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Abstract: 

Identification and classification of behavior states in animal movement data can be complex, 

temporally biased, time-intensive, scale-dependent, and unstandardized across studies and taxa. 

Large movement datasets are increasingly common and there is a need for efficient methods of 

data exploration that adjust to the individual variability of each track. We present the Residence 

in Space and Time (RST) method to classify behavior patterns in movement data based on the 

concept that behavior states can be partitioned by the amount of space and time occupied in an 

area of constant scale. Using normalized values of Residence Time and Residence Distance 

within a constant search radius, RST is able to differentiate behavior patterns that are distance-

intensive (e.g., area restricted search), time-intensive (e.g., rest), and transit (short time and 

distance). We use grey-headed albatross (Thalassarche chrysostoma) GPS tracks to demonstrate 

RST’s ability to classify behavior patterns and adjust to the inherent scale and individuality of 

each track. Next, we evaluate RST’s ability to discriminate between behavior states relative to 

other classical movement metrics. We then sub-sample albatross track data to illustrate RST’s 

response to less temporally resolved data. Finally, we evaluate RST’s performance using datasets 

from four taxa with diverse ecology, functional scales, ecosystems, and data-types. We conclude 

that RST is a robust, rapid, and flexible method for detailed exploratory analysis and meta-

analyses of behavioral states in animal movement data based on its ability to integrate distance 

and time measurements into one descriptive metric of behavior groupings. Given the increasing 

amount of animal movement data collected, it is timely and useful to implement a consistent 

metric of behavior classification to enable efficient and comparative analyses. Overall, the 

application of RST to objectively explore and compare behavior patterns in movement data can 

enhance our fine- and broad- scale understanding of animal movement ecology.  
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Introduction: 

Time and space are fundamental to animal ecology, as these factors limit and scale behavior 

patterns. Animal-borne location tags are prolifically used to capture animal movement in both of 

these dimensions, yet behavioral analyses of these data have primarily focused on the assessment 

of temporal patterns across space (i.e., first passage time (Fauchald & Tveraa 2003); residence 

time (Barraquand & Benhamou 2008); time-in-grid (Pedersen et al. 2011)). While informative, 

the omission of analogous cumulative spatial metrics limits the ability of these methods to 

discriminate between time intensive behaviors such as rest and area restricted search (ARS), 

which can have variable distance values, but similar time values. Additionally, commonly 

applied imputs to describe behavior states such as step-length and turning angle are often 

constranind to the scale of the sampling interval rather than a scale selected based on the 

movement or perception of the animal (behavioral change point analysis (Gurarie et al. 2009);  

hidden Markov models (Dean et al. 2012)). Therefore, classification of behaviors can be 

enhanced by describing both spatial and temporal occupancy patterns, while also considering 

both the temporal and spatial scale of the analysis. To illustrate this, consider an area of constant 

scale (e.g., 1 x 1 km), within which animal behaviors differentiate based on the relationships 

between the total distance traversed and the amount of time spent in the area of constant scale 

(Fig 1). The axes of this schematic scale from low to high distance (x-axis) or time (y-axis) so 

that when an animal’s spatial and temporal occupancy patterns are related, behavioral groupings 

emerge. Near the origin of this schematic, an animal incurs low time and low distance in an area, 

representing directed transit. From here, three pathways are available, although behavior 

switching may occur at any time: (1) increasing along the time axis with consistently low 

distance values toward periods of prolong rest, and progressing along the distance axis toward 
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distance-intensive behaviors where (2) time exceeds distance (e.g., grazing) or (3) distance 

exceeds time (e.g., ARS). Given the inability to move large distances in short time periods 

(teleportation), it is impossible to fall within the ‘black hole’ of our schematic.  

Examination of behavioral subsets of movement data allows focused and comparative 

studies. Thus, behavior classification is often an early and critical component to movement data 

analysis that guides further analysis pathways. While behavioral interpretation is often intuitive 

upon visual assessment of each track, the classification of behavior states can be difficult to 

automate and objectively quantify. Many quantitative methods to classify behavior states are in 

use but, in addition to being biased toward temporal metrics, these are often statistically complex 

(e.g., Bayesian state-space models (Jonsen et al. 2005);  biased random bridges (Benhamou 

2011); tortuosity entropy (Liu et al. 2015)) or require advanced programming skills and ample 

time to run the models, especially for first-time users (e.g., hidden Markov models (Pedersen et 

al. 2011); wavelet analysis (Sur et al. 2014)). Therefore, there is a need for a simple and quick 

method to explore movement data. Additionally, these methods may lack transferability between 

taxa or studies, or be difficult to successfully apply to large and varied datasets with high 

individual variability (Jonsen 2016). These challenges are becoming increasingly salient with the 

increasing number and size of animal movement datasets (Nathan et al. 2008) due to 

miniaturization, and increased resolution, memory capacity, and battery life. Over 3,500 animal 

movement studies containing over 260 million locations have been contributed to movebank.org, 

seabirdtracking.org, and OBIS-SEAMAP (tabulated on 31 March 2016). The growth of 

biotelemetry offers immense opportunities for discovery, yet ‘methodological ambiguity’ for 

data exploration leads to confusion and inconsistency (Gurarie et al. 2016) and movement 

ecologists may struggle to balance the analytical demands of Big Data (Hampton et al. 2013) 
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with the individuality of each track. In this study, we offer an efficient, objective and broadly 

applicable method to explore and identify behavior patterns at multiple scales in movement data.  

Building off the concept of residence time (Barraquand & Benhamou 2008), we first 

develop a metric of residence distance. These two metrics quantify area occupancy patterns in 

time and distance respectively, and when related to each other, behavioral groups can be 

discerned (Fig 1). The method identifies three fundamental movement states: transit, time 

intensive movement, and distance intensive movement. These states are identified on a 

continuous scale that can be applied in further post hoc analyses. Initially, we develop and test 

our Residence in Space and Time (RST) method using a highly resolved grey-headed albatross 

(Thalassarche chrysostoma) GPS track. We discuss the impact of scale on RST behavior 

classifications and present methods to evaluate scale choice. Next, we demonstrate the ability of 

RST to discriminate between three discrete behavior states of an albatross (rest, ARS and transit) 

relative to other classical movement metrics. The RST method is then applied to 24 albatross 

tracks to assess the method’s ability to describe population-level behavior grouping while 

assessing individual variation. Next, we explore RST’s ability to accurately describe behavior 

states in movement data from less temporally resolved and temporally intermittent datasets 

(mimicking Argos/PTT tracks). Finally, we apply the RST method to animal movement datasets 

from diverse taxa and ecosystems to evaluate performance and versatility. This exploration 

demonstrates that RST is versatile and robust for application to multiple taxa and movement data 

types, which allows an efficient initial data exploration method to inform subsequent hypothesis 

testing, data partitioning, and appropriate analyses. 

 

Materials and Methods: 
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RST development and dataset  

During October and November 2013, grey-headed albatrosses breeding at Campbell 

Island in the New Zealand sub-Antarctic were tagged with igotU GPS archival tags (GT-600; 

http://www.i-gotu.com/), set to record a position and time every five minutes. All field work on 

Campbell Island and handling of albatross was conducted under permit issued by the New 

Zealand Department of Conservation, and was approved by the NIWA animal ethics committee. 

All effort was made to minimize handling time and any suffering to animals. We recorded 

incubation foraging trips of adult albatross (n = 24) after securing the GPS tag to back feathers 

using Tesa® tape. To focus on at-sea behaviors we removed all points within 5 km of the colony. 

We completed all analysis in R (R Development Core Team 2015) and implemented in C, with 

adapted code from Chirico (2004) and Kahle and Wickham (2013).  

We then calculated residence distance (RD) and residence time (RT) for all points along 

the track. A circle of radius R is constructed around every point and the distance traveled (RD; 

sum of path lengths within the circle) and time spent (RT; sum of time between locations within 

the circle) between consecutive points within the circle is calculated. Unlike Barraquand and 

Benhamou (2008)’s Residence Time method, our calculations of RT and RD do not include the 

‘tails’, which are the path segments between the first or last point in the circle and the perimeter. 

With our approach, all points alone within the circle are assigned a value of zero for both RT and 

RD. If the path trajectory exits and reenters the circle with no more than a threshold distance 

value (Th) traveled outside, the stretches of track outside the circle are also included in the RD 

and RT values. We include the option to set a threshold distance in the RST method for 

compatibility with the original Residence Time method (Barraquand & Benhamou 2008), yet 

within the RST method its functionality for behavior classification is limited. Therefore, in the 
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following examples we set Th equal to zero. 

To test the hypothesis that variation between RT and RD is related to behavior patterns, 

we calculated the residuals (difference in value) between these metrics for each point. First, RD 

and RT values were normalized within each track so that distance and time values were unit-less 

and therefore comparable, and so all values consistently ranged between 0 and 1. Then residuals 

for each location were calculated by subtracting RT from RD. The following formula was 

applied:   

Formula 1  Residuals = ((RD) / (max. RD of the track)) - ((RT) / (max. RT of the track)) 

We used the difference between RD and RT to describe behavior patterns, rather than proportion, 

sum or other complex comparison, because this approach (1) results in a consistent range of 

residuals between -1 and 1 that is comparable between individuals and datasets, and (2) allows 

for a relatively limited chance that the same value will result from different combinations of RD 

and RT (S1 Appendix). Speed also describes the relationship between distance and time, but was 

not employed here because speeds at large and small scales can be equivalent and therefore 

difficult to relate to behavior states. 

The scale-dependence of RST relates to R, and both RD and RT assign zero to locations 

that are > R away from other points. The appropriate R value depends on the temporal sampling 

interval and animal behavior patterns captured by the data. We offer two approaches to the 

selection of R based on animal transit speed. Transiting is a fundamental and shared behavior 

between animals, which is constrained by physiology, morphology and environment. Therefore, 

with RST, transit points separate positive (distance intensive) and negative (time intensive) 

residuals, so that the classification of transit points influences the behavior types described. One 

approach to R selection is derived by the following formula: 
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Formula 2  R = (mean transit speed * sampling interval)/ 2 

which assumes that the average distance between transit points should be approximately equal to 

the average transit speed multiplied by the sampling rate, and divided by two to uncouple two 

consecutive points. This approach assumes a priori knowledge of transit speed. Alternatively we 

apply a diagnostic tool to calculate the percent of points with positive, negative and zero residual 

values at multiple (user defined) scales to assess the impact of R selection. We apply Formula 2 

again and determine the numerator as the scale where the number of transit points approaches 

zero (where all points have at least one other point inside its circle). Extremely fast movements 

or large data gaps prevent this value from actually reaching zero, so we use <5% transit points as 

the cutoff. A benefit to this approach is automated dynamic scaling for each track.  

 

Example application of RST to one albatross track 

Grey-headed albatrosses have three dominant and discrete behavior states at-sea: transit, 

ARS foraging, and rest; which are linked to strong diurnal patterns of limited activity during 

darkness (Phalan et al. 2007). We illustrate the behavioral classification capability of RST using 

one albatross GPS track (Bird 23059) by assessing the relationship between RD and RT, and the 

variation in residual values relative to daylight. A static R of 1.935 was applied based on 

Formula 2, using a mean transit speed of 45 km/hr (Wakefield et al. 2009) and mean time 

interval between locations of 5.16  1.0 min. The dynamic scaling approach was also applied to 

this albatross track for comparison of radii values.  

 

Comparison of metrics in three behavior states 

 RST’s ability to discriminate between three discrete behavior states along this grey 
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headed albatross track (Bird 23059) was directly compared to other classical movement metrics 

of speed, path straightness (straight-line distance between points / cumulative path lengths 

between points), and residence time and residence distance using the Barraquand and Benhamou 

(2008) approach that includes the ‘tails’. Three experienced seabird ecologists very familiar with 

albatross movement data (L.G.T., R.A.O. and D.R.T.) manually and independently classified 

each GPS location into rest, transit or ARS behavior states. Without direct observation it is near 

impossible to know the true behavior state of a tracked animal. Therefore, we assumed the points 

with matching behavior state assignment between the three classifiers to be ‘true’, and compared 

frequency histograms of the movement metrics speed, path straightness, residence time, 

residence distance, and RST in the three behavior states rest, transit, and ARS. All metrics were 

calculated using an R = 1.935.  

 

From individual to population  

To evaluate RST’s ability to classify behavior states within movement data from a 

sampled population, we applied the method to all albatross incubation trips (n = 24). We 

analyzed the albatross tracks with Th = 0 and (1) a constant R based on a transit speed of 45 

km/hr and a mean GPS fix interval = 5.63 ± 0.59 min, and (2) using the dynamic scaling method 

for each track.  As before, we assessed behavior classification based on residual variation relative 

to daylight. We also timed this analysis to demonstrate the method’s speed. 

 

Impact of temporal resolution on RST: 

To evaluate RST’s ability to classify behaviors using less temporally resolved data, we 

completed two subsampling exercises. First, we subsampled all albatross tracks at decaying 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2480v1 | CC BY 4.0 Open Access | rec: 28 Sep 2016, publ: 28 Sep 2016



Residence in Space and Time (RST) 

 

10 
 

temporal intervals (10, 20, 30, 60, 120, 180 min) and applied the dynamic scaling method to 

choose an appropriate R for each sampling interval and individual combination (S2 Appendix). 

Secondly, we stochastically subsampled the 60 min subsample of a single albatross track (Bird 

23059) 100 times to randomly select 1/3 of the locations. These subsampled tracks mimic the 

erratic sampling of commonly used satellite telemetry. For each subsampled track, we calculated 

the percent of locations matching the residual state (positive, negative, or zero) of the original 5-

min sampling interval track to assess the variance of behavior classification relative to temporal 

resolution of the tracking data.  

 

Application of RST to diverse taxa:  

To evaluate and expand the application of the RST method, we used movement datasets 

from four taxa with diverse life-history patterns (predator, prey, grazer, migrator), with variable 

home range scales, from terrestrial and marine ecosystems, and of different data types. Three 

datasets were freely downloaded from the Movebank Data Repository 

(https://www.movebank.org/), which has proven to be a powerful resource for our exercise: (1) a 

2-month GPS track of a medium-sized carnivore, the fisher (Martes pennanti), tagged in New 

York, USA, in March. 2011, with dynamic sampling using tri-axial accelerometer data (2-min 

sampling when moving; 1-hr sampling when resting; tag M4 (LaPoint et al. 2013)); (2) a 2-

month GPS track of an African buffalo (Syncerus caffer) collected in Kruger National Park, 

South Africa, from 10 October to 7 December 2005, with 1-hr sampling interval (tag 1764827; P. 

Cross); (3) a 5-year GPS track of a Galapagos tortoise (Chelonoidis vandenburghi), tracked on 

Isabela Island, Galapagos, beginning in October. 2010, with 1-hr sampling intervals and a duty 

cycle shutdown period from 0100 to 1100 GMT when the animal is generally stationary (tag 
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1388 (Blake et al. 2012)). Additionally, we analyzed a satellite telemetry track of a blue whale 

(Balaenoptera musculus) tagged off Southern California, USA, with movement data from 

September 2007 to February 2008 (tag 23043 (Bailey et al. 2009)). We analyzed these four 

datasets using the RST method and a dynamic scaling approach (Th = 0), as we assumed no a 

priori knowledge of animal transit speed.  

 

Results 

Application of RST to one albatross track 

A very similar R value of 1.9 was selected by the dynamic scaling approach when applied 

to the albatross track compared to the static R value calculated through Formula 2 (R = 1.935). 

The resulting scale plot (Fig 2) illustrates that as R increases the number of transit points 

decreases while positive and negative residuals increase.  

Overall, the response of RD and RT to albatross track geometry agree during daylight 

(Fig 3a). However, during nighttime, RT values are elevated compared to RD values that remain 

at a more average value compared to daytime variation. The inflation of RT illustrates the 

behavioral bias of a time metric toward resting behavior, which albatross are generally engaged 

in at night. In contrast, RD is immune to this response. Yet, behavioral separation of the 

movement data is evident when RD and RT are compared using the RST method (Fig 3b). Time 

intensive behaviors, representing rest periods in this case, are evident at night with RT > RD, 

equaling negative residuals. Positive or zero value residuals generally occur during daylight, 

when albatross are travelling or engaged in ARS. Correspondence between behavior and residual 

groups is visually evident (Fig 3c, d) with transit between foraging areas (black), clustered ARS 

(blue), and interspersed rest segments (red).   
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Comparison of metrics in three behavior states 

Behavior states matched between the three expert classification efforts in 66% of 

locations (2336 of 3548 points; n=708 transit; n=1080 rest; n=548 ARS), which were considered 

the ‘true’ behavior states. The variability in behavior state classification of the remaining 1212 

‘ambiguous’ points is likely due to (1) differences in the inferred scale of assessment by each 

classifier, and (2) the inherent ambiguity of assigning points into one discrete behavior group 

that are simultaneously multiple behavior states (e.g.., slightly sinuous travel, which can be 

interpreted as both transit and ARS). RST residuals aligned with our manual classification effort 

for 90% of the locations (2112 of 2336 points; Fig 4a). The majority of this discrepancy occurred 

due to RSTs tendency to identify points as distance intensive movement (n=143), while the 

classifiers labeled them transit. Similarly, RST classified the majority of ambiguous points as 

distance intensive ARS points (gray bars in Fig 4b). 

When compared to other time series metrics RST residuals were able to discriminate 

between the three ‘true’ behavior states with little overlap. Residence time as calculated by 

Barraquand and Benhamou (2008) also shows little overlap between behavioral states (Fig 4a), 

however only when the ‘truth’ is known (white bars Fig 4b).  For grey-headed albatrosses, points 

with elevated residence time are resting locations, and distinguishing distance from time 

intensive points based on residence time would require further analysis to avoid the assumption 

that increased time in area equates to increased foraging behavior. Speed also discriminates 

between the three ‘true’ behavior states but, like residence time, is unable to differentiate the 

ambiguous points between behavior states (Fig 4b). Path straightness and residence distance 

were both unable to distinguish between transit and time intensive behaviors because these 
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points have relatively straight paths and low distance. Behavior classification based on RST 

benefits from its integration of multiple movement data measurements into one combined metric.  

 

Population-level performance of RST 

To evaluate the population-level performance of RST, all incubation albatross tracks (n = 

94,742 locations) were analyzed. Using a fixed R = 2.11 km, behavioral classification of 

locations resulted in 28% transit (residual = 0), 48.9% ARS (residual > 0), and 23.1% rest 

(residual < 0).  Using the dynamic scaling approach to determine R for each track (mean R = 

2.55 ± 0.41 km), behavioral classification of locations resulted in 22.8% transit, 51% ARS, and 

26.1% rest.  Using a fixed radius and dynamic scaling, respectively, 75.6% and 80.2% of the 

negative residuals (rest) occurred at night, while 82.3% and 78.5% of positive residuals (ARS) 

occurred during the day. Similar R values, proportions of behavioral classifications, and diurnal 

behavioral assignment were determined by both methods of R selection, indicating that dynamic 

scaling can perform well if animal speed is unknown. Running the RST code to identify the 

dynamically scaled radii for each of 24 tracks using 44 radii options took 52 seconds (CPU time 

= 9 sec, Processor = 2.66 GHz Intel Core 2 Duo), and once the preferred radius for each track 

was identified, these 24 tracks took a mere 22 s (CPU time = 1.8 s) to compute. 

 

RST’s response to less temporally resolved data 

The RST behavior class (ARS: residuals > 0; rest: residuals < 0; transit: residuals = 0) 

agreement test between each location in the original 5-min interval track and the temporally 

subsampled tracks demonstrate the impact of behavior bout length on behavior class detection 

(Fig 5a). At longer time intervals, time intensive behaviors (rest) remain relatively well 
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classified, but behaviors with shorter bout lengths (ARS and short transits) are increasingly 

misclassified as the sampling interval grows longer than the bout length (S2 Appendix). In this 

example, albatross ARS bouts appear to occur at temporal scales < 30 mins, and transit periods 

longer than 60 mins are consistently identified, which likely represent persistent travel to and 

from the colony (Fig 5a). The satellite telemetry simulation of stochastically sampled data 

reiterates this pattern: negative values (rest) remain well classified, while positive (ARS) and 

zero (transit) value residuals are misclassified more than half the time (Fig 5b; S2 Appendix). 

This exercise demonstrates that behavioral analysis of satellite telemetry data may indicate where 

animals spend greater time, but not necessarily where they conduct ARS. Speed filtered satellite 

telemetry data may reduce spatial error and provide more accuracy in behavior classification. 

Additionally, track interpolation would decrease the sampling interval, reducing R (Formula 1) 

and increasing the percent of transit points (Fig 2).  

 

RST analysis of diverse datasets 

Analysis of the high-resolution fisher track (R = 40 m) through an urban habitat, reflects 

discrete and clustered locations of periodic short-term resting places (Blackwell et al. 2015), 

with more dispersed searching/foraging locations interspersed with relatively linear transit 

segments (Fig 6a). RST analysis of the African buffalo track (R = 375 m) effectively describes 

transit locations between areas of increased RT or RD. Additionally, the RST analysis highlights 

a behavior shift around November 11 with the onset of the wet season (rains began in early Nov. 

2005) to predominantly distance-intensive behaviors (positive residuals; blue locations) and 

altered distribution patterns as the animal moves away from river beds and spends more time in 

the plains (Fig 6b), matching their known ecology (Bar-David et al. 2009). Evaluation of the 
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long-term tortoise track (R = 25 m) revealed oscillation of residual values and intensities relative 

to its location in NW and SE seasonal areas, indicating different movement strategies between 

habitats. (Fig 6c). During one migration cycle depicted (Aug. 2011 – Mar. 2012), transit points 

are identified between the two areas, and fine-scale assessment of the SE area illustrates discrete 

areas of time and distance intensive behaviors. RST analysis of the lower resolution blue whale 

track (R = 35 km) identifies alternating time and distance intensive behaviors while foraging off 

Southern California and central Baja California, interspersed with transit periods (Fig 6d). The 

animal switches to mainly distance intensive behaviors off central Mexico, and then to transit 

behavior during migration toward the Costa Rica Dome where time-intensive behavior is 

exhibited. At this scale of analysis, the shifts between distance and time intensive behaviors may 

represent two different scales of area restricted searching by this whale. Considering the results 

of our satellite telemetry simulation, behaviors with bout lengths smaller than the temporal 

sampling may be misclassified, yet the results coincide with known blue whale ecology in this 

region (Bailey et al. 2009). Overall, the application of the RST method to these various 

movement datasets illustrates its flexibility and explanatory power. For each taxa, RST describes 

alternating behavior states that correspond to their known ecology, and comparatively reveals the 

fisher’s striking preference for distance intensive movement patterns (Fig 7). 

 

Discussion 

Given the large and increasing amount of animal movement data collected, it is timely and useful 

to implement a consistent metric of behavior classification to enable efficient and comparative 

analyses. Indeed, movement ecology needs unifying paradigms to converge diverse studies and 

foster a mature scientific discipline (Nathan et al. 2008). The RST method offers a fast approach 
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to the analysis of movement data that requires low computational power and time investment, 

while also allowing individualization by track using the dynamic scaling approach. Therefore, 

we advocate that RST is an effective and efficient method for initial exploration of movement 

data to inform hypothesis testing, data partitioning, and choice of modeling or statistical 

framework for subsequent analyses. Such close and detailed exploratory analysis of movement 

before fitting complex movement models is critical as movements are often hierarchical and 

cyclical (Gurarie et al. 2016). Furthermore, RST appears to be robust across taxa, ecosystems, 

and movement data types, and generates a consistent range of residual values that are 

comparable, making it an appropriate method of meta-analyses of movement data. RST is based 

on our conceptual schematic illustrating how the comparison of animal movement patterns 

through space and time are able to discriminate between behaviors states resolved in the data 

(Fig 1).  RST is a composite of other movement analysis metrics (RT, RD, speed, and path 

straightness) that integrates these descriptions of movement patterns through both space and time 

to distinguish between multiple behavior states.  RST allows behavior classification to move 

beyond the dichotomy of ‘travel’ and ‘resident’ (e.g., Pedersen et al. 2011), and is a one-step 

method of behavior classification, unlike many other methods that first necessitate metric 

calculation and then the application of a subsequent time-series or clustering algorithm (e.g., 

residence time: Barraquand & Benhamou 2008). Our novel method is intuitive and simple to 

implement, offering a flexible framework to quickly and objectively characterize behavior states, 

point-by-point, in diverse movement data types.  

The premise of all movement analyses is that animals change movement patterns relative 

to different behavior states. But ultimately it is the scale of analysis that determines the 

movement patterns described (Levin 1992), and therefore the behaviors characterized. RST 
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allows various scales (R) to be examined simultaneously, and we offer two approaches to help 

the researcher discern an appropriate scale.  The first approach assumes a priori knowledge of 

the animal’s mean transit speed and would apply a constant scale across a single-taxa dataset. 

The dynamic scaling approach offers two benefits: (1) it allows for scale-dependent comparison 

of behavior states similar to Postlethwaite et al. (2013) but with objective discrimination between 

behaviors, and (2) it adjusts R for each track, enabling flexibility of scale application that 

accounts for inherent individual movement patterns, such as speed and tag variability.   

Nonetheless, one scale is unlikely to be appropriate for long duration tracks with high 

sampling resolutions due to various behavior patterns layered in the data at multiple scales, and 

variable transit speeds during different life history stages. In such cases, tracks may be split by 

phase (e.g., migration, breeding, season) prior to final RST analysis, or multiple R can be applied 

to resolve behaviors at different scales. Ultimately, scale choice is case-dependent and should be 

based on study questions, taxa, and environment. However, the primary determinant of scale is 

data resolution. Only behaviors that occur at spatial and temporal scales larger than the sampling 

interval and spatial resolution of the movement data are recorded, and hence described. This 

effect is emphasized by our subsampling analysis. With less resolved data, behaviors with long 

bout lengths remain well described, but short-term behaviors, such as ARS, are not consistently 

captured. Researchers often make logistical trade-offs for tag deployments between cost, battery 

power, tracking duration, recapture probability, and data resolution. Yet, sampling interval 

should not be sacrificed idly due to implications on the ability to record shorter-term behaviors. 

For instance, if fine-scale management schemes are to be derived from movement data, 

deployment durations may need to be sacrificed in favor of a higher sampling resolution.   

RST’s value can be broadly extended toward habitat and distribution studies to better 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2480v1 | CC BY 4.0 Open Access | rec: 28 Sep 2016, publ: 28 Sep 2016



Residence in Space and Time (RST) 

 

18 
 

connect movement patterns with resource selection. To understand the behavioral mechanisms of 

animal space use, species distribution models and resource selection functions should be 

calibrated using behaviorally partitioned movement data (Wilson et al. 2012). Such partitioning 

can allow ecological questions to be addressed, such as elucidating environmental co-variates of 

resting and foraging areas, and how animals use wind, currents and topography during transit. 

RST can efficiently contribute to these efforts, allowing researchers to dedicate more time 

toward ecological models and interpretations. Although RST describes three discrete behavior 

groups (distance intensive positive points, time intensive negative points, and transit points 

where residuals equal zero), the residual values are continuous between -1 and 1, which offers 

more descriptive capacity of functional response curves derived by modeling studies. 

Furthermore, the normalized and continuous range of RST residuals can be further examined 

based on range, clusters, percentage and intensity to compare patterns across individuals, 

populations, seasons, habitat, life-history groups and movement association with anthropogenic 

entities (e.g., fishing vessels, trash dumps, urban areas).  

Unlike most other behavioral classification methods, RST’s functionality is based on 

classification of transit points (residuals = 0) as determined by the choice of R. These transit 

points then partition distance intensive positive residuals and time intensive negative residuals. 

Interestingly, while these positive and negative residuals identify groups of behaviorally similar 

points within a track, it is up to the user to interpret the meaning of these distance intensive and 

time intensive points based on scale and ecological knowledge of the study species. For example, 

while time intensive points indicate where the animal spent more time and less distance within 

the analysis circle relative to other areas where distance traveled was larger, these negative 

residuals are interpreted as rest locations in our fine-scale albatross track example, but are more 
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likely areas of concentrated feeding behavior in the larger scale blue whale track. Locations with 

positive residuals along both the albatross and blue whale tracks indicate where distance traveled 

was relatively larger at the scale of analysis and therefore describe more intensive searching 

behaviors, but at two different scales. Additionally, due to the great diversity of how animal 

movement patterns relate to behavior state, such as the unusual resting behavior of frigate birds 

(Fregata minor) while in flight (Weimerskirch et al. 2016), the RST user must interpret the 

meaning of residuals based on the scale of analysis and animal ecology.  

As a new method, we promote the cross assessment of RST relative to other movement 

data behavior analyses, as these efforts frequently reveal the strengths and weaknesses of various 

approaches (Benhamou 2004, Gurarie et al. 2016). To focus analyses and limit time investment, 

it is important to understand nuance in both the behavior of the tracked animal and the dataset to 

be analyzed prior to implementing hypothesis testing and computationally intensive analysis. It 

is here that the RST method can provide insight into the individuality of each track. Furthermore, 

we encourage other researchers to implement RST on movement data across taxa, scales and 

ecosystems to examine method performance and to conduct meta-analyses. Additionally, 

complimentary biologging, such as immersion, accelerometer, and time-depth recorder data, can 

be used to further describe taxa specific behaviors and movements related to the residual results 

(e.g., (Dean et al. 2012)) or incorporated into the RST method. For example, RST could be 

extended from 2D to 3D by converting from a circle to a sphere-based analysis, complimentary 

to spherical first passage time (Bailleul et al. 2010).  

 

RST recommendations 

The RST code is freely available (S3 Appendix) and we recommend the following initial 
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settings: Implement dynamic scaling approach with a range of R based on prior knowledge of 

animal movement patterns and scale of sampling (how far is the animal likely to move between 

locations?); use Th=0 or a small value relative to R, unless conducting a recursion analysis; if 

tracks have significant data gaps relative to typical location sampling, the track should be split, 

otherwise very large RD and RT will result, skewing the normalization process; for this reason it 

may be beneficial to interpolate tracks with highly variable sampling intervals (retain original 

locations) to enhance R selection based on dynamic scaling. Despite these recommendations, no 

one-setting fits all data, but RST analysis of movement data is fast, allowing users the freedom to 

iterate analyses to test and refine parameters; this flexibility allows the user to hone in on the 

behavioral profile of interest and appropriate spatio-temporal scales, thus focusing subsequent 

analyses (Gurarie et al. 2016).     

 

Conclusions 

Animal tracking data has the potential to revolutionize our understanding of animal 

ecology in a myriad of ways including behavior, social systems, habitat use, and population 

connectivity. Yet, choosing and applying the appropriate analytical method can be challenging 

and cumbersome, making the simplest approach often the most desirable (Thiebault & Tremblay 

2013, Gurarie et al. 2016). The RST method offers an intuitive, rapid, iterative and flexible 

approach to explore movement data, with limited a priori assumptions (except the assumption 

that the sampling interval of the data is low enough to capture meaningful movement behaviors), 

that can assist more sophisticated explanatory and predictive analyses (Gurarie et al. 2016). As a 

stand-alone method, RST analysis provides the ability to standardize movement data exploration 

across taxa, ecosystems, and data-types, offering immense opportunities for meta-analyses and 
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initial steps toward answering pressing ecological questions regarding animal movement drivers, 

response and scale.  
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Figure Legends: 

Figure 1. Conceptual schematic of behavior groupings potentially captured in movement data 

based on the relationships between the amount of space (distance) and time occupied in an area 

of constant scale. Three possible pathways across this continuum are depicted, with example 

behaviors groups overlaid (see text for explanation; ARS = area restricted search). When 

applying RST, the origin will be double the sampling interval (y-axis) and double the R applied 

(x-axis), which are the minimal scales at which behaviors can be described. 

 

Figure 2. Scale plot of grey-headed albatross GPS track illustrating how radius size influences 

the proportion of positive (blue), negative (red) and zero (black) residuals. Dark gray bar = fixed 

radius (R = 1.935). Light gray bar = dynamically scaled radius (R = 1.9). Dashed line indicates 

5% transit points. 

 

Figure 3. RST analysis of example grey-headed albatross GPS track. Day and night (shaded) 

periods compared to (a) normalized residence distance (black) relative to normalized residence 

time (blue), and (b) residuals of normalized residence distance minus normalized residence time 

(positive = blue, negative = red; zero = black). (c) GPS track color coded by residuals (black = 

transit, red = rest, blue = area restricted search). The three movement states identified by RST are 

illustrated and (d) enlarges a region of the track to demonstrate the classification of three 

locations into these movement states within the applied radius size. Grey arrows indicate 

direction of travel. Green star is colony location at Campbell Island, New Zealand. 

 

Figure 4. Frequency histograms of RST residuals relative to classical movement metrics (speed, 
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straightness index, residence time and residence distance) for points along the grey-headed 

albatross track (Bird 23059). (a) Depicts only the ‘true’ behavior states of rest (red), transit 

(black), and area restricted search (blue) as agreed on by expert classifiers. Bars are colored with 

transparency so that overlap between distributions is illustrated. (b) Describes the distribution of 

all points along the track (white) and the ambiguous points where the classifiers did not agree on 

behavior state assignment (black).    

 

Figure 5. Behavioral state, based on positive, negative, or zero residuals, agreement plots relative 

to 5-min interval track for (a) population level temporal sub-sampling of all incubation albatross 

tracks (shaded areas represent SD), and (b) stochastic sampling of one albatross track (notch = 

median, whiskers represent 1.5 * inter-quartile range). Blue = area restricted search (positive 

residuals); red = rest (negative residuals); black = transit (zero residuals). 

 

Figure 6. Application of RST to four diverse movement datasets. (a) 2-month GPS fisher track in 

an urban area of New York, USA, and residuals. (b) 2-month GPS African buffalo track and 

residuals split at 11 Nov 2005 to demonstrate behavior and distribution change with onset of wet 

season. (c) Residuals from 5-year GPS Galapagos tortoise track and track from 1 Aug 2011 to 30 

Mar 2012; inset map shows fine-scale movements in southeastern area. (d) 5-month satellite 

telemetry blue whale track starting off southern California and ending near the Costa Rica Dome, 

and residuals. 

 

Figure 7. Scale plots derived using dynamic scaling choice of radius size (R) for Residence in 

Space and Time (RST) analysis of the fisher GPS track, African buffalo GPS track, Galapagos 
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tortoise GPS track and blue whale satellite telemetry track. The comparison illustrates how R 

influences the proportion of positive (blue), negative (red) and zero (black) residuals. Dashed 

line indicates 5% transit points. Light gray line indicates the dynamically scaled R for each track: 

Fisher (R = 40 m), African buffalo (R = 375 m), Galapagos tortoise (R = 25 m), blue whale (R = 

35 km). 

  

 

 

 

 

 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2480v1 | CC BY 4.0 Open Access | rec: 28 Sep 2016, publ: 28 Sep 2016



Residence in Space and Time (RST) 

 

28 
 

 

Figure 1.
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Figure 3.
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Figure 4. 
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Figure 6.
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Figure 7. 
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Supporting information 

S1 Appendix: Probability of equal residual value resulting from different combinations of 

Residence Distance (RD) and Residence Time (RT).  

 

S2 Appendix: Temporal sub-sampling of gray-headed albatross GPS tracks using Residence in 

Space and Time (RST) method.  

 

S3 Appendix: Zip file containing R code, documentation and example dataset for running 

Residence in Space and Time (RST) method.  
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