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Aggressive interactions among closely related species are common. These can play an

important role as a selective pressure shaping species, traits and assemblages. The nature

of this selective pressure depends on whether the outcomes of aggressive contests are

asymmetric between species (i.e., one species is consistently dominant), yet few studies

have estimated the prevalence of asymmetric versus symmetric outcomes to aggressive

contests. Here we use previously published data involving 26,656 interactions between

270 species pairs of birds from 26 taxonomic families to address the question: How often

are aggressive interactions among closely related bird species asymmetric? We define

asymmetry using (i) the proportion of contests won by one species, and (ii) statistical tests

for asymmetric outcomes of aggressive contests. We calculate these asymmetries using

data summed across different sites for each species pair, and compare results to

asymmetries calculated using data separated by location. We find that 80% of species

pairs had aggressive outcomes where one species won 80% or more of aggressive

contests. We also find that the majority of aggressive interactions among closely related

species show statistically significant asymmetries, and above a sample size of 52

interactions, all outcomes are asymmetric following binomial tests. Results using data

partitioned by location showed similar patterns. Species pairs with dominance data from

multiple sites showed the same dominance relationship across locations in 93% of the

species pairs. Overall, our results suggest that the outcome of aggressive interactions

among closely related species are usually consistent and asymmetric, and should thus

favor ecological and evolutionary strategies specific to the position of a species within a

dominance hierarchy.
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Abstract  20ठ⃚

Aggressive interactions among closely related species are common, and can play an 21ठ⃚

important role as a selective pressure shaping species traits and assemblages. The nature 22ठ⃚

of this selective pressure depends on whether the outcomes of aggressive contests are 23ठ⃚

asymmetric between species (i.e., one species is consistently dominant), yet few studies 24ठ⃚

have estimated the prevalence of asymmetric versus symmetric outcomes to aggressive 25ठ⃚

contests. Here we use previously published data involving 26,656 interactions between 26ठ⃚

270 species pairs of birds from 26 taxonomic families to address the question: How often 27ठ⃚

are aggressive interactions among closely related bird species asymmetric? We define 28ठ⃚

asymmetry using (i) the proportion of contests won by one species, and (ii) statistical 29ठ⃚

tests for asymmetric outcomes of aggressive contests. We calculate these asymmetries 30ठ⃚

using data summed across different sites for each species pair, and compare results to 31ठ⃚

asymmetries calculated using data separated by location. We find that 80% of species 32ठ⃚

pairs had aggressive outcomes where one species won 80% or more of aggressive 33ठ⃚

contests. We also find that the majority of aggressive interactions among closely related 34ठ⃚

species show statistically significant asymmetries, and above a sample size of 52 35ठ⃚

interactions, all outcomes are asymmetric following binomial tests. Results using data 36ठ⃚

partitioned by location showed similar patterns. Species pairs with dominance data from 37ठ⃚

multiple sites showed the same dominance relationship across locations in 93% of the 38ठ⃚

species pairs. Overall, our results suggest that the outcome of aggressive interactions 39ठ⃚

among closely related species are usually consistent and asymmetric, and should thus 40ठ⃚

favor ecological and evolutionary strategies specific to the position of a species within a 41ठ⃚

dominance hierarchy.   42ठ⃚

43ठ⃚
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INTRODUCTION 44ठ⃚

Aggressive interactions commonly occur among closely related species (Kruuk, 1976; 45ठ⃚

Feinsinger, 1976; Willis & Oniki, 1978; Robinson & Terborgh, 1995). Such direct 46ठ⃚

interspecific interactions have been shown to play an important role in interference 47ठ⃚

competition for resources, including habitat, food, nest sites, and roost sites (Chappell, 48ठ⃚

1978; Dhondt & Eyckerman, 1980; Robertson & Gaines, 1986; Alatalo & Moreno, 1987; 49ठ⃚

Wallace, Collier & Sydeman, 1992; Dhondt, 2012). Aggressive interactions may also 50ठ⃚

influence indirect ecological interactions (Martin, 1988; Martin & Martin, 2001a; Martin 51ठ⃚

& Martin, 2001b) by reducing the fitness costs manifested through density-dependent 52ठ⃚

responses of predators and parasites that prey or infect closely related species (often 53ठ⃚

called "apparent competition"; Holt, 1977; Holt & Kotler, 1987; Holt & Lawton, 1994). 54ठ⃚

Although it has been suggested that aggressive interactions occur among closely related 55ठ⃚

species due to misplaced aggression (Murray, 1976; Murray, 1981; Murray, 1988; Jones 56ठ⃚

et al., 2016), sexual selection for aggressive displays (Nuechterlein & Storer, 1985), or as 57ठ⃚

a means of practicing for intraspecific contests (Nuechterlein & Storer, 1985), evidence 58ठ⃚

to date suggests that many aggressive interactions reflect adaptive responses to reduce 59ठ⃚

ecological costs for one or both species (Robinson & Terborgh, 1995; Martin & Martin, 60ठ⃚

2001b; Leisler, 1988; Palomares & Caro, 1999; Peiman & Robinson, 2010; Blowes et al., 61ठ⃚

2013; Losin et al., 2016).  62ठ⃚

 Given the ecological importance of aggressive interactions among closely related 63ठ⃚

species, such interactions may have broad consequences for species assemblages and trait 64ठ⃚

evolution (Morse, 1974; Grether et al., 2009; Grether et al., 2013; Freshwater, 65ठ⃚

Ghalambor & Martin, 2014; Martin & Ghalambor, 2014). The nature of these 66ठ⃚
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consequences, however, depends on whether the outcome of aggressive interactions 67ठ⃚

between species are symmetric, with both species regularly winning aggressive contests, 68ठ⃚

or asymmetric, with one species winning the majority of aggressive contests. For 69ठ⃚

example, if the outcomes of aggressive interactions are asymmetric, then selection may 70ठ⃚

favor traits in the dominant species that enhance fighting abilities (Young, 2003; Owen-71ठ⃚

Ashley & Butler, 2004; Donadio & Buskirk, 2006) or that signal dominance to other 72ठ⃚

species (Dow, 1975; Flack, 1976; König, 1983; Snow & Snow, 1984). Asymmetric 73ठ⃚

interactions may also favor traits in the subordinate species that reduce the likelihood of 74ठ⃚

heterospecific aggression, such as traits that reduce ecological overlap with dominant 75ठ⃚

species (Feinsinger, 1976; Willis & Oniki, 1978; Morse, 1974; König, 1983) or that 76ठ⃚

reduce aggression from dominant species (e.g., the loss of signals that induce aggression 77ठ⃚

from the dominant species, or the evolution of signals that mimic the dominant or other 78ठ⃚

dangerous species; Gill, 1971; Feinsinger & Chaplin, 1975; Feinsinger & Colwell, 1978; 79ठ⃚

Rainey & Grether, 2007; Prum & Samuelson, 2012; Prum, 2014). Conversely, if 80ठ⃚

aggressive interspecific interactions are typically symmetric, then selection may act 81ठ⃚

similarly on the interacting species, potentially favoring traits such as interspecific 82ठ⃚

territoriality (Orians & Willson, 1964). Thus, selection should shape the evolution of 83ठ⃚

species’ traits differently if aggressive interactions are symmetric versus asymmetric. 84ठ⃚

Despite the importance of understanding the prevalence of asymmetric relationships 85ठ⃚

among interacting species, relatively little is known about how common such patterns are 86ठ⃚

in nature. 87ठ⃚

 In this paper, we ask: how often are aggressive interactions among closely related 88ठ⃚

species asymmetric? Although the outcomes of many aggressive contests among species 89ठ⃚
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are asymmetric (Morse, 1974; Lawton & Hassell, 1981; Persson, 1985), few studies have 90ठ⃚

compared the frequency of asymmetric versus symmetric relationships between 91ठ⃚

aggressively interacting species. The studies that have examined this question have found 92ठ⃚

asymmetric interactions to be common: 1) a study of 13 species of surgeonfish 93ठ⃚

(Acanthuridae) on a barrier reef at Aldabra, Indian Ocean, found evidence for asymmetric 94ठ⃚

interactions among 26 of the 27 species pairs that interacted aggressively (Robertson & 95ठ⃚

Gaines, 1986), 2) a study of closely related species of birds in Amazonian Peru found that 96ठ⃚

9 of the 12 focal species pairs exhibiting interspecific aggression also showed statistically 97ठ⃚

significant asymmetries in their response to playback of heterospecific songs (Robinson 98ठ⃚

& Terborgh, 1995), 3) a comparative study of interspecific killing among carnivorous 99ठ⃚

mammals found asymmetric killing (i.e., only one species was known to kill the other, 100ठ⃚

rather than both killing each other) in 18 of 19 species pairs that were within the same 101ठ⃚

taxonomic families (excluding domesticated species; Palomares & Caro, 1999), and 4) 102ठ⃚

our own comparative study of ecological traits of dominant and subordinate species of 103ठ⃚

North American birds found evidence that 64 of 65 congeneric species pairs had 104ठ⃚

asymmetric outcomes to aggressive interactions (Freshwater, Ghalambor & Martin, 105ठ⃚

2014).  106ठ⃚

 Here, we compile published, quantitative data on the outcomes of aggressive 107ठ⃚

interactions among species within the same taxonomic families, focusing on birds where 108ठ⃚

interaction data are common. We estimate asymmetries in interactions among species 109ठ⃚

using statistical tests for asymmetries and the proportion of aggressive contests won by 110ठ⃚

each species. Although statistical tests provide an accepted method for identifying 111ठ⃚

asymmetries in the outcomes of interactions (Crawley, 2013), these tests may not be the 112ठ⃚
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optimal method for estimating their magnitude, prevalence, or biological importance. For 113ठ⃚

example, a lack of statistically significant dominance asymmetries may simply reflect 114ठ⃚

small sample sizes; in other cases, large sample sizes may result in statistically significant 115ठ⃚

asymmetries of small biological effect (e.g., 55:45 splits in the outcomes of aggressive 116ठ⃚

interactions). Thus, we also estimated the prevalence of asymmetric interactions by 117ठ⃚

calculating the proportion of aggressive contests won by each species, providing a view 118ठ⃚

of their biological importance that has not been highlighted in other studies to date (e.g., 119ठ⃚

Freshwater, Ghalambor & Martin 2014). The outcome of aggressive contests, including 120ठ⃚

which species is behaviorally dominant, may also vary across different habitats or 121ठ⃚

geographic locales (Altshuler, 2006; Carstensen et al., 2011), but the frequency of such 122ठ⃚

variation has not previously been explored. To test how common asymmetric aggressive 123ठ⃚

interactions are in birds, we examined the outcome of contests across diverse groups of 124ठ⃚

birds, including vultures feeding at carcasses, hummingbirds feeding at nectar sources, 125ठ⃚

antbirds and woodcreepers feeding on prey fleeing from army ant swarms, and a broad 126ठ⃚

collection of North American congeners. Where possible, we also examined if the 127ठ⃚

outcome of aggressive interactions between the same species pairs changed between 128ठ⃚

different geographic locations. Collectively, we present results from data representing 129ठ⃚

270 interacting pairs of species from 26 families, and including the outcomes of 26,656 130ठ⃚

interactions.  131ठ⃚

 132ठ⃚

MATERIALS & METHODS 133ठ⃚

Interaction data 134ठ⃚
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We used published data from Freshwater, Ghalambor & Martin (2014) and Martin & 135ठ⃚

Ghalambor (2014), supplemented with additional quantitative data, including published 136ठ⃚

data for interactions that had been excluded from Martin & Ghalambor (2014) because of 137ठ⃚

a lack of genetic or mass data for the interacting species. This study did not require 138ठ⃚

vertebrate ethics approvals because we used published data in a comparative test 139ठ⃚

supplemented with a few additional natural history observations. For data on North 140ठ⃚

American congeners, we included only the youngest phylogenetically-independent 141ठ⃚

species pair for which we had quantitative data on the outcomes of aggressive 142ठ⃚

interactions (following Freshwater, Ghalambor & Martin 2014). The complete datasets 143ठ⃚

and sources for all of the data are included with this submission as supplementary files 144ठ⃚

Data S1-S3. Overall, we created two different datasets: (1) all of the data combined, 145ठ⃚

including data for species interactions that were gathered from multiple sites and summed 146ठ⃚

together for each species pair (Data S2), and (2) the same data entered for each individual 147ठ⃚

location separately, and where each location had at least 6 observations per species pair 148ठ⃚

(Data S3). We included data separated by location to address the potential effects of 149ठ⃚

lumping data across geographic locations on our results. Separating data by location also 150ठ⃚

allowed us to test for geographic variation in dominance relationships among species 151ठ⃚

using the cases where the same species pairs had interaction data from multiple locations. 152ठ⃚

For all datasets, we included only species pairs (Data S2) or locations (Data S3) that had 153ठ⃚

at least 6 interactions with clear outcomes (i.e., one species clearly won the interaction). 154ठ⃚

Following the previous work, we included chases, supplants and displacements, 155ठ⃚

kleptoparasitism, and physical attacks as aggressive interactions (see Freshwater, 156ठ⃚

Ghalambor & Martin 2014 for definitions of these terms). We excluded observations that 157ठ⃚
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involved the defense of eggs or young and avoided interactions involving more than one 158ठ⃚

individual of each species (following Freshwater, Ghalambor & Martin 2014; Martin & 159ठ⃚

Ghalambor, 2014). We included observations related to competition for nest sites, 160ठ⃚

because many birds compete aggressively with other species for nesting sites (e.g., 161ठ⃚

Wallace, Collier & Sydeman, 1992).  162ठ⃚

 163ठ⃚

Statistical tests of asymmetry 164ठ⃚

We tested for asymmetries in the outcomes of aggressive contests between pairs of 165ठ⃚

species using binomial tests in the statistical program R (R Core Team, 2014). We ran 166ठ⃚

binomial tests on aggressive interaction data for each species pair in our analysis, and 167ठ⃚

again on our dataset partitioned by location within each species pair. The likelihood of 168ठ⃚

detecting a significant (P < 0.05) asymmetry in the outcome of aggressive interactions 169ठ⃚

among species increases with the number of interactions observed (i.e., sample size; 170ठ⃚

Crawley, 2013), so we plotted P-values as a function of sample size for all species pairs.  171ठ⃚

 172ठ⃚

Proportion of interactions won 173ठ⃚

We also tested for asymmetries in the outcomes of aggressive contests between pairs of 174ठ⃚

species by examining the proportion of interactions won by one species. We know of no 175ठ⃚

cut-off for designating interactions as asymmetric, so we plotted the cumulative number 176ठ⃚

of species pairs showing asymmetric outcomes to their interactions, varying the definition 177ठ⃚

of asymmetric from >60% to 100% of the interactions won by the dominant. As before, 178ठ⃚

we plotted these relationships for data summarized by species pairs, and again for data 179ठ⃚

partitioned by location within each species pair.  180ठ⃚
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 181ठ⃚

Variation in dominance among locations 182ठ⃚

For species pairs with dominance data from multiple locations (each location with greater 183ठ⃚

than 6 interactions per species pair), we looked at the frequency with which dominance 184ठ⃚

status switched between species among locations, and tested for differences in the 185ठ⃚

proportion of aggressive contests won by each species between sites using Chi-squared 186ठ⃚

tests in R (R Core Team, 2014).  187ठ⃚

 188ठ⃚

RESULTS 189ठ⃚

Statistical tests of asymmetry 190ठ⃚

Overall, 223 of 270 species pairs (82.6%) showed statistically significant (P < 0.05) 191ठ⃚

asymmetries in the outcomes of aggressive contests. Above a sample size of 52, all 192ठ⃚

aggressive interactions among species were statistically significant (P < 0.05) (Fig. 1). 193ठ⃚

Data partitioned by location within species pairs revealed similar results: 235 of 287 194ठ⃚

comparisons (81.9%) showed statistically significant (P < 0.05) asymmetries in the 195ठ⃚

outcomes of aggressive contests.  196ठ⃚

 197ठ⃚

Proportion of interactions won 198ठ⃚

For data summarized by species pair, 79.6% of species pairs had dominant species that 199ठ⃚

won >80% of the aggressive contests (range across groups: 72.2% for vultures to 86.4% 200ठ⃚

for antbirds and woodcreepers; Fig. 2). In contrast, 97.0% of species pairs had dominant 201ठ⃚

species that won >60% of the aggressive contests (range across groups: 95.6% for 202ठ⃚

hummingbirds to 100.0% for vultures), while 48.1% of species pairs had dominant 203ठ⃚
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species that won 100% of the aggressive contests (range across groups: 27.8% for 204ठ⃚

vultures to 65.2% for antbirds and woodcreepers) (Fig. 2). Data partitioned by location 205ठ⃚

within species pairs revealed similar results: 79.8% of species pairs had dominant species 206ठ⃚

that won >80% of the aggressive contests (range across groups: 72.0% for vultures to 207ठ⃚

89.1% for antbirds and woodcreepers), 96.2% of species pairs had dominant species that 208ठ⃚

won >60% of the aggressive contests (range across groups: 88.0% for vultures to 98.4% 209ठ⃚

for antbirds and woodcreepers), and 50.5% of species pairs had dominant species that 210ठ⃚

won 100% of the aggressive contests (range across groups: 32.0% for vultures to 70.3% 211ठ⃚

for antbirds and woodcreepers).  212ठ⃚

 213ठ⃚

Variation in dominance among locations 214ठ⃚

Across all species pairs, 30 had aggressive interaction data from more than one location 215ठ⃚

(with over 6 interactions observed from each location); 23 species pairs had data for 2 216ठ⃚

locations, 7 species pairs had data for 3 locations. Of the 30 species pairs with data from 217ठ⃚

different geographic locations, 12 species pairs had data from different countries, 13 218ठ⃚

species pairs had data from different states or provinces within the same countries, and 5 219ठ⃚

species pairs had data from different geographic locales within the same state or province.  220ठ⃚

Dominance relationships within species pairs were consistent across sites (i.e., the 221ठ⃚

same species won the majority of the interactions at both or all three locations) in 28 of 222ठ⃚

the 30 species pairs (93.3%). The 2 species pairs whose dominance relationship flipped 223ठ⃚

between locations included one pair of vultures (Accipitridae: Rüppell’s Vulture, Gyps 224ठ⃚

rueppellii—White-backed Vulture, Gyps africanus, Amboseli National Park, Kenya and 225ठ⃚

Serengeti National Park, Tanzania) and one pair of hummingbirds (Trochilidae: 226ठ⃚
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Glittering-bellied Emerald, Chlorostilbon lucidus— Ruby-topaz Hummingbird, 227ठ⃚

Chrysolampis mosquitus, Serra do Pará, Pernambuco, Brazil and Cadeia do Espinhaço, 228ठ⃚

Bahia, Brazil). For 6 of the 30 species pairs (20.0%; including the 2 for which dominance 229ठ⃚

relationships flipped between sites), the proportions of aggressive contests won by each 230ठ⃚

species were significantly different among locations (i.e., Chi-squared test, P < 0.05). For 231ठ⃚

the remaining 24 species pairs (80.0%), the proportion of aggressive contests won by 232ठ⃚

each species did not differ significantly across sites. 233ठ⃚

 234ठ⃚

DISCUSSION 235ठ⃚

Whether the outcome of aggressive interactions is commonly symmetric or asymmetric 236ठ⃚

has important ecological and evolutionary implications. We found the outcomes of most 237ठ⃚

aggressive interactions within the same taxonomic bird family were asymmetric. Overall, 238ठ⃚

83% of the 270 species pairs showed statistically significant asymmetries in the outcome 239ठ⃚

of aggressive contests (i.e., binomial tests, P < 0.05; Fig. 1), with all species pairs 240ठ⃚

showing statistically significant asymmetries above a sample size of 52 interactions. 241ठ⃚

When we estimated asymmetry using the proportion of interactions won by the dominant 242ठ⃚

species, we found that 80% of the species pairs contained dominant species that won 80% 243ठ⃚

or more of aggressive contests (Fig. 2). For 30 species pairs, we had dominance data for 2 244ठ⃚

or 3 different populations, allowing us to test whether dominance asymmetries among 245ठ⃚

species were consistent across locations. Dominance relationships were the same across 246ठ⃚

locations for 93% of the species pairs (i.e., the same species was dominant across all 247ठ⃚

locations), while the proportion of interactions won by each species was not significantly 248ठ⃚

different across locations for 80% of the species pairs. These results suggest that 249ठ⃚
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dominance relationships between species are usually consistent across different sites. 250ठ⃚

Below, we discuss the ecological and evolutionary consequences of asymmetric 251ठ⃚

interactions, the factors that underlie dominance, and the implications for how dominant 252ठ⃚

and subordinate species respond to human impacts. 253ठ⃚

 254ठ⃚

Asymmetric interactions and their consequences for ecology 255ठ⃚

Asymmetric outcomes to most aggressive interactions suggest that dominant species can 256ठ⃚

use preferred resources and reduce the access of subordinate species to those resources 257ठ⃚

(Morse, 1974). Such patterns are not unique to birds, as experiments have demonstrated 258ठ⃚

asymmetric partitioning of resources in invertebrates (Bovbjerg, 1970; Bertness, 1981a; 259ठ⃚

Bertness, 1981b) and across a diverse array of vertebrates (Chappell, 1978; Robertson & 260ठ⃚

Gaines, 1986; Alatalo & Moreno, 1987; Martin & Martin, 2001a; Hixon, 1980; Larson, 261ठ⃚

1980; Alatalo et al., 1985; Alatalo et al., 1987; Ziv et al., 1993; Pasch, Bolker & Phelps, 262ठ⃚

2013). In these cases, subordinates are excluded from preferred resources, but are still 263ठ⃚

able to use resources that cannot sustain dominant species, and thus are not preferentially 264ठ⃚

defended (Morse, 1974; Martin, 2014). The result is a repeated pattern: dominant species 265ठ⃚

direct aggression towards subordinate species (interference competition) restricting 266ठ⃚

resource use for the subordinate species, with indirect interactions potentially influencing 267ठ⃚

both dominant and subordinate species (i.e., interactions through shared predators, 268ठ⃚

parasites, or prey, including apparent or exploitative competition) (Martin & Martin, 269ठ⃚

2001a).  270ठ⃚

 The strong asymmetries in the outcomes of aggressive contests also suggest that 271ठ⃚

trade-offs involving aggressive ability and behavioral dominance could play an important 272ठ⃚

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2488v1 | CC BY 4.0 Open Access | rec: 30 Sep 2016, publ: 30 Sep 2016



Martin,ठ⃚Freshwaterठ⃚&ठ⃚Ghalamborठ⃚msठ⃚ ठ⃚ ठ⃚13ठ⃚

role in the partitioning of resources and coexistence of species, particularly among 273ठ⃚

closely related species. For example, a smaller body size allows species to grow, survive, 274ठ⃚

and reproduce with fewer resources, but comes at a cost in the form of losing aggressive 275ठ⃚

contests to larger species (Peters, 1983; see also below). Given that resources vary in 276ठ⃚

time and space, large- and small-sized species could coexist by partitioning habitats 277ठ⃚

according to the abundance of resources, with aggressive interactions among species 278ठ⃚

playing a central role in habitat partitioning (Morse, 1974; Ford, 1979; Diamond et al., 279ठ⃚

1989; Martin, 2014). We might expect other trade-offs involving aggressive abilities to 280ठ⃚

lead to similar patterns of resource partitioning and coexistence among species of birds 281ठ⃚

and other taxa (e.g., Feinsinger, 1976; Willis & Oniki, 1978; Feinsinger & Colwell, 1978).  282ठ⃚

  283ठ⃚

Asymmetric interactions and their consequences for evolution 284ठ⃚

Asymmetric aggressive interactions should represent an important selection pressure 285ठ⃚

between interacting species (Grether et al., 2009; Pfennig & Pfennig, 2012; Grether et al., 286ठ⃚

2013). Our results suggest that we should expect such selection to favor the evolution of 287ठ⃚

distinct traits and strategies that depend on the position of species within a dominance 288ठ⃚

hierarchy (Morse, 1974; Gauthreaux, 1978; Grether et al., 2013; Freshwater, Ghalambor 289ठ⃚

& Martin, 2014). For example, selection may favor investment in aggression or territorial 290ठ⃚

behavior in dominant species, even when such traits incur some fitness costs or trade-off 291ठ⃚

with other traits. Selection may also favor traits, such as color patterns or displays, that 292ठ⃚

signal dominance status to subordinate species in order to reduce the frequency and cost 293ठ⃚

of aggressive encounters among species (see Flack, 1976; König, 1983; Snow & Snow, 294ठ⃚

1984 for possible examples of these traits).   295ठ⃚
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 In contrast, selection might favor traits in subordinate species that reduce the costs 296ठ⃚

of aggressive interactions with dominants. For example, the evolution of color patterns or 297ठ⃚

displays in subordinate species may reduce aggression from dominant species, and thus 298ठ⃚

be favored by natural selection (Gill, 1971; Sætre, Král & Biík, 1993). The evolution of 299ठ⃚

mimicry of dominant species by subordinates may also be an underappreciated outcome 300ठ⃚

of asymmetric interactions among species. In birds, recent evidence suggests that the 301ठ⃚

mimicry of dominant species by subordinates could be widespread, involving both song 302ठ⃚

and color patterns (Cody, 1973; Rainey & Grether, 2007; Prum & Samuelson, 2012; 303ठ⃚

Prum, 2014). Similarly, selection should favor traits that facilitate alternative ecological 304ठ⃚

strategies that reduce the costs of aggressive contests with dominant species. Such 305ठ⃚

alternative strategies could include altering the timing of breeding or geographic 306ठ⃚

distribution to reduce temporal and spatial overlap with dominant species (Freshwater, 307ठ⃚

Ghalambor & Martin, 2014), or evolving adaptations that allow subordinate species to 308ठ⃚

use novel resources (e.g., physiological tolerance to conditions outside those experienced 309ठ⃚

in a clade). With reduced access to important resources for survival, such as food and safe 310ठ⃚

roosting sites, subordinate species might also be more likely to evolve distinct life history 311ठ⃚

strategies that invest more in annual reproductive effort at the expense of annual survival 312ठ⃚

(Roff, 1992; Stearns, 1992). Indeed, such patterns characterize dominant and subordinate 313ठ⃚

species within a genus: subordinate species have lower annual survival rates and lay 314ठ⃚

larger eggs for a given body mass (Freshwater, Ghalambor & Martin, 2014).  315ठ⃚

 316ठ⃚

What causes variation in the asymmetric outcomes of aggressive encounters among 317ठ⃚

species? 318ठ⃚
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Many factors have been identified as influencing the proportion of encounters won by 319ठ⃚

dominant species, including age and sex (Stiles, 1973) and the context in which the 320ठ⃚

encounter occurs (Altshuler, 2006), as well as proximate factors that include condition, 321ठ⃚

hunger level, density, and time of arrival or colonization (Stiles, 1973; Lyon, 1976; 322ठ⃚

Anderson & Horwitz, 1979; Cole, 1983; Wallace & Temple, 1987; Robinson, 1989; 323ठ⃚

Tanner & Adler, 2009). Perhaps the most important predictor of the outcome of 324ठ⃚

aggressive contests, however, appears to be differences in body size among the 325ठ⃚

interacting species (Morse, 1974; Peters, 1983; Robinson & Terborgh, 1995; Donadio & 326ठ⃚

Buskirk, 2006; Martin & Ghalambor, 2014). Indeed, in the results we report here, the 327ठ⃚

larger species was dominant in 88% of the contests where the outcomes of aggressive 328ठ⃚

contests were asymmetric (defined as over 80% contests won by the dominant species), 329ठ⃚

with the dominant species averaging 57% heavier than the subordinate (for a list of 330ठ⃚

reasons why larger size confers an advantage in aggressive contests, see Martin & 331ठ⃚

Ghalambor, 2014). This contrasts with cases where one species won between 50-69% of 332ठ⃚

the contests (i.e., the outcome was more symmetric), where the larger species prevailed in 333ठ⃚

only 63% of the species pairs and averaged only 24% heaver (data in Dryad).  334ठ⃚

The importance of body size for determining the outcomes of aggressive contests, 335ठ⃚

however, can vary. For example, larger species win a greater proportion of aggressive 336ठ⃚

interactions as the difference in body size between interacting species increases, but this 337ठ⃚

relationship weakens with greater evolutionary distance among the interacting species 338ठ⃚

(Martin & Ghalambor, 2014). We hypothesize this pattern occurs because closely related 339ठ⃚

species share more traits with each other (Violle et al., 2011), and thus differences in size 340ठ⃚

alone can determine the outcome of aggressive interactions (Martin & Ghalambor, 2014). 341ठ⃚
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As species become more distantly related, however, they are more likely to accumulate 342ठ⃚

unique traits that influence behavioral dominance independent of body size. Indeed, 343ठ⃚

Martin & Ghalambor (2014) found that as species became more distantly related, the 344ठ⃚

outcome of aggressive interactions became more asymmetric independent of differences 345ठ⃚

in body size. Few studies, however, have attempted to identify the exact suite of traits 346ठ⃚

that explain dominance independent of body size (Donadio & Buskirk, 2006; Martin & 347ठ⃚

Ghalambor, 2014). 348ठ⃚

 349ठ⃚

Asymmetric interactions and their consequences for human impacts 350ठ⃚

Given broad asymmetries, we should also expect species to differ in their responses to 351ठ⃚

anthropogenic challenges, such as climate change and habitat alteration, depending on 352ठ⃚

their position within a dominance hierarchy. Some subordinate species appear to be better 353ठ⃚

able to persist in degraded habitats (Daily & Ehrlich, 1994), and may have greater 354ठ⃚

ecological breadth and tolerance compared to dominant species (Morse, 1974; Minot & 355ठ⃚

Perrins, 1986; Blowes, Pratchett & Connolly, 2013; but see Freshwater, Ghalambor & 356ठ⃚

Martin, 2014). Aggression and behavioral dominance, however, are often associated with 357ठ⃚

boldness that can help species cope in the face of human disturbance (Evans, Boudreau & 358ठ⃚

Hyman, 2010; Lowry, Lill & Wong, 2013). Thus, traits that covary with dominance status 359ठ⃚

could facilitate or hinder species in the face of human alteration of habitats. Regardless, 360ठ⃚

the importance of asymmetric interactions in determining patterns of resource use among 361ठ⃚

species suggests that these interactions may mediate species' responses to perturbations 362ठ⃚

like habitat alteration or climate change. Few models consider these kinds of species 363ठ⃚

interactions in their forecasts of the impacts of habitat perturbations or climate change on 364ठ⃚
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species abundance and distributions (Tylianakis et al., 2008; Gilman et al., 2010; Buckley, 365ठ⃚

2013). Yet, any impacts on dominant species are likely to have cascading effects on the 366ठ⃚

subordinate species with which they interact (Duckworth & Badyaev, 2007; Gilman et al., 367ठ⃚

2010; Jankowski, Robinson & Levey, 2010; Buckley, 2013; Martin & Dobbs, 2014; 368ठ⃚

Freeman & Montgomery, 2015). Such asymmetric interactions could have important 369ठ⃚

consequences for populations, particularly in environments where the options for 370ठ⃚

dispersal and range shifting are limited (e.g., tropical islands and mountains; Jankowski, 371ठ⃚

Robinson & Levey, 2010; Freeman, 2016). 372ठ⃚
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Figure captions 583ठ⃚

Figure 1 Binomial test P-values testing for asymmetries in the outcomes of aggressive 584ठ⃚

interactions for each species pair in our study, as a function of the number of interactions 585ठ⃚

observed between each pair. The dashed line illustrates the common P-value cutoff for 586ठ⃚

statistical significance at 0.05. All species pairs with greater than 52 interactions showed 587ठ⃚

statistically significant asymmetries; overall, 83% of species pairs showed statistically 588ठ⃚

significant asymmetries. 589ठ⃚

 590ठ⃚

  591ठ⃚
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Figure 2 The proportion of species pairs showing asymmetric outcomes to their 593ठ⃚

aggressive interactions. Asymmetry was measured by the proportion of interactions won 594ठ⃚

by the dominant species, and was defined on a scale from >60% of the interactions won 595ठ⃚

by the dominant species to 100% of the interactions won by the dominant species (x-axis). 596ठ⃚

The thick black line represents the entire dataset; the gray lines represent different groups 597ठ⃚

within the dataset. Plots are line plots connecting points at 0.01 x-value increments. 598ठ⃚
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