
A Systematic Literature Review of How
Mutation Testing Supports Test Activities
Qianqian Zhu, Annibale Panichella, Andy Zaidman

Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University
of Technology, Mekelweg 4, 2628CD Delft, The Netherlands.

Corresponding author:
Qianqian Zhu

Email address: qianqian.zhu@email.com

ABSTRACT

Mutation testing has been very actively investigated by researchers since the 1970s and remarkable
advances have been achieved in its concepts, theory, technology and empirical evidence. While the
latest realisations have been summarised by existing literature review, we lack insight into how mutation
testing is actually applied. Our goal is to identify and classify the main applications of mutation testing
and analyse the level of replicability of empirical studies related to mutation testing. To this aim, this
paper provides a systematic literature review on the application perspective of mutation testing based on
a collection of 159 papers published between 1981 and 2015. In particular, we analysed in which testing
activities mutation testing is used, which mutation tools and which mutation operators are employed.
Additionally, we also investigated how the core inherent problems of mutation testing, i.e. the equivalent
mutant problem and the high computational cost, are addressed during the actual usage. The results
show that most studies use mutation testing as an assessment tool targeting unit tests, and many of
the supporting techniques for making mutation testing applicable in practice are still underdeveloped.
Based on our observations, we made nine recommendations for the future work, including an important
suggestion on how to report mutation testing in testing experiments in an appropriate manner.

1 INTRODUCTION
Mutation testing is defined by Jia and Harman [1] as a fault-based testing technique which provides a
testing criterion called the mutation adequacy score. This score can be used to measure the effectiveness
of a test set in terms of its ability to detect faults [1]. The principle of mutation testing is to introduce
syntactic changes into the original program to generate faulty versions (called mutants) according to
well-defined rules (mutation operators) [2]. Mutation testing originated in the 1970s with works from
Lipton [3], DeMillo et al. [4] and Hamlet [5] and has been a very active research field over the last
few decades. The activeness of the field is in part evidenced by the extensive survey of more than 390
papers on mutation testing that Jia and Harman published in 2011 [1]. Jia and Harman’s survey highlights
the research achievements that have been made over the years, including the development of tools for
a variety of languages and empirical studies performed [1]. Additionally, they highlight some of the
actual and inherent problems of mutation testing, amongst others: (1) the high computational cost caused
by generating and executing the numerous mutants and (2) the tremendous time-consuming human
investigation required by test oracle problem and equivalent mutants detection.

While Jia and Harman’s survey provides us with a great overview of the latest realisations in research,
we lack insight into how mutation testing is actually applied. Specifically, we are interested in analysing in
which testing activities mutation testing is used, which mutation tools are employed and which mutation
operators are used. Additionally, we want to investigate how the aforementioned problems of the high
computational cost and the considerable human effort required are dealt with when applying mutation
testing. In order to steer our research, we aim to fulfil the following objectives:

• to identify and classify the applications of mutation testing in testing activities;

• to analyse how the main problems are coped with when applying mutation testing;

1

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2483v1 | CC BY 4.0 Open Access | rec: 28 Sep 2016, publ: 28 Sep 2016

• to provide guidelines for applying mutation testing in testing experiments;

• to identify gaps in current research and to provide recommendations for future work.

As systematic literature reviews have been shown to be good tools to summarise existing evidence
concerning a technology and identify gaps in current research [6], we will follow this approach for
reaching our objectives. We only consider the articles which provide sufficient details on how mutation
testing is used in their studies, which require at least brief specification about the adopted mutation tool,
mutation operators or mutation score. Moreover, we selected only papers that use Mutation Testing as
a tool for evaluating or improving other testing activities rather than focusing on the development of
mutation tools, operators or challenges and open issues for mutation analysis. This resulted in a collection
containing 159 papers published from 1981 to 2015. We analysed this collection in order to answer the
following two research questions:

RQ1: How mutation testing is used in testing activities?
This research question aims to identify and classify the main software testing tasks where mutation

testing is applied. In particular, we are interested in the following key aspects: (1) in which circumstances
mutation testing is used (e.g. assessment tool), (2) which testing activities are involved (e.g. test data
generation, test case prioritisation), (3) which test level it targets (e.g. unit level) and (4) which testing
strategies it supports (e.g. structural testing). The above four detailed aspects are defined to characterise
the essential features related to usage of mutation testing and the testing activities involved. With these
elements in place, we can provide an in-depth analysis of the applications of mutation testing.

RQ2: How are empirical studies related to the mutation testing designed and reported?
The objective of this question is to synthesise empirical evidence related to mutation testing. The

case studies or experiments play an inevitable role in a research study. The design and demonstration
of the evaluation methods should ensure the replicability. The replicability means that the subject, the
basic methodology, as well as the result, should be clearly pointed out in the article. In particular,
we are interested in how the articles report the following information related to mutation testing: (1)
mutation tools, (2) mutation operators, (3) mutant equivalence problem, (4) techniques for reduction of
computational cost and (5) subject programs used in the case studies. After gathering this information, we
can draw conclusions from the distributions of related techniques adopted under the above five facets and
thereby provide guidelines for applying mutation testing.

The remainder of this review is organised as follows: Section 2 provides an overview on background
notions on Mutation testing. Section 3 details the main procedures we followed to conduct the systematic
literature review and describes our inclusion and exclusion criteria. Section 4 presents the discussion of
the our findings, particularly Section 4.3 summarises the answers to the research questions while Section
4.4 provides the recommendation for the future research. Section 5 discusses the threats to validity, and
the Section 6 concludes the paper.

2 BACKGROUND
In order to level the playing field, we first provide the basic concepts related to mutation testing, i.e.,
its fundamental hypothesis and generic process, including the Competent Programmer Hypothesis, the
Coupling Effect, mutation operators and the mutation score. Subsequently, we discuss the benefits and
limitations of mutation testing. After that, we present a historical overview of mutation testing where we
mainly address the studies that concern the application of mutation testing.

2.1 Basic Concepts
2.1.1 Fundamental Hypothesis
Mutation testing starts with the assumption of the Competent Programmer Hypothesis (introduced by
Demillo et al. [4] in 1978): “The competent programmers create programs that are close to being correct.”
This hypothesis implies that the potential faults in the programs delivered by the competent programmers
are just very simple mistakes; these defects can be corrected by a few simple syntactical changes. Inspired
by the above hypothesis, mutation testing typically applies small syntactical changes to original programs,
thus implying that the faults that are seeded resemble faults made by “competent programmers”.

At first glance, it seems that the programs with complex errors cannot be explicitly generated by
mutation testing. However, the Coupling Effect, which was coined by Demillo et al. [4] states that “Test
data that distinguishes all programs differing from a correct one by only simple errors is so sensitive that

2/57

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2483v1 | CC BY 4.0 Open Access | rec: 28 Sep 2016, publ: 28 Sep 2016

it also implicitly distinguishes more complex errors”. This means complex faults are coupled to simple
faults. This hypothesis was later supported by Offutt [7, 8] through empirical investigations over the
domain of mutation testing. In his experiments, he used first order mutants, which are created by applying
the mutation operator to the original program once, to represent simple faults. Conversely, higher-order
mutants, which are created by applying the mutation operator to the original program more than once,
stand for complex faults. The results showed that the test data generated for 1-order mutants killed a higher
percentage of mutants when applied to higher-order mutants thus yielding positive empirical evidence
about the Coupling Effect. Besides, there has been a considerable effort in validating the coupling effect
hypothesis, amongst others the theoretical studies of Wah [9–11] and Kapoor [12].

2.1.2 The Generic Mutation Testing Process
After introducing the fundamental hypotheses of mutation testing, we are going to give a detailed
description of the generic process of mutation testing:

Given a program P and a test suite T , a mutation engine makes syntactic changes (defined
as mutation operators) to the program P, thereby generating a set of mutant programs M.
After that, each mutant Pm ∈M is executed against T to verify whether tests fail or not.

Here is an example of a mutation operator, i.e. Arithmetic Operator Replacement (AOR), on a
statement “X = a + b”. The produced mutants include “X = a - b”, “X = a × b” and “X = a ÷ b”.

The execution results of T on Pm ∈M are compared with P: (1) if the output of Pm is different from P,
then Pm is killed by T ; (2) otherwise, i.e. the output of Pm is same as P, this leads to either (2.1) Pm is
equivalent to P, which means that they are syntactically different but functionally equivalent; or (2.2) T is
not adequate to detect the mutants, which requires test case augmentation.

The result of mutation testing can be represented as the mutation score (also referred as mutation
coverage or mutation adequacy), which is defined as:

mutation score =
killed mutants

nonequivalent mutants
(1)

From the above equation, we can see that mutant equivalence detection is done before calculating the
mutation score, as the denominator explicitly mentions nonequivalent mutants. Budd and Angluin [13]
have theoretically proven that deciding the equivalence of two programs is not measurable. Meanwhile,
in their systematic literature survey Madeyski et al. [14] have also indicated that the equivalent mutant
problem takes an enormous amount of time in practice.

A mutation testing system in large part can be regarded as a language system [15] since the programs
under test must be parsed, modified and executed. The main components of mutation testing consist of the
mutant creation engine, the equivalent mutant detector and the test execution runner. The first prototype
of a mutation testing system for Fortran was proposed by Budd and Sayward [16] in 1977. Since then,
numerous mutation tools have been developed for different languages, such as Mothra [17] for Fortran,
Proteum [18] for C, Mujava [19] for Java, and SQLMutation [20] for SQL.

2.1.3 Benefits & Limitations
Mutation testing is widely considered as a “high end” test criterion [15]. This is in part due to the fact that
mutation testing is extremely hard to satisfy because of the massive number of mutants. However, many
empirical studies found that it is much stronger than other test adequacy criteria in terms of fault exposing
capability, e.g. Mathur and Wong [21], Frankl et al. [22] and Li et al. [23]. In addition to comparing
mutation testing with other test criteria, there have also been empirical studies comparing real faults and
mutants. The most well-known research work on such a topic is by Andrews et al. [24]: they suggest that
when using carefully selected mutation operators and after removing equivalent mutants, mutants can
provide a good indication of the fault detection ability of a test suite. As a result, we consider the benefits
of mutation testing to be:

• better fault exposing capability compare to other test coverage criteria, e.g. all-use

• a good alternative to real faults which can provide a good indication of the fault detection ability of
a test suite

3/57

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2483v1 | CC BY 4.0 Open Access | rec: 28 Sep 2016, publ: 28 Sep 2016

The limitations of mutation testing are inherent. Firstly, both the generation and execution of a vast
number of mutants are computationally expensive. Secondly, the equivalent mutants detection is also
an inevitable stage of mutation testing which is a prominent undeterminable problem, thereby requiring
human effort to investigate. We thus consider the major limitations of mutation testing to be:

• the high computational cost caused by the tremendous amount of mutants

• the undecidable Equivalent Mutant Problem resulting in the difficulty of fully automating the
equivalent mutant analysis

In order to deal with the above two limitations, many efforts have been made to reduce the computa-
tional cost and propose heuristic methods to detect equivalent mutants. As for the high computational cost,
Offutt and Untch [25] performed a literature review in which they summarised the approaches to reduce
computational cost into three strategies: do fewer, do smarter and do faster. These three types were later
classified into two classes by Jia and Harman [1]: reduction of the generated mutants and reduction of the
execution cost. Mutant sampling (e.g. [26, 27]), mutant clustering (e.g. [28, 29]) and selective mutation
(e.g. [30–32]) are the most well-known techniques for reducing the number of mutants while maintaining
efficacy of mutation testing to an acceptable degree. For reduction of the execution expense, researchers
have paid much attention to weak mutation (e.g. [33–35]) and mutant schemata (e.g. [36, 37]).

To overcome the Equivalent Mutant Problem, there are mainly three categories classified by Madeyski
et al. [14]: (1) detecting equivalent mutants, such as Baldwin and Sayward [38] (using compiler opti-
misations), Hierons et al. [39] (using program slicing), Martin and Xie [40] (through change-impact
analysis), Ellims et al. [41] (using running profile), and du Bousquet and Delaunay [42] (using model
checker); (2) avoiding equivalent mutant generation, such as Mresa and Bottaci [31] (through selective
mutation), Harman et al. [43] (using program dependence analysis), and Adamopoulos et al. [44] (using
co-evolutionary search algorithm); (3) suggesting equivalent mutants, such as bayesian learning [45],
dynamic invariants analysis [46], and coverage change examination (e.g. [47]).

2.2 Historical Overview
In this part, we are going to present a chronological overview of important research in the area of mutation
testing. As the focus of our review is the application perspective of mutation testing, we mainly address
the studies that concern the application of mutation testing. In the following paragraphs, we will first give
a brief summary of the development of mutation testing, and — due to the sheer size of the research body
— we will then highlight some notable studies on applying mutation testing.

Mutation testing was initially introduced as a fault-based testing method which was regarded signifi-
cantly better in detecting errors than the covering measure approach [48]. Since then mutation testing
has been actively investigated and studied thereby resulting in remarkable advances in its concepts,
theory, technology and empirical evidence. The main interests on mutation testing includes (1) defining
mutation operator [49], (2) developing mutation testing systems [17, 19, 33], (3) reducing the cost of
mutation testing [30, 36], (4) overcoming the equivalent mutant detection [14], and (5) empirical studies
with mutation testing [24]. For more literature on mutation testing, we refer to the existing surveys of
DeMillo [50], Offutt and Untch [25], Jia and Harman [1] and Offutt [2].

In the meanwhile, mutation testing has also been applied to support other testing activities, such as test
data generation and test strategy evaluation. The early application of mutation testing can be traced back
to the 1980s [51–54]). Ntafos is one of the very first researchers to use mutation analysis as a measure of
test set effectiveness. Ntafos applied mutation operators (e.g. constant replacement) to the source code
of 14 Fortran programs [52]. The generated test suites were based on three test strategies, i.e. random
testing, branch testing and data-flow testing, and were evaluated regarding mutation score.

DeMillo and Offutt [35] are the first to automate test data generation guided by fault-based testing
criteria. Their method is called Constraint-based testing (CBT). They transformed the conditions un-
der which mutants will be killed (necessity and sufficiency condition) to the corresponding algebraic
constraints (using constraint template table). The test data then was automatically generated by solving
the constraint satisfaction problem using heuristics. Their proposed constraint-based automatic test data
generator is limited and was only validated on five laboratory-level Fortran programs. Other remarkable
approaches of the automatic test data generation includes a paper by Zhang et al. [55], who adopted
Dynamic Symbolic Execution, and a framework by Papadakis and Malevris [56] in which three techniques,

4/57

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2483v1 | CC BY 4.0 Open Access | rec: 28 Sep 2016, publ: 28 Sep 2016

i.e. Symbolic Execution, Concolic testing and Search-based testing, were used to support the automatic
test data generation.

Apart from test data generation, mutation testing is widely adopted to assess the cost-effectiveness
of different test strategies. The work above by Ntafos [52] is one of the early studies on applying
mutation testing. Recently, there has been a considerable effort in the empirical investigation of structural
coverage and fault-finding effectiveness, including Namin and Andrews [57] and Inozemtseva et al. [58].
Also of interest is assertion coverage proposed by Zhang and Mesbah [59] and observable modified
condition/decision coverage (OMC/DC) presented by Whalen et al. [60]; these novel test criteria were
also evaluated via mutation testing.

Test case prioritisation is one of the practical approaches to reducing the expense of regression testing
by rescheduling test cases to expose the faults more quickly. Mutation testing has also been applied in
supporting test case prioritisation. Among these studies are influential papers by Rothermel et al. [61] and
Elbaum et al. [62] who proposed a new test case prioritisation method based on the rate of mutants killing.
Moreover, Do and Rothermel [63, 64] measured the effectiveness of different test case prioritisation
strategies via mutation faults, since Andrews et al. [24]’s empirical study suggested that mutation faults
can be representative of real faults.

The test-suite reduction is another test activity we identified which is supported by mutation testing.
The research work of Offutt et al. [65] is the first to target test-suite reduction strategies especially for
mutation testing. They proposed Ping-Pong reduction heuristics to select test cases based on their mutation
scores. Another notable work is Zhang et al. [66] that investigated test-suite reduction techniques on Java
programs with real-world JUnit test suites via mutation testing.

Another portion of the application of mutation testing is debugging, such as fault localisation. Influen-
tial examples include an article by Zhang et al. [67] in which mutation analysis is adopted to investigate
the effect of coincidental correctness upon coverage-based fault localiser, and a novel fault localisation
method by Papadakis et al. [68], [69] who used mutants to identify the faulty program statements.

3 RESEARCH METHOD
In this section, we describe the main procedures we took to conduct this review. We adopted the
methodology of the systematic literature review. A systematic literature review [6] is a means of
aggregating and evaluating all the related primary studies under a research scope in an unbiased, thorough
and trustworthy way. Unlike the general literature review, systematic literature review aims to eliminate
bias and incompleteness through a systematic mechanism [70]. Kitchenham [6] presented comprehensive
and reliable guidelines for applying the systematic literature review to the field of software engineering.
The guidelines cover three main phases: (i) planning the review, (ii) conducting the review, and (iii)
reporting the review. Each step is well-defined and well-structured. By following these guidelines, we can
reduce the likelihood of generating biased conclusions and sum all the existing evidence in a manner that
is fair and seen to be fair.

The principle of the systematic literature review [71] is to convert the information collection into a
systematic research study; this research study first defines several specific research questions and then
searches for the best answers accordingly. These research questions and search mechanisms (consisting
of study selection criteria and data extraction strategy) are included in a review protocol, a detailed plan
to perform the systematic review. After developing the review protocol, the researchers need to validate
this protocol for further resolving the potential ambiguity.

Following the main stages of the systematic review, we will introduce our review procedure in four
parts: we will first specify the research questions, and then present the study selection strategy and data
extraction framework. In the fourth step, we will show the validation results of the review protocol. The
overview of our systematic review process is shown in Figure 1.

3.1 Research Questions
The research questions are the most critical part of the review protocol. The research questions determine
study selection strategy and data extraction strategy. In this review, our objective is to examine the primary
applications of mutation testing and identify the problems and gaps, therefore, we can provide guidelines
for applying mutation testing and recommendations for future work. To achieve these goals and starting
with our most vital interest, the application perspective of mutation testing, we naturally further divide it

5/57

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2483v1 | CC BY 4.0 Open Access | rec: 28 Sep 2016, publ: 28 Sep 2016

Figure 1. Overview of Systematic Review Process [72]

into two aspects: (1) how mutation testing is used and (2) how the relevant empirical studies are reported.
For the first aspect, we aim to identify and classify the main applications of mutation testing:

RQ1: How is mutation testing used in testing activities?

In order to understand how mutation testing is used, we should first determine in which circumstances
it is used. The usages might range from using mutation testing as a way to assess how other testing
approaches perform or mutation testing might be a building block of an approach altogether. This leads to
RQ1.1:

RQ1.1: Which role does mutation testing play in testing activities?

There is a broad range of specific testing activities in which mutation testing can be of help, e.g. fault
localisation, test data generation, etc. RQ1.2 seeks to uncover these activities.

RQ1.2: Which testing activities does mutation testing usually support?

In Jia and Harman’s survey [1] of mutation testing, they found that most approaches work at the unit
testing level. In RQ1.3 we will investigate whether the application of mutation testing is also mostly done
at the unit testing level, or whether other levels of testing are also considered important.

RQ1.3: Which test level does mutation testing usually target?

Jia and Harman [1] have also indicated that mutation testing is most often used in a white box testing
context. In RQ1.4 we explore what other strategies can also benefit from the application of mutation
testing.

RQ1.4: Which testing strategies does mutation testing frequently support?

For the second aspect, we are going to synthesise empirical evidence related to mutation testing:

RQ2: How are empirical studies related to the mutation testing designed and reported?

A plethora of mutation testing tools exist and have been surveyed by Jia and Harman [1]. Little is
known which ones are most applied and why these are more popular. RQ2.1 tries to fill this knowledge
gap by providing insight into which tools are used more frequently in a particular context.

RQ2.1: Which mutation tools have been frequently used?

6/57

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2483v1 | CC BY 4.0 Open Access | rec: 28 Sep 2016, publ: 28 Sep 2016

The mutation tools that we surveyed implement different mutation operators. Also, the various mutation
approaches give different names to virtually the same mutation operators. RQ2.2 explores what mutation
operators each method or tool has to offer and how mutation operators can be compared.

RQ2.2: Which mutation operators have been used more frequently?

The equivalent mutant problem, i.e. the situation where a mutation leads to change that is not observable
in behaviour, is one of the most significant open issues in mutation testing. Both Jia and Harman [1] and
Madeyski et al. [14] highlighted some of the most remarkable achievements in the area, but we have a
lack of knowledge when it comes to how the equivalent mutant problem is coped with during the actual
application of mutation testing. RQ2.3 aims to seek answers for exactly this question.

RQ2.3: Which approaches are used to overcome the equivalent mutant problem more often
when applying mutation testing?

As mutation testing is computationally expensive, techniques to reduce costs are important. Selective
Mutation and Weak Mutation are the most widely studied cost reduction techniques [1], but it is unclear
which reduction techniques are actually used when applying mutation testing, which is the exact topic of
RQ2.4.

RQ2.4: Which techniques are used to reduce the computational cost more frequently when
applying mutation testing?

In order to better understand in which context mutation testing is applied, we want to look into the
programming languages that have been used in the experiments. But also the size of the case study
systems is of interest, as it can be an indication of the maturity of certain tools. Finally, we are also
explicitly looking at whether the case study systems are available for replication purposes (in addition to
the check for availability of the mutation testing tool in RQ2.1).

RQ2.5: What are the most common subjects used in the experiments (in terms of programming
language, size and data availability)?

3.2 Study Selection Strategy
Initial Study Selection:

We started with searching queries in online platforms, including Google Scholar, Scopus, ACM
Portal, IEEE explore as well as Springer, Wiley, Elsevier Online libraries, to collect papers containing the
keywords “mutation testing” or “mutation analysis” in their titles, abstracts and keywords. Meanwhile,
to ensure the high quality of the selected papers, we only considered the articles published in seven top
journals and ten top conferences (as listed in Table 1) dating from 1971 as data sources. The above 17
venues are chosen because we regard them to be the leaders in Software Engineering and the major venues
that report a high proportion of research on software testing, debugging, software quality and validation.
Moreover, we excluded article summaries, interviews, reviews, workshops, panels and poster sessions
from the search. If the paper’s language is not English or its full-text is not available, we also excluded
such a paper. After this step, 221 papers were initially selected.

Inclusion/Exclusion Criteria:
Since we are interested in how mutation testing is applied in practice, we need selection criteria to

include the papers that use mutation testing as a tool for evaluating or improving other testing activities
and exclude the papers focusing on the development of mutation tools and operators, or challenges and
open issues for mutation analysis. Moreover, the selected articles should also provide sufficient evidence
for answering the research questions. Therefore, we define two inclusion/exclusion criteria for study
selection. The inclusion/exclusion criteria are as follows:

1. The article must focus on the supporting role of mutation testing in testing activities. This criterion
excludes the research solely on mutation testing itself, such as defining mutation operators, devel-
oping mutation systems, investigating ways to solve open issues related to mutation analysis and
comparisons between mutation testing and other testing techniques.

2. The article exhibits sufficient evidence that mutation testing is used to support testing related
activities. The sufficient evidence means that the article must clearly describe how the mutation

7/57

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2483v1 | CC BY 4.0 Open Access | rec: 28 Sep 2016, publ: 28 Sep 2016

Type Venue Name No. of
papers

After
Applying

Search
queries

No. of
papers

After
Applying

In./Ex.
Criteria

No. of
papers

After
Snow-

balling
procedure

Journal Transaction on Software Engineering (TSE) 19 9 19
Journal of Empirical Software Engineering (EMSE) 4 3 5
Journal on Software Testing, Verification and Reliability (STVR) 33 16 19
Journal Software Maintenance and Evolution (JSME) 0 0 0
Transaction on Reliability (TR) 1 1 1
Transaction on Software Engineering and Methodology (TOSEM) 3 2 3
Journal of Systems and Software (JSS) 17 8 8
Information and Software Technology (IST) 0 0 2
Software Quality Journal (JSQ) 0 0 2

Conference International Conference on Software Engineering (ICSE) 29 9 16
European Software Engineering Conference / International Sym-
posium on the Foundations of Software Engineering (ESEC/FSE)

6 1 8

International Conference on Software Testing, Verification, Valida-
tion (ICST)

46 24 21

International Symposium on Software Testing and Analysis (IS-
STA)

14 3 9

International Conference on Automated Software Engineering
(ASE)

7 3 6

International Conference on Software Maintenance and Evolution
(ICSME/ICSM)

6 3 9

International Symposium on Empirical Software Engineering and
Measurement (ESEM/ISESE)

2 1 3

Proceedings International Symposium on Search Based Software
Engineering (SSBSE)

0 0 0

Proceedings International Conference on Quality Software (QSIC) 8 5 6
International Symposium on Software Reliability Engineering (IS-
SRE)

26 10 20

Proceedings Asia Pacific Software Engineering Conference
(APSEC)

0 0 1

Proceedings of the International Conference on Testing Com-
puter Software (TCS)

0 0 1

Total 221 98 159
Note: the venues marked in bold font are not initially selected, but where added after the Snowballing procedure.

Table 1. Venues Involved in study selection

testing is involved in the testing activities. The author(s) must state at least one of the following
details about the mutation testing in the article: mutation tool, mutation operators, mutation score.
This criterion also excludes theoretical studies on mutation testing.

The first author then carefully read the titles and abstracts to check whether the papers in the initial
collection belong to our set of selected papers based on the inclusion/exclusion criteria. If it is unclear from
the titles and abstracts whether mutation testing was applied, the entire article especially the experiment
part was read as well. After we have applied the inclusion/exclusion criteria, 98 papers remained.

Snowballing Procedure:
After selecting 98 papers from digital databases and applying our selection criteria, there is still a

high potential to miss articles of interest. According to Brereton et al. [71]’s work, they pointed out that
most online platforms do not provide adequate support for systematic identification of relevant papers. To
overcome this shortfall of online databases, we then adopted a both backward and forward snowballing
strategies [73] to find missing papers. Snowballing refers to using the list of references in a paper or the
citations to the paper to identify additional papers [73]. Using the references and the citations respectively
is referred to as backward and forward snowballing [73].

We used the 98 papers as the start set and performed a backward and forward snowballing procedure
recursively until no further papers could be added to our set. During the snowballing procedure, we
extended the initially selected venues to minimise the chance of missing related papers. The snowballing
process resulted in another 61 articles (and four additional venues).

3.3 Data Extraction Strategy
Data extracted from the papers are used to answer the research questions we proposed. Based on our
research questions, we draw seven facets of interest that are highly relevant to the information we need
to answer the questions. The seven facets are: (1) the roles of mutation testing in testing activities;

8/57

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2483v1 | CC BY 4.0 Open Access | rec: 28 Sep 2016, publ: 28 Sep 2016

(2) the testing activities; (3) the mutation tools used in experiments; (4) the mutation operators used
in experiments; (5) the description of equivalent mutant problem; (6) the description of cost reduction
techniques for mutation testing; (7) the subjects involved in experiments. An overview of these facets is
given in Table 2.

For each facet, we first just read the corresponding details in each paper and extracted the exact text
from the papers. During the reading procedure, we started to identify and classify more specific attributes
of interest under each facet and assigned values to each attribute. The values of each attribute were
generalised and modified during the reading process: we combined some values together or divided one
into several smaller groups. In this way, we generated an attribute framework, and then we used the
framework to characterise each paper. Therefore, we can show quantitative results for each attribute to
support our answers. And the attribute framework can also be further used for validation and replication
of the review work.
(1) roles of mutation testing in testing activities:

The first facet concerns the role of mutation testing in testing activities drawn from RQ1.1. We
identified two classes for the function of mutation testing: assessment and guide. When mutation testing
is used as a measure of test effectiveness concerning fault-finding capability, we classify this role as
“assessment”. While for the “guide” role, mutation testing is adopted to improve the testing effectiveness
as guidance, i.e., it is an inherent part of an approach.

To identify and classify the role of mutation testing, we mainly read the description of mutation testing
in experiment part of each paper. If we find the phrases which have the same meanings as “evaluate
fault-finding ability” or “assess the testing effectiveness” in a paper, we then classify the paper into the
class of “assessment”. In particular, when used as a measure of testing effectiveness, mutation testing
is usually conducted at the end of the experiment; this means mutation testing is not involved in the
generation or execution of test suites. Unlike the “assessment” role, if mutation testing is adopted to help
to generate test suites or run test cases, we then classify these paper into the “guide” set. In this case,
mutation testing is not used in the final step of the experiment.
(2) testing activities:

The second facet focuses on testing activities. Three attributes are relevant to testing activities: the
categories of testing activities (RQ1.2), test levels (RQ1.3) and testing strategies (RQ1.4). To identify
the categories of testing activities, we group similar testing activities based on information in title and
abstract. The testing activities we identified so far consist of 11 classes: test data generation, test-suite
reduction/selection, test strategy evaluation, test case minimisation, test case prioritisation, test oracle,
fault localisation, programming repairing, development scheme evaluation, model clone detection and
model review. We classify the papers by reading the description appeared in title and abstract.

For test level, the values are based on the concept of test level and the authors’ specification. More
precisely, we are considering five test levels: unit, integration, system, others and n/a. To characterise the
test level, we search the exact words “unit”, “integration”, “system” in the article, as these four test levels
are regular terms and cannot be replaced by other synonyms. If there is no relevant result after searching
in a paper, we then classify the paper’s test level into “n/a”, i.e. no specification regarding the test level.
In addition, for the paper which is difficult for us to categorise into any of the four phases, such as testing
of the grammar of a programming language and spreadsheet testing, we mark this situation as “others”.

For testing strategies, coarse-grained classification is adequate to gain an overview of the distribution
of testing strategies. We identified five classes according to the test design techniques: structural testing,
specification-based testing, similarity-based testing, hybrid testing and others [74, 75]. Among the
structural testing and specification-based testing classes, we further divided into traditional version and
enhanced one based on whether the regular testing is improved by other methods.

To be classified into the “structural testing” class, the paper should either contain the keywords of
“structure-based”, “code coverage-based” or “white box”, or use structural test design techniques, such as
statement testing, branch testing and condition testing. For the “specification-based testing” class, the
articles should either contain the keywords of “black box”, “requirement-based” or “specification-based”,
or use specification-based test design techniques, such as equivalence partitioning, boundary value analysis,
decision tables and state transition testing. The similarity-based method aims to maximise the diversity of
test cases to improve the test effectiveness; this technique is mainly based on test case relationship rather
than software artefacts. Therefore, similarity-based testing does not belong to either structural testing
or specification-based testing. The hybrid testing combines structural testing and specification testing

9/57

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2483v1 | CC BY 4.0 Open Access | rec: 28 Sep 2016, publ: 28 Sep 2016

together. Besides, several cases are using static analysis, code review or other techniques which cannot fit
the above classes; in such situations, we mark the value as “others”.

Furthermore, to classify “enhanced” version of structural and specification-based testing we rely on
whether other testing methods were adopted to improve the traditional testing. For instance, Whalen
et al. [60] combined the MC/DC coverage metric with a notion of observability to ensure the fault
propagation conditions. Papadakis and Malevris [76] proposed an automatic mutation test case generation
via dynamic symbolic execution. To distinguish such instances from the traditional structural and
specification-based testing, we marked as “enhanced”.
(3) mutation tools used in experiment:

For the mutation tools (derived from RQ2.1), we are interested in their types, but also in their
availability. Our emphasis on tool availability is instigated to address possible replication of the studies.
The values of “Yes” or “No” for the tool availability depends on whether the mutation tool is open to the
public. The tool type intends to provide further analysis of mutation tool, which is based on the whether
the tool is self-developed and whether the tool itself is a complete mutation testing system. We identified
five types of mutation tools: existing, partially-based, self-written, hand-seeded and n/a. The “existing”
tool must be a complete mutation testing system, while “partially-based” means these tools are used
as a base or a framework for mutation testing. The example for “partially-based” tools are EvoSuite,
jFuzz, TrpAutoRepair and GenProg. The self-written tool category represents those tools that have been
developed by the authors of the study. The “hand-seeded” value means the mutants were generated
manually in the studies. Besides, we defined “n/a” value in addition to the “tool types” attribute; the value
of “n/a” marks the situation where lacks of a description of mutation tools including tool names/citations
and whether hand-seeded or not.
(4) mutation operators used in experiment:

As for the mutation operators (related to RQ2.2), we focus on two attributes: description level and
generic classification. The former is again designed to assess the repeatability issue related to mutation
testing. The description degree depends on the way that the authors presented the mutation operators used
in their studies, consisting of three values: “well-defined”, “not sufficient” and “n/a”. If the paper showed
that the complete list of mutation operators is available, then we classify such paper into “well-defined”.
The available full list includes two main situations: (1) the authors listed each name(s) of mutation
operators and/or specified how the mutation operators make changes to programs in the articles; (2) the
studies adopted existing tools and mentioned the used mutation operator (including the option were all or
the default set of mutation operators provided by that tool were used). The well-defined category thus
enables the traceability of the complete list of mutation operators. For the remaining set, the incomplete
list, if there is some information about the mutation operators in the article but not enough for replication
of the whole list of mutation operators, then we classify the paper into “not sufficient”. The typical
example is that the author used such words as “etc.”, “such as” or “e.g.” in the specification of the mutation
operators; this indicates that only some mutation operators are explicitly listed in the paper, but not all.
The last value, “n/a”, means no description of the mutation operators was given in the paper at all.

In order to compare the mutation operators from different tools to analyse the popularity of involved
mutation operators amongst the papers, we collected the information about mutation operators mentioned
in the articles. Notably, we only consider the articles which are classified as “well-defined”. We excluded
the papers with “not sufficient” label as their lists of mutation operators are not complete as this might
result in biased conclusions based on incomplete information. Moreover, during the reading process, we
found that different mutation testing tools use slightly different names for their mutation operators. For
example, in MuJava [19], the mutation operator which replaces relational operators with other relational
operators is called “Relational Operator Replacement”, while that is named “Conditionals Boundary
Mutator” in PIT [77]. Therefore, we saw a need to compose a generic classification of mutation operators,
which enables us to more easily compare mutation operators from different tools or definitions.

The method we adopted here to generate the generic classification is to group the similar mutation
operators together among all the existing mutation operators in the literature based on how they mutate the
programs. Firstly, mutation testing can be applied to both program source code and program specification.
Thus, we classified the mutation operators into two top-level groups: program mutation and specification
mutation operators. In particular, we are more interested in the program mutation, so we further divided
program mutation testing into three sub-categories: expression-level, statement-level and others. The
expression-level mutation operators focus on the inner components of the statements, such as operators

10/57

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2483v1 | CC BY 4.0 Open Access | rec: 28 Sep 2016, publ: 28 Sep 2016

and operands, while the statement-level ones mutate the at least one single statement. For the “others”
class, it includes mutation operators related to the programming language’s unique features, e.g. Objected-
Oriented specific mutation operators. Our generic classification of mutation operators is as follows:

1. Specification mutation

2. Program mutation

(a) Expression-level

i. arithmetic operator: it mutates the arithmetic operators (including addition“+”,
subtraction“−”, multiplication“*”, division “/”, modulus “%” , unary operators “+”,
“−”, and short-cut operators “++”, “−−”)1 by replacement, insertion or deletion.

ii. relational operator: it mutates the relational operators (including “>”, “>=”, “<”,
“<=”, “==”, “!=”) by replacement.

iii. conditional operator: it mutates the conditional operators (including and “&”, or “|”,
exclusive or “ˆ”, short-circuit operator “&&”, “‖”, and negation“!”) by replacement,
insertion or deletion.

iv. shift operator: it mutates the shift operators (including “>>”, “<<” and “>>>”) by
replacement.

v. bitwise operator: it mutates the bitwise operators (including bitwise and “&”, bitwise
or “|”, bitwise exclusive or “ˆ” and bitwise negation “˜”) by replacement, insertion or
deletion.

vi. assignment operator: it mutates the assignment operators (including the plain operator
“=” and short-cut operators “+=”, “−=”, “*=”, “/=”, “%=”, “&=”, “|=”, “ˆ=”, “<<=”,
“>>=”, “>>>=”) by replacement. Besides, the plain operator “=” is also changed to
“==” in some cases.

vii. absolute value: it mutates the arithmetic expression by preceding unary operators
including ABS (computing the absolute value), NEGABS (compute the negative of the
absolute value) and ZPUSH (testing whether the expression is zero. If the expression
is zero, then the mutant is killed; otherwise execution continues and the value of the
expression is unchanged)2.

viii. constant: it changes the literal value including increasing/decreasing the numeric val-
ues, replacing the numeric values by zero or swapping the boolean literal (true/false).

ix. variable: it substitutes a variable with another already declared variable of the same
type and/or of the compatible type.

x. type: it replaces a type with the other compatible types including type casting.3

xi. conditional expression: it replaces the conditional expression by true/false so
that the statements following the conditional always execute or skip.

xii. parenthesis: it changes the precedence of the operation by deleting, adding or removing
the parentheses.

(b) Statement-level

i. return statement: it mutates return statement in the method calls including
return value replacement or return statement swapping.

1The syntax of these operators might vary slightly in different languages. Here we just used the operators in Java as an example.
So as the same in (ii) - (vi) operators.

2The definition of this operator is from the Mothra [17] system. In some cases, this operator only applies the absolute value
replacement.

2The types of the variables varies in different programming languages.
3The changes between the objects of the parent and the child are excluded which belongs to “OO-specific”

11/57

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2483v1 | CC BY 4.0 Open Access | rec: 28 Sep 2016, publ: 28 Sep 2016

ii. switch statement: it mutates switch statements by making different combinations
of the switch labels (case/default) or the corresponding block statement.

iii. if statement: it mutates if statements including removing additional semicolons after
conditional expressions, adding an else branch or replacing last else if symbol to
else.

iv. statement deletion: it deletes statements including removing the method calls or
removing each statement4.

v. statement swap: it swaps the sequences of statements including rotating the order of
the expressions under the use of the comma operator, swapping the contained statements
in if-then-else statements and swapping two statements in the same scope.

vi. brace: it moves the closing brace up or down by one statement.

vii. goto label: it changes the destination of the goto label.

viii. loop trap: it introduces a guard (trap after nth loop iteration) in front of the loop body.
The mutant is killed if the guard is evaluated the nth time through the loop.

ix. bomb statement: it replaces each statement by a special Bomb() function. The
mutant is killed if the Bomb() function is executed which ensures each statement is
reached.

x. control-flow disruption (break/continue): it disrupts the normal control flow by
adding, removing, moving or replacing continue/break labels.

xi. exception handler: it mutates the exception handlers including changing the throws,
catch or finally clauses.

xii. method call: it changes the number or position of the parameters/arguments in a
method call, or replace a method name with other method names that have the same or
compatible parameters and result type.

xiii. do statement: it replaces do statements with while statements.

xiv. while statement: it replaces while statements with do statements.

(c) Others

i. OO-specific: the mutation operators related to O(bject)-O(riented) Programming fea-
tures [78], such as Encapsulation, Inheritance and Polymorphism, e.g. super keyword
insertion.

ii. SQL-specific: the mutation operators related to SQL-specific features [20], e.g. replac-
ing SELECT to SELECT DISTINCT.

iii. Java-specific5: the mutation operators related to Java-specific features [78] (the opera-
tors in Java-Specific Features), e.g. this keyword insertion.

iv. JavaScript-specific: the mutation operators related to JavaScript-specific features [79]
(including DOM, JQUERY, and XMLHTTPREQUEST operators), e.g. var keyword
deletion.

v. SpreadSheet-specific: the mutation operators related to SpreadSheet-specific fea-
tures [80], e.g. changing range of cell areas.

vi. AOP-specific: the mutation operators related to A(spect)-O(riented)-P(rogramming)
features [81, 82], e.g. removing pointcut.

vii. concurrent mutation: the mutation operators related to concurrent programming
features [83, 84], e.g. replacing notifyAll() with notify().

viii. Interface mutation: the mutation operators related to Interface-specific features [85,
86], suitable for use during integration testing.

4To maintain the syntactical validity of the mutants, semicolons or other symbols, such as continue in Fortran, are retained.
5This set of mutation operators originated from Java features but not limited to Java language, since other languages can share

certain features, e.g., this keyword is also available in C++ and C#, and static modifier is supported by C and C++ as well.

12/57

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2483v1 | CC BY 4.0 Open Access | rec: 28 Sep 2016, publ: 28 Sep 2016

(5) description of the equivalent mutant problem & (6) description of cost reduction techniques for
mutation testing:

The fifth and sixth facets aim to show how the most significant problems are coped with when applying
mutation testing (related to RQ2.3 and RQ2.4 respectively). We composed the list of techniques based
on both our prior knowledge and the descriptions given in the papers. We identified seven methods for
dealing with the equivalent mutant problem and five for reducing computational cost except for “n/a” set
(more details are given in Table 2).

For the equivalent mutant problem, we started by searching the keywords “equivalen*” and “equal” in
each paper to target the context of equivalent mutants issue. Then we extracted the corresponding text
from the articles. If there are no relevant findings in a paper, we mark this article as “n/a” which means
the authors did not mention how they overcame the equivalent mutant problem. Here it should be noted
that we only considered the description related to the equivalent mutant problem given by the authors;
this means we excluded the internal heuristic mechanisms adopted by the existing tools if the author did
not point out such internal approaches. For example, the tool of JAVALANCHE [87] ranks mutations by
impact to help users detect the equivalent mutants. But if the authors who used JAVALANCHE did not
specify that internal feature, we will not label the paper into the class that used the approach of “ranking
the mutations”.

For the cost reduction techniques, we read the experiment part carefully to extract the reduction
mechanism from the papers. In addition, we excluded the runtime optimisation and selective mutation.
Because the former one, runtime optimisation, is an internal optimisation adopted during the tool
implementation, thereby such information is more likely to be reported in the tool documentation. We
did not consider the runtime optimisation to avoid incomplete statistics. As for the second one, selective
mutation, we assume it is adopted by all papers since it is nearly impossible to implement and use all
the operators in practice. If a paper does not contain any description of the reduction methods in the
experiment part, we mark this article as “n/a”.
(7) subjects involved in the experiment:

For the subject programs in the evaluation part, we are interested in three aspects: programming
language, size and data availability. From the programming language, we can obtain an overall idea of
how established mutation testing is in each programming language domain and what the current gap
is. From the subject size, we can see the scalability issue related to mutation testing. From the data
availability situation, we can assess the replicability of the studies.

For the programming language, we extracted the programming language of the subjects involved in
the experiment in these articles, such as Java, C, SQL, etc. If the programming language of the subject
programs is not clearly pointed out, we mark it as “n/a”. Note, more than one languages might be involved
in a single experiment.

For the subject size, we defined four categories according to the lines of code (LOC): preliminary,
small, medium and large. If the subject size is less than 100 LOC, then we classify it into the “preliminary”
category. If the size is between 100 to 10K LOC, we consider it “small”, while between 10K and 1M
LOC we appraised it as “medium”. If the size is greater than 1M LOC, we consider it as “large”. Since
our size scale is based on LOC, if the LOC of the subject is not given, or other metrics are used, we mark
it as “n/a”. To assign the value to a paper, we always take the biggest subjects used in the papers.

For the data available, we defined two classes: Yes and No. “Yes” means all subjects in the experiments
can be openly accessible; this can be identified either from the keywords “open source”, SIR [88],
GitHub6, SF100 [89] or SourceForge7, or from the open link provided by the authors. It is worth
noting that if one of the subjects used in a study is not available, we classify the paper into “No”.

The above facets of interest and corresponding attributes and detailed specification of values are listed
in Table 2.

Facet Attribute Value Description

Roles classification assessment assessing the fault-finding effectiveness
guide improving other testing activities as guidance

Testing Activities category test data generation creating test input data
test-suite reduction/selection reducing the test suite size while maintaining its fault

detection ability

6https://github.com/
7https://sourceforge.net/

13/57

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2483v1 | CC BY 4.0 Open Access | rec: 28 Sep 2016, publ: 28 Sep 2016

https://github.com/
https://sourceforge.net/

test strategy evaluation evaluating test strategies by carrying out the correspond-
ing whole testing procedure, including test pool creation,
test case selection and/or augmentation and testing re-
sults analysis.

test-case minimisation simplifying the test case by shortening the sequence and
removing irrelevant statements

test case prioritisation reordering the execution sequence of test cases
test oracle generating or selecting test oracle data
fault localisation identifying the detective part of a program given the test

execution information
program repairing generating patches to correct detective part of a program
development scheme evaluation evaluating the practice of software development process

via observational studies or controlled experiments, such
as Test driven development (TDD)

model clone detection identifying similar model fragments within a given con-
text

model review determining the quality of the model at specification
level using static analysis techniques

test level unit testing activities focus on unit level. Typical example
of unit testing includes: using unit testing tools, such as
Junit and Nunit, intra-method testing, intra-class testing.

integration testing activities focus on integration level. Typical ex-
ample of integration testing includes: caller/callee and
inter-class testing

system testing activities focus on system level. Typical exam-
ples of system testing includes: high-level model-based
testing techniques and high-level specification abstrac-
tion methods

others testing activities are not related to source code. Typical
example includes: grammar.

n/a no specification about the testing level in the article.

testing strategy structural white-box testing, uses the internal structure of the soft-
ware to derive test cases, such as statement testing,
branch testing and condition testing

enhanced structural adopting other methods to improve the traditional struc-
tural testing, mutation-based techniques, information re-
trieval knowledge, observation notations and assertion
coverage

specification-based viewing software as a black box with input and output,
such as equivalence partitioning, boundary value analy-
sis, decision tables and state transition testing

enhanced specification-based adopting other methods to improve the traditional
specification-based testing, such as mutation testing.

similarity-based maximising the diversity of test cases to improve the test
effectiveness

hybrid combining structural testing and specification testing to-
gether

others using static analysis, or focusing on other testing tech-
niques which cannot fit in above six classes

Mutation Tools availability Yes/No Yes: open to the public; No: no valid open access

type existing tool a complete mutation testing system
partially-based used as a base or framework for mutation testing
self-written developed by the authors and the open link of the tool is

also accessible
hand-seeded generating mutants manually based on the mutation op-

erators
n/a no description of the adopted mutation testing tool

Mutation Operators description Level well-defined the complete list of mutation operators is available
not sufficient the article provides some information about mutation op-

erators but the information is not enough for replication
n/a no description of the mutation operators

generic classification refer to Section 3.3 (4) refer to Section 3.3 (4)

Equivalence Solver methods not killed as equivalent treating mutants not killed as equivalent
not killed as nonequivalent treating mutants not killed as nonequivalent
no investigation no distinguishing between equivalent mutants and

nonequivalent ones
manual manual investigation
model checker using model checker to remove functionally equivalent

mutants
reduce likelihood generating mutants that are less likely to be equivalent,

such as using behaviour-affecting variables, carefully-
designed mutation operators and constraints binding

deterministic model adopting the deterministic model to make the equiva-
lence problem decidable

n/a no description of mutant equivalence detector

Reduction Technique methods mutant sample randomly select a subset of mutants for testing execution
based on fixed selection ratio

fixed number select a subset of mutants based on fixed number

14/57

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2483v1 | CC BY 4.0 Open Access | rec: 28 Sep 2016, publ: 28 Sep 2016

weak mutation compare internal state of the mutant and the original pro-
gram immediately after the mutated statement(s)

higher-order reduce the number of mutants by selecting higher-order
mutants which contains more than one faults

selection strategy generate less mutants by selecting where to mutate based
on random algorithm or other techniques

n/a no description of reduction techniques (except for run-
time optimisation and selective mutation)

Subject language Java, C, C#, etc. various programming languages

size (maximum) preliminary <100 LOC
small 100 ∼ 10K LOC
medium 10K ∼ 1M LOC
large > 1M LOC
n/a no description of program size regarding LOC

availability Yes/No Yes: open to the public; No: no valid open access

Table 2. Attribute Framework

3.4 Review Protocol Validation
The review protocol is a critical element of a systematic literature review and researchers need to specify
and carry out procedures for its validation [71]. The validation procedure aims to eliminate the potential
ambiguity and unclear points in the review protocol specification. In this review, we conduct the review
protocol validation among the three authors. We also used the results to improve our review protocol. The
validation focuses on two things: selection criteria and attribute framework, including the execution of
two pilot runs of study selection procedure and data extraction process.

3.4.1 Selection Criteria Validation
We performed a pilot run of the study selection process, for which we randomly generated ten candidate
papers from selected venues (including articles out of our selection scope) and carried out the paper
selection among three authors independently based on the inclusion/exclusion criteria. After that, the three
authors compared and discussed the selection results. The results show that for 9 out of 10 papers, the
authors had an immediate agreement. The three authors discussed the one paper that showed disagreement,
leading to a revision of the first inclusion/exclusion criterion. In the first exclusion criterion, we added
“solely” to the end of the sentence “...This criterion excludes the research on mutation testing itself...”. By
adding “solely” to the first criterion, we include articles whose main focus is mutation testing, but also
cover the application of mutation testing.

3.4.2 Attribute Framework Validation
To execute the pilot run of the data extraction process, we randomly select ten candidate papers from our
selected collection. These 10 papers are classified by all three authors independently using the attribute
framework that we defined earlier. The discussion that follows from this process leads to revisions of
our attribute framework. Firstly, we clarified that the information extracted from the papers must have
exactly the same meaning as described by the authors; this mainly means that we cannot further interpret
the information. If the article does not provide any clear clue for a certain attribute, we use the phrase
“not specified” (“n/a”) to mark this situation. By doing so, we can minimise the potential misinterpretation
of the articles.

Secondly, we ensured that the values of the attribute framework are as complete as possible, so that for
each attribute we can always select a value. For instance, when extracting testing activities information
from the papers, we can simply choose one or several options of the 11 categories provided by the
predefined attribute framework. The purpose of providing all possible values to each attribute is to assist
data extraction in an unambiguous and trustworthy manner. Through looking at the definitions of all
potential values for each attribute, we can easily target unclear or ambiguous points in data extraction
strategy. If there are missing values for certain attributes, we can only add the additional data definition
to extend the framework. The attribute framework can also be of clear guideline for future replication.
Furthermore, we can then present quantitative distributions for each attribute in later discussion to support
our answers to research questions.

To achieve the above two goals, we made revisions to several attributes as well as values. The specified
modifications are listed as follows:

15/57

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2483v1 | CC BY 4.0 Open Access | rec: 28 Sep 2016, publ: 28 Sep 2016

Testing Activity Assessment Guide Total

test data generation 31 28 59
test strategy evaluation 55 3 58
test case prioritisation 10 6 16
test oracle 9 4 13
test-suite selection/reduction 9 4 13
fault localisation 7 4 11
program repairing 1 1 2
test case minimisation 1 1 2
development scheme evaluation 0 1 1
model clone detection 1 0 1
model review 1 0 1

Total 112 49 159

Table 3. Testing Activities Summary

Mutation Tools: Previously, we combined tool availability and tool types together by defining
three values: self-written, existing and not available; this is not clear to distinguish available tools from
unavailable ones. Therefore, we further defined two attributes, i.e., tool availability and tool types.

Mutation Operators: We added “description level” to address the interest of how mutation operators
are specified in the articles; this also helps in the generalisation of mutation operator classification.

Reduction Techniques: We added the “fixed number” value to this attribute.
Subjects: We changed the values of “data availability” from “open source”, “industrial” or “self-

defined” to “Yes” or “No”. Since the previous definitions can not distinguish between available dataset
and unavailable ones.

4 REVIEW RESULTS
After developing the review protocol, we conducted the task of article characterisation accordingly. Given
the attribute assignment under each facet, we are now at the stage of interpreting the observations and
reporting our results. In the following section, we discuss our review results following the sequence of
our research questions. While Section 4.1 deals with the observations related to how mutation testing is
applied (RQ1), Section 4.2 will present the RQ2-related discussion. For each sub-research question, we
will first show the distribution of the relevant attributes and our interpretation of the results (marked as
Observation). Each answer to a sub-research question is also summarised at the end. All the metadata of
all the surveyed papers regarding their characterisations are shown in Table 19-21 in Appendix6.

4.1 RQ1: How is the mutation testing used in testing activities?
4.1.1 RQ1.1 & RQ1.2: Which role does mutation testing play in each testing activity?
Observation.
We opted to discuss the two research questions RQ1.1 and RQ1.2 together, because it gives us the
opportunity to analyse per testing activity (e.g., test data generation) whether mutation testing is used as
a way to guide the technique, or whether mutation testing is used as a technique to assess some (new)
approach. Consider Table 3, in which we report the role mutation testing plays onto the two columns
“Assessment” and “Guide” (see Table 2 for the explanation about our attribute framework), while the
testing activities are projected onto the rows. The table is then populated with our survey results, with the
additional note that some papers belong to multiple categories.

As Table 3 shows, test data generation and test strategy evaluation occupies the majority of testing
activities (accounting for 73.6%, 117 instances). The remaining are test case prioritisation (10.1%), test
oracle generation/selection (8.2%) and test suite reduction/selection (8.2%). Only two instances studied
test-case minimisation; this shows mutation testing has not been widely used to simplify test cases by
shortening the test sequence and removing irrelevant statements.

As the two roles (assessment and guide) are used quite differently depending on the testing activities,
we will discuss them separately. Also, for the “guiding” role, for which we see an increasing number of

16/57

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2483v1 | CC BY 4.0 Open Access | rec: 28 Sep 2016, publ: 28 Sep 2016

applications in recent decades, we find a number of hints and insights for future researchers to consider,
which explains why we will analyse this part in a more detailed way when compared to the description of
mutation testing as a tool for assessment.

(1) Assessment.
We observed that mutation testing mainly serves as an assessment tool to evaluate the fault-finding

ability of the corresponding test techniques (70.4%) as it is widely considered as a “high end” test
criterion [15]. In order to do so, mutation testing typically generates a large number of mutants of a
program, which are sometimes also combined with natural defects or hand-seeded ones. The results of
the assessment are usually quantified as metrics of fault finding capability: mutation score (or mutation
coverage, mutation adequacy) and killed mutants are the most common metrics in mutation testing.
Besides, in test-case prioritisation, the Average Percentage of Faults Detected (APFD) [90], which
measures the rate of fault detection per percentage of test suite execution, is also popular.

Amongst the papers in our set, we also found 18 studies that performed mutant analysis, which means
that the researchers are trying to get a better understanding about mutation faults, e.g. which faults are
more valuable in a particular context. A good example of this mutant analysis is the hard mutant problem
investigated by Czemerinski et al. [91] where they analysed the failure rate for the hard-to-kill mutants
(killed by less than 20% of test cases) using the domain partition approach.

(2) Guide.
To provide insight into how mutation testing acts as guidance to improve testing methods per test

activity, we will highlight the most significant research efforts to demonstrate why mutation testing can be
of benefit as a building block to guide other testing activities. In doing so, we hope the researchers in this
field can learn from the current achievements so as to explore other interesting applications of mutation
testing in the future.

Firstly, let us start with test data generation, which attracts most interest when mutation testing
is adopted as a building block (28 instances). The main idea of mutation-based test data generation
is to generate test data that can effectively kill mutants. For automatic test data generation, killing
mutants serves as a condition to be satisfied by test data generation mechanisms, such as constraint-
based techniques and search-based algorithms; in this way, mutation-based test data generation can be
transformed into the structural testing problem. The mutation killable condition can be classified into three
steps as suggested by Offutt and Untch [25]: reachability, necessity and sufficiency. When observing the
experiments contained in the papers that we surveyed (except the model-based testing), we see that with
regard to the killable mutant condition most papers (78.5%) are satisfied with a weak mutation condition
(necessity), while a strong mutation condition (sufficiency) appears less (28.6%). The same is true when
comparing first-order mutants (92.9%) to higher-order mutants (7.1%). Except for the entirely automatic
test data generation, Baudry et al. [92–94] focused on the automation of the test case enhancement phase:
they optimised the test cases regarding mutation score via genetic and bacteriological algorithms, starting
from an initial test suite. von Mayrhauser et al. [95] and Simith and Williams [96] augmented test input
data using the requirement of killing as many mutants as possible.

The second and third most-frequent use cases when applying mutation testing to guide the testing
efforts come from test case prioritisation (6 instances) and the test strategy evaluation (6 instances). For
test case prioritisation, the goal is to detect faults as early as possible in the regression testing process.
The incorporation of measures of fault proneness into prioritisation techniques is one of the directions to
overcome the limitation of the conventional coverage-based prioritisation methods. As relevant substitutes
of real faults, mutants are used to approximate the fault-proneness capability to reschedule the testing
sequences. Qu et al. [97] ordered test cases according to prior fault detection rate using both hand-seeded
and mutation faults. Kwon et al. [98] proposed a linear regression model to reschedule test cases based
on Information Retrieval and coverage information, where the coefficients in the model are determined
by mutation testing. Moreover, Rothermel et al. [61, 90] and Elbaum et al. [62] compared different
approaches of test-case prioritisation, among which included the prioritisation in order of the probability
of exposing faults estimated by the killed mutants information. In Qi et al. [99]’s study, they adopted a
similar test-case prioritisation method to improve patch validation during program repairing.

Thirdly, as for the fault localisation (4 instances), the locations of mutants are used to assist the
localisation of “unknown” faults (the faults which have been detected by at least one test case, but that
have still to be located [68]). The motivation of this approach is based on the following observation:

17/57

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2483v1 | CC BY 4.0 Open Access | rec: 28 Sep 2016, publ: 28 Sep 2016

“Mutants located on the same program statements frequently exhibit a similar behaviour” [68]. Thus, the
identification of an “unknown” fault could be obtained thanks to a mutant at the same (or close) location.
Taking advantage of the implicit link between the behaviour of “unknown” faults with some mutants,
Murtaza et al. [100] used the traces of mutants and prior faults to train a decision tree to identify the faulty
functions. Also, Papadakis et al. [68, 69] and Moon et al. [101] ranked the suspiciousness of “faulty”
statements based on their passing and failing test executions of the generated mutants.

When it comes to the test oracle problem (4 instances), mutation testing can also be of benefit for
driving the generation of assertions, as the prerequisite for killing the mutant is to distinguish the mutant
from the original program. In Fraser and Zeller [102]’s study, they illustrated how they used mutation
testing to generate test oracles: assertions, as commonly used oracles, are generated based on the trace
information of both the unchanged program and the mutants recorded during the executions. First, for
each difference between the runs on the original program and its mutants, the corresponding assertion is
added. After that, these assertions are minimised to find a sufficient subset to detect all the mutants per
test case; this becomes a minimum set covering problem. Besides, Staats et al. [103] and Gay et al. [104]
selected the most “effective” oracle data by ranking variables (trace data) based on their killed mutants
information.

Mutation-based test-suite reduction (4 instances) relies on the number of killed mutants as a heuristic
to perform test-suite reduction, instead of the more frequently used traditional coverage criteria, e.g.,
statement coverage. The intuition behind this idea is that the reduction based on the mutation faults can
produce a better-reduced test suite with less or no loss in fault-detection capability. The notable examples
include an empirical study carried out by Shi et al. [105] who compared the trade-offs among various
test-suite reduction techniques based on statement coverage and killed mutants.

Zooming in on the test strategy evaluation (3 instances), we observe, on the one hand, the idea of
incorporating an estimation of fault-exposure probability into test data adequacy criteria intrigued some
researchers. Among them are Chen et al. [106]: in their influential work they examined the fault-exposing
potential (FEP) coverage adequacy which is estimated by mutation analysis. Their findings show quite
small, but statistically significant increases in the fault-detection ability of FEP-based test suites compared
to statement-based ones. On the other hand, a mutation-based test strategy was also investigated and
evaluated under the whole testing procedure including test case generation, augmentation and evaluation.
A remarkable example includes an observational user study conducted by Smith and Williams [107] with
four software testers to explore the cost-effectiveness of mutation testing for manually augmenting test
cases. Their results indicate that mutation testing was regarded as an effective but relatively expensive
technique for writing new test cases.

From the above guide roles of the testing activities, we can see that mutation testing is mainly used as
an indication of the potential defects: either (1) to be killed in test data generation, test case prioritisation,
test-suite reduction and test strategy evaluation, or (2) to be suspected in the fault localisation. In most
cases, mutation testing serves as where-to-check constraints, i.e., introducing a modification in a certain
statement or block. In contrast, only four studies applied mutation testing to solving the test oracle
problem, which targets the what-to-check issue. The what-to-check problem is not a problem unique to
mutation testing, but rather an inherent challenge of test data generation. As mentioned above, mutation
testing can not only help in precisely targeting at where to check, but also suggesting what to check
for [102] (see the first recommendation labeled as R1 in Section 4.4). In this way, mutation testing could
be of benefit to improve the test code quality.

After we had analysed how mutation testing is applied to guide various testing activities, we are now
curious to better understand how these mutation-based testing methods were evaluated, especially because
mutation testing is commonly used as an assessment tool. Therefore, we summed up the evaluation
fault types among the articles labelled as “guide” in Table 4. We can see 37 cases (75.5%), which is the
addition of the first and the third rows in Table 4 (33 + 4), still adopted mutation faults to assess the
effectiveness. Among these studies, four instances [103, 104, 108, 109] realised the potentially biased
results caused by the same set of mutants being used in both guidance and assessment. They partitioned
the mutants into different groups and used one for evaluation set. Besides, one study [55] used a different
mutation tool while the other [85] adopted different mutation operators to generate mutants intending to
eliminate bias. These findings signal an open issue: how to find an adequate fault set instead of mutation
faults to effectively evaluate mutation-based testing methods? (see the second recommendation labeled as
R2 in Section 4.4) Although hand-seeded faults and real bugs could be an option, searching for such an

18/57

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2483v1 | CC BY 4.0 Open Access | rec: 28 Sep 2016, publ: 28 Sep 2016

Evaluation Fault Type Total

mutation faults 33
hand-seeded faults 7
hand-seeded + mutation faults 4
no evaluation 3
real faults 2

Table 4. Guide Role Summary

Test Level Total

n/a 73
unit 64
integration 9
other 9
system 8

Table 5. Test Level Summary

adequate fault set increases the difficulty when applying mutation testing as guidance.

Summary.
Test data generation and test strategy evaluation occupy the majority of testing activities when applying
mutation testing (73.6%). Mutation testing mainly serves as an assessment tool to evaluate the fault-finding
ability of various testing techniques (70.4%). While as guidance, mutation testing is primarily used in test
data generation (28 instances) and test-case prioritisation (6 instances). From the above observations, we
draw one open issue and one recommendation for the “guide” role of mutation testing. The open issue is
how to find an adequate fault set instead of mutation faults to effectively evaluate mutation-based testing
methods. The recommendation is mutation testing can suggest not only where to check but also what to
check. Where to check widely used to generate killable mutant constraints in different testing activities;
while what to check is seldom adopted to improve the test data quality.

4.1.2 RQ1.3: Which test level does mutation testing usually target at?
Observations.
Table 5 presents the summary of the test level distribution across the articles. We observe that the authors
of 73 papers do not provide a clear clue about the test level they target (the class marked as “n/a”). This
is a clear and open invitation for future investigations in the area to be more clear about the essential
elements of testing activities such as the test level. For the remainder of our analysis of RQ1.3, we
excluded the papers labelled as “n/a” when calculating percentages, i.e., our working set is 86 (159 − 73)
papers.

Looking at Table 5, mutation testing mainly targets the unit testing level (74.4%), an observation
which is in accordance with the results in Jia and Harman’s survey [1]. One of the underlying causes for
the popularity of the unit level could be the origin of mutation testing. The principle of mutation testing
is to introduce small syntactic changes to the original program; this means the mutation operators only
focus on small parts of the program, such as arithmetical operators and return statements. Thus, such
small changes mostly reflect the abnormal behaviour of unit-level functionality.

While unit testing is by far the most observed test level category in our set of papers, higher-level
testing, such as integration testing, system testing, can also benefit from the application of mutation testing.
Here we highlight several research works as examples: Hao et al. [110] and Do and Rothermel [64] used
the programs with system test cases as their subjects in case studies. Hou et al. [85] studied interface-
contract mutation in support of integration testing under the context of component-based software. Li
et al. [111] proposed a two-tier testing method (one for integration level, the other for system level) for
graphical user interface (GUI) software testing. Rutherford et al. [112] defined and evaluated adequacy
criteria under system-level testing for distributed systems. In Denaro et al. [113]’s study, they proposed a
test data generation approach using data flow information for inter-procedural testing of object-oriented

19/57

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2483v1 | CC BY 4.0 Open Access | rec: 28 Sep 2016, publ: 28 Sep 2016

programs.
The important point we discovered here is that all the aforementioned studies did not restrict mutation

operators to model integration errors or system ones. In other words, the traditional program mutations
can be applied to higher-level testing. Amongst these articles, the mutation operators adopted are mostly
at the unit level, e.g. Arithmetic Mutation Replacement, Relational Mutation Replacement. The mutation
operators designed for higher-level testing, e.g. [114,115], are seldom used in these studies. This reveals a
potential direction for future research: the cross-comparison of different levels of mutation operators and
testing activities at different test levels (see the third recommendation labeled as R3 in Section 4.4). The
investigation of different level of mutations can explore the effectiveness of mutation faults at different
test levels, such as the doubts whether integration-level mutation is better than unit-level mutation when
assessing testing techniques at the integration-level. In the same vein, an analysis of whether mutants are
a good alternative to real/hand-seeded ones (proposed by Andrews et al. [24]) at higher levels of testing
also seems like an important avenue to check out.

In addition, we created a class “others” in which we list 9 papers that we found hard to classify
in any of the other four test phases. These works can be divided into three groups: grammar-based
testing [116–118], spreadsheet-related testing [80, 119, 120] and SQL-related testing [121–123]. The
application of mutation testing on the “other” set indicates that the definition of mutation testing is actually
quite broad, thus potentially leading to even more intriguing possibilities [2]: What else can we mutate?

Summary.
The application of mutation testing is mostly done at the unit-level testing (74.4%), while we did still
observe several investigations targeting higher level testing efforts. What is worth noticing, is that those
studies focusing on higher-level testing still apply traditional (unit-level) mutation operators instead of
specific ones designed to model higher-level defects. This reveals a clear gap in current research: the
application of mutation testing at higher test levels. Hence, we recommend future research to explore the
relationship between different level mutations and different test levels. For example, empirical evaluations
on whether mutations at the integration level can represent real faults at the integration testing level. In
a different context, but still very important to highlight: 45.9% of papers did not clearly specify their
target test level(s). For reasons of clarity, understandability and certainly replicability, it is very important
to understand exactly at what level the testing activities take place. It is thus a clear call to arms to
researchers to better describe these essential testing activity features.

4.1.3 RQ1.4: Which testing strategies does mutation testing support more frequently?
Observations.
In Table 6 we summarised the distribution of testing strategies based on our coarse-grained classification
(e.g. structural testing, specification-based testing) as mentioned in Table 2. Looking at Table 6, structure-
based testing comes first among all the testing strategies (59.1%, 94 instances). The underlying cause
could be that structural testing is still the main focus of testing strategies in the software testing context.
The other testing strategies have also been supported by mutation testing: (1) specification-based testing
accounts for 54 cases; (2) hybrid testing for five instances (combination of structural and structure-based
testing); (3) three cases applying mutation testing in similarity-based testing; (4) 15 instances in others,
e.g. static analysis.

One interesting finding is that the enhanced structural testing ranks second among the seven groups of
testing strategies. The enhanced structural testing uses other approaches to overcome its inherent fault-
revealing disadvantages (i.e. “coverage is not strongly correlated with test effectiveness” [58]), including
mutation-based techniques, information retrieval knowledge, observation notations and assertion coverage.
The popularity of enhanced structural testing reveals the awareness of the shortage of conventional
coverage-based testing strategies has increased.

Compared to enhanced structural testing, enhanced specification-based testing did not attract much
interest. The 11 instances mainly adopted mutation testing (e.g. Qu et al. [97] and Papadakis et al. [124])
to improve the testing strategies.

Summary.
Mutation testing has been widely applied in support of different testing strategies. From the observation,
the testing strategies other than white box testing can also benefit from the application of mutation testing,
such as specification-based testing, hybrid testing and similarity-based testing. But structural testing
is more popular than the others (59.1%). Moreover, techniques like mutation-based techniques and

20/57

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2483v1 | CC BY 4.0 Open Access | rec: 28 Sep 2016, publ: 28 Sep 2016

Testing Strategies Total

structural testing 48
structural testing (enhanced) 46
specification-based testing 43
others 15
specification-based testing (enhanced) 11
hybrid testing 5
similarity-based testing 3

Table 6. Testing Strategies summary

Availability Types Total

Yes
existing 78

84partially-based 7
self-written 1

No

n/a (no information) 40

77existing (given the name/citation) 17
self-written 11
hand-seeded 9

Table 7. Mutation Tool Summary

information retrieval knowledge are also being adopted to improve the traditional structural-based testing,
which typically only relies on the coverage information of software artefacts. This serves an indication of
the increasing realisation of the limitations of coverage-based testing strategies.

4.2 R2: How are empirical studies related to the mutation testing designed and re-
ported?

4.2.1 RQ2.1: Which mutation tools have been used more frequently?
Observations.
We are interested in getting insight into the types (as defined in Table 2) of mutation testing tools that
are being used and into their availability. Therefore, we tabulated the different types of mutation testing
tools and their availability in Table 7. As shown in Table 7, 49.1% of the studies adopted existing tools
which are open to the public; this matches our expectation: as mutation testing is not the main focus of the
studies, if there exists a well-performing and open-source mutation testing tool, the researchers are likely
willing to use these tools. However, we also encountered 12 cases of using self-implemented tools and
nine studies that manually applied mutation operators. A likely reason for implementing a new mutation
testing tool or for applying mutation operators manually is that existing tools do not satisfy a particular
need of the researchers. In addition, most existing mutation testing tool are typically targeting one specific
language and a specific set of mutation operators [2] and they are not always easy to extend, e.g., when
wanting to add a newly-defined mutation operator. As such, providing more flexible mechanisms for
creating new mutation operators in mutation testing tools is an important potential direction for the future
research [2] (see the fourth recommendation labeled as R4 in Section 4.4).

Unfortunately, there are also still 77 studies (47%) that do not provide access to the tools, in particular,
40 papers did not provide any information about the tools at all, a situation that we marked as “n/a” in
Table 7. This unclarity should serve as a notice to researchers: the mutation testing tool is one of the
basic elements in mutation testing and lack of information on it seriously hinders replicability of the
experiments.

Having discussed the tool availability and types, we are wondering which existing open-source
mutation testing tools are most popular. The popularity of the tools can not only reveal their level of
maturity, but also provide a reference for researchers entering the field to help them choose a tool. To this
end, we summarised the names of mutation tools for different programming languages in Table 8. Table 8
shows that we encountered 18 mutation tools in total. Most tools target at one programming language

21/57

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2483v1 | CC BY 4.0 Open Access | rec: 28 Sep 2016, publ: 28 Sep 2016

Language Tool Total

Java

MuJava/µ-java/Muclipse 31
PIT/PiTest 7
JAVALANCHE 7
MAJOR 5
Jumble 2
Sofya 1
Jester 1

C
Proteum 11
MiLu 2
SMT-C 1

Fortran Mothra 4

SQL SQLMutation/JDAMA 2
SchemaAnalyst 1

C# GenMutants 1
PexMutator 1

JavaScript MUTANDIS 2

AspectJ AjMutator 1

UML specification MoMuT::UML 1

Table 8. Existing Mutation Tool Summary

(except for Mothra [17] which can support C as well). We encountered eight mutation tools for Java,
with the top 3 most-used being MuJava [125], PIT [126]x and JAVALANCHE [87]. We found that three
mutation tools for C are used, where Proteum [18] is most-frequently applied.

In Jia and Harman [1]’s literature review, they summarised 36 mutation tools developed between 1977
and 2009. When comparing their findings (36 tools) to ours (18 tools), we find that there are 12 tools in
common. The potential reason for us not covering the other 24 is that we only consider peer-reviewed
conference papers and journals; this will likely filter some papers which applied the other 24 mutation
tools. Also important to stress, is that the goal of Jia and Harman’s survey is different to ours: while we
focus on the application of mutation tools, their study surveys articles that introduce mutation testing tools.
In doing so, we still managed to discover 8 mutation tools which are not covered by Jia and Harman: (1)
two tools are for Java: PIT and Sofya; (2) one for C: SMT-C; (3) one for SQL: SchemaAnalyst; (4) one for
UML: MoMuT::UML; (5) two for C#: GenMutants and PexMutator; (6) one for JavaScript: MUTANDIS.
Most of these tools were released after 2009, which makes them too new to be included in the review of
Jia and Harman. Moreover, we can also witness the trend of the development of the mutation testing for
programming languages other than Java and C means compared to Jia and Harman [1]’s data.

Summary.
Around 50% of the articles that we have surveyed adopt existing (open source) tools, while in a few cases
(21 in total) the authors implemented their own tools or seeded the mutants by hand. This calls for a
more flexible mutation generation engine that allows to easily add mutation operators or certain types of
constraints. Furthermore, we found 77 papers that did not provide any information about the mutation
tools they used in their experiments; this should be a clear call to arms to the research community to be
more precise when reporting on mutation testing experiments. We have also gained insight into the most
popular tools for various programming languages, e.g., MuJava for Java and Proteum for C. We hope this
list of tools can be a useful reference for new researchers who want to apply mutation analysis.

4.2.2 RQ2.2: Which mutation operators have been used more frequently?
Observations
For the mutation operators, we first present the distribution of the three description levels (as mentioned
in Table 2) in Table 9. As Table 9 shows, 61.6% (98 instances) of the studies that we surveyed specify

22/57

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2483v1 | CC BY 4.0 Open Access | rec: 28 Sep 2016, publ: 28 Sep 2016

Description Level Total

well-defined 98
n/a 39
not sufficient 22

Table 9. Description Level of Mutation Operators Summary

the mutation operators that they use, while more than one-third of the articles do not provide enough
information about the mutation operators to replicate the studies. These 61 instances that are labelled as
“n/a” and “not sufficient” indicate the necessity of raising the awareness of the use of mutation in the testing
experiment as claimed by Namin and Kakarla [127]. They highlighted that mutation testing is highly
sensitive to external threats caused by the influential factors including mutation operators. Therefore, one
suggestion here is to report the complete list of the mutation operators when applying mutation testing
in testing experiments: the authors can provide either a self-contained list in the paper or the relevant
citations which can be used to trace the complete list.

After that, based on our generic classification of the mutation operators (as defined in Section 3.3 (4)),
we characterised the 98 papers labelled as “well-defined”. In addition to the overall distribution of the
mutation operators regardless of the programming languages, we are also interested in the differences
of the mutation operators for different languages as the differences could indicate potential gaps in the
existing mutation operator sets for certain programming languages. In Table 10 we project the different
languages onto seven columns and our predefined mutation operator categories onto the rows, thus
presenting the distribution of the mutation operators used in the literature under our research scope.

Overall, we can see that program mutation is more popular than specification mutation from the
Table 10. Among the program mutation operators, the arithmetic, relational and conditional operators
are the top 3 mutation operators. These three operators often used together in most cases as their total
numbers of applications are similar. The underlying cause of the popularity of these three operators
could be that the three operators are among Offutt et al. [30]’s 5 sufficient mutation operators. Moreover,
the expression-level operators are more popular than the statement-level ones. As for the statement-
level mutation operators, statement deletion, method call and return statement are the top 3 mutation
operators.

When we compare the mutation operators used in different languages to our mutation operator
categories, we see that there exist differences between different programming languages, just like we
assumed. Table 11 leads to several interesting findings that reveal potential gaps in various languages:

1. for Java, seven mutation operators at the expression and statement level (except go to label which
is not supported in Java) are not covered: type, bomb statement, do statement, brace, loop trap,
while statement and if statement

2. for C, only one potential mutation operator, method call, was not covered. The C programming
language does not provide direct support for exception handling

3. for C++, 3 expression-level, 10 statement-level and the OO-specific operators are not used in
literature

4. for C#, only a basic set of mutation operators are covered

5. for Fortran, the earliest programming language mutation testing was applied to, the relevant studies
covered a basic set

6. for SQL, since the syntax of SQL is quite different from the imperative programming languages,
only six operators at the expression level and SQL-specific ones are used

7. for JavaScript, only three mutation operators other than JavaScript-specific ones are adopted in
existing studies.

8The Java-specific operator here refers to the static modifier change (including insertion and deletion).

23/57

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2483v1 | CC BY 4.0 Open Access | rec: 28 Sep 2016, publ: 28 Sep 2016

Level Operator Ja
va

C C
++

C
#

Fo
rt

ra
n

SQ
L

Ja
va

Sc
ri

pt

To
ta

l

Specification Mutation 2 2 1 - - - - 22

Program Mutation 43 9 3 2 2 4 1 77

Expression-level

arithmetic operator 42 8 3 2 2 2 - 66
relational operator 38 7 3 2 2 2 - 62
conditional operator 39 6 3 2 2 2 - 61
assignment operator 24 3 2 - - - - 29
bitwise operator 26 3 2 - - - - 31
shift operator 26 1 2 - - - - 29
constant 12 3 2 1 2 2 - 27
variable 8 3 2 1 2 2 1 23
absolute value 5 3 1 2 1 2 - 15
conditional expression 2 2 - - - - - 5
parenthesis 1 1 - - - - - 2
type - 2 - - - - - 2

Statement-level

statement deletion 6 3 - 2 2 - - 17
method call 7 - 2 1 - - 1 13
return statement 6 2 - - 2 - - 11
exception handler 1 - 1 1 - - - 5
goto label - 2 - - 2 - - 5
control-flow disruption 2 1 2 - - - - 4
statement swap 2 1 2 - - - - 4
bomb statement - 1 - - 2 - - 4
switch statement 2 2 - - - - - 4
do statement - 1 - - 2 - - 3
brace - 2 - - - - - 2
loop trap - 2 - - - - - 2
while statement - 2 - - - - - 2
if statement - - - - - - - -

Others

OO-specific 17 - - 1 - - - 21
Java-specific 12 - 18 - - - - 12
SQL-specific - - - - - 4 - 4
Concurrent mutation 3 - - - - - - 3
AOP-specific - - - - - - - 2
Interface mutation 1 - - - - - - 2
Spreadsheet-specific - - - - - - - 2
JavaScript-specific - - - - - - 1 1

Table 10. Mutation Operators Used In the Literature

24/57

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2483v1 | CC BY 4.0 Open Access | rec: 28 Sep 2016, publ: 28 Sep 2016

M
uJ

av
a/

µ
-j

av
a/

M
uc

lip
se

PI
T

/P
iT

es
t

JA
VA

L
A

N
C

H
E

M
A

JO
R

Ju
m

bl
e

So
fy

a

Je
st

er

Pr
ot

eu
m

M
iL

u

SM
T-

C

M
ot

hr
a

SQ
L

M
ut

at
io

n/
JD

A
M

A

Sc
he

m
aA

na
ly

st

G
en

M
ut

an
ts

Pe
xM

ut
at

or

M
U

TA
N

D
IS

A
jM

ut
at

or

M
oM

uT
::U

M
L

Specification Mutation - - - - - - - - - - - - - - - - -
√

arithmetic operator
√ √ √ √ √ √

-
√ √

-
√ √

-
√ √ √

- -
relational operator

√ √
-

√
-

√ √ √ √ √ √ √
-

√ √ √
- -

conditional operator
√ √ √ √ √ √

-
√ √

-
√ √

-
√ √ √

- -
assignment operator

√ √
- - - - - -

√ √
- - - - - - - -

bitwise operator
√ √

- -
√

- -
√ √

- - - - - - - - -
shift operator

√ √
-

√ √
- -

√
- - - - - - - - - -

constant -
√ √

-
√

-
√ √ √ √ √ √

- - -
√

- -
variable -

√
- - - - -

√
- -

√ √
- - -

√
- -

absolute value - - -
√

- - - - - -
√ √

-
√ √

- - -
conditional expression -

√
- - - - -

√
- - - - - - - - - -

parenthesis - - - - - - -
√

- - - - - - - - - -
type - - - - - - -

√
- - - - - - -

√
- -

statement deletion -
√ √

- - - -
√ √

-
√

- - - -
√

- -
method call - - - - -

√
- - -

√
- - - - -

√
- -

return statement -
√

- -
√

- -
√

- -
√

- - - -
√

- -
if statement - - - - - - - - -

√
- - - - - - - -

exception handler - - - - - - - - - - - - - - - - - -
goto label - - - - - - -

√
- -

√
- - - - - - -

control-flow disruption - - - - - - -
√

- - - - - - -
√

- -
statement swap - - - - - - -

√
- - - - - - -

√
- -

bomb statement - - - - - - -
√

- -
√

- - - - - - -
switch statement -

√
- -

√
- -

√
-

√
- - - - -

√
- -

do statement - - - - - - - - - -
√

- - - - - - -
brace - - - - - - -

√
- - - - - - - - - -

loop trap - - - - - - -
√

- - - - - - - - - -
while statement - - - - - - -

√
- - - - - - - - - -

OO-specific
√ √

- - -
√

- - - - - - - - - - - -
Java-specific

√
- - - - - - - - - - - - - - - - -

SQL-specific - - - - - - - - - - -
√ √

- - - - -
JavaScript-specific - - - - - - - - - - - - - - -

√
- -

AOP-specific - - - - - - - - - - - - - - - -
√

-

Table 11. Comparison of Mutation Operators in Existing Mutation Tools

The above findings are just the initial results in which we neither did further analysis to chart the
syntax differences of these languages nor investigate the possibility of the equivalent mutants caused
by our classification. Moreover, for some languages, e.g. JavaScript, the relevant studies are too few to
draw any definitive conclusions. Here, we can only say that for different languages the existing studies
did not cover all the mutation operators that we listed in Table 10: some are caused by the differences in
the syntax, while the others could point to potential gaps. The distribution of the mutation operators of
different languages summarised in Table 10 can be a reference for further investigations into mutation
operator differences in various programming languages.

Furthermore, our generic classification of the existing mutation operators can be of benefit to compare
mutation tools in the future. Thereby, we compared the existing mutation testing tools (as listed in Table 8)
to our mutation operator categories in Table 11. The result shows that none of the existing mutation testing
tools we analysed can cover all types of operators we classified. For seven mutation testing tools for Java,
they mainly focus on the expression-level mutations and only four kinds of statement-level mutators are
covered. Furthermore, MuJava, PIT and Sofya provide some OO-specific operators, whereas PIT only
supports one type, the Constructor Calls Mutator. For the three mutation testing tools for C that we have
considered, Proteum covers the most mutation operators. SMT-C is an exceptional case of the traditional
mutation testing which targets at semantic mutation testing. For the tools designed for C#, OO-specific
operators are not present. Another interesting finding when we compared Table 10 and Table 11, is that
the if statement mutator is not used in literature but it is supported by SMT-C. This observation indicates
that not all the operators provided by the tools are used in the studies when applying mutation testing,
which reinforces our message of the need for “well-defined” mutation operators when reporting mutation
testing studies.

25/57

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2483v1 | CC BY 4.0 Open Access | rec: 28 Sep 2016, publ: 28 Sep 2016

Equivalence Detector Total

n/a 91
manual investigation 29
not killed as equivalent 16
no investigation 11
reduce likelihood 7
model checker 6
deterministic model 1
not killed as nonequivalent 1

Table 12. Methods for Overcoming E(quivalent) M(utant) P(roblem) Summary

Summary.
For the mutation operators, we focused on two attributes: their description level and a generic classification
across tools and programming languages. When investigating the description level of the mutation
operators that are used in studies, we found that 61.6% (98 instances) explicitly defined the mutation
operators used. This leads us to strongly recommend improving the description level for the sake of
replicability. Furthermore, the distribution of mutation operators based on our predefined categories
shows the lacking of certain mutation operators in some programming languages among the existing
(and surveyed) mutation testing tools. A possible avenue for future work is to see which of the missing
mutation operators can be implemented for the programming languages lacking these operators.

4.2.3 RQ2.3: Which approaches are used to overcome the equivalent mutant problem more often
when applying mutation testing?

Observations.
In Table 12 we summarised our findings of how the studies that we surveyed deal with the equivalent
mutant problem. More specifically, Table 12 presents how many times we encountered each of the
approaches for solving the equivalent mutant problem. When looking at the results, we firstly observe
that in 57.2% of the cases we assigned “n/a”; one possible reason for this high number of papers not
providing information is that we excluded the internal methods of overcoming the equivalent mutant
problem, meaning that mutation tools have it built in already. Moreover, as a non-decidable problem [13],
the equivalent mutant problem is still under-developed [14].

As shown in Table 12, there are only 14 instances (6 “model checker” + 7 “reduce likelihood”+1
“deterministic model”) actually adopting equivalent mutant detectors by using automatic mechanisms.
In the remainder of the papers, the problem of equivalent mutants is solved by (1) manual analysis,
(2) making assumptions (treating mutants not killed as either equivalent or nonequivalent), and (3) no
investigation. In particular, the manual investigation (29 instances) and the method of treating mutants not
killed as equivalent (16 instances) are more commonly used than other methods.

We can only speculate as to the reasons behind the above situation: Firstly, most studies use mutation
testing as an evaluation mechanism or guiding heuristic, rather than their main research topic. So the
authors are maybe not willing to spare too much effort in dealing with problems associated with mutation
testing. Moreover, looking at the internal features of existing tools used in literature (in Table 13), we
found that only four tools adopt certain techniques to address the equivalent mutant problem. Most of
the tools did not assist in dealing with the equivalent mutant problem. Thereby, the aforementioned
three solutions, (1) manual analysis, (2) making assumptions or (3) no investigation, are considered
by the authors. If there exists a well-developed auxiliary tool that can be seamlessly connected to the
existing mutation systems for helping the authors detect equivalent mutants, this tool might be more than
welcomed. We recommend that future research on the equivalent mutant problem can further implement
their algorithms in such an auxiliary tool and make it open to the public (see the fifth recommendation
labeled as R5 in Section 4.4).

Secondly, mutation score is mainly used as a relative comparison for estimating the effectiveness
of different techniques. Sometimes, mutation testing is only used to generate likely faults; equivalent
mutants have no impact on the other measures such as the Average Percentage of Fault Detection rate
(APFD) [90]. Furthermore, the definition of the mutation score is also modified by some authors: they

26/57

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2483v1 | CC BY 4.0 Open Access | rec: 28 Sep 2016, publ: 28 Sep 2016

Language Tool Equivalent Mu-
tants

Cost Reduction

Java

MuJava/µ-java/Muclipse n/a MSG, bytecode translation (BCEL) [125]

PIT/PiTest n/a Bytecode translation (ASM), coverage-based test
selection [126]

JAVALANCHE Ranking mutations
by impact [87]

MSG, bytecode translation (ASM), coverage-based
test selection, parallel execution [87]

MAJOR n/a Compiler-integrated, coverage-based test selec-
tion [128]

Jumble n/a Bytecode translation (BCEL), conventional test se-
lection [129]

Sofya n/a Bytecode translation (BCEL) [130]

Jester n/a n/a

C
Proteum n/a Mutant sample [18]

MiLu n/a Higher-order mutants, test harness [131]

SMT-C n/a Interpreter-based, weak mutation [132]

Fortran Mothra n/a Interpreter-based [1]

SQL SQLMutation/JDAMA Constraint bind-
ing [20]

n/a

SchemaAnalyst n/a n/a

C# GenMutants n/a n/a

PexMutator n/a Compiler-based [55]

JavaScript MUTANDIS Reduce likeli-
hood [79]

Selection strategy [79]

AspectJ AjMutator Static analysis [133] Compiler-based [133]

UML specification MoMuT::UML n/a Compiler-based [134]
Note: “n/a” in the table means we did not find any relevant information recorded in literature or websites, and some tools might adopt
certain techniques but did not report such information in the sources we can trace.

Table 13. Inner features of Existing Mutation Tool

used the total number of mutants as the denominator instead of number of nonequivalent mutants. The
equivalent mutant problem seems to not pose a significant threat to the validation of the testing techniques
involved in these studies.

However, we should not underestimate the impact of the equivalent mutant problem on the accuracy
of the mutation score. Previous empirical results indicated that 10 to 40 percent of mutants are equiva-
lent [135, 136]. What’s more, in Schuler and Zeller’s study [47], they further claimed that around 45%
of all undetected mutants turned out to be equivalent; this observation leads to the assumption that by
simply treating mutants not killed as equivalent mutations, we could be overestimating the mutation score.
Therefore, we recommend performing more large-scale investigations on whether the equivalent mutant
problem has a strong impact on the accuracy of the mutation score.

Summary.
The techniques for equivalent mutant detection are not commonly used when applying mutation testing.
The main approaches that are used are the manual investigation and treating mutants not killed as
equivalent. Based on the results, we recommend further research on the equivalent mutant problem
can develop a mature and useful auxiliary tool which can easily link to the existing mutation system.
Such an extra tool assists people to solve the equivalent mutant problem when applying mutation testing
more efficiently. Moreover, research on whether the equivalent mutant problem has a high impact on
the accuracy of the mutation score is still needed, as the majority did not consider the equivalent mutant
problem as a significant threat to validation of the testing activities. Also, 57.2% of the studies are lacking
an explanation as to how they are dealing with overcoming the equivalent mutants problem; this again
calls for more attention on reporting mutation testing appropriately.

27/57

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2483v1 | CC BY 4.0 Open Access | rec: 28 Sep 2016, publ: 28 Sep 2016

Cost Reduction Technique Total

n/a 108
fixed number 25
weak mutation 15
mutant sample 9
selection strategy 4
higher-order 1

Table 14. Cost Reduction Summary

4.2.4 RQ2.4: Which techniques are used to reduce the computational cost more frequently when
applying mutation testing?

Observations.
Since mutation testing requires high computational demands, cost reduction is necessary for applying
mutation testing, especially in the industrial environment. We summed up the uses of such computational
cost reduction techniques when using mutation testing in Table 14. Please note that we excluded the
runtime optimisation and selective mutation techniques. We opted to exclude this because the runtime
optimisation is related to tool implementation which is not very likely to appear in the papers under our
research scope, while the second one, selective mutation, is adopted by all the papers.

First of all, we noticed that 108 articles (67.9%) did not mention any reduction techniques. If we
take into account those papers that used the runtime optimisation and selective mutation, one plausible
explanation for the numerous “n/a” instances is a lack of awareness of properly reporting mutation testing,
as we mentioned earlier. Secondly, random selection of the mutants based on a fixed number comes next
(25 instances), followed by weak mutation (15 instances) and mutant sampling (9 cases).

But why is the technique of using a “fixed number” of mutants more popular than the others? We
speculate that this could be because of the fact that choosing a certain number of mutants is more realistic
in real software development: the total number of mutants generated by mutation tools is huge; while,
realistically, only a few faults are made by the programmer during implementation. By fixing the number
of mutants, it becomes easier to control the mutation testing process. Instead, relying on the weak mutation
condition would require additional implementation efforts to modify the tools. Also of importance to note
is the difference between the “fixed number” and “mutant sample” choice: while the first one implies
a fixed number of mutants, the second one relies on fixed sampling rate. Compared to using a fixed
number, mutant sampling sometimes cannot achieve the goal of reducing the mutants number efficiently.
In particular, it is difficult to set one sample ratio if the size of the subjects varies greatly. For example,
consider the following situation: one subject has 100,000 mutants while the other has 100 mutants. When
the sample ratio is set to 1%, the first subject still has 1000 mutants left, while the number of mutants for
the second one is reduced to one.

Moreover, we performed a further analysis of the mutation tools in Table 13. We find that most tools
adopted certain types of cost reduction techniques to overcome the high computational expense problem.
For mutation testing tools for Java, bytecode translation is frequently adopted while Mutant Schemata
Generation (MSG) is used in two tools, MuJava and JAVALANCHE. Another thing to highlight is that
MiLu used a special test harness to reduce runtime [131]. This test harness is created containing all the
test cases and settings for running each mutant. Therefore, only the test harness need to be executed while
each mutant runs as an internal function call during the testing process.

Selective mutation is also widely applied in nearly all the existing mutation testing tools (as shown
in Table 11). This brings us to another issue, namely whether the selected subset of mutation operators
is sufficient to represent the whole mutation operator set? When adopting selective mutation, some
configurations are based on prior empirical evidence, e.g., Offutt et al. [30]’s five sufficient Fortran
mutation operators and Siami et al. [32]’s 28 sufficient C mutation operators. However, most cases are
not supported by the empirical or theoretical studies that show a certain subset of mutation operators can
represent the whole mutation operator set. Thereby, we recommend more empirical studies on selective
mutation in programming languages other than Mothra and C (see the sixth recommendation labeled as
R6 in Section 4.4).

Based on the above discussion, we infer that mutation testing’s high computational problem can

28/57

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2483v1 | CC BY 4.0 Open Access | rec: 28 Sep 2016, publ: 28 Sep 2016

be adequately controlled using the state-of-art reduction techniques, especially selective mutation and
runtime optimisation.

Summary.
Selective mutation is the most widely used method for reducing the high computational cost of mutation
testing. However, in most cases, there are no existing studies to support the prerequisite that selecting a
particular subset of mutation operators is sufficient to represent the whole mutation operator set. Therefore,
one recommendation is to conduct more empirical studies on selective mutation in various programming
languages. Without regard to runtime optimisation and selective mutation, random selection of the mutants
based on a fixed number (25 papers) is the most popular technique used to reduce the computational cost.
The following ones are weak mutation and mutant sampling. Besides, a high percentage of the papers
(67.9%) did not report any reduction techniques used to cope with computational cost when applying
mutation testing; this again should serve as a reminder for our research community to pay more attention
to properly reporting mutation testing in testing experiments.

4.2.5 RQ2.5: What are the most common subjects used in the experiments?
Observations.
To analyse the most common subjects used in the experiments, we focus on three attributes of the subject
programs, i.e., programming language, size and data availability. We will discuss these three attributes
one by one in the following paragraphs.

Table 15 shows the distribution of the programming languages. We can see that Java and C dominate
the application domain (66.0%, 105 instances). While JavaScript is an extensively used language in the
web application domain, we only found two cases of it being described in the studies we surveyed. The
potential reasons for this uneven distribution are unbalanced data availability and the complex nature of
building a mutation testing system. The first cause, uneven data availability, is likely instigated through
the fact that existing, well-defined software repositories such as SIR [88], SF100 [89] are based on C
and Java. We have not encountered such repositories for JavaScript, C# or SQL. Furthermore, it is easier
to design a mutation system targeting one programming language. This stands in contrast to many web
applications, that are often composed out of a combination of JavaScript, HTML, CSS, etc. This thus
increases the difficulty of developing a mutation system for these combinations of programming languages.
It is also worth noticing that we have not found any research on a purely functional programming language
in our research scope.

When considering the maximum size of the subject programs, studies involving preliminary (<100
LOC), small (100∼10K LOC) subjects or studies with no information about programs size (“n/a” instances
in Table 16) occupy the 79% (126 instances) of papers in our collection. This high percentage of
preliminary, small and “n/a” subjects indicates that mutation testing is rarely applied to programs whose
size is higher than 10K LOC. We did find that only 31studies use medium size subjects, which corresponds
to 19% of cases. Finally, we observed only two cases where mutation testing is applied in more large-scale
projects: (i) Qi et al. [99] adopted mutation testing to prioritise test cases to speed up patch validation
during program repairing and (ii) von Mayrhauser et al. [95] proposed a new test data generation technique
based on an Artificial Intelligence (AI) planner and evaluated their method on an Automated Cartridge
System (ACS). These two instances show the full potential of mutation testing to be employed as a
practical testing tool for large industrial systems.

With regard to the concern of data availability, we observe the following: 49.1% of the studies provide
open access to their experiments. Together with 5 instances of “n/a” in Table 15 and 59 in Table 16
(including subjects which cannot be measured as LOC, e.g. SpreadSheet applications), it is worth noticing
that subject programs used in the experiment should be clearly specified. In addition, basic information
on programming language, size and subject should also be clearly specified in the articles to ensure
replicability.

Summary.
For the subject systems used in the experiments in our survey, we discussed three aspects: programming
language, size of subject programs and data availability. For programming languages, Java and C are the
most common programming languages used in the experiments when applying mutation testing. There is
a clear challenge in creating more mutation testing tools for other programming languages, especially in

8Here, we did not consider the number of “n/a” value when calculating the percentage (159 − 59 = 100).

29/57

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2483v1 | CC BY 4.0 Open Access | rec: 28 Sep 2016, publ: 28 Sep 2016

Language Total

Java 74
C 31
C# 6
Fortran 6
n/a 5
C++ 4
Lustre/Simulink 8
SQL 4
Eiffel 3
Spreadsheet 3
AspectJ 3
C/C++ 2
JavaScript 2
Ada 1
Kermeta 1
Delphi 1
Enterprise JavaBeans application 1
ISO C++ grammar 1
PLC 1
Sulu 1
XACML 1
XML 1
other specification languages 10

Table 15. Programming Language Summary

Subject Size Total

n/a 59
small (100∼10K LOC) 58
medium (10K∼1M LOC) 31
preliminary (<100 LOC) 9
large (>1M LOC) 2

Table 16. Subject Size Summary

the area of web applications and functional programming (see the seventh recommendation labeled as R7
in Section 4.4).

As for the maximum size of subject programs, small to medium scale projects (100∼1M) are widely
used when applying mutation testing. Together with two large-scale cases, we can see the full potential of
mutation testing as a practical testing tool for large industrial systems. We recommend more research on
large-scale systems to further explore scalability issues (see the eighth recommendation labeled as R8 in
Section 4.4).

The third aspect we consider is data availability. Only 49.1% of the studies that we surveyed provide
access to the subjects used. This again calls for more attention on reporting test experiments appropriately:
the authors should explicitly specify the subject programs used in the experiment, covering at least the
details of programming language, size and source.

4.3 Summary of Research Questions
We will now revisit the research questions and answer them in the light of our observations.

RQ1: How mutation testing is used in testing activities?
Mutation testing is mainly used as a fault-based evaluation method (70.4%) in different testing activities.
It assesses the fault-finding ability of various testing techniques through the mutation score or the number

30/57

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2483v1 | CC BY 4.0 Open Access | rec: 28 Sep 2016, publ: 28 Sep 2016

Data Availability Total

no 81
yes 78

Table 17. Data Availability Summary

of killed mutants. Adopting mutation testing to improve other testing activities as a guide was first
proposed by DeMilli and Offutt [35] in 1991 when they used it to generate test data. As a “high end”
test criterion, mutation testing started to gain popularity as a building block in different testing activities,
like test data generation (28 instances), test case prioritisation (6 cases) and test strategy evaluation (3
instances). However, using mutation testing as part of new test approaches raises a challenge in itself,
namely how to efficiently evaluate mutation-based testing? Besides, we found one limitation related to
the “guide” role of mutation testing: mutation testing usually serves as a where-to-check constraint rather
than a what-to-check improvement. Another finding of the application of mutation testing is that it often
targets unit-level testing (74.4%), while only a small amount of studies featuring higher-level testing show
the benefit of mutation testing. As a result, we conclude that the current state of application of mutation
testing is still rather limited.

RQ2: How are empirical studies related to the mutation testing designed and reported?
First of all, for the mutation testing tools and mutation operators used in literature, we found that 49.1%
of the articles adopted existing (open-source) mutation testing tools, such as MuJava for Java and Proteum
for C. In contrast, we did encounter a few cases (21 in total) where the authors implemented their own
tools or seeded mutants by hand. Furthermore, to investigate the distribution of mutation operators in
the studies, we created a generic classification of mutation operators as shown in Section 3.3 (4). The
results indicate that certain programming languages lack specific mutation operators, at least as far as the
mutation tools that we have surveyed concern.

Moreover, when looking at the two most significant problems related to mutation testing, the main
approaches to dealing with the equivalent mutant problem are (1) treating mutants not killed as equivalent
and (2) not investigating the equivalent mutants at all. In terms of cost reduction techniques, we observed
that the “fixed number of mutants” is the most popular technique used to reduce computational cost,
although we should mention that we did not focus on built-in reduction techniques.

The above findings suggest that the existing techniques designed to support the application of mutation
testing are largely still under development: a mutation testing tool with a more complete set of mutation
operators or a flexible mutation generation engine to which mutation operators can be added, is still
needed. In the same vein, a more mature and efficient auxiliary tool for assisting in overcoming the
equivalent mutant problem is needed. Furthermore, we have observed that we lack insight into the impact
of selective mutation on mutation testing; this suggests a deeper understanding of mutation testing is
required. For example, if we know what particular kinds of faults mutation is good at finding or how
useful a particular type of mutant is when testing real software, we can then design the mutation operators
accordingly.

Based on the distribution of subject programs used in testing experiments or case studies, Java and
C are the most common programming languages used in the experiments. Also, small to medium scale
projects (100∼1M LOC) are the most common subjects employed in the literature.

Besides, from the statistics of the collection, we found a considerable amount of papers did not provide
a sufficiently clear or thorough specification when reporting mutation testing in their empirical studies.
We summarised the poorly-specified aspects of mutation testing in Table 18. As a result, we call for more
attention on reporting mutation testing appropriately. The authors should provide at least the following
details in the articles: the mutation tool (preferably with a link to its source code), mutation operators used
in experiments, how to deal with the equivalent mutant problem, how to cope with high computational
cost and details on the subject program (see the ninth recommendation labeled as R9 in Section 4.4).

4.4 Recommendation of Future Research
In this section, we will summarise the recommendations for the future research based on the discussion in
two research questions above (in Section 4.1.1-4.3). We propose nine recommendations for the future
research as follows:

31/57

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2483v1 | CC BY 4.0 Open Access | rec: 28 Sep 2016, publ: 28 Sep 2016

The poorly-specified aspects in re-
porting mutation testing

Number of papers

test level 73
mutation tool source 77
mutation operators 61
equivalent mutant problem 91
reduction problem 108
subject program source 81

Table 18. Poorly-specified aspects in empirical studies

• R1: Mutation testing can not only be used as where-to-check constraints but also to suggest
what to check to improve test code quality.
As shown in Table 3 in Section 4.1.1, when mutation testing serves as a “guide”, mutants generated
by the mutation testing system are mainly used to suggest the location to be checked, i.e., where-
to-check constraints. For example, the location of mutants is used to assist the localisation of
“unknown” faults in fault localisation. The mutation-based test data generation also used the
position information to generate killable mutant conditions. However, mutation testing is not widely
considered to be a benefit to improve test code quality by suggesting what to check, especially in
test oracle problem. The what-to-check direction can be one opportunity for future research in
mutation testing as a “guide” role.

• R2: For testing approaches that are guided by a mutation approach, more focus can be given
to finding an appropriate way to evaluate mutation-based testing in an efficient manner.
When looking at the evaluation types in Table 4 in Section 4.1.1, we observe that 75.5% of the
mutation-based testing techniques still adopt mutation faults to assess their effectiveness. This
raises the question of whether the conclusions might be biased. As such, we open the issue of
finding an appropriate way to evaluate mutation-based testing in an efficient manner.

• R3: Study the higher-level application of mutation testing.
In Section 4.1.2 we made the observation that mutation testing seems to mainly target the unit-
level testing, accounting for 74.4% of the studies we surveyed. This reveals a potential gap in
how mutation testing is currently applied. It is thus our recommendation that researchers pay
more attention to higher-level testing, such as integration testing and system testing. The research
community should not only investigate potential differences in applying mutation testing at the
unit-level or at a higher level of testing, but also explore whether the conclusions based on unit-level
mutation testing could still apply to higher-level mutation testing. A pertinent question in this area
could for example be whether an integration mutation fault can be considered as an alternative to a
real bug at the integration level.

• R4: The design of a more flexible mutation generation engine that allows for the easy addi-
tion of new mutation operators.
As shown in Table 7 in Section 4.2.1, 49.1% of the articles adopted the existing tools which are
open-source, while we also found 21 instances of researchers implementing their own tool or
seeding the mutants by hand. Furthermore, in Table 10 and Table 11, we can see certain existing
mutation testing tools lack certain mutation operators. These findings imply that existing mutation
testing tools can not always satisfy all kinds of needs, and new types of mutation operators are
also potentially needed. Since most existing mutation testing tools have been initialized for one
particular language and a specific set of mutation operators, we see a clear need for a more flexible
mutation generation engine to which new mutation operators can be added easily [2].

• R5: A mature and efficient auxiliary tool to detect equivalent mutants that can be easily
integrated with existing mutation tools.

32/57

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2483v1 | CC BY 4.0 Open Access | rec: 28 Sep 2016, publ: 28 Sep 2016

In Section 4.2.3, the problem of equivalent mutants is mainly solved by manual analysis, assump-
tions (treating mutants not killed as either equivalent or nonequivalent) or no investigation at all
during application. This observation leads to doubt about the efficacy of the state-of-art equivalent
mutant detection. In the meanwhile, if there is a mature and efficient auxiliary tool which can easily
link to the existing mutation system, the auxiliary tool can be a practical solution for the equivalent
mutant problem when applying mutation testing. As a result, we call for a well-developed and easy
to integrate auxiliary tool for the equivalent mutant problem.

• R6: More empirical studies on the selective mutation method can pay attention to program-
ming languages other than Mothra and C.
As mentioned in Section 4.2.4, selective mutation is used by all the studies in our research scope.
However, the selection of a subset of mutation operators in most papers is not well supported by
existing empirical studies, except for Mothra [30] and C [32]. Selective mutation requires more
empirical studies to explore whether a certain subset of mutation operator can be applied in different
programming languages.

• R7: More attention should be given to other programming languages, especially web appli-
cations and functional programming projects.
As discussed in RQ2.5 in Section 4.2.5, Java and C are the most common programming languages
that we surveyed. While JavaScript and functional programming languages are seldom applied.
JavaScript, as one of the most popular languages in developing web applications, calls for more
attention from the researchers. In the meanwhile, functional programming languages, such as Lisp
and Haskell, are still playing an inevitable role in the implementation of programs; thus also require
more focus in future studies.

• R8: Application of mutation testing in large-scale systems to explore scalability issues.
From Table 16 in Section 4.2.5 we learn that the application of mutation testing to large-scale
programs whose size is greater than 1M LOC rarely happens (only two cases). In order to effectively
apply mutation testing in industry, the scalability issue of mutation testing requires more attention.
We recommend future research to use mutation testing in more large-scale systems to explore
scalability issues.

• R9: Authors should provide at least the following details in the articles: mutation tool source,
mutation operators used in experiments, how to deal with the equivalent mutant problem,
how to cope with high computational cost and subject program source.
From Table 18 in Section 4.4 we remember that a considerable amount of papers reported mutation
testing in a poor manner. To help progress research in the area more quickly and to allow for
replication studies, we all need to take care to be careful in how we report mutation testing in
empirical studies. We consider the above five elements to be essential when reporting mutation
testing.

5 THREATS TO THE VALIDITY OF THIS REVIEW
We have presented our methodology for performing this systematic literature review and its findings in the
previous sections. As conducting a literature review largely relies on manual work, there is the concern
that different researchers might end up with slightly different results and conclusions. To eliminate this
potential risk caused by researcher bias as much as possible, we follow the guidelines for performing
systematic literature reviews by Kitchenman [6], Wohlin [73], Brereton et al. [71]) whenever possible. In
particular, we keep a detailed record of procedures made throughout the review process by documenting
all the metadata from article selection to characterisation see (Table 19-21 in Appendix).

In this section, we are going to describe the main threats to validity of this review and discuss how we
attempted to mitigate the risks regarding four aspects: the article selection, the attribute framework, the
article characterisation and the result interpretation.

33/57

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2483v1 | CC BY 4.0 Open Access | rec: 28 Sep 2016, publ: 28 Sep 2016

5.1 Article Selection
Mutation testing is an active research field, and a plethora of realisations have been achieved as shown in
Jia and Harman’s thorough survey [1]. To address the main interest of our review, i.e. actual application of
mutation testing, we need to define inclusion/exclusion criteria to include papers of interest and exclude
irrelevant ones. But this also introduces a potential threat to the validity of our study: unclear article
selection criteria. To minimise the ambiguity caused by the selection strategies, we carried out a pilot run
of the study selection process to validate our selection criteria among the three authors. This selection
criteria validation led to a tiny revision. Besides, if there is any doubt about whether a paper belongs in
our selected set, we had an internal discussion to see whether the paper should be included or not.

The venues in Table 1 were selected because we considered them to be the key venues in software
engineering and most relevant to software testing, debugging, software quality and validation. This
presumption might result in an incomplete paper collection. In order to mitigate this threat, we also
adopted snowballing to extend our set of papers from pre-selected venues to reduce the possibility of
missing influential papers.

Although we made efforts to minimise the risks with regard to article selection, we cannot make
definitive claims about the completeness of this review. We have one major limitation related to the
article selection: we only considered top conference or journal papers to ensure the high quality while
we excluded article summaries, interviews, reviews, workshops, panels and poster sessions. Vice versa,
sometimes we were also confronted with a vague use of the “mutation testing” terminology, in particular,
some papers used the term “mutation testing”, while they are doing fault seeding, e.g. Lyu et al. [137].
The main difference between mutation testing and error seeding is the way how to introduce defects in the
program [138]: mutation testing follows certain rules while error seeding adds the faults directly without
any particular techniques.

5.2 Attribute Framework
We consider the attribute framework to be the most subjective step in our approach: the generalisation of
the attribute framework could be influenced by the researcher’s experience as well as the reading sequence
of the papers. To generate a useful and reasonable attribute framework, we followed a two-step approach:
(1) we first wrote down the facets of interest according to our research questions and then (2) derived
corresponding attributes of interest. Moreover, for each attribute, we need to ensure all possible values of
each attribute are available, as well as a precise definition of each value. In this manner, we can target and
modify the unclear points in our framework quickly. In particular, we conducted a pilot run for specifically
for validating our attribute framework. The results led to several improvements to the attribute framework
and demonstrated the applicability of the framework.

5.3 Article Characterisation
Thanks to the complete definitions of values for each attribute, we can assign the value(s) to articles in a
systematic manner. However, applying the attribute framework to the research body is still a subjective
process. To eliminate subtle differences caused by our interpretation, we do no further interpretation of
the information extracted from the papers in the second pilot run of validation. In particular, if there is no
specified detail in a paper, we then mark as “n/a”. Furthermore, we listed our data extraction strategies
about how to identify and classify the values of each attribute in Section 3.3.

5.4 Result Interpretation
Researcher bias could cause a potential threat to validity when it comes to the result interpretation, i.e.,
the author might seek what he expected for in the review. We reduce the bias by (1) selecting all possible
papers in a manner that is fair and seen to be fair and (2) discuss our findings based on statistical data we
collected from the article characterisation. Also, our results are discussed among all the authors to reach
an agreement.

6 CONCLUSION
In this paper we have reported on a systematic literature review on the application perspective of mutation
testing, clearly contrasting previous systematic reviews that surveyed the whole field of mutation testing
and that did not specifically go into how mutation testing is applied (e.g. [1]). We have characterised the
studies that we have found on the basis of seven facets: (1) the role that mutation testing has in testing

34/57

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2483v1 | CC BY 4.0 Open Access | rec: 28 Sep 2016, publ: 28 Sep 2016

activities; (2) the testing activities (including categories, test level and testing strategies); (3) the mutation
tools used in the experiments; (4) the mutation operators used in the experiments; (5) the description
of the equivalent mutant problem; (6) the description of cost reduction techniques for mutation testing;
and (7) the subjects software systems involved in the experiments (in terms of programming language,
size and data availability). These seven facets pertain to our two main research questions: RQ1 How is
mutation testing used in testing activities? and RQ2 How are empirical studies related to mutation testing
designed and reported?

Our main procedure to conduct this systematic literature review is shown in Figure 1. To collect all
the relevant papers under our research scope, we started with search queries in online libraries considering
17 venues. We selected the literature that focuses on the supporting role of mutation testing in testing
activities with sufficient evidence to suggest that mutation testing is used. After that, we performed a
snowballing procedure to collect missing articles, thus resulting in a final selection of 159 papers in 21
venues. Through a detailed reading of this research body, we derived an attribute framework that was
consequently used to characterise the studies in a structured manner. The resulting systematic literature
review can be of benefit for researchers in the area of mutation testing. Specifically, we provide (1)
guidelines on how to apply and subsequently report on mutation testing in testing experiments and (2)
recommendations for future work.

The derived attribute framework is shown in Table 2. This attribute framework generalises and details
the essential elements related to the actual application of mutation testing, such as in which circumstances
mutation testing is used and which mutation testing tool is selected. In particular, a generic classification
of mutation operators is constructed to study and compare the mutation operators used in the experiments
described. This attribute framework can be used as a reference for researchers when describing mutation
operators. We then presented the characterisation data of all the surveyed papers in Table 19-21 in
Appendix. Based on our analysis of the results (in Section 4), four points are key to remember:

1. Most studies use mutation testing as an assessment tool; they target the unit level. Not only should
we pay more attention to higher-level and specification mutation, but we should also study how
mutation testing can be employed to improve the test code quality. Furthermore, we also encourage
researchers to investigate and explore more interesting applications for mutation analysis in the
future by asking such questions as: what else can we mutate? (Section 4.1.1-4.1.2)

2. Many of the supporting techniques for making mutation testing truly applicable are still under-
developed. Also, existing mutation tools are not complete with regard to the mutation operators
they offer. The two key problems, namely the equivalent mutant detection problem and the high
computation cost of mutation testing issues, are not well-solved in the context of our research body
(Section 4.2.1-4.2.4).

3. A deeper understanding of mutation testing is required, such as what particular kinds of faults
mutation testing is good at finding. This would help the community to develop new mutation
operators as well as overcome some of the inherent challenges (Section 4.3).

4. The awareness of appropriately reporting mutation testing in testing experiments should be raised
among the researchers (Section 4.3).

In summary, the work described in this paper makes following contributions:

1. A systematic literature review of 159 studies that apply mutation testing in scientific experiments,
which includes an in-depth analysis of how mutation testing is applied and reported on.

2. A detailed attribute framework that generalises and details the essential elements related to actual
use of mutation testing

3. A generic classification of mutation operators that can be used to compare different mutation testing
tools.

4. An actual characterisation of all the selected papers based on the attribute framework.

5. A series of recommendations for future work including important suggestions on how to report
mutation testing in testing experiments in an appropriate manner.

35/57

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2483v1 | CC BY 4.0 Open Access | rec: 28 Sep 2016, publ: 28 Sep 2016

REFERENCES
[1] Y. Jia and M. Harman, “An analysis and survey of the development of mutation testing,” Software

Engineering, IEEE Transactions on, vol. 37, no. 5, pp. 649–678, 2011.
[2] J. Offutt, “A mutation carol: Past, present and future,” Information and Software Technology, vol. 53,

no. 10, pp. 1098–1107, 2011.
[3] R. Lipton, “Fault diagnosis of computer programs,” Student Report, Carnegie Mellon University,

1971.
[4] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on test data selection: Help for the practicing

programmer,” Computer, no. 4, pp. 34–41, 1978.
[5] R. G. Hamlet, “Testing programs with the aid of a compiler,” Software Engineering, IEEE Transac-

tions on, no. 4, pp. 279–290, 1977.
[6] B. Kitchenham, “Guidelines for performing systematic literature reviews in software engineering,”

in Technical Report EBSE-2007-01, 2007.
[7] A. Offutt, “The coupling effect: fact or fiction,” in ACM SIGSOFT Software Engineering Notes,

vol. 14, pp. 131–140, ACM, 1989.
[8] A. J. Offutt, “Investigations of the software testing coupling effect,” ACM Transactions on Software

Engineering and Methodology (TOSEM), vol. 1, no. 1, pp. 5–20, 1992.
[9] K. Wah, “Fault coupling in finite bijective functions,” Software Testing, Verification and Reliability,

vol. 5, no. 1, pp. 3–47, 1995.
[10] K. Wah, “A theoretical study of fault coupling,” Software testing, verification and reliability, vol. 10,

no. 1, pp. 3–45, 2000.
[11] K. H. T. Wah, “An analysis of the coupling effect i: single test data,” Science of Computer Program-

ming, vol. 48, no. 2, pp. 119–161, 2003.
[12] K. Kapoor, “Formal analysis of coupling hypothesis for logical faults,” Innovations in Systems and

Software Engineering, vol. 2, no. 2, pp. 80–87, 2006.
[13] T. A. Budd and D. Angluin, “Two notions of correctness and their relation to testing,” Acta Informat-

ica, vol. 18, no. 1, pp. 31–45, 1982.
[14] L. Madeyski, W. Orzeszyna, R. Torkar, and M. Józala, “Overcoming the equivalent mutant problem:

A systematic literature review and a comparative experiment of second order mutation,” Software
Engineering, IEEE Transactions on, vol. 40, no. 1, pp. 23–42, 2014.

[15] P. Ammann and J. Offutt, Introduction to software testing. Cambridge University Press, 2008.
[16] T. Budd and F. Sayward, “Users guide to the pilot mutation system,” Yale University, New Haven,

Connecticut, Technique Report, vol. 114, 1977.
[17] K. N. King and A. J. Offutt, “A fortran language system for mutation-based software testing,”

Software: Practice and Experience, vol. 21, no. 7, pp. 685–718, 1991.
[18] M. E. Delamaro, J. C. Maldonado, and A. Mathur, “Proteum-a tool for the assessment of test

adequacy for c programs users guide,” in PCS, vol. 96, pp. 79–95, 1996.
[19] Y.-S. Ma, J. Offutt, and Y.-R. Kwon, “Mujava: a mutation system for java,” in Proceedings of the

28th international conference on Software engineering, pp. 827–830, ACM, 2006.
[20] J. Tuya, M. J. Suárez-Cabal, and C. De La Riva, “Mutating database queries,” Information and

Software Technology, vol. 49, no. 4, pp. 398–417, 2007.
[21] A. P. Mathur and W. E. Wong, “An empirical comparison of data flow and mutation-based test

adequacy criteria,” Software Testing, Verification and Reliability, vol. 4, no. 1, pp. 9–31, 1994.
[22] P. G. Frankl, S. N. Weiss, and C. Hu, “All-uses vs mutation testing: an experimental comparison of

effectiveness,” Journal of Systems and Software, vol. 38, no. 3, pp. 235–253, 1997.
[23] N. Li, U. Praphamontripong, and J. Offutt, “An experimental comparison of four unit test criteria:

Mutation, edge-pair, all-uses and prime path coverage,” in Software Testing, Verification and
Validation Workshops, 2009. ICSTW’09. International Conference on, pp. 220–229, IEEE, 2009.

36/57

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2483v1 | CC BY 4.0 Open Access | rec: 28 Sep 2016, publ: 28 Sep 2016

[24] J. H. Andrews, L. C. Briand, and Y. Labiche, “Is mutation an appropriate tool for testing experi-
ments?[software testing],” in Software Engineering, 2005. ICSE 2005. Proceedings. 27th Interna-
tional Conference on, pp. 402–411, IEEE, 2005.

[25] A. J. Offutt and R. H. Untch, “Mutation 2000: Uniting the orthogonal,” in Mutation testing for the
new century, pp. 34–44, Springer, 2001.

[26] A. T. Acree Jr, “On mutation.,” tech. rep., DTIC Document, 1980.
[27] W. E. Wong and A. P. Mathur, “Reducing the cost of mutation testing: An empirical study,” Journal

of Systems and Software, vol. 31, no. 3, pp. 185–196, 1995.
[28] S. Hussain, “Mutation clustering,” Ms. Th., King’s College London, Strand, London, 2008.
[29] C. Ji, Z. Chen, B. Xu, and Z. Zhao, “A novel method of mutation clustering based on domain

analysis.,” in SEKE, vol. 9, pp. 422–425, 2009.
[30] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and C. Zapf, “An experimental determination

of sufficient mutant operators,” ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 5, no. 2, pp. 99–118, 1996.

[31] E. S. Mresa and L. Bottaci, “Efficiency of mutation operators and selective mutation strategies: An
empirical study,” Software Testing Verification and Reliability, vol. 9, no. 4, pp. 205–232, 1999.

[32] A. Siami Namin, J. H. Andrews, and D. J. Murdoch, “Sufficient mutation operators for measuring
test effectiveness,” in Proceedings of the 30th international conference on Software engineering,
pp. 351–360, ACM, 2008.

[33] W. E. Howden, “Weak mutation testing and completeness of test sets,” IEEE Transactions on
Software Engineering, no. 4, pp. 371–379, 1982.

[34] A. J. Offutt and S. D. Lee, “An empirical evaluation of weak mutation,” IEEE Transactions on
Software Engineering, vol. 20, no. 5, pp. 337–344, 1994.

[35] R. DeMillo and A. J. Offutt, “Constraint-based automatic test data generation,” Software Engineering,
IEEE Transactions on, vol. 17, no. 9, pp. 900–910, 1991.

[36] R. H. Untch, “Mutation-based software testing using program schemata,” in Proceedings of the 30th
annual Southeast regional conference, pp. 285–291, ACM, 1992.

[37] R. Untch, A. J. Offutt, and M. J. Harrold, “Mutation testing using mutant schemata,” in Proc.
International Symposium on Software Testing and Analysis (ISSTA), pp. 139–148, 1993.

[38] D. Baldwin and F. Sayward, “Heuristics for determining equivalence of program mutations.,” tech.
rep., DTIC Document, 1979.

[39] R. Hierons, M. Harman, and S. Danicic, “Using program slicing to assist in the detection of
equivalent mutants,” Software Testing, Verification and Reliability, vol. 9, no. 4, pp. 233–262, 1999.

[40] E. Martin and T. Xie, “A fault model and mutation testing of access control policies,” in Proceedings
of the 16th international conference on World Wide Web, pp. 667–676, ACM, 2007.

[41] M. Ellims, D. Ince, and M. Petre, “The csaw c mutation tool: Initial results,” in Testing: Aca-
demic and Industrial Conference Practice and Research Techniques-MUTATION, 2007. TAICPART-
MUTATION 2007, pp. 185–192, IEEE, 2007.

[42] L. du Bousquet and M. Delaunay, “Towards mutation analysis for lustre programs,” Electronic Notes
in Theoretical Computer Science, vol. 203, no. 4, pp. 35–48, 2008.

[43] M. Harman, R. Hierons, and S. Danicic, “The relationship between program dependence and
mutation analysis,” in Mutation testing for the new century, pp. 5–13, Springer, 2001.

[44] K. Adamopoulos, M. Harman, and R. M. Hierons, “How to overcome the equivalent mutant problem
and achieve tailored selective mutation using co-evolution,” in Genetic and evolutionary computation
conference, pp. 1338–1349, Springer, 2004.

[45] A. M. R. Vincenzi, E. Y. Nakagawa, J. C. Maldonado, M. E. Delamaro, and R. A. F. Romero,
“Bayesian-learning based guidelines to determine equivalent mutants,” International Journal of
Software Engineering and Knowledge Engineering, vol. 12, no. 06, pp. 675–689, 2002.

37/57

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2483v1 | CC BY 4.0 Open Access | rec: 28 Sep 2016, publ: 28 Sep 2016

[46] D. Schuler, V. Dallmeier, and A. Zeller, “Efficient mutation testing by checking invariant violations,”
in Proceedings of the eighteenth international symposium on Software testing and analysis, pp. 69–
80, ACM, 2009.

[47] D. Schuler and A. Zeller, “(un-) covering equivalent mutants,” in 2010 Third International Confer-
ence on Software Testing, Verification and Validation, pp. 45–54, IEEE, 2010.

[48] T. A. Budd, R. J. Lipton, R. A. DeMillo, and F. G. Sayward, Mutation analysis. Yale University,
Department of Computer Science, 1979.

[49] H. Agrawal, R. DeMillo, R. Hathaway, W. Hsu, W. Hsu, E. Krauser, R. J. Martin, A. Mathur, and
E. Spafford, “Design of mutant operators for the c programming language,” tech. rep., Technical
Report SERC-TR-41-P, Software Engineering Research Center, Department of Computer Science,
Purdue University, Indiana, 1989.

[50] R. A. DeMillo, “Test adequacy and program mutation,” in Software Engineering, 1989. 11th
International Conference on, pp. 355–356, May 1989.

[51] S. C. Ntafos, “On testing with required elements,” in Proceedings of COMPSAC, vol. 81, pp. 132–
139, 1981.

[52] S. C. Ntafos, “An evaluation of required element testing strategies,” in Proceedings of the 7th
international conference on Software engineering, pp. 250–256, IEEE Press, 1984.

[53] S. C. Ntafos, “On required element testing,” Software Engineering, IEEE Transactions on, no. 6,
pp. 795–803, 1984.

[54] J. W. Duran and S. C. Ntafos, “An evaluation of random testing,” Software Engineering, IEEE
Transactions on, no. 4, pp. 438–444, 1984.

[55] L. Zhang, T. Xie, L. Zhang, N. Tillmann, J. De Halleux, and H. Mei, “Test generation via dynamic
symbolic execution for mutation testing,” in Software Maintenance (ICSM), 2010 IEEE International
Conference on, pp. 1–10, IEEE, 2010.

[56] M. Papadakis and N. Malevris, “Automatically performing weak mutation with the aid of symbolic
execution, concolic testing and search-based testing,” Software Quality Journal, vol. 19, no. 4,
pp. 691–723, 2011.

[57] A. S. Namin and J. H. Andrews, “The influence of size and coverage on test suite effectiveness,” in
Proceedings of the eighteenth international symposium on Software testing and analysis, pp. 57–68,
ACM, 2009.

[58] L. Inozemtseva and R. Holmes, “Coverage is not strongly correlated with test suite effectiveness,” in
Proceedings of the 36th International Conference on Software Engineering, pp. 435–445, ACM,
2014.

[59] Y. Zhang and A. Mesbah, “Assertions are strongly correlated with test suite effectiveness,” in
Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering, ESEC/FSE,
pp. 214–224, 2015.

[60] M. Whalen, G. Gay, D. You, M. P. Heimdahl, and M. Staats, “Observable modified condition/decision
coverage,” in Proceedings of the 2013 International Conference on Software Engineering, pp. 102–
111, IEEE Press, 2013.

[61] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold, “Prioritizing test cases for regression testing,”
Software Engineering, IEEE Transactions on, vol. 27, no. 10, pp. 929–948, 2001.

[62] S. Elbaum, A. G. Malishevsky, and G. Rothermel, “Test case prioritization: A family of empirical
studies,” Software Engineering, IEEE Transactions on, vol. 28, no. 2, pp. 159–182, 2002.

[63] H. Do and G. Rothermel, “A controlled experiment assessing test case prioritization techniques
via mutation faults,” in Software Maintenance, 2005. ICSM’05. Proceedings of the 21st IEEE
International Conference on, pp. 411–420, IEEE, 2005.

[64] H. Do and G. Rothermel, “On the use of mutation faults in empirical assessments of test case
prioritization techniques,” Software Engineering, IEEE Transactions on, vol. 32, no. 9, pp. 733–752,
2006.

38/57

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2483v1 | CC BY 4.0 Open Access | rec: 28 Sep 2016, publ: 28 Sep 2016

[65] A. J. Offutt, J. Pan, and J. M. Voas, “Procedures for reducing the size of coverage-based test sets,” in
Proceedings of the Twelfth International Conference on Testing Computer Software, Citeseer, 1995.

[66] L. Zhang, D. Marinov, L. Zhang, and S. Khurshid, “An empirical study of junit test-suite reduction,”
in Software Reliability Engineering (ISSRE), 2011 IEEE 22nd International Symposium on, pp. 170–
179, IEEE, 2011.

[67] X. Wang, S.-C. Cheung, W. K. Chan, and Z. Zhang, “Taming coincidental correctness: Coverage re-
finement with context patterns to improve fault localization,” in Proceedings of the 31st International
Conference on Software Engineering, pp. 45–55, IEEE Computer Society, 2009.

[68] M. Papadakis and Y. Le Traon, “Using mutants to locate ”unknown” faults,” in Software Testing,
Verification and Validation (ICST), 2012 IEEE Fifth International Conference on, pp. 691–700,
IEEE, 2012.

[69] M. Papadakis and Y. Le Traon, “Metallaxis-fl: mutation-based fault localization,” Software Testing,
Verification and Reliability, vol. 25, no. 5-7, pp. 605–628, 2015.

[70] L. Kysh, “Difference between a systematic review and a literature review.” https://dx.doi.
org/10.6084/m9.figshare.766364.v1, 2013. [Online; accessed 4-August-2016].

[71] P. Brereton, B. A. Kitchenham, D. Budgen, M. Turner, and M. Khalil, “Lessons from applying the
systematic literature review process within the software engineering domain,” Journal of systems
and software, vol. 80, no. 4, pp. 571–583, 2007.

[72] B. Cornelissen, A. Zaidman, A. Van Deursen, L. Moonen, and R. Koschke, “A systematic survey of
program comprehension through dynamic analysis,” IEEE Transactions on Software Engineering,
vol. 35, no. 5, pp. 684–702, 2009.

[73] C. Wohlin, “Guidelines for snowballing in systematic literature studies and a replication in software
engineering,” in Proceedings of the 18th International Conference on Evaluation and Assessment in
Software Engineering, p. 38, ACM, 2014.

[74] D. Graham, E. Van Veenendaal, and I. Evans, Foundations of software testing: ISTQB certification.
Cengage Learning EMEA, 2008.

[75] A. van Deursen, “Software Testing in 2048.” https://speakerdeck.com/avandeursen/
software-testing-in-2048, 1 2016. [Online; accessed 13-Sep-2016].

[76] M. Papadakis and N. Malevris, “Automatic mutation test case generation via dynamic symbolic
execution,” in Software reliability engineering (ISSRE), 2010 IEEE 21st international symposium
on, pp. 121–130, IEEE, 2010.

[77] “Available mutation operations (PIT).” http://pitest.org/quickstart/mutators/.
[Online; accessed 10-August-2016].

[78] Y.-S. Ma and J. Offutt, “Description of class mutation mutation operators for java,” Electronics and
Telecommunications Research Institute, Korea, 2005.

[79] S. Mirshokraie, A. Mesbah, and K. Pattabiraman, “Efficient javascript mutation testing,” in Software
Testing, Verification and Validation (ICST), 2013 IEEE Sixth International Conference on, pp. 74–83,
IEEE, 2013.

[80] S. Außerlechner, S. Fruhmann, W. Wieser, B. Hofer, R. Spörk, C. Mühlbacher, and F. Wotawa, “The
right choice matters! smt solving substantially improves model-based debugging of spreadsheets,”
in 2013 13th International Conference on Quality Software, pp. 139–148, IEEE, 2013.

[81] R. Delamare, B. Baudry, S. Ghosh, S. Gupta, and Y. Le Traon, “An approach for testing pointcut
descriptors in aspectj,” Software Testing, Verification and Reliability, vol. 21, no. 3, pp. 215–239,
2011.

[82] D. Xu and J. Ding, “Prioritizing state-based aspect tests,” in 2010 Third International Conference on
Software Testing, Verification and Validation, pp. 265–274, IEEE, 2010.

[83] S. Hong, M. Staats, J. Ahn, M. Kim, and G. Rothermel, “The impact of concurrent coverage metrics
on testing effectiveness,” in Software Testing, Verification and Validation (ICST), 2013 IEEE Sixth
International Conference on, pp. 232–241, IEEE, 2013.

39/57

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2483v1 | CC BY 4.0 Open Access | rec: 28 Sep 2016, publ: 28 Sep 2016

https://dx.doi.org/10.6084/m9.figshare.766364.v1
https://dx.doi.org/10.6084/m9.figshare.766364.v1
https://speakerdeck.com/avandeursen/software-testing-in-2048
https://speakerdeck.com/avandeursen/software-testing-in-2048
http://pitest.org/quickstart/mutators/

[84] S. Hong, M. Staats, J. Ahn, M. Kim, and G. Rothermel, “Are concurrency coverage metrics effective
for testing: a comprehensive empirical investigation,” Software Testing, Verification and Reliability,
vol. 25, no. 4, pp. 334–370, 2015.

[85] S.-S. Hou, L. Zhang, T. Xie, H. Mei, and J.-S. Sun, “Applying interface-contract mutation in
regression testing of component-based software,” in Software Maintenance, 2007. ICSM 2007. IEEE
International Conference on, pp. 174–183, IEEE, 2007.

[86] H. Yoon and B. Choi, “Effective test case selection for component customization and its application
to enterprise javabeans,” Software Testing, Verification and Reliability, vol. 14, no. 1, pp. 45–70,
2004.

[87] D. Schuler and A. Zeller, “Javalanche: efficient mutation testing for java,” in Proceedings of the
the 7th joint meeting of the European software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering, pp. 297–298, ACM, 2009.

[88] H. Do, S. Elbaum, and G. Rothermel, “Supporting controlled experimentation with testing techniques:
An infrastructure and its potential impact,” Empirical Software Engineering, vol. 10, no. 4, pp. 405–
435, 2005.

[89] G. Fraser and A. Arcuri, “Sound empirical evidence in software testing,” in Proceedings of the 34th
International Conference on Software Engineering, pp. 178–188, IEEE Press, 2012.

[90] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold, “Test case prioritization: An empirical
study,” in Software Maintenance, 1999.(ICSM’99) Proceedings. IEEE International Conference on,
pp. 179–188, IEEE, 1999.

[91] H. Czemerinski, V. Braberman, and S. Uchitel, “Behaviour abstraction adequacy criteria for api call
protocol testing,” Software Testing, Verification and Reliability, 2015.

[92] B. Baudry, V. Le Hanh, J.-M. Jézéquel, and Y. Le Traon, “Building trust into oo components using
a genetic analogy,” in Software Reliability Engineering, 2000. ISSRE 2000. Proceedings. 11th
International Symposium on, pp. 4–14, IEEE, 2000.

[93] B. Baudry, F. Fleurey, J.-M. Jézéquel, and Y. Le Traon, “Genes and bacteria for automatic test
cases optimization in the. net environment,” in Software Reliability Engineering, 2002. ISSRE 2003.
Proceedings. 13th International Symposium on, pp. 195–206, IEEE, 2002.

[94] B. Baudry, F. Fleurey, J.-M. Jézéquel, and Y. Le Traon, “From genetic to bacteriological algorithms
for mutation-based testing,” Software Testing, Verification and Reliability, vol. 15, no. 2, pp. 73–96,
2005.

[95] A. von Mayrhauser, M. Scheetz, E. Dahlman, and A. E. Howe, “Planner based error recovery testing,”
in Software Reliability Engineering, 2000. ISSRE 2000. Proceedings. 11th International Symposium
on, pp. 186–195, IEEE, 2000.

[96] B. H. Smith and L. Williams, “On guiding the augmentation of an automated test suite via mutation
analysis,” Empirical Software Engineering, vol. 14, no. 3, pp. 341–369, 2009.

[97] X. Qu, M. B. Cohen, and G. Rothermel, “Configuration-aware regression testing: an empirical study
of sampling and prioritization,” in Proceedings of the 2008 international symposium on Software
testing and analysis, pp. 75–86, ACM, 2008.

[98] J.-H. Kwon, I.-Y. Ko, G. Rothermel, and M. Staats, “Test case prioritization based on information
retrieval concepts,” in Software Engineering Conference (APSEC), 2014 21st Asia-Pacific, vol. 1,
pp. 19–26, IEEE, 2014.

[99] Y. Qi, X. Mao, and Y. Lei, “Efficient automated program repair through fault-recorded testing
prioritization,” in 2013 IEEE International Conference on Software Maintenance, pp. 180–189,
IEEE, 2013.

[100] S. S. Murtaza, N. Madhavji, M. Gittens, and Z. Li, “Diagnosing new faults using mutants and
prior faults (nier track),” in Software Engineering (ICSE), 2011 33rd International Conference on,
pp. 960–963, IEEE, 2011.

[101] S. Moon, Y. Kim, M. Kim, and S. Yoo, “Ask the mutants: Mutating faulty programs for fault
localization,” in 2014 IEEE Seventh International Conference on Software Testing, Verification and
Validation, pp. 153–162, IEEE, 2014.

40/57

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2483v1 | CC BY 4.0 Open Access | rec: 28 Sep 2016, publ: 28 Sep 2016

[102] G. Fraser and A. Zeller, “Mutation-driven generation of unit tests and oracles,” Software Engineering,
IEEE Transactions on, vol. 38, no. 2, pp. 278–292, 2012.

[103] M. Staats, G. Gay, and M. P. Heimdahl, “Automated oracle creation support, or: how i learned
to stop worrying about fault propagation and love mutation testing,” in Proceedings of the 34th
International Conference on Software Engineering, pp. 870–880, IEEE Press, 2012.

[104] G. Gay, M. Staats, M. Whalen, and M. P. Heimdahl, “Automated oracle data selection support,”
IEEE Transactions on Software Engineering, vol. 41, no. 11, pp. 1119–1137, 2015.

[105] A. Shi, A. Gyori, M. Gligoric, A. Zaytsev, and D. Marinov, “Balancing trade-offs in test-suite
reduction,” in Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering, pp. 246–256, ACM, 2014.

[106] W. Chen, R. H. Untch, G. Rothermel, S. Elbaum, and J. Von Ronne, “Can fault-exposure-potential
estimates improve the fault detection abilities of test suites?,” Software Testing, Verification and
Reliability, vol. 12, no. 4, pp. 197–218, 2002.

[107] B. H. Smith and L. Williams, “Should software testers use mutation analysis to augment a test set?,”
Journal of Systems and Software, vol. 82, no. 11, pp. 1819–1832, 2009.

[108] Y. Lou, D. Hao, and L. Zhang, “Mutation-based test-case prioritization in software evolution,” in
Software Reliability Engineering (ISSRE), 2015 IEEE 26th International Symposium on, pp. 46–57,
IEEE, 2015.

[109] D. Hao, L. Zhang, X. Wu, H. Mei, and G. Rothermel, “On-demand test suite reduction,” in
Proceedings of the 34th International Conference on Software Engineering, pp. 738–748, IEEE
Press, 2012.

[110] D. Hao, L. Zhang, L. Zhang, G. Rothermel, and H. Mei, “A unified test case prioritization approach,”
ACM Transactions on Software Engineering and Methodology (TOSEM), vol. 24, no. 2, p. 10, 2014.

[111] P. Li, T. Huynh, M. Reformat, and J. Miller, “A practical approach to testing gui systems,” Empirical
Software Engineering, vol. 12, no. 4, pp. 331–357, 2007.

[112] M. J. Rutherford, A. Carzaniga, and A. L. Wolf, “Evaluating test suites and adequacy criteria using
simulation-based models of distributed systems,” Software Engineering, IEEE Transactions on,
vol. 34, no. 4, pp. 452–470, 2008.

[113] G. Denaro, A. Margara, M. Pezze, and M. Vivanti, “Dynamic data flow testing of object oriented
systems,” in Proceedings of the 37th International Conference on Software Engineering-Volume 1,
pp. 947–958, IEEE Press, 2015.

[114] M. E. Delamaro, J. Maidonado, and A. P. Mathur, “Interface mutation: An approach for integration
testing,” IEEE Transactions on Software Engineering, vol. 27, no. 3, pp. 228–247, 2001.

[115] P. R. Mateo, M. P. Usaola, and J. Offutt, “Mutation at the multi-class and system levels,” Science of
Computer Programming, vol. 78, no. 4, pp. 364–387, 2013.

[116] M. Hennessy and J. F. Power, “Analysing the effectiveness of rule-coverage as a reduction criterion
for test suites of grammar-based software,” Empirical Software Engineering, vol. 13, no. 4, pp. 343–
368, 2008.

[117] H. S. Chae, G. Woo, T. Y. Kim, J. H. Bae, and W.-Y. Kim, “An automated approach to reducing test
suites for testing retargeted c compilers for embedded systems,” Journal of Systems and Software,
vol. 84, no. 12, pp. 2053–2064, 2011.

[118] F. Belli and M. Beyazıt, “Exploiting model morphology for event-based testing,” IEEE Transactions
on Software Engineering, vol. 41, no. 2, pp. 113–134, 2015.

[119] B. Hofer and F. Wotawa, “Why does my spreadsheet compute wrong values?,” in Software Reliability
Engineering (ISSRE), 2014 IEEE 25th International Symposium on, pp. 112–121, IEEE, 2014.

[120] B. Hofer, A. Perez, R. Abreu, and F. Wotawa, “On the empirical evaluation of similarity coefficients
for spreadsheets fault localization,” Automated Software Engineering, vol. 22, no. 1, pp. 47–74,
2015.

[121] J. Tuya, M. J. Suárez-Cabal, and C. De La Riva, “Full predicate coverage for testing sql database
queries,” Software Testing, Verification and Reliability, vol. 20, no. 3, pp. 237–288, 2010.

41/57

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2483v1 | CC BY 4.0 Open Access | rec: 28 Sep 2016, publ: 28 Sep 2016

[122] G. M. Kapfhammer, P. McMinn, and C. J. Wright, “Search-based testing of relational schema in-
tegrity constraints across multiple database management systems,” in 2013 IEEE Sixth International
Conference on Software Testing, Verification and Validation, pp. 31–40, IEEE, 2013.

[123] P. Mcminn, C. J. Wright, and G. M. Kapfhammer, “The effectiveness of test coverage criteria for
relational database schema integrity constraints,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 25, no. 1, p. 8, 2015.

[124] M. Papadakis, C. Henard, and Y. Le Traon, “Sampling program inputs with mutation analysis: Going
beyond combinatorial interaction testing,” in Software Testing, Verification and Validation (ICST),
2014 IEEE Seventh International Conference on, pp. 1–10, IEEE, 2014.

[125] Y.-S. Ma, J. Offutt, and Y. R. Kwon, “Mujava: an automated class mutation system,” Software
Testing, Verification and Reliability, vol. 15, no. 2, pp. 97–133, 2005.

[126] “Mutation testing systems for Java compared.” http://pitest.org/java_mutation_
testing_systems/. [Online; accessed 25-August-2016].

[127] A. S. Namin and S. Kakarla, “The use of mutation in testing experiments and its sensitivity to
external threats,” in Proceedings of the 2011 International Symposium on Software Testing and
Analysis, pp. 342–352, ACM, 2011.

[128] R. Just, F. Schweiggert, and G. M. Kapfhammer, “Major: An efficient and extensible tool for
mutation analysis in a java compiler,” in Proceedings of the 2011 26th IEEE/ACM International
Conference on Automated Software Engineering, pp. 612–615, IEEE Computer Society, 2011.

[129] S. A. Irvine, T. Pavlinic, L. Trigg, J. G. Cleary, S. Inglis, and M. Utting, “Jumble java byte code to
measure the effectiveness of unit tests,” in Testing: Academic and industrial conference practice and
research techniques-MUTATION, 2007. TAICPART-MUTATION 2007, pp. 169–175, IEEE, 2007.

[130] W. Motycka, “Installation Instructions.” http://sofya.unl.edu/doc/manual/
installation.html, 7 2013. [Online; accessed 25-August-2016].

[131] Y. Jia and M. Harman, “Milu: A customizable, runtime-optimized higher order mutation testing
tool for the full c language,” in Practice and Research Techniques, 2008. TAIC PART’08. Testing:
Academic & Industrial Conference, pp. 94–98, IEEE, 2008.

[132] H. Dan and R. M. Hierons, “Smt-c: A semantic mutation testing tools for c,” in 2012 IEEE Fifth
International Conference on Software Testing, Verification and Validation, pp. 654–663, IEEE, 2012.

[133] R. Delamare, B. Baudry, and Y. Le Traon, “Ajmutator: a tool for the mutation analysis of aspectj
pointcut descriptors,” in Software Testing, Verification and Validation Workshops, 2009. ICSTW’09.
International Conference on, pp. 200–204, IEEE, 2009.

[134] W. Krenn, R. Schlick, S. Tiran, B. Aichernig, E. Jobstl, and H. Brandl, “Momut:: Uml model-
based mutation testing for uml,” in 2015 IEEE 8th International Conference on Software Testing,
Verification and Validation (ICST), pp. 1–8, IEEE, 2015.

[135] A. J. Offutt and W. M. Craft, “Using compiler optimization techniques to detect equivalent mutants,”
Software Testing, Verification and Reliability, vol. 4, no. 3, pp. 131–154, 1994.

[136] A. J. Offutt and J. Pan, “Automatically detecting equivalent mutants and infeasible paths,” Software
testing, verification and reliability, vol. 7, no. 3, pp. 165–192, 1997.

[137] M. R. Lyu, Z. Huang, S. K. Sze, and X. Cai, “An empirical study on testing and fault tolerance
for software reliability engineering,” in Software Reliability Engineering, 2003. ISSRE 2003. 14th
International Symposium on, pp. 119–130, IEEE, 2003.

[138] “Mutation Testing and Error Seeding-White Box Testing
Techniques.” http://www.softwaretestinggenius.com/
mutation-testing-and-error-seeding-white-box-testing-techniques.
[Online; accessed 28-July-2016].

[139] M. S. AbouTrab, M. Brockway, S. Counsell, and R. M. Hierons, “Testing real-time embedded
systems using timed automata based approaches,” Journal of Systems and Software, vol. 86, no. 5,
pp. 1209–1223, 2013.

42/57

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2483v1 | CC BY 4.0 Open Access | rec: 28 Sep 2016, publ: 28 Sep 2016

http://pitest.org/java_mutation_testing_systems/
http://pitest.org/java_mutation_testing_systems/
http://sofya.unl.edu/doc/manual/installation.html
http://sofya.unl.edu/doc/manual/installation.html
http://www.softwaretestinggenius.com/mutation-testing-and-error-seeding-white-box-testing-techniques
http://www.softwaretestinggenius.com/mutation-testing-and-error-seeding-white-box-testing-techniques

[140] B. K. Aichernig, H. Brandl, E. Jöbstl, and W. Krenn, “Efficient mutation killers in action,” in 2011
Fourth IEEE International Conference on Software Testing, Verification and Validation, pp. 120–129,
IEEE, 2011.

[141] B. K. Aichernig, H. Brandl, E. Jöbstl, W. Krenn, R. Schlick, and S. Tiran, “Killing strategies
for model-based mutation testing,” Software Testing, Verification and Reliability, vol. 25, no. 8,
pp. 716–748, 2015.

[142] S. Ali, L. C. Briand, M. J.-u. Rehman, H. Asghar, M. Z. Z. Iqbal, and A. Nadeem, “A state-based
approach to integration testing based on uml models,” Information and Software Technology, vol. 49,
no. 11, pp. 1087–1106, 2007.

[143] J. H. Andrews and Y. Zhang, “General test result checking with log file analysis,” Software Engi-
neering, IEEE Transactions on, vol. 29, no. 7, pp. 634–648, 2003.

[144] J. H. Andrews, L. C. Briand, Y. Labiche, and A. S. Namin, “Using mutation analysis for assessing
and comparing testing coverage criteria,” Software Engineering, IEEE Transactions on, vol. 32,
no. 8, pp. 608–624, 2006.

[145] K. Androutsopoulos, D. Clark, H. Dan, R. M. Hierons, and M. Harman, “An analysis of the
relationship between conditional entropy and failed error propagation in software testing,” in
Proceedings of the 36th International Conference on Software Engineering, pp. 573–583, ACM,
2014.

[146] G. Antoniol, L. C. Briand, M. D. Penta, and Y. Labiche, “A case study using the round-trip strategy
for state-based class testing,” in Software Reliability Engineering, 2002. ISSRE 2003. Proceedings.
13th International Symposium on, pp. 269–279, IEEE, 2002.

[147] P. Arcaini, A. Gargantini, and E. Riccobene, “Using mutation to assess fault detection capability of
model review,” Software Testing, Verification and Reliability, vol. 25, no. 5-7, pp. 629–652, 2015.

[148] A. Arcuri and L. Briand, “Adaptive random testing: An illusion of effectiveness?,” in Proceedings of
the 2011 International Symposium on Software Testing and Analysis, pp. 265–275, ACM, 2011.

[149] N. Asoudeh and Y. Labiche, “Multi-objective construction of an entire adequate test suite for an
efsm,” in Software Reliability Engineering (ISSRE), 2014 IEEE 25th International Symposium on,
pp. 288–299, IEEE, 2014.

[150] R. Baker and I. Habli, “An empirical evaluation of mutation testing for improving the test quality of
safety-critical software,” IEEE Transactions on Software Engineering, vol. 39, no. 6, pp. 787–805,
2013.

[151] A. Bandyopadhyay and S. Ghosh, “Test input generation using uml sequence and state machines
models,” in 2009 International Conference on Software Testing Verification and Validation, pp. 121–
130, IEEE, 2009.

[152] S. Bardin, M. Delahaye, R. David, N. Kosmatov, M. Papadakis, Y. Le Traon, and J.-Y. Marion,
“Sound and quasi-complete detection of infeasible test requirements,” in 2015 IEEE 8th International
Conference on Software Testing, Verification and Validation (ICST), pp. 1–10, IEEE, 2015.

[153] F. Belli, M. Beyazit, T. Takagi, and Z. Furukawa, “Mutation testing of” go-back” functions based
on pushdown automata,” in 2011 Fourth IEEE International Conference on Software Testing,
Verification and Validation, pp. 249–258, IEEE, 2011.

[154] A. Bertolino, S. Daoudagh, F. Lonetti, and E. Marchetti, “Automatic xacml requests generation for
policy testing,” in 2012 IEEE Fifth International Conference on Software Testing, Verification and
Validation, pp. 842–849, IEEE, 2012.

[155] L. C. Briand, M. Di Penta, and Y. Labiche, “Assessing and improving state-based class testing: A
series of experiments,” Software Engineering, IEEE Transactions on, vol. 30, no. 11, pp. 770–783,
2004.

[156] L. C. Briand, Y. Labiche, and Y. Wang, “Using simulation to empirically investigate test coverage
criteria based on statechart,” in Proceedings of the 26th International Conference on Software
Engineering, pp. 86–95, IEEE Computer Society, 2004.

43/57

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2483v1 | CC BY 4.0 Open Access | rec: 28 Sep 2016, publ: 28 Sep 2016

[157] L. C. Briand, Y. Labiche, and Q. Lin, “Improving statechart testing criteria using data flow informa-
tion,” in Software Reliability Engineering, 2005. ISSRE 2005. 16th IEEE International Symposium
on, pp. 10–pp, IEEE, 2005.

[158] Y. Cheon, “Abstraction in assertion-based test oracles,” in Seventh International Conference on
Quality Software (QSIC 2007), pp. 410–414, IEEE, 2007.

[159] P. Chevalley and P. Thévenod-Fosse, “An empirical evaluation of statistical testing designed from
uml state diagrams: the flight guidance system case study,” in Software Reliability Engineering,
2001. ISSRE 2001. Proceedings. 12th International Symposium on, pp. 254–263, IEEE, 2001.

[160] H. Czemerinski, V. Braberman, and S. Uchitel, “Behaviour abstraction coverage as black-box
adequacy criteria,” in Software Testing, Verification and Validation (ICST), 2013 IEEE Sixth Interna-
tional Conference on, pp. 222–231, IEEE, 2013.

[161] R. A. DeMillo and A. J. Offutt, “Experimental results from an automatic test case generator,” ACM
Transactions on Software Engineering and Methodology (TOSEM), vol. 2, no. 2, pp. 109–127, 1993.

[162] D. Di Nardo, F. Pastore, and L. Briand, “Generating complex and faulty test data through model-
based mutation analysis,” in 2015 IEEE 8th International Conference on Software Testing, Verifica-
tion and Validation (ICST), pp. 1–10, IEEE, 2015.

[163] H. Do, S. Mirarab, L. Tahvildari, and G. Rothermel, “An empirical study of the effect of time
constraints on the cost-benefits of regression testing,” in Proceedings of the 16th ACM SIGSOFT
International Symposium on Foundations of software engineering, pp. 71–82, ACM, 2008.

[164] S. H. Edwards and Z. Shams, “Comparing test quality measures for assessing student-written
tests,” in Companion Proceedings of the 36th International Conference on Software Engineering,
pp. 354–363, ACM, 2014.

[165] S. H. Edwards, “Black-box testing using flowgraphs: an experimental assessment of effectiveness
and automation potential,” Softw. Test., Verif. Reliab., vol. 10, no. 4, pp. 249–262, 2000.

[166] C. Fang, Z. Chen, K. Wu, and Z. Zhao, “Similarity-based test case prioritization using ordered
sequences of program entities,” Software Quality Journal, vol. 22, no. 2, pp. 335–361, 2014.

[167] G. Fraser and N. Walkinshaw, “Assessing and generating test sets in terms of behavioural adequacy,”
Software Testing, Verification and Reliability, vol. 25, no. 8, pp. 749–780, 2015.

[168] G. Fraser, M. Staats, P. McMinn, A. Arcuri, and F. Padberg, “Does automated white-box test
generation really help software testers?,” in Proceedings of the 2013 International Symposium on
Software Testing and Analysis, pp. 291–301, ACM, 2013.

[169] G. Fraser and A. Arcuri, “Achieving scalable mutation-based generation of whole test suites,”
Empirical Software Engineering, vol. 20, no. 3, pp. 783–812, 2015.

[170] G. Gay, M. Staats, M. Whalen, and M. P. Heimdahl, “The risks of coverage-directed test case
generation,” Software Engineering, IEEE Transactions on, vol. 41, no. 8, pp. 803–819, 2015.

[171] M. Gligoric, A. Groce, C. Zhang, R. Sharma, M. A. Alipour, and D. Marinov, “Comparing non-
adequate test suites using coverage criteria,” in Proceedings of the 2013 International Symposium
on Software Testing and Analysis, pp. 302–313, ACM, 2013.

[172] A. Gonzalez-Sanchez, R. Abreu, H.-G. Gross, and A. J. Van Gemund, “Prioritizing tests for fault
localization through ambiguity group reduction,” in Automated Software Engineering (ASE), 2011
26th IEEE/ACM International Conference on, pp. 83–92, IEEE, 2011.

[173] R. Gopinath, C. Jensen, and A. Groce, “Code coverage for suite evaluation by developers,” in
Proceedings of the 36th International Conference on Software Engineering, pp. 72–82, ACM, 2014.

[174] A. Gupta and P. Jalote, “Test inspected unit or inspect unit tested code?,” in Empirical Software
Engineering and Measurement, 2007. ESEM 2007. First International Symposium on, pp. 51–60,
IEEE, 2007.

[175] M. Harman, Y. Jia, and W. B. Langdon, “Strong higher order mutation-based test data generation,”
in Proceedings of the 19th ACM SIGSOFT symposium and the 13th European conference on
Foundations of software engineering, pp. 212–222, ACM, 2011.

44/57

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2483v1 | CC BY 4.0 Open Access | rec: 28 Sep 2016, publ: 28 Sep 2016

[176] N. E. Holt, R. Torkar, L. Briand, and K. Hansen, “State-based testing: Industrial evaluation of the
cost-effectiveness of round-trip path and sneak-path strategies,” in Software Reliability Engineering
(ISSRE), 2012 IEEE 23rd International Symposium on, pp. 321–330, IEEE, 2012.

[177] K. Jamrozik, G. Fraser, N. Tillmann, and J. De Halleux, “Augmented dynamic symbolic execution,”
in Automated Software Engineering (ASE), 2012 Proceedings of the 27th IEEE/ACM International
Conference on, pp. 254–257, IEEE, 2012.

[178] E. Jee, D. Shin, S. Cha, J.-S. Lee, and D.-H. Bae, “Automated test case generation for fbd programs
implementing reactor protection system software,” Software Testing, Verification and Reliability,
vol. 24, no. 8, pp. 608–628, 2014.

[179] S. A. Jolly, V. Garousi, and M. M. Eskandar, “Automated unit testing of a scada control software:
an industrial case study based on action research,” in Software Testing, Verification and Validation
(ICST), 2012 IEEE Fifth International Conference on, pp. 400–409, IEEE, 2012.

[180] U. Kanewala and J. M. Bieman, “Using machine learning techniques to detect metamorphic relations
for programs without test oracles,” in 2013 IEEE 24th International Symposium on Software
Reliability Engineering (ISSRE), pp. 1–10, IEEE, 2013.

[181] M. Khalil and Y. Labiche, “On the round trip path testing strategy,” in Software Reliability Engineer-
ing (ISSRE), 2010 IEEE 21st International Symposium on, pp. 388–397, IEEE, 2010.

[182] S.-W. Kim, J. A. Clark, and J. A. McDermid, “Investigating the effectiveness of object-oriented
testing strategies using the mutation method,” Software Testing, Verification and Reliability, vol. 11,
no. 4, pp. 207–225, 2001.

[183] K. Koster and D. Kao, “State coverage: a structural test adequacy criterion for behavior checking,”
in The 6th Joint Meeting on European software engineering conference and the ACM SIGSOFT
symposium on the foundations of software engineering: companion papers, pp. 541–544, ACM,
2007.

[184] J. S. Kracht, J. Z. Petrovic, and K. R. Walcott-Justice, “Empirically evaluating the quality of
automatically generated and manually written test suites,” in Quality Software (QSIC), 2014 14th
International Conference on, pp. 256–265, IEEE, 2014.

[185] Y. Le Traon, B. Baudry, and J.-M. Jézéquel, “Design by contract to improve software vigilance,”
IEEE Transactions on Software Engineering, vol. 32, no. 8, pp. 571–586, 2006.

[186] Y. Le Traon, T. Mouelhi, and B. Baudry, “Testing security policies: going beyond functional testing,”
in The 18th IEEE International Symposium on Software Reliability (ISSRE’07), pp. 93–102, IEEE,
2007.

[187] S. C. Lee and J. Offutt, “Generating test cases for xml-based web component interactions using
mutation analysis,” in Software Reliability Engineering, 2001. ISSRE 2001. Proceedings. 12th
International Symposium on, pp. 200–209, IEEE, 2001.

[188] Y. Lei and J. H. Andrews, “Minimization of randomized unit test cases,” in Software Reliability
Engineering, 2005. ISSRE 2005. 16th IEEE International Symposium on, pp. 10–pp, IEEE, 2005.

[189] M.-H. Liu, Y.-F. Gao, J.-H. Shan, J.-H. Liu, L. Zhang, and J.-S. Sun, “An approach to test data gener-
ation for killing multiple mutants,” in Software Maintenance, 2006. ICSM 2006. IEEE International
Conference on, pp. 113–122, IEEE, 2006.

[190] F. Lorber, “Model-based mutation testing of synchronous and asynchronous real-time systems,” in
2015 IEEE 8th International Conference on Software Testing, Verification and Validation (ICST),
pp. 1–2, IEEE, 2015.

[191] P. Loyola, M. Staats, I.-Y. Ko, and G. Rothermel, “Dodona: automated oracle data set selection,” in
Proceedings of the 2014 International Symposium on Software Testing and Analysis, pp. 193–203,
ACM, 2014.

[192] J. Mayer and R. Guderlei, “On random testing of image processing applications,” in 2006 Sixth
International Conference on Quality Software (QSIC’06), pp. 85–92, IEEE, 2006.

[193] J. Mayer and C. Schneckenburger, “An empirical analysis and comparison of random testing
techniques,” in Proceedings of the 2006 ACM/IEEE international symposium on Empirical software
engineering, pp. 105–114, ACM, 2006.

45/57

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2483v1 | CC BY 4.0 Open Access | rec: 28 Sep 2016, publ: 28 Sep 2016

[194] A. Milani Fard, M. Mirzaaghaei, and A. Mesbah, “Leveraging existing tests in automated test
generation for web applications,” in Proceedings of the 29th ACM/IEEE international conference on
Automated software engineering, pp. 67–78, ACM, 2014.

[195] T. Miller and P. Strooper, “A case study in model-based testing of specifications and implementations,”
Software Testing, Verification and Reliability, vol. 22, no. 1, pp. 33–63, 2012.

[196] S. Mirshokraie, “Effective test generation and adequacy assessment for javascript-based web appli-
cations,” in Proceedings of the 2014 International Symposium on Software Testing and Analysis,
pp. 453–456, ACM, 2014.

[197] J.-M. Mottu, S. Sen, M. Tisi, and J. Cabot, “Static analysis of model transformations for effective
test generation,” in 2012 IEEE 23rd International Symposium on Software Reliability Engineering,
pp. 291–300, IEEE, 2012.

[198] S. Mouchawrab, L. C. Briand, and Y. Labiche, “Assessing, comparing, and combining statechart-
based testing and structural testing: An experiment,” in Empirical Software Engineering and
Measurement, 2007. ESEM 2007. First International Symposium on, pp. 41–50, IEEE, 2007.

[199] S. Mouchawrab, L. C. Briand, Y. Labiche, and M. Di Penta, “Assessing, comparing, and combining
state machine-based testing and structural testing: a series of experiments,” Software Engineering,
IEEE Transactions on, vol. 37, no. 2, pp. 161–187, 2011.

[200] A. J. Offutt and S. Liu, “Generating test data from sofl specifications,” Journal of Systems and
Software, vol. 49, no. 1, pp. 49–62, 1999.

[201] M. Papadakis and N. Malevris, “Mutation based test case generation via a path selection strategy,”
Information and Software Technology, vol. 54, no. 9, pp. 915–932, 2012.

[202] M. Patrick, R. Alexander, M. Oriol, and J. A. Clark, “Subdomain-based test data generation,” Journal
of Systems and Software, vol. 103, pp. 328–342, 2015.

[203] F. Pinte, N. Oster, and F. Saglietti, “Techniques and tools for the automatic generation of optimal
test data at code, model and interface level,” in Companion of the 30th international conference on
Software engineering, pp. 927–928, ACM, 2008.

[204] A. Pretschner, T. Mouelhi, and Y. Le Traon, “Model-based tests for access control policies,” in 2008
1st International Conference on Software Testing, Verification, and Validation, pp. 338–347, IEEE,
2008.

[205] X. Qu, M. B. Cohen, and K. M. Woolf, “Combinatorial interaction regression testing: A study of test
case generation and prioritization,” in Software Maintenance, 2007. ICSM 2007. IEEE International
Conference on, pp. 255–264, IEEE, 2007.

[206] X. Qu, M. Acharya, and B. Robinson, “Configuration selection using code change impact analysis
for regression testing,” in Software Maintenance (ICSM), 2012 28th IEEE International Conference
on, pp. 129–138, IEEE, 2012.

[207] I. Rubab, S. Ali, L. Briand, and Y. Le Traon, “Model-based testing of obligations,” in 2014 14th
International Conference on Quality Software, pp. 1–10, IEEE, 2014.

[208] D. Schuler and A. Zeller, “Assessing oracle quality with checked coverage,” in 2011 Fourth IEEE
International Conference on Software Testing, Verification and Validation, pp. 90–99, IEEE, 2011.

[209] D. Schuler and A. Zeller, “Checked coverage: an indicator for oracle quality,” Software Testing,
Verification and Reliability, vol. 23, no. 7, pp. 531–551, 2013.

[210] S. Segura, R. M. Hierons, D. Benavides, and A. Ruiz-Cortés, “Automated test data generation on
the analyses of feature models: A metamorphic testing approach,” in 2010 Third International
Conference on Software Testing, Verification and Validation, pp. 35–44, IEEE, 2010.

[211] S. R. Shahamiri, W. M. Wan-Kadir, S. Ibrahim, and S. Z. M. Hashim, “Artificial neural networks as
multi-networks automated test oracle,” Automated Software Engineering, vol. 19, no. 3, pp. 303–334,
2012.

[212] W. Shelton, N. Li, P. Ammann, and J. Offutt, “Adding criteria-based tests to test driven development,”
in 2012 IEEE Fifth International Conference on Software Testing, Verification and Validation,
pp. 878–886, IEEE, 2012.

46/57

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2483v1 | CC BY 4.0 Open Access | rec: 28 Sep 2016, publ: 28 Sep 2016

[213] Q. Shi, Z. Chen, C. Fang, Y. Feng, and B. Xu, “Measuring the diversity of a test set with distance
entropy,” IEEE Transactions on Reliability, vol. 65, no. 1, pp. 19–27, 2015.

[214] A. Shi, T. Yung, A. Gyori, and D. Marinov, “Comparing and combining test-suite reduction and
regression test selection,” in Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, pp. 237–247, ACM, 2015.

[215] K. Shrestha and M. J. Rutherford, “An empirical evaluation of assertions as oracles,” in 2011 Fourth
IEEE International Conference on Software Testing, Verification and Validation, pp. 110–119, IEEE,
2011.

[216] M. Staats, M. W. Whalen, and M. P. Heimdahl, “Better testing through oracle selection (nier track),”
in Proceedings of the 33rd International Conference on Software Engineering, pp. 892–895, ACM,
2011.

[217] M. Staats, P. Loyola, and G. Rothermel, “Oracle-centric test case prioritization,” in Software
Reliability Engineering (ISSRE), 2012 IEEE 23rd International Symposium on, pp. 311–320, IEEE,
2012.

[218] M. Stephan and J. R. Cordy, “Model clone detector evaluation using mutation analysis.,” in ICSME,
pp. 633–638, 2014.

[219] R. P. Tan and S. Edwards, “Evaluating automated unit testing in sulu,” in 2008 1st International
Conference on Software Testing, Verification, and Validation, pp. 62–71, IEEE, 2008.

[220] S. Tasiran, M. E. Keremoğlu, and K. Muşlu, “Location pairs: a test coverage metric for shared-
memory concurrent programs,” Empirical Software Engineering, vol. 17, no. 3, pp. 129–165, 2012.

[221] S. R. Vergilio, J. C. Maldonado, M. Jino, and I. W. Soares, “Constraint based structural testing
criteria,” Journal of Systems and Software, vol. 79, no. 6, pp. 756–771, 2006.

[222] M. Vivanti, A. Mis, A. Gorla, and G. Fraser, “Search-based data-flow test generation,” in Software
Reliability Engineering (ISSRE), 2013 IEEE 24th International Symposium on, pp. 370–379, IEEE,
2013.

[223] H. Wang, K. Zhai, and T. Tse, “Correlating context-awareness and mutation analysis for pervasive
computing systems,” in Quality Software (QSIC), 2010 10th International Conference on, pp. 151–
160, IEEE, 2010.

[224] X. Wang, L. Zhang, and P. Tanofsky, “Experience report: how is dynamic symbolic execution
different from manual testing? a study on klee,” in Proceedings of the 2015 International Symposium
on Software Testing and Analysis, pp. 199–210, ACM, 2015.

[225] A. Watanabe and K. Sakamura, “A specification-based adaptive test case generation strategy for
open operating system standards,” in Proceedings of the 18th international conference on Software
engineering, pp. 81–89, IEEE Computer Society, 1996.

[226] E. Weyuker, T. Goradia, and A. Singh, “Automatically generating test data from a boolean specifica-
tion,” IEEE Transactions on Software Engineering, vol. 20, no. 5, p. 353, 1994.

[227] X. Xie, J. W. Ho, C. Murphy, G. Kaiser, B. Xu, and T. Y. Chen, “Testing and validating machine
learning classifiers by metamorphic testing,” Journal of Systems and Software, vol. 84, no. 4,
pp. 544–558, 2011.

[228] D. Xu, O. El-Ariss, W. Xu, and L. Wang, “Testing aspect-oriented programs with finite state
machines,” Software Testing, Verification and Reliability, vol. 22, no. 4, pp. 267–293, 2012.

[229] J. Xuan and M. Monperrus, “Test case purification for improving fault localization,” in Proceedings
of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering,
pp. 52–63, ACM, 2014.

[230] S. Yoo and M. Harman, “Test data regeneration: generating new test data from existing test data,”
Software Testing, Verification and Reliability, vol. 22, no. 3, pp. 171–201, 2012.

[231] D. You, S. Rayadurgam, M. Whalen, M. P. Heimdahl, and G. Gay, “Efficient observability-based
test generation by dynamic symbolic execution,” in Software Reliability Engineering (ISSRE), 2015
IEEE 26th International Symposium on, 2015.

47/57

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2483v1 | CC BY 4.0 Open Access | rec: 28 Sep 2016, publ: 28 Sep 2016

[232] Y. Zhan and J. A. Clark, “A search-based framework for automatic testing of matlab/simulink
models,” Journal of Systems and Software, vol. 81, no. 2, pp. 262–285, 2008.

[233] L. Zhang, D. Hao, L. Zhang, G. Rothermel, and H. Mei, “Bridging the gap between the total and ad-
ditional test-case prioritization strategies,” in Software Engineering (ICSE), 2013 35th International
Conference on, pp. 192–201, IEEE, 2013.

[234] L. Zhang, S.-S. Hou, C. Guo, T. Xie, and H. Mei, “Time-aware test-case prioritization using integer
linear programming,” in Proceedings of the eighteenth international symposium on Software testing
and analysis, pp. 213–224, ACM, 2009.

[235] J. Zhang, J. Chen, D. Hao, Y. Xiong, B. Xie, L. Zhang, and H. Mei, “Search-based inference of
polynomial metamorphic relations,” in Proceedings of the 29th ACM/IEEE international conference
on Automated software engineering, pp. 701–712, ACM, 2014.

[236] C. Zhou and P. Frankl, “Jdama: Java database application mutation analyser,” Software Testing,
Verification and Reliability, vol. 21, no. 3, pp. 241–263, 2011.

48/57

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2483v1 | CC BY 4.0 Open Access | rec: 28 Sep 2016, publ: 28 Sep 2016

A ARTICLE CHARACTERISATION RESULTS

Paper R
ol

e

Testing Act. Mutation Tool MOP EMP RT Subject M
ut

an
tA

na
ly

si
s

Category Test
Level

Strategy A
va

il.

Type Name Des.
Level

Method Method Lan. Size A
va

il.

AbouTrab et al. [139] A test strategy evaluation n/a spec. N hand. well n/a n/a C n/a N
Aichernig et al. [140] G test data generation int. spec. (E) Y exi. µjava not suff. n/a n/a java n/a N
Aichernig et al. [141] G test data generation n/a spec. (E) Y exi. µjava well manual invest. n/a UML S N
Ali et al. [142] A test strategy evaluation int. spec. N n/a well n/a n/a java P Y
Andrews et al. [143] A test oracle unit spec. N self. Self-written well n/a mutant sample C S N
Andrews et al. [144] A test strategy evaluation n/a struc. N exi. [143] well not killed as equiva-

lent
mutant sample C S Y *

Androutsopoulos et al. [145] A test strategy evaluation n/a others Y exi. SMT-C well n/a fixed number, weak
mutation

C M N

Antoniol et al. [146] A test strategy evaluation n/a spec. N n/a well n/a n/a C++ S N *
Arcaini et al. [147] A model review n/a others N n/a well model checker n/a spec. n/a Y *
Arcuri and Briand [148] A test strategy evaluation n/a spec. Y exi. MuJava well not killed as equiva-

lent
mutant sample java S N

Asoudeh and Labiche [149] A test data generation n/a spec. (E) Y exi. MAJOR well n/a n/a java n/a N
Außerlechner et al. [80] A fault localisation other others N n/a well n/a n/a spread-

sheet
n/a Y

Baker and Habli [150] A test strategy evaluation n/a struc. Y,
N

exi.,
hand.

MILU well manual invest. n/a C, Ada P N *

Bandyopadhyay and Ghosh [151] A test data generation unit spec. Y exi. MuJava well n/a n/a java S N *
Bardin et al. [152] G test data generation unit hybrid Y exi. MuJava well n/a weak mutation java S Y
Baudry et al. [92] G test data generation unit struc. (E) N exi. µSlayer well manual invest. n/a Eiffel n/a Y
Baudry et al. [93] G test data generation sys. struc. (E) N self. well manual invest. n/a C# n/a N
Baudry et al. [94] G test data generation unit,

sys.
struc. (E) N n/a well reduce likelihood n/a Eiffel, C# n/a N

Belli and Beyazıt [118] G test data generation other spec. (E) N n/a well reduce likelihood fixed number n/a n/a N
Belli et al. [153] A test data generation, test strat-

egy evaluation
n/a spec. N n/a well deterministic model n/a spec. n/a N *

Bertolino et al. [154] A test data generation, test strat-
egy evaluation

n/a spec. N exi. [40] well n/a n/a XACML n/a N

Briand et al. [155] A test strategy evaluation unit spec. N n/a well manual invest. n/a java, c++ S Y
Briand et al. [156] A test strategy evaluation n/a spec. N n/a n/a not killed as equiva-

lent
n/a Java, C++ n/a N

Briand et al. [157] A test strategy evaluation n/a hybrid N n/a well n/a n/a java S Y
Cai et al.and Lyu [?] A test strategy evaluation n/a struc. N n/a n/a n/a n/a C S N
Chae et al. [117] A test data generation, test-suite

reduction
other struc. N n/a well n/a n/a C M N

Chen et al. [106] G test strategy evaluation n/a struc. (E) Y exi. Proteum n/a no invest. n/a C S Y

49/57

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2483v1 | CC BY 4.0 Open Access | rec: 28 Sep 2016, publ: 28 Sep 2016

Cheon [158] A test oracle unit spec. N hand. manual not suff. manual invest. fixed number java P N
Chevalley and Thévenod-Fosse [159] A test data generation n/a spec. N self. Self-written well manual invest. n/a java S N
Czemerinski et al. [160] A test strategy evaluation unit spec. Y exi. MuJava well no invest. mutant sample java S Y
Czemerinski et al. [91] A test strategy evaluation unit spec. Y exi. µ-JAVA well not killed as equiva-

lent
n/a Java S Y *

Delamare et al. [81] A test oracle unit struc. Y exi. AjMutator well manual invest. n/a AspectJ S N
DeMilli and Offutt [?] G test data generation unit struc. (E) Y exi. Mothra n/a manual invest. weak mutation Fortran P N
DeMillo and Offutt [161] G test data generation unit struc. (E) Y exi. Mothra n/a manual invest. weak mutation Fortran n/a N
Denaro et al. [113] A test data generation int. struc. Y exi. PIT n/a n/a n/a Java S Y *
Di Nardo et al. [162] G test data generation sys. spec. (E) N n/a well n/a selection strategy spec. n/a N
Do and Rothermel [63] A test case prioritisation unit struc. N self. Self-written well n/a n/a Java n/a Y
Do and Rothermel [64] A test case prioritisation unit,

sys.
struc., spec. N self. Self-written well n/a n/a Java n/a Y

Do et al. [163] A test case prioritisation n/a struc., struc.
(E)

N self. Self-written well n/a fixed number java M Y

Duran and Ntafos [54] A test strategy evaluation n/a hybrid N n/a n/a n/a n/a Fortran n/a N
Edwards and Shams [164] A test strategy evaluation unit struc. Y exi. Javalanche n/a not killed as equiva-

lent
n/a java n/a N

Edwards [165] A test strategy evaluation n/a spec. N n/a well manual invest. n/a spec. S N
Elbaum et al. [62] G test case prioritisation n/a struc. (E) Y exi. Proteum n/a n/a n/a C M Y
Fang et al. [166] A test case prioritisation unit sim. Y exi. Jumble n/a not killed as equiva-

lent
n/a Java M Y *

Fraser and Walkinshaw [167] A,G test data generation, test strat-
egy evaluation

unit struc. (E) Y exi.,
part.

Javalanche,
EvoSuite

well n/a n/a java S N

Fraser and Zeller [102] G test data generation, test ora-
cle, test-case minimisation

unit struc. (E) Y exi. µTEST,
Javalanche

not suff. no invest. weak mutation Java n/a Y

Fraser et al. [168] G test data generation unit struc. Y exi. MAJOR n/a n/a fixed number java S Y
Fraser et al. [169] G test data generation unit struc. (E) Y part. EvoSuite well no invest. mutant sample,

weak mutation
Java n/a Y

Gay et al. [104] G test oracle unit struc. (E) N n/a well model checker fixed number simulink n/a N
Gay et al. [170] A test data generation, test suite

reduction
unit struc., struc.

(E)
N exi. [?] not suff. model checker fixed number, weak

mutation
Lustre S N

Gligoric et al. [171] A test strategy evaluation n/a struc. N exi.,
exi.

Javalanche,
[143]

not suff. no invest. n/a Java, C M Y

Gonzalez-Sanchez et al. [172] A fault localisation n/a struc., struc.
(E)

Y part. Zoltar n/a n/a n/a C M Y

Gopinath et al. [173] A test strategy evaluation unit struc. Y exi. PIT n/a n/a n/a Java M Y
Gupta and Jalote [174] A fault localisation, program re-

pairing
unit others N hand. manual well n/a n/a java S N

Hao et al. [109] G test-suite reduction n/a struc. (E) Y exi. Proteum, Mu-
Java

n/a n/a mutant sample java, c S Y

Hao et al. [110] A test case prioritisation unit,
sys.

struc. Y exi. [143], Mujava,
Javalance

n/a n/a fixed number Java, C M Y

Harman et al. [175] G test data generation n/a struc. (E) Y exi. MiLu not suff. not killed as equiva-
lent

higher-order C S N

Hennessy and Power [116] A test-suite reduction other others N self. Self-written well n/a weak mutation C++
Grammar

M Y

Hofer and Wotawa [119] A fault localisation other others N n/a well n/a n/a spread-
sheet

n/a Y

50/57

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2483v1 | CC BY 4.0 Open Access | rec: 28 Sep 2016, publ: 28 Sep 2016

Hofer et al. [120] A fault localisation other others N n/a not suff. n/a n/a spread-
sheet

n/a Y

Holt et al. [176] A test strategy evaluation n/a spec. N hand. Hand-seeded well n/a n/a C++ S N
Hong et al. [83] A test strategy evaluation n/a struc. N n/a well n/a n/a Java S N
Hong et al. [84] A test strategy evaluation n/a struc. N n/a well n/a n/a java S N
Hou et al. [85] G test strategy evaluation int. spec. (E) N n/a well n/a weak mutation Java S Y
Inozemtseva et al. [58] A test strategy evaluation unit struc. Y exi. PIT n/a not killed as equiva-

lent
n/a Java M Y

Jamrozik et al. [177] G test data generation unit struc. (E) N n/a n/a n/a n/a C# n/a N
Jee et al. [178] A test data generation unit struc. N n/a well n/a n/a PLC n/a N
Jolly et al. [179] A test strategy evaluation unit spec. N exi. Mutant Power n/a n/a fixed number C# M N
Kanewala and Bieman [180] A test oracle unit others Y exi. µjava well n/a n/a java P N
Kapfhammer et al. [122] A test data generation other others N n/a well n/a n/a SQL n/a N
Khalil and Labiche [181] A test strategy evaluation n/a spec. Y exi. MuJava well not killed as equiva-

lent
n/a java S Y

Kim et al. [182] A test strategy evaluation n/a spec., struc. N self. Self-written not suff. n/a n/a Java S N *
Koster and Kao [183] A test strategy evaluation unit struc. (E) Y exi. MuJava well n/a n/a java S Y
Kracht et al. [184] A test data generation unit struc. Y exi. MAJOR well n/a n/a Java M Y
Kwon et al. [98] G test case prioritisation unit struc. (E) Y exi. MAJOR not suff. n/a fixed number Java S Y
Le Traon et al. [185] A test strategy evaluation unit spec. N exi. µSlayer well manual invest. n/a Eiffel n/a Y
Le Traon et al. [186] A test strategy evaluation, test-

suite selection
sys. spec. N n/a well reduce likelihood n/a spec. M N

Lee and Offutt [187] G test data generation int. spec. (E) N n/a well n/a n/a XML n/a Y
Lei and Andrews [188] A test case minimisation unit struc. N n/a well not killed as equiva-

lent
n/a C S N

Li et al. [111] A test strategy evaluation int.,
sys.

spec. N n/a well manual invest. n/a java S N

Liu et al. [189] G test data generation unit struc. (E) N self. Self-written well manual invest. weak mutation Java P N
Lorber [190] G test data generation n/a spec. (E) Y exi. MoMuT::UML n/a n/a n/a spec. n/a N
Lou et al. [108] G test case prioritisation unit struc. (E) Y exi. Javalanche well n/a fixed number java M Y
Loyala et al. [191] A test oracle unit others Y exi. MAJOR n/a n/a n/a Java S Y
Mayer and Guderlei [192] A test data generation, test strat-

egy evaluation
n/a spec. Y exi. MuJava well n/a n/a java n/a N

Mayer and Schneckenburger [193] A test strategy evaluation n/a spec. Y exi. MuJava well n/a n/a java n/a N
Mcminn et al. [123] A test strategy evaluation, test

data generation
other struc. Y exi. SchemaAnalyst well reduce likelihood n/a SQL n/a N

Milani et al. [194] A test data generation unit spec. Y exi. MUTANDIS
[79]

well reduce likelihood n/a JavaScript M Y

Miller and Strooper [195] A test strategy evaluation n/a spec. Y,
N

exi.,
hand.

MuJava, man-
ual

well manual invest. mutant sample java n/a N

Mirshokraie [196] A,G test data generation, test ora-
cle, test strategy evaluation

unit struc. (E) Y exi. MUTANDIS n/a n/a n/a JavaScript n/a N

Moon et al. [101] G fault localisation n/a struc. (E) Y exi. Proteum not suff. n/a selection strategy C M Y
Mottu et al. [197] A test data generation n/a struc. (E) N n/a well n/a n/a AspectJ n/a Y
Mouchawrab et al. [198] A test data generation n/a spec., struc. Y exi. Mujava n/a manual invest. n/a Java S Y *
Mouchawrab et al. [199] A test data generation n/a spec., struc. Y exi. Mujava n/a manual invest. n/a Java S Y
Murtaza et al. [100] G fault localisation n/a struc. (E) N exi. [143] not suff. n/a n/a C M Y

51/57

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2483v1 | CC BY 4.0 Open Access | rec: 28 Sep 2016, publ: 28 Sep 2016

Namin and Andrews [57] A test strategy evaluation unit struc. Y exi. Proteum well not killed as equiva-
lent

fixed number C S Y

Ntafos [52] A test strategy evaluation n/a struc., spec. N exi. [48] well n/a n/a Fortran n/a N
Ntafos [53] A test strategy evaluation n/a struc. N n/a n/a n/a n/a Fortran P Y
Offutt and Liu [200] A test data generation int. spec. Y exi. Mothra well no invest. n/a n/a n/a N
Offutt et al. [65] G test-suite reduction unit struc. (E) Y exi. Mothra well n/a n/a Fortran P N
Papadakis and Malevris [76] G test data generation unit struc. (E) Y part. jFuzz well not killed as equiva-

lent, manual invest.
n/a Java S Y

Papadakis and Malevris [56] G test data generation unit struc. (E) Y part. jFuzz well manual invest. weak mutation Java n/a Y
Papadakis and Malveris [201] G test data generation unit struc. (E) N n/a well not killed as equiva-

lent
weak mutation Delphi, C,

n/a
P N

Papadakis et al. [68] G fault localisation unit struc. (E) Y exi. Proteum n/a no invest. mutant sample C S Y
Papadakis et al. [124] A test-suite selection n/a spec. (E) N n/a well not killed as equiva-

lent
n/a C S Y

Papadakis et al. [69] G fault localisation unit struc. (E) Y exi. Proteum not suff. no invest. mutant sample C M Y
Patrick et al. [202] G test data generation n/a hybrid Y exi. MuJava n/a n/a n/a java S N
Pinte et al. [203] A test data generation unit struc. Y exi. MuJava n/a n/a n/a java n/a N
Pretschner et al. [204] A test data generation, test strat-

egy evaluation
n/a spec. N n/a well n/a n/a spec. n/a N

Qi et al. [99] G program repairing n/a struc. (E) Y part. TrpAutoRepair not suff. n/a n/a C L Y
Qu et al. [97] G test case prioritisation n/a spec. (E) N exi. [143] n/a n/a fixed number C M Y
Qu et al. [205] A test data generation, test case

prioritisation
n/a spec. N exi. [143] not suff. n/a fixed number C M Y

Qu et al. [206] A test-suite selection n/a spec. N exi. [143] n/a n/a n/a C/C++ M N
Rothermel et al. [90] G test case prioritisation n/a struc., struc.

(E)
Y exi. Proteum n/a n/a n/a C S Y

Rothermel et al. [61] G test case prioritisation n/a struc. (E) Y exi. Proteum n/a not killed as
nonequivalent

n/a C S Y

Rubab et al. [207] A test data generation n/a spec. N hand. well n/a n/a spec. n/a N
Rutherford et al. [112] A test strategy evaluation sys. spec. Y exi. MuJava well n/a n/a java S N
Schuler and Zeller [208] A test strategy evaluation unit struc. Y exi. Javalanche n/a n/a n/a java M Y
Schuler and Zeller [209] A test strategy evaluation unit struc. Y exi. Javalanche n/a n/a n/a java M Y
Segura et al. [210] A test data generation n/a spec. Y exi. MuClipse well manual invest. n/a java S Y
Shahamiri et al. [211] A test oracle n/a spec. N n/a not suff. n/a n/a C# n/a N
Shelton et al. [212] G development scheme evalua-

tion
unit others Y exi. MuJava n/a manual invest. n/a java n/a N *

Shi et al. [213] A test strategy evaluation n/a sim. Y Self-
written

mutate.py not suff. manual invest. fixed number C M Y

Shi et al. [105] G test-suite reduction n/a struc., struc.
(E)

Y exi. PIT well n/a n/a Java S Y

Shi et al. [214] A test-suite reduction unit struc. Y exi. PIT n/a n/a n/a java M Y
Shrestha and Rutherford [215] A test oracle unit struc. Y exi. MuJava well manual invest. n/a java S Y
Simith and Williams [96] G test data generation unit struc. (E) Y exi. MuClipse well no invest. n/a Java S Y
Smith and Williams [107] G test strategy evaluation unit struc. (E) Y exi. Jumble, Mu-

Clipse
well n/a n/a java S N *

Staats et al. [216] A test oracle n/a others N n/a n/a model checker fixed number Lustre n/a N
Staats et al. [103] G test oracle unit struc. (E) N exi. [?] not suff. model checker fixed number Lustre S N
Staats et al. [217] A test case prioritisation unit struc. Y exi. Sofya well n/a fixed number java S N

52/57

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2483v1 | CC BY 4.0 Open Access | rec: 28 Sep 2016, publ: 28 Sep 2016

Stephan and Cordy [218] A model clone detection n/a others N n/a well n/a random mutation simulink n/a N
Tan and Edwards [219] A test data generation, test strat-

egy evaluation
unit struc. N exi. sulu tool well n/a n/a sulu n/a N

Tasiran et al. [220] A test strategy evaluation n/a struc. N n/a well n/a n/a java n/a N
Tuya et al. [121] A test strategy evaluation other struc. Y exi. SQLMutation well reduce likelihood,

manual invest.
n/a SQL n/a Y

Vergilio et al. [221] A test strategy evaluation n/a struc. (E) Y exi. Proteum well manual invest. n/a C n/a N
Vivanti et al. [222] G test data generation unit struc., struc.

(E)
Y part. EvoSuite n/a n/a weak mutation Java n/a Y

von Mayrhauser et al. [95] G test data generation n/a spec. (E) N n/a well n/a n/a n/a L N
Wang et al. [223] A test strategy evaluation n/a sim. Y exi. MuClipse well not killed as equiva-

lent
n/a Java S N *

Wang et al. [224] A test data generation n/a struc. N exi. [143] n/a n/a fixed number C M Y
Watanabe and Sakamura [225] A test data generation int. spec. N n/a well n/a n/a spec. n/a N
Weyuker et al. [226] A test data generation n/a spec. N n/a well n/a n/a n/a n/a N *
Whalen et al. [60] A test strategy evaluation n/a struc. (E) N exi. [?] not suff. model checker fixed number Simulink n/a N
Xie et al. [227] A test strategy evaluation n/a others Y exi. MuJava well manual invest. fixed number java n/a Y
Xu and Ding [82] A test case prioritisation n/a spec. N n/a well n/a n/a AspectJ S N
Xu et al. [228] A test strategy evaluation n/a spec. N hand. well n/a n/a AspectJ S N
Xuan and Monperrus [229] A fault localisation unit others Y exi. PIT well n/a fixed number Java M Y *
Yoo and Harman [230] A test data generation unit struc. Y exi. Mujava well no invest. n/a Java n/a Y
Yoon and Choi [86] A test-suite selection int. hybrid N self. TECC well n/a selection strategy EJB n/a N
You et al. [231] A test data generation n/a struc. (E) N exi. [?] not suff. no invest. fixed number Lustre n/a N
Zhan and Clark [232] G test data generation, test-suite

reduction
n/a
(code
level)

struc., struc.
(E)

N self. not suff. manual invest. n/a simulink n/a N

Zhang and Mesbah [59] A test strategy evaluation unit struc. (E) Y exi. PIT well not killed as equiva-
lent

n/a Java M Y

Zhang et al. [233] A test case prioritisation unit struc. Y exi. Mujava n/a n/a n/a Java M Y
Zhang et al. [67] A fault localisation n/a struc. (E) Y exi. Proteum not suff. n/a n/a C S Y *
Zhang et al. [234] A test case prioritisation n/a struc. Y exi. Jester well n/a fixed number java S Y
Zhang et al. [55] G test data generation n/a struc. (E) Y exi. PexMutator,

GenMutants
well manual invest. weak mutation C# S Y

Zhang et al. [66] A test-suite reduction unit struc. Y exi. MuJava well n/a fixed number Java M Y
Zhang et al. [235] A test oracle n/a spec. Y exi. MuClipse not suff. n/a n/a java,

C/C++
S Y

Zhou and Frankl [236] A test data generation, test strat-
egy evaluation

n/a struc. Y exi. JDAMA
(based on
SQLMutation)

well reduce likelihood,
manual invest.

weak mutation Java, sql n/a Y

Table 19. Article Characterisation Results

53/57

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2483v1 | CC BY 4.0 Open Access | rec: 28 Sep 2016, publ: 28 Sep 2016

B ARTICLE CHARACTERISATION RESULTS REGARDING THE“GUIDE” ROLE

Paper Testing Act. Usage Fault Type Notes
Aichernig et al. [140] test data generation

(automatic)
generate test data to kill mutants (model-
based)

mutation traditional

Aichernig et al. [141] test data generation
(automatic)

generate test data to kill mutants (model-
based)

mutation traditional

Bardin et al. [152] test data generation
(automatic)

generate weak mutant killable conditions no evaluation

Baudry et al. [92] test data generation
(optimisation)

use mutation score to optimise test data
based on an initial test set

mutation

Baudry et al. [93] test data generation
(optimisation)

use mutation score to optimise test data
based on an initial test set

mutation

Baudry et al. [94] test data generation
(optimisation)

use mutation score to optimise test data
based on an initial test set

mutation

Belli and Beyazıt [118] test data generation
(automatic)

generate test data to kill mutants (model-
based)

mutation

Chen et al. [106] test strategy evalua-
tion

use mutants to estimate fault-exposing
potential

Hand-seeded

DeMilli and Offutt [?] test data generation
(automatic)

generate weak mutant killable conditions mutation

DeMillo and Offutt [161] test data generation
(automatic)

generate weak mutant killable conditions mutation

Di Nardo et al. [162] test data generation
(automatic)

generate test data to kill mutants (model-
based)

mutation

Elbaum et al. [62] test case prioritisa-
tion

use mutants to estimate fault-exposing
potential

Hand-seeded

Fraser and Walkinshaw [167] test data generation
(automatic)

generate weak mutant killable conditions mutation

Fraser and Zeller [102] test data generation
(automatic), test or-
acle, test-case min-
imisation

generate strong mutant killable condi-
tions (mutant impact)

mutation

Fraser et al. [168] test data genera-
tion (manual vs
automatic)

use mutation analysis to generate asser-
tion based on the behavior of the pro-
gram

hand-seeded + muta-
tion

Fraser et al. [169] test data generation
(automatic)

generate weak/strong mutant killable
conditions for test data generation

mutation

Gay et al. [104] test oracle rank variables (for test oracle) according
to killed mutants

mutation evaluation
set

Hao et al. [109] test-suite reduction use mutants to collect statistics on loss
in fault-detection capability at the level
of individual statements for various lev-
els of confidence, and use these to con-
struct a fault-detection- loss table

Hand-seeded + mu-
tation

later
version
+ eval-
uation
set

Harman et al. [175] test data generation
(automatic)

generate strong-higher-order mutant kill-
able conditions

mutation

Hou et al. [85] test strategy evalua-
tion

propose Interface-Contract Mutation
coverage as a test adequacy criterion

Hand-seeded + mu-
tation

different
operators

Jamrozik et al. [177] test data generation
(automatic)

augment test input data using mutation
testing

mutation

Kwon et al. [98] test case prioritisa-
tion

use mutants to determine coefficients of
the linear regression model with IR and
coverage information

mutation

Lee and Offutt [187] test data generation
(automatic)

generate test data to kill mutants (model-
based)

mutation

Liu et al. [189] test data generation
(automatic)

generate weak multiple-mutant-killable
conditions

mutation

Lorber [190] test data generation
(automatic)

generate test data to kill mutants (model-
based)

no evaluation

Lou et al. [108] test case prioritisa-
tion

use mutants (in prior version) to estimate
fault-detection capability

mutation later ver-
sion, eval-
uation set

Mirshokraie [196] test oracle use mutation analysis to generate asser-
tion

mutation

Moon et al. [101] fault localisation assign suspicious value to mutants ac-
cording to test execution information

Hand-seeded

Murtaza et al. [100] fault localisation use traces of mutants and prior faults
to train the predication model (decision
tree)

real

Offutt et al. [65] test-suite reduction use traces of mutants and prior faults
to train the predication model (decision
tree)

real

Papadakis and Malevris [76] test data generation
(automatic)

generate strong mutant killable condi-
tions

mutation

Papadakis and Malevris [56] test data generation
(automatic)

generate weak mutant killable conditions mutation

Papadakis and Malveris [201] test data generation
(automatic)

generate weak mutant killable conditions mutation

54/57

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2483v1 | CC BY 4.0 Open Access | rec: 28 Sep 2016, publ: 28 Sep 2016

Papadakis et al. [68] fault localisation assign suspicious value to mutants ac-
cording to test execution information

Hand-seeded

Papadakis et al. [69] fault localisation assign suspicious value to mutants ac-
cording to test execution information

Hand-seeded

Patrick et al. [202] test data generation
(optimisation)

optimise subdomain to kill mutants mutation

Qi et al. [99] program repairing prioritise test cases in patch validation ac-
cording to fault-exposing potential

mutation

Qu et al. [97] test case prioritisa-
tion

order test cases according to prior fault
detection information using both hand-
seeded and mutation faults

Hand-seeded + mu-
tation

Rothermel et al. [90] test case prioritisa-
tion

use mutants to estimate fault-exposing
potential

Hand-seeded evaluation
set

Rothermel et al. [61] test case prioritisa-
tion

use mutants to estimate fault-exposing
potential

Hand-seeded

Shelton et al. [212] development
scheme evalua-
tion

complementary to Test-Driven Develop-
ment to add extra test cases

mutation

Shi et al. [105] test-suite reduction to kill same mutants as the requirement mutation
Simith and Williams [96] test data generation

(augmentation)
to kill mutants as the requirement mutation

Smith and Williams [107] test strategy evalua-
tion

use mutation coverage to generate test
data

mutation

Staats et al. [103] test oracle rank variables (for test oracle) according
to killed mutants

mutation evaluation
set

Vivanti et al. [222] test data generation
(automatic)

generate weak mutant killable conditions mutation

von Mayrhauser et al. [95] test data generation
(augmentation)

augment test input data to kill mutants no evaluation

Zhan and Clark [232] test data genera-
tion (automatic),
test-suite reduction

generate strong mutant killable condi-
tions (model-based)

mutation

Zhang et al. [55] test data generation
(automatic)

generate weak mutant killable conditions mutation different
tool

Table 20. Article Characterisation results regarding the“guide” Role

55/57

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2483v1 | CC BY 4.0 Open Access | rec: 28 Sep 2016, publ: 28 Sep 2016

C MUTATION OPERATOR CHARACTERISATION RESULTS REGARDING
THE“WELL-DEFINED” ENTITY

Paper Mutation Operators
AbouTrab et al. [139] specification
Aichernig et al. [141] specification, arithmetic op, relational op, conditional op, bitwise op, assignment op, shift op, program
Ali et al. [142] specification
Andrews et al. [143] absolute value, arithmetic op, conditional op, relational op, program
Andrews et al. [144] arithmetic op, relational op, constant, statement deletion, program
Androutsopoulos et al. [145] arithmetic op, program
Antoniol et al. [146] arithmetic op, relational op, conditional op, bitwise op, assignment op, shift op, method call, control-

flow disruption, constant, variable, statement swap, program
Arcaini et al. [147] specification
Arcuri and Briand [148] arithmetic op, relational op, conditional op, bitwise op, assignment op, shift op, program
Asoudeh and Labiche [149] arithmetic op, conditional op, relational op, shift op, absolute value, program
Außerlechner et al. [80] spreadsheet-specific, program
Baker and Habli [150] arithmetic op, relational op, conditional op, bitwise op, assignment op, statement deletion, constant,

program
Bandyopadhyay and Ghosh [151] arithmetic op, relational op, conditional op, bitwise op, assignment op, shift op,OO-specific, Java-

specific
Bardin et al. [152] arithmetic op, conditional op, relational op, program
Baudry et al. [92] exception handler, arithmetic op, conditional op, relational op, statement deletion, constant, variable,

method call, OO-specific, program
Baudry et al. [93] exception handler, arithmetic op, conditional op, relational op, statement deletion, constant, variable,

method call, OO-specific, program
Baudry et al. [94] exception handler, arithmetic op, conditional op, relational op, statement deletion, constant, variable,

method call, OO-specific, program
Belli and Beyazıt [118] specification
Belli et al. [153] specification
Bertolino et al. [154] specification
Briand et al. [155] arithmetic op, relational op, conditional op, bitwise op, assignment op, shift op, method call, control-

flow disruption, constant, variable, statement swap, exception handler, Java-specific, program
Briand et al. [157] arithmetic op, constant, method call, relational op, return statement, statement deletion, program
Chae et al. [117] variable, program
Chevalley and Thévenod-Fosse [159] variable, arithmetic op, relational op, constant, parentheses, program
Czemerinski et al. [160] arithmetic op, relational op, conditional op, bitwise op, assignment op, shift op,OO-specific, Java-

specific, program
Czemerinski et al. [91] arithmetic op, relational op, conditional op, bitwise op, assignment op, shift op,OO-specific, Java-

specific, program
Delamare et al. [81] AOP-specific, program
Di Nardo et al. [162] specification
Do and Rothermel [63] arithmetic op, relational op, conditional op, method call, OO-specific, program
Do and Rothermel [64] arithmetic op, relational op, conditional op, method call, OO-specific, program
Do et al. [163] arithmetic op, relational op, conditional op, method call, OO-specific, program
Edwards [165] arithmetic op, relational op, conditional op, absolute value, program
Fraser and Walkinshaw [167] constant, conditional op, arithmetic op, statement deletion, program
Fraser et al. [169] arithmetic op, relational op, constant, variable, conditional op, statement deletion, OO-specific, bitwise

op, program
Gay et al. [104] arithmetic op, relational op, conditional op, constant, variable, program
Gupta and Jalote [174] OO-specific, constant, arithmetic op, relational op, conditional op, bitwise op, assignment op, shift op,

control-flow disruption, method call, statement swap, variable, conditional exp, program
Hennessy and Power [116] absolute value, arithmetic op, conditional op, relational op, program
Hofer and Wotawa [119] spreadsheet-specific, program
Holt et al. [176] specification
Hong et al. [83] concurrent mutation, program
Hong et al. [84] concurrent mutation, program
Hou et al. [85] arithmetic op, conditional op, relational op, constant, variable, Interface mutation, program
Jee et al. [178] specification
Kanewala and Bieman [180] arithmetic op, relational op, conditional op, bitwise op, assignment op, shift op, program
Kapfhammer et al. [122] SQL-specific, program
Khalil and Labiche [181] arithmetic op, relational op, conditional op, bitwise op, assignment op, shift op,OO-specific, Java-

specific, program
Koster and Kao [183] arithmetic op, relational op, conditional op, bitwise op, assignment op, shift op,OO-specific, Java-

specific, program
Kracht et al. [184] arithmetic op, conditional op, relational op, shift op, absolute value, program
Le Traon et al. [185] exception handler, arithmetic op, conditional op, relational op, statement deletion, constant, variable,

OO-specific, program
Le Traon et al. [186] specification
Lee and Offutt [187] specification
Lei and Andrews [188] absolute value, arithmetic op, conditional op, relational op, program
Li et al. [111] arithmetic op, conditional op, bitwise op, constant, variable, Java-specific, OO-specific, return state-

ment, program
Liu et al. [189] arithmetic op, relational op, conditional op, constant, variable, program
Lou et al. [108] constant, conditional op, arithmetic op, statement deletion, program
Mayer and Guderlei [192] arithmetic op, relational op, conditional op, bitwise op, assignment op, shift op, program
Mayer and Schneckenburger [193] arithmetic op, relational op, conditional op, bitwise op, assignment op, shift op, program
Mcminn et al. [123] SQL-specific, program
Milani et al. [194] method call, variable, JS-specific, program

56/57

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2483v1 | CC BY 4.0 Open Access | rec: 28 Sep 2016, publ: 28 Sep 2016

Miller and Strooper [195] specification, arithmetic op, relational op, conditional op, bitwise op, assignment op, shift op,OO-
specific, Java-specific, program

Mottu et al. [197] specification
Namin and Andrews [57] arithmetic op, bitwise op, return statement, conditional op, assignment op, type, relational op, goto

label, loop trap, brace, switch statement, conditional exp, while statement, variable, program
Ntafos [52] constant, variable, arithmetic op, relational op, conditional op, statement deletion, return statement,

goto label, do statement, bomb statement, program
Offutt and Liu [200] constant, variable, arithmetic op, relational op, conditional op, statement deletion, return statement,

goto label, do statement, bomb statement, absolute value, program
Offutt et al. [65] constant, variable, arithmetic op, relational op, conditional op, statement deletion, return statement,

goto label, do statement, bomb statement, absolute value, program
Papadakis and Malevris [76] absolute value, arithmetic op, relational op
Papadakis and Malevris [56] absolute value, arithmetic op, conditional op, relational op, program
Papadakis and Malveris [201] absolute value, arithmetic op, conditional op, relational op, program
Papadakis et al. [124] specification
Pretschner et al. [204] specification
Rubab et al. [207] specification
Rutherford et al. [112] arithmetic op, relational op, conditional op, bitwise op, assignment op, shift op,OO-specific, Java-

specific, program
Segura et al. [210] arithmetic op, relational op, conditional op, bitwise op, assignment op, shift op, program
Shi et al. [105] arithmetic op, shift op, bitwise op, relational op, conditional op, assignment op, conditional exp, return

statement, OO-specific, constant, statement deletion, variable, switch statement, program
Shrestha and Rutherford [215] arithmetic op, relational op, conditional op, bitwise op, assignment op, shift op, program
Simith and Williams [96] arithmetic op, relational op, conditional op, bitwise op, assignment op, shift op,OO-specific, Java-

specific, program
Smith and Williams [107] arithmetic op, relational op, conditional op, bitwise op, assignment op, shift op, constant, return state-

ment, switch statement, OO-specific, Java-specific, program
Staats et al. [217] arithmetic op, conditional op, relational op, method call, program
Stephan and Cordy [218] specification
Tan and Edwards [219] arithmetic op, relational op, conditional op, conditional exp, statement deletion, program
Tasiran et al. [220] concurrent mutation, program
Tuya et al. [121] arithmetic op, conditional op, relational op, absolute value, constant, variable, SQL-specific, program
Vergilio et al. [221] bomb statement, conditional exp, statement deletion, return statement, goto label, control-flow disrup-

tion, while statement, do-while statement, loop trap, statement swap, brace, switch statement, arith-
metic op, bitwise op, conditional op, shift op, relational op, assignment o, parentheses, type, variable,
constant, program

von Mayrhauser et al. [95] specification
Wang et al. [223] arithmetic op, relational op, conditional op, bitwise op, assignment op, shift op,OO-specific, Java-

specific, program
Watanabe and Sakamura [225] relational op, constant, method call, program
Weyuker et al. [226] specification
Xie et al. [227] arithmetic op, relational op, conditional op, bitwise op, assignment op, shift op, program
Xu and Ding [82] AOP-specific, program
Xu et al. [228] specification
Xuan and Monperrus [229] arithmetic op, shift op, bitwise op, return statement, conditional op, assignment op, program
Yoo and Harman [230] arithmetic op, relational op, conditional op, bitwise op, assignment op, shift op, program
Yoon and Choi [86] interface mutation, program
Zhang and Mesbah [59] relational op, arithmetic op, shift op, bitwise op, conditional op, assignment op, return statement,

statement deletion, program
Zhang et al. [234] absolute value, arithmetic op, conditional op, relational op, program
Zhang et al. [55] absolute value, arithmetic op, conditional op, relational op, program
Zhang et al. [66] arithmetic op, relational op, conditional op, bitwise op, assignment op, shift op, program
Zhou and Frankl [236] arithmetic op, conditional op, relational op, absolute value, constant, variable, SQL-specific, program

Table 21. Mutation Operator Characterisation results regarding the“well-defined” Entity

57/57

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2483v1 | CC BY 4.0 Open Access | rec: 28 Sep 2016, publ: 28 Sep 2016

	1 Introduction
	2 Background
	2.1 Basic Concepts
	2.1.1 Fundamental Hypothesis
	2.1.2 The Generic Mutation Testing Process
	2.1.3 Benefits & Limitations

	2.2 Historical Overview

	3 Research Method
	3.1 Research Questions
	3.2 Study Selection Strategy
	3.3 Data Extraction Strategy
	3.4 Review Protocol Validation
	3.4.1 Selection Criteria Validation
	3.4.2 Attribute Framework Validation

	4 Review Results
	4.1 RQ1: How is the mutation testing used in testing activities?
	4.1.1 RQ1.1 & RQ1.2: Which role does mutation testing play in each testing activity?
	4.1.2 RQ1.3: Which test level does mutation testing usually target at?
	4.1.3 RQ1.4: Which testing strategies does mutation testing support more frequently?

	4.2 R2: How are empirical studies related to the mutation testing designed and reported?
	4.2.1 RQ2.1: Which mutation tools have been used more frequently?
	4.2.2 RQ2.2: Which mutation operators have been used more frequently?
	4.2.3 RQ2.3: Which approaches are used to overcome the equivalent mutant problem more often when applying mutation testing?
	4.2.4 RQ2.4: Which techniques are used to reduce the computational cost more frequently when applying mutation testing?
	4.2.5 RQ2.5: What are the most common subjects used in the experiments?

	4.3 Summary of Research Questions
	4.4 Recommendation of Future Research

	5 Threats to the Validity of this Review
	5.1 Article Selection
	5.2 Attribute Framework
	5.3 Article Characterisation
	5.4 Result Interpretation

	6 Conclusion
	References
	A Article Characterisation Results
	B Article Characterisation results regarding the``guide" Role
	C Mutation Operator Characterisation results regarding the``well-defined" Entity

