep 2016

them have larger values so we test the statistical significance of difference be-435

tween two value sets. Determining an appropriate significance threshold defines436

if the null hypothesis must be rejected or not (Nachar, 2008). If the p-value437

is small, the null hypothesis can be rejected meaning that the value sets are438

different. If the p-value is large, the values do not differ. Usually a 0.05 level439

of significance is used as threshold. The p-value is not enough to determine the440

strength of the relationship between variables. For that purpose we report the441

effect size estimate (Tomczak & Tomczak, 2014).442

We use an conservative approach where we test the difference in the cor-443

rectness of our tasks. Without differentiating the tasks, we compare all the444

solutions of the tasks using coupled file changes and the tasks performed with-445

out any suggestion. We repeat the same approach to test the overall difference446

between the time needed to solve the tasks using coupled change suggestions447

against the tasks solved without the help of coupled file changes.448

We use the SPSS statistical software and its typical output for the Mann-449

Whitney U Test whereby the p-value of the statistical significance in the differ-450

ence between the two groups is reported. The mean ranking determines how451

each group scored in the test. To support statistical difference between the sam-452

ples, we calculate the r-value of the effect size proposed by (Cohen, 1977) using453

the z value from the SPSS output (Fritz et al., 2012). A value of 0.5 determines454

a large effect, 0.3 medium and 0.1 small effect (Coolican & Taylor, 2013).455

4.12.2 Usefulness of Attributes456

We analyze the feedback from the questionnaire investigating which attributes457

are useful. We investigate every attribute in the set extracted from the ver-458

sioning system, the issue tracking system and the documentation as previously459

presented. For that purpose we use the Kruskal-Wallis H test, an extension of460

the Mann-Whitney U test. Using this test, we determine if there are statis-461

tically significant differences between the medians of more than two indepen-462

dent groups. We test the statistical significance between more than two value463

sets. The significance level determines if we can reject the null hypothesis. p-464

values bellow 0.05 it means that there is a significant difference between the465

groups (Pohlert, 2014). The effect size for the Kruskal-Wallis H test, we cal-466

culate the effect sizes for the pairwise Mann Whitney U test for each of the467

attributes using the z statistic. We individually calculate the effect size value r468

for each pair comparison. The r value is calculated using the following formula:469

r =
z√
N

(2)

Our approach tests the differences in the feedback about the usefulness be-470

tween all the attributes for all 36 participants. This way we identify which471

attributes we should offer to the participants when solving their tasks together472

with the coupled file changes suggestions.473

Using SPSS, we provide the statistical significance values of the difference474

between all eight attributes. The ranking of the means for the feedback on the475

13

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2492v1 | CC BY 4.0 Open Access | rec: 30 Sep 2016, publ: 30 Sep 2016

usefulness values determine the most useful attributes.476

4.13 Execution Procedure477

• Log Extraction: We extract the information from the Git log containing478

the committed file changes and the attributes. The log data is exported479

as text file and the output is managed using proper log commands.480

481

• Data preprocessing: After the text files with the log data have been gen-482

erated, we continue with the preparation of the data for data mining.483

Various data mining frameworks use their own format, so the input for484

the data mining algorithm and framework needs to be adjusted.485

486

• Support threshold: To be able to begin the investigation, we need to ex-487

tract coupled file changes from the software repository. We extract the488

coupled changes by defining the threshold value of the support for the fre-489

quent item set algorithm. We use the thresholds that give us a frequent yet490

still manageable number of couplings. This threshold is normally defined491

by the user. We use the technique presented in (Fournier-Viger, 2013) to492

identify the support level. These values vary from developer to developer,493

so we test the highest possible value that delivers frequent item sets. If for494

a particular developer, the support value does not bring any useful results,495

we continue dropping the value of the threshold. We did not consider item496

sets with a support below 0.2 meaning the coupled changes should have497

been found in 20 percent of the commits.498

499

• Mining Framework: There is a variety of commercial and open-source500

products offering data mining techniques and algorithms. For the analy-501

sis, we use an open-source framework specialized on mining frequent item502

sets and association rules called the SPMF-Framework.3 It consists of a503

large collection of algorithms supported by appropriate documentation.504

505

• Experiment preparation: We prepare the environment by setting up the506

source code and the Eclipse where the participants will work on the tasks.507

We define the maintenance tasks and provide the free text description.508

We prepare the coupled file changes and the attributes from the software509

repository to be presented to the participants in the experiment.510

511

• Solving tasks: The participants in both groups worked for two hours in512

two labs and provide solution for the maintenance tasks. The solution and513

the screen recording have been saved for further analysis.514

515

3http://www.philippe-fournier-viger.com/spmf

14

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2492v1 | CC BY 4.0 Open Access | rec: 30 Sep 2016, publ: 30 Sep 2016

• Material gathering: We gather the questionnaires, the edited source codes516

and the video files of the participants screens for further analysis.517

518

• Solution analysis: We analyze the scores for the correctness of the mainte-519

nance tasks, calculate the time needed for solving the tasks and determine520

the influence of the coupled file changes on the tasks solution.521

5 Results and Discussion522

The complete list of the maintenance tasks, the coupled file changes, the software523

repository attributes, the questionnaires and the analysis results can be found524

in the supplemental material of this paper.525

Table 4: Descriptive Statistics (Attributes Usefulness)

Attribute Median MAD
Package Description 4 1
Issue Description 4 1
Commit Message 4 1
Issue Type 3 1
Commit ID 3 1
Commit Author 3 1
Issue Author 3 1
Commit Time 3 1

Table 5: Statistical Significance (Coupled changes)

Depend. Variable p-value r-value
Correctness 0.000 0.448
Time Effort 0.041 0.259

5.1 Usefulness of Coupled File Changes526

As we already explained, we operationalize the usefulness of coupled file changes527

by their influence on the correctness of the solutions and the time needed to solve528

the tasks.529

5.1.1 Correctness530

We summarize the distribution of the correctness distribution using box-plots531

as presented in Figure 1. On the y-axis we have the correctness score for the532

successful solving of the tasks. Here the observations are grouped based on the533

presence of coupled changes suggestions during the maintenance tasks solution.534

15

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2492v1 | CC BY 4.0 Open Access | rec: 30 Sep 2016, publ: 30 Sep 2016

Figure 1: Correctness Boxplots

From this box-plot we see that the participants achieved better scores when535

solving the maintenance tasks using the coupled file changes suggestions we536

have provided.537

We investigate the correctness difference of both groups by testing the first538

null hypothesis of the first research question claiming that there is no significant539

differences in the correctness of the task solutions.540

Applying the Mann-Whitney U Test results in a p-value of 0.000 as presented541

in Table 5. This result has to be lower than the threshold of 0.05, so this null542

hypothesis can be rejected. This means that there is a statistically significant543

difference in the correctness of the solution for the provided tasks when using544

coupled file changes suggestions against the correctness of the solutions only545

using the provided task description. The r-value of the effect size for the cor-546

rectness is 0.448 which describes a strong statistical difference in the correctness547

of the maintenance tasks solutions between the groups with and without using548

coupled change suggestions.549

In Table 6 we represent the descriptive statistics for the correctness of the550

tasks solutions. The participants which used the suggestions solved 63.8% of551

the tasks completely, whereby the participants not using suggestions solved only552

22% of the tasks. This shows an significantly higher score for the group using553

coupled changes suggestions.554

The median absolute deviation (MAD) value for the group using coupled555

changes is 0, whereby the value for the group not using coupled changes is 1.556

These values show that the correctness score is spread very close to the me-557

dian for the score of the first group. The statistical results provide an evidence558

16

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2492v1 | CC BY 4.0 Open Access | rec: 30 Sep 2016, publ: 30 Sep 2016

Table 6: Descriptive statistics for the correctness of the tasks

Without Suggestions (–) With suggestions (+)
Completely Median MAD Completely solved tasks Median MAD
solved tasks

22 % 1 1 63.8 % 2 0

that the coupled file changes significantly influence the correctness of the main-559

tenance tasks in the experiment. Inexperienced developers solves more tasks560

when using our suggestions which means they uses the benefit of hints related561

to similar tasks. The coupled change suggestions allow the developer to follow562

a set of files and remind him/her that similar tasks include changes in various563

locations in the source code.564

The improvement in the number of solved tasks for the group using the565

coupled change suggestions shows that developers have used the benefits of566

additional help in locating the features and the files to be modified to solve567

their tasks successfully. The group which did not use this kind of help did has568

not succeeded to solve the same or higher number of tasks which points to the569

usefulness of our approach.570

The use of coupled file changes has been especially noticed in cases where the571

developer needs to perform a similar changes in several locations, like editing572

different views of the application GUI. Here, the developers not using coupled573

change suggestions missed to implement the change in all the files where the574

change should be performed. Coupled file suggestions help the developers not575

to miss other source code locations they need for their task.576

5.1.2 Time577

We have analyzed the influence of the coupled file change suggestions on the578

time needed to successfully perform the tasks when using coupled versus not579

using the coupled file change suggestions. The distribution of the values for both580

groups is presented in Figure 2. We see that the distributions are similar with581

a slight tendency to more time without suggestions. We test the second null582

hypothesis which claims that there is no influence of the coupled file changes on583

the time needed to solve the tasks.584

The p-value for the two tailed test is 0.041. This value is slightly below585

the threshold of 0.05 for the significance of the difference in the time needed586

to solve the tasks using coupled file changes versus the group without using587

the coupled file changes. Therefore, we have to reject the null hypothesis. The588

r-value for the time needed to solve the maintenance tasks is 0.259 which shows589

a relatively small statistical difference between the group which used coupled590

change suggestions and the group without suggestions compared to the r-value591

for the correctness of the solution.592

The descriptive statistic values in Table 7 for the time variable report a593

decrease of the means for the time needed to solve the tasks by 26% for the group594

17

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2492v1 | CC BY 4.0 Open Access | rec: 30 Sep 2016, publ: 30 Sep 2016

Figure 2: Time Boxplots

not using coupled change suggestion. The means ranking reports slightly better595

results for the group using coupled file changes, meaning the the participants of596

this group solved their tasks faster. The standard deviation for the group using597

coupled changes is twice lower than for the group not using coupled changes598

which shows a higher spread-out for the first group. These results show an

Table 7: Descriptive statistics for the time needed in minutes

Without Suggestions (–) With suggestions (+)
Median Mean Stand. Dev. Median Mean Stand. Dev.

12 14.060 8.925 9 9.230 4.158

599

improvement with a statistical significance. This still provides some benefit600

by the coupled file changes approach for faster solving of maintenance tasks.601

The time effort drops because developers using the coupled change suggestions602

needed less time to find the files to change instead to search for the features and603

files in the source code they need to edit.604

The improvement in the time needed to solve the tasks for the group using605

the coupled file changes is not that strong as the improvement in the correctness606

of the task solution which leads us to the point that although our approach607

helps the developers to locate the files needed to be changed. However, it does608

not eliminate the time they need to understand the features and the changes609

they need to perform in the source code. They still need time to organize610

this information and use it. Furthermore, they need to read and understand611

18

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2492v1 | CC BY 4.0 Open Access | rec: 30 Sep 2016, publ: 30 Sep 2016

the suggestions. This means that the change suggestions do not provide an612

automatic solution for solving their tasks.613

5.2 Usefulness of software repository attributes614

The distribution of each attribute usefulness is presented in Figure 3 where the615

usefulness distribution for each of the repository attributes is presented based616

on the feedback of all participants in the experiment.617

We test the third null hypothesis which claims that there is no difference in618

the usefulness between the attributes using the p-value of the Kruskal-Wallis H619

Test. In our case, the p-value for this test is 0.000 which is lower than the 0.05620

threshold. This result leads us to rejecting the null hypothesis.621

Figure 3: Time Boxplots

We reported a set of various software attributes from the software repository.622

The participants reported their feedback on their usefulness at the end of the623

experiment lab after the tasks has been performed. We calculated the r-value624

of the size effect for the repository attributes by creating pairs of each of the625

attributes where we determined the z-value of the Mann-Whitney test 8 for each626

pair. We have 28 pairs of attributes.627

The greatest difference in the usefulness is between the commit time and the628

issue description where the r-value is 0.566, followed by the difference between629

the commit time and the package description with an r-value of 0.557. This indi-630

cates a high statistical significance between these pairs of attributes. The lowest631

difference is between the commit id and the commit author, here the r-value is632

0.004, followed by the difference between the commit id and the issue author633

19

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2492v1 | CC BY 4.0 Open Access | rec: 30 Sep 2016, publ: 30 Sep 2016

Table 8: Statistical Significance (Coupled changes)

p-value r-value Repository Attribute pairs
0.180 0.279 Commit ID Commit Message
0.972 0.004 Commit ID Commit Author
0.249 0.136 Commit ID Commit Time
0.000 0.467 Commit ID Issue Description
0.108 0.190 Commit ID Issue Type
0.624 0.058 Commit ID Issue Author
0.000 0.465 Commit ID Package Description
0.022 0.270 Commit Message Commit Author
0.001 0.400 Commit Message Commit Time
0.048 0.233 Commit Message Issue Description
0.582 0.065 Commit Message Issue Type
0.004 0.336 Commit Message Issue Author
0.220 0.269 Commit Message Package Description
0.228 0.142 Commit Author Commit Time
0.000 0.459 Commit Author Issue Description
0.122 0.182 Commit Author Issue Type
0.599 0.062 Commit Author Issue Author
0.000 0.464 Commit Author Package Description
0.000 0.566 Commit Time Issue Description
0.008 0.311 Commit Time Issue Type
0.476 0.084 Commit Time Issue Author
0.000 0.557 Commit Time Package Description
0.118 0.279 Issue Description Issue Type
0.000 0.526 Issue Description Issue Author
0.530 0.074 Issue Description Package Description
0.039 0.244 Issue Type Issue Author
0.009 0.308 Issue Type Package Description
0.000 0.515 Issue Author Package Description

with an r-value of 0.9058. This shows that there are significant differences be-634

tween the attributes usefulness. We have also gathered the descriptive statistics635

for the participants feedback on the usefulness of each attributes presented in636

Table 4. The median values vary from 3 for the commit id, the commit author,637

the commit time, the issue author and the issue time, and 4 for the commit638

message and the package description. This places the cutoff between “neutral”639

and “somehow interesting” for most of the attributes. The MAD value for all640

attributes is 1, which shows a low spread out of the usefulness values around641

the median.642

We determined that the attributes have different usefulness according to the643

feedback of the participants. The median ranking defines which of the attributes644

are most useful. As most useful attribute we identify the package description645

followed by the issue description and the commit message. This leads us to the646

20

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2492v1 | CC BY 4.0 Open Access | rec: 30 Sep 2016, publ: 30 Sep 2016

conclusion that the inexperienced developers seek for help about the features of647

the source code they need to edit and the task they have to complete.648

The issue type and the commit time are in the middle of the list. The most649

useless attribute is the commit author followed by the issue author and the650

commit id. Here, we suppose that the developers are not interesting about the651

information who performed the changes because they do not know this person.652

This could change if the developers were included in the project for a longer653

time.654

Although we enlisted a list of typical repository attributes, the participants655

have identified a smaller set of attributes to be useful for them than we pro-656

vided in this experiment. This means that we don’t have to not present all657

the attributes for the reason that different developers can happen to find some658

attributes as obsolete to be included in the coupled file change suggestions. The659

individual choice of useful attributes will avoid a confusion of developers. Re-660

porting an individual set of attributes can increase the acceptance of coupled661

file change suggestions concept.662

5.3 Threats to Validity663

• Internal Validity: Possible internal validity threats can rise from the ex-664

periment design. To limit this possibility and the learning effect, we use a665

counterbalanced design where every developer solves four different tasks666

whereby each of them solves two tasks without and two tasks using coupled667

change suggestions. This way the results are not directly influenced by the668

task supported with the coupled file suggestions. The judgment of cor-669

rectness of the task solutions represents another internal threat whereby670

we test the solutions to determine the level of correctness.671

672

• Construct Validity: The greatest construction threat for the study are the673

coupled file changes we have extracted. The coupled files we extracted674

using a relatively high threshold which limits the possibility to provide675

suggestions for coupled changes that happened by chance. Also the met-676

rics we have used to measure to determine the usefulness can represent a677

threat. The subjective usefulness usefulness rating represents another con-678

struct validity whereby we evaluate the provided tasks solutions pairwise679

to minimize the errors in conducting the score distribution. For the time680

needed to solve the tasks we play the captured screens of the participants681

to calculate the time effort needed for the tasks.682

683

• External Validity: The external validity threat concerns the generalization684

of the experiment. The main threat here arises from the type of mainte-685

nance tasks, the participants and the system we investigate. We use four686

different perfective tasks which are supported by a free text description687

without any other adaptation or external help. This way we limit the pos-688

sibility to create artificial conditions specially tailored for our participants.689

21

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2492v1 | CC BY 4.0 Open Access | rec: 30 Sep 2016, publ: 30 Sep 2016

The system we have used for the experiment is an open source Java project690

with a clear project structure. We have used data mining technique that691

can be easily performed on other Git repositories to extract coupled file692

changes.693

6 Conclusion and Future Work694

From the provided results and hypotheses tests we can summarize that the695

coupled changes approach was successfully tested in the performed experiment.696

The participants working with coupled change suggestions provided significantly697

more correct solutions than the participants without these suggestions.698

The participants which used coupled file changes suggestions finished their699

tasks slightly faster compared to the participants group which was working only700

using the issue description.701

We can conclude that the coupled file change suggestions can be positively702

judged to be useful for inexperienced developers working on maintenance tasks.703

The influence is particularly positive on the correctness level of the tasks solu-704

tions, meaning that it helps them to solve more tasks.705

The influence of the coupled change suggestions on the time effort for solving706

the tasks is lower than on the correctness of the solutions.707

We have extended the findings of Ramadani & Wagner (2016) where the par-708

ticipants in their feedback reported the coupled file changes and the attributes709

as neutral to use in maintenance tasks. Our experiments outcomes are more pos-710

itive compared to the results of Ramadani & Wagner (2016). Working on real711

maintenance tasks using the tasks of the working software product increases the712

acceptance of coupled change suggestions by the developers. Also we rounded713

up the set of useful attributes based on the set of attributes presented in this714

study.715

The next steps would be to transform the results and the findings in a tool716

implementation to support the developers working on maintenance tasks using717

visual presentation of suggestions which set of files they should also change. The718

final set of attributes presented in the tool should be adjustable for the reason719

not to flood the developer with information which can cause a negative effect720

on their usefulness.721

7 Acknowledgments722

We would like to thank Asim Abdulkhaleq for his help in the tasks scoring and723

the analysis of the questionnaires.724

References725

Abran, A., & Nguyenkim, H. (1991). Analysis of maintenance work categories726

through measurement. In Software Maintenance, 1991., Proceedings. Confer-727

22

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2492v1 | CC BY 4.0 Open Access | rec: 30 Sep 2016, publ: 30 Sep 2016

ence on, (pp. 104–113).728

Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association rules729

in large databases. In Proceedings of the 20th International Conference on730

Very Large Data Bases , VLDB ’94, (pp. 487–499). San Francisco, CA, USA:731

Morgan Kaufmann Publishers Inc.732

Basili, V. R. (1990). Viewing maintenance as reuse-oriented software develop-733

ment. IEEE Softw., 7 (1), 19–25.734

Basili, V. R., Caldiera, G., & Rombach, H. D. (1994). The Goal Question Metric735

Approach. Wiley.736

Bavota, G., Dit, B., Oliveto, R., Di Penta, M., Poshyvanyk, D., & De Lucia, A.737

(2013). An empirical study on the developers perception of software coupling.738

In Proceedings of the 2013 International Conference on Software Engineering ,739

ICSE ’13, (pp. 692–701). Piscataway, NJ, USA: IEEE Press.740

Bieman, J., Andrews, A., & Yang, H. (2003). Understanding change-proneness741

in oo software through visualization. In Program Comprehension, 2003. 11th742

IEEE International Workshop on, (pp. 44–53).743

Bird, C., Rigby, P. C., Barr, E. T., Hamilton, D. J., Germán, D. M., & Devanbu,744

P. T. (2009). The promises and perils of mining git. In MSR, (pp. 1–10).745

Briand, L., Morasca, S., & Basili, V. (2002). An operational process for goal-746

driven definition of measures. IEEE Transactions on Software Engineering ,747

28 , 1106–1125.748

Canfora, G., & Cerulo, L. (2005). Impact analysis by mining software and749

change request repositories. In Software Metrics, 2005. 11th IEEE Interna-750

tional Symposium, (pp. 9 pp.–29).751

Carlsson, E. (2013). Mining git repositories : An introduction to repository752

mining.753

Chan, T. (2008). Impact of programming and application-specific knowledge754

on maintenance effort:a hazard rate model. In Software Maintenance, 2008.755

ICSM 2008. IEEE International Conference on, (pp. 47–56).756

Cohen, J. (1977). In Statistical Power Analysis for the Behavioral Sciences ,757

(pp. 469 – 474). Academic Press, revised edition ed.758

Coolican, H., & Taylor, F. (2013). Research methods and statistics in psychology .759

Routledge.760

D’Ambros, M., Lanza, M., & Robbes, R. (2009). On the relationship between761

change coupling and software defects. In WCRE , (pp. 135–144).762

23

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2492v1 | CC BY 4.0 Open Access | rec: 30 Sep 2016, publ: 30 Sep 2016

De Lucia, A., Pompella, E., & Stefanucci, S. (2002). Effort estimation for763

corrective software maintenance. In Proceedings of the 14th International764

Conference on Software Engineering and Knowledge Engineering , SEKE ’02,765

(pp. 409–416). New York, NY, USA: ACM.766

Fischer, M., Pinzger, M., & Gall, H. (2003). Populating a release history767

database from version control and bug tracking systems. In Proceedings of768

the International Conference on Software Maintenance, ICSM ’03, (pp. 23–).769

Washington, DC, USA: IEEE Computer Society.770

Fluri, B., Gall, H., & Pinzger, M. (2005). Fine-grained analysis of change771

couplings. In Source Code Analysis and Manipulation, 2005. Fifth IEEE772

International Workshop on, (pp. 66–74).773

Fournier-Viger, P. (2013). How to auto-adjust the minimum sup-774

port threshold according to the data size. http://data-mining.775

philippe-fournier-viger.com/.776

Fritz, C. O., Morris, P. E., & Richler, J. J. (2012). Effect size estimates: Current777

use, calculations, and interpretation. Journal of Experimental Psychology :778

General , 141 (1), 2–18.779

Gall, H., Jazayeri, M., & Krajewski, J. (2003). Cvs release history data for780

detecting logical couplings. In Software Evolution, 2003. Proceedings. Sixth781

International Workshop on Principles of , (pp. 13–23).782

German, D. M. (2004). Mining cvs repositories, the softchange experience. In783

1st International Workshop on Mining Software Repositories , (pp. 17–21).784

Győrödi, C., & Győrödi, R. (2004). A comparative study of association rules785

mining algorithms.786

Han, J. (2005). Data Mining: Concepts and Techniques . San Francisco, CA,787

USA: Morgan Kaufmann Publishers Inc.788

Han, J., Pei, J., Yin, Y., & Mao, R. (2004). Mining frequent patterns without789

candidate generation: A frequent-pattern tree approach. Data Min. Knowl.790

Discov., 8 (1), 53–87.791

Hassan, A. E., & Holt, R. C. (2004). Predicting change propagation in software792

systems. In Proceedings of the 20th IEEE International Conference on Soft-793

ware Maintenance, ICSM ’04, (pp. 284–293). Washington, DC, USA: IEEE794

Computer Society.795

Hattori, L., dos Santos Jr, G., Cardoso, F., & Sampaio, M. (2008). Min-796

ing software repositories for software change impact analysis: A case study.797

In Proceedings of the 23rd Brazilian Symposium on Databases, SBBD ’08,798

(pp. 210–223). Porto Alegre, Brazil, Brazil: Sociedade Brasileira de Com-799

putação.800

24

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2492v1 | CC BY 4.0 Open Access | rec: 30 Sep 2016, publ: 30 Sep 2016

Hutton, A., & Welland, R. (2007). An experiment measuring the effects of801

maintenance tasks on program knowledge. In Proceedings of the 11th Inter-802

national Conference on Evaluation and Assessment in Software Engineering ,803

EASE’07, (pp. 43–52). Swinton, UK, UK: British Computer Society.804

IEEE (1998). STD 1219: Standard for Software Maintenance.805

ISO/IEC (1995). 12207: Information technology-software life cycle processes.806

ISO/IEC (2000). 14764: Software engineering-software maintenance.807

Kagdi, H., Collard, M. L., & Maletic, J. I. (2007). A survey and taxonomy of ap-808

proaches for mining software repositories in the context of software evolution.809

J. Softw. Maint. Evol., 19 (2), 77–131.810

Kagdi, H., Yusuf, S., & Maletic, J. I. (2006). Mining sequences of changed-files811

from version histories. In Proceedings of the 2006 International Workshop on812

Mining Software Repositories, MSR ’06, (pp. 47–53). New York, NY, USA:813

ACM.814

Loeliger, J. (2009). Version Control with Git - Powerful techniques for central-815

ized and distributed project management.. O’Reilly.816

Nachar, N. (2008). The mann-whitney u: A test for assessing whether two inde-817

pendent samples come from the same distribution. Tutorials in Quantitative818

Methods for Psychology , 4 (1), 13–20.819

Nguyen, V., Boehm, B., & Danphitsanuphan, P. (2011). A controlled exper-820

iment in assessing and estimating software maintenance tasks. Inf. Softw.821

Technol., 53 (6), 682–691.822

Pigoski, T. M. (1996). Practical Software Maintenance: Best Practices for Man-823

aging Your Software Investment . Wiley Publishing, 1st ed.824

Pohlert, T. (2014). The Pairwise Multiple Comparison of Mean Ranks Package825

(PMCMR). R package.826

Ramadani, J., & Wagner, S. (2016). Are suggestions of coupled file changes in-827

teresting? In Proceedings of the 11th International Conference on Evaluation828

of Novel Software Approaches to Software Engineering , (pp. 15–26).829

Revelle, M., Gethers, M., & Poshyvanyk, D. (2011). Using structural and textual830

information to capture feature coupling in object-oriented software. Empirical831

Softw. Engg., 16 (6), 773–811.832

Ricca, F., Leotta, M., Reggio, G., Tiso, A., Guerrini, G., & Torchiano, M.833

(2012). Using unimod for maintenance tasks: an experimental assessment in834

the context of model driven development. In Proceedings of the 4th Interna-835

tional Workshop on Modeling in Software Engineering, MiSE 2012, Zurich,836

Switzerland, June 2-3, 2012 , (pp. 77–83).837

25

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2492v1 | CC BY 4.0 Open Access | rec: 30 Sep 2016, publ: 30 Sep 2016

Shelly, G. B., Cashman, T. J., & Rosenblatt, H. J. (1998). Systems analysis838

and design.839

Shirabad, J., Lethbridge, T., & Matwin, S. (2003). Mining the maintenance840

history of a legacy software system. In Software Maintenance, 2003. ICSM841

2003. Proceedings. International Conference on, (pp. 95–104).842

Stevens, W. P., Myers, G. J., & Constantine, L. L. (1974). Structured design.843

IBM Syst. J., 13 (2), 115–139.844

Swanson, E. B. (1976). The dimensions of maintenance. In Proceedings of845

the 2Nd International Conference on Software Engineering , ICSE ’76, (pp.846

492–497). Los Alamitos, CA, USA: IEEE Computer Society Press.847

Tomczak, M., & Tomczak, E. (2014). The need to report effect size estimates848

revisited. an overview of some recommended measures of effect size. The need849

to report effect size estimates revisited. An overview of some recommended850

measures of effect size, TRENDS in Sport Sciences , 19–25.851

van Rysselberghe, F., & Demeyer, S. (2004). Mining Version Control Systems852

for FACs (frequently Applied changes). In the International Workshop on853

Mining Repositories . Edinburgh, Scotland, UK.854

Wu, R., Zhang, H., Kim, S., & Cheung, S.-C. (2011). Relink: Recovering855

links between bugs and changes. In Proceedings of the 19th ACM SIGSOFT856

Symposium and the 13th European Conference on Foundations of Software857

Engineering , ESEC/FSE ’11, (pp. 15–25). New York, NY, USA: ACM.858

Ying, A. T. T., Murphy, G. C., Ng, R. T., & Chu-Carroll, M. (2004). Predicting859

source code changes by mining change history. IEEE Transactions on Software860

Engineering , 30 (9), 574–586.861

Zimmermann, T., Kim, S., Zeller, A., & Whitehead, E. J., Jr. (2006). Mining862

version archives for co-changed lines. In Proceedings of the 2006 International863

Workshop on Mining Software Repositories , MSR ’06, (pp. 72–75). New York,864

NY, USA: ACM.865

Zimmermann, T., Weisgerber, P., Diehl, S., & Zeller, A. (2004). Mining version866

histories to guide software changes. In Proceedings of the 26th International867

Conference on Software Engineering , ICSE ’04, (pp. 563–572). Washington,868

DC, USA: IEEE Computer Society.869

26

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2492v1 | CC BY 4.0 Open Access | rec: 30 Sep 2016, publ: 30 Sep 2016

