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Castration Modulates Singing Patterns and 
Electrophysiological Properties of RA Projection Neurons in 
Adult Male Zebra Finches

Castration can change levels of plasma testosterone. Androgens such as testosterone play 

an important role in stabilizing birdsong. The robust nucleus of the arcopallium (RA) is an 

important premotor nucleus critical for singing. In this study, we investigated the effect of 

castration on singing patterns and electrophysiological properties of projection neurons (PNs) 

in the RA of adult male zebra finches.Adult male zebra finches were castrated and the 

changes in bird song assessed. We also recorded the electrophysiological changes from RA 

PNs using patch clamp recording. We found that the plasma levels of testosterone were 

significantly decreased, song syllable’s entropy was increased and the similarity of motif was 

decreased after castration. Spontaneous and evoked firing rates, membrane time constants, 

and membrane capacitance of RA PNs in the castration group were lower than those of the 

control and the sham groups. Afterhyperpolarization�AHP�time to peak of spontaneous action 

potential (AP) was prolonged after castration.These findings suggest that castration 

decreases song stereotypy and excitability of RA PNs in male zebra finches.
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Background

Steroid sex hormones change adult avian song behavior and modulate the underlying neural 

substrates. Androgens, particularly testosterone, play an important role. For example, testosterone 

can increase the stability of song , the size of song nuclei, the expression of androgen receptor 

mRNA and the excitability in song-control neurons  in seasonally breeding songbirds. 

The robust nucleus of the arcopallium (RA) is a crucial nucleus in the song control system, 

receiving synaptic input from both the HVC ( used as a proper name ) and lateral magnocellular 

nucleus of the anterior nidopallium (LMAN) . The HVC-RA pathway produces a stereotyped 

pattern contributing to stable song, and while the LMAN-RA pathway fires when male birds sing 

to female birds, LMAN neurons exhibit reliable firing of single spikes precisely locked to song. 

Thus, the LMAN may act as a source of variability . The axons of projection neurons (PNs) in the 

ventral RA project topographically onto the hypoglossal motor nucleus (nXIIts) that innervates 

the syrinx (the avian song organ), and the axons of PNs in the dorsal RA project to the areas in 

the lateral medulla that control respiration. Lesion of the RA causes severe song deficits. 

Moreover, RA activity is significantly correlated with variations in the spectral entropy of 
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syllables, and RA shows accurately timed and structured bursts of activity that are associated with 

specific syllables.

Recent studies have shown that testosterone and photoperiod affect the excitability of RA PNs in 

seasonally breeding songbirds that undergo major hormonal shifts as a result of photoperiod, but 

have no effect on the electrophysiological properties of HVC neurons. Zebra finches are 

opportunistic breeders rather than seasonal breeders. Castration of adult male zebra finches 

reduces testosterone levels in plasma  and their singing rate. High levels of testosterone decrease 

the frequency of syllable in song and reduce the potential for vocal plasticity . However, the 

neural mechanism that androgen influence singing pattern is less well understood. Thus, the aim 

of the present study was to examine the effect of castration on singing patterns and 

electrophysiological properties of RA PNs in adult male zebra finches, to further understand the 

neural mechanism of androgens in adult songbirds.
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Materials and Methods

Animals and experimental treatments

A total of 27 adult male zebra finches (Taeniopygia guttata) (> 120 days old) obtained from a 

commercial breeder were used in this study. All experiments were carried out in accordance with 

the University and China animal guidelines. The care and use of animals for this study was 

approved by the Institutional Animal Care and Use Committee at South China Normal University 

and in accordance with National Institutes of Health guidelines (scnu20070033). Birds were 

housed in stainless steel cages (23.5 × 22.5 × 27.5 cm), and each of the cages contained a pair of 

male and female birds, which were provided with ad libitum food and water and were kept in 

14:10 h light/dark cycles. All birds were divided into three main experimental groups: castration 

group (n = 11 birds), control group (n = 12 birds), and sham group (n = 4 birds).

Before castration, the songs of all birds were recorded in the presence of adult female birds. Birds 

were then anesthetized with 10% chloral hydrate (0.02 mL/10 g). A small incision was made on 

the lateral wall of the body cavity between the last two ribs just ventral to the ventral margin of 

the kidney. The testicles were removed with ophthalmic forceps. The sham group underwent the 

same surgery without removing the testicles. The control group did not receive surgery.

Song recording

The song recording room (2.5 × 2 × 2.5 m) contained TAKSTAR directional microphones 

(Guangdong Victory Electronics Co.Ltd., Guangzhou, China; frequency range: 50–20000 Hz) 

and a glass window (85 × 65 cm). Birds in the song recording room could see the other birds 

from the glass window. When the songs were recorded, the male bird was placed in a cage in the 
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song recording room near the glass window, while the female bird was placed in a cage near the 

glass window outside of the song recording room, so that the male bird could observe the female 

bird through the window. On each recording day, every bird was recorded for 90–120 min. Songs 

were recorded between 8:00 a.m and 11:00 a.m. Songs were recorded before the castration and 

sham operation. When birds produce a stable song, the date defined as ‘pre’. The songs were then 

recorded again at the 30th day after castration and sham operation. The songs of birds in control 

group also were recorded at ‘pre’ and 30th day. Song recording was performed using Cool Edit 

2000 (Adobe Systems Co., SAN Jose, CA, USA; sampling rate: 44100 Hz; channels: stereo; 

resolution: 16-bit).

Stereotypy of song

We analyzed song stereotypy by calculating entropy (a measure of randomness, entropy is high 

when the waveform is random, and low when the waveform is of pure tone)  of the longest 

syllable (the distance-call element, whose structure matched that of distance call and is derived 

from distance call) in the motifs within a record using Sound Analysis Pro 2011 (contrast: 0, 

frequency range: 0–11025 Hz, FFT data window: 10 ms, advance window: 1 ms, contour thresh: 

10). On each recording day the entropy of 30 syllables in 30 motifs was analyzed. Sixty motifs 

were used to analyze the percentage similarity (% similarity) of the motif in the song. Higher 

entropy indicates less stereotypy, while higher (% similarity) indicates more stereotypy. 

Slice preparation

At the 30th day after castration, the birds were anesthetized with 10% chloral hydrate and then 

rapidly decapitated. Brains were dissected into ice-cold, oxygenated (95% O2 and 5% CO2) slice 

solution. Slice solution consisted of KCl 5 mM, NaH2PO4·H2O 1.26 mM, MgSO4·7H2O 1.3 mM, 
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NaHCO3 28 mM, glucose 10 mM, sucrose 248 mM, and NaCl 62.5 mM. Coronal brain slices 

(250–300 μm thick) containing the RA were cut with a vibrating microtome (World Precision 

Instruments Inc., Sarasota, FL, USA) and collected in artificial cerebrospinal fluid (ACSF) that 

was warmed to 37°C. After 30 min the ACSF was cooled to 35°C, and the slices were allowed to 

recover in the holding chamber for 1–1.5 h. Standard ACSF consisted of NaCl 125mM, KCl 2.5 

mM, NaH2PO4·H2O 1.27 mM, MgSO4·7H2O 1.2 mM, NaHCO3 25 mM, glucose 25 mM and 

CaCl2 2.0 mM, and the osmolality was adjusted with sucrose to 350 mOsm.

Patch-clamp recording

During the experiments, slices were transferred to a recording chamber where they were 

continuously perfused with ACSF, saturated with 95% O2 and 5% CO2 at room temperature (23–

28°C). RA and the surrounding tissues were observed at low magnification (50×) under a 

BX51WI microscope connected with a DIC-IR video camera (Olympus, Tokyo, Japan). At high 

magnification (400×), RA neurons were visualized and the recordings were made from RA PNs. 

Recording pipettes were fabricated from borosilicate glass (Sutter Instrument Co., Novato, CA, 

USA) using a Flaming-Brown puller (Micropipette Puller P-97; Sutter Instrument Co.), and were 

filled with the solution containing KMeSO4 120 mM, NaCl 5 mM, HEPES 10 mM, EGTA 2 mM, 

Mg-ATP 2 mM, and Na-GTP 0.3 mM (pH 7.3-7.4). Osmolality was adjusted with sucrose to 340 

mOsm. The recording pipettes, which had resistances ranging from 4 to 7 MΩ, were positioned 

using an integrated motorized control system (Sutter Instrument Co.). Signals were amplified 

with a MultiClamp 700B (Axon Instruments, Sunnyvale, CA, USA). Signals were low-pass 

filtered at 5 kHz, digitized at 10 kHz with DIGIDATA 1322A (Axon Instruments) and acquired 

using Clampfit 9.2 (Axon Instruments). Tight-seal and whole-cell recordings were obtained using 
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standard techniques. The baseline membrane potential was held at −70 mV during the stimulation 

protocols. RA PNs were identified by their distinct intrinsic properties as described previously.

Electrophysiological data analysis

Clampfit 9.2 and Origin Pro 8.0 (Origin Lab, Northampton, MA, USA) were used for analysis. In 

measuring spontaneous firing rates in the cell-attached configuration, we analyzed the spike 

amplitude, waveform, and time derivative to ensure that spike events were single units. We 

measured spontaneous activity for at least 5 min, and calculated the firing rate by dividing the 

number of spikes observed by the duration of the recording as reported . Action potentials (AP) 

were detected using the event detection package of the Clampfit 9.2. Spontaneous firing rates 

were calculated at the beginning of the recording as soon as it stabilized following patch rupture. 

The AP threshold was detected using a custom algorithm described previously by Baufreton ; the 

afterhyperpolarization (AHP) peak amplitude was the difference between the AP threshold and 

the most negative voltage reached during the AHP. The AHP time to peak was the time of this 

minimum minus the time when the membrane potential crossed the AP threshold on descent from 

the AP peak . For each neuron, the measurements of five APs were averaged to produce the final 

AP measurements for that neuron. Evoked firing rates were measured after patch rupture. The 

evoked firing rate was defined as the number of AP evoked over the duration of the current 

injection. The slope of the F-I relationship was estimated by linear fitting. Slope parameters were 

estimated separately for individual neurons and mean slope values were averaged for the whole 

groups of neurons. Input resistance was estimated by applying small hyperpolarizing current 

pulses. The membrane time constant was calculated by fitting a single exponential curve to the 

membrane potential change in response to −200 pA hyperpolarizing pulses. Membrane 

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.247v1 | CC-BY 4.0 Open Access | received: 17 Feb 2014, published: 17 Feb 2014

P
re
P
ri
n
ts



capacitance was calculated using the following equation: capacitance = membrane time 

constant/input resistance. 

Hormone assay

On the day of each electrophysiological recording, carotid artery blood was rapidly collected 

from each subject before they were decapitated into a heparinized microhematocrit tube and 

stored on ice until centrifugation (within 1 h). The plasma was harvested and stored it at −80°C. 

To measure circulating testosterone levels, enzyme-linked immunosorbant was used in a bird 

testosterone ELISA kit (IBL, Hamburg, Germany), which contained a substrate standard. The 

minimum detectable plasma testosterone concentration was 0.12 ng/mL, and the maximum was 

7.20 ng/mL. All samples were tested in one single assay.

Statistical analysis

All values are reported as mean ± SEM. We used two-way repeated measures ANOVA to 

compare the song data at the 30th day after castration and sham operation with the song data at 

‘pre’(see the part of song recording), and injected current on the evoked firing rate of RA PNs in 

the castration group with sham and control groups. We used one-way ANOVA to compare the 

song data at the 30th day with the song data at ‘pre’ in the control group. We also used one-way 

ANOVA to compare all plasma testosterone levels and other electrophysiological data of RA PNs 

in the castration group with sham and control groups. P values < 0.05 were considered 

significant. 
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Results

We analyzed plasma testosterone levels, stereotypy of the song, and electrophysiological 

properties of RA PNs of the experimental groups in adult male zebra finches. 

Plasma testosterone levels

In the castration group (n=11), plasma testosterone levels were lower (3.91±0.08 ng/mL) 

compared with the control group (n=12) (5.15±0.08 ng/mL, F(1,22)=150.49, P<0.01) and the sham 

group (n=4) (5.27±0.09 ng/mL, F(1,13)=98.32, P<0.01). 

Stereotypy of the song before and after castration 

We randomly selected five birds in each of the castration and control groups, respectively, to 

analyze the stereotypes of their songs, while four birds were analyzed in the sham group. Zebra 

finch song usually contains motifs. Every motif includes two to eight syllables. In our 

experiment, we recorded song motifs from castration (Figure 1A1, A2), control and sham (Figure 

1B1, B2) groups, and analyzed the entropy of syllable and % similarity of the motif in each group 

(Figure 2). 

The longest syllable of motif was first analyzed. In the castration group, the entropy was altered 

gradually, and entropy was significantly increased from −3.71±0.31 to −3.31±0.33 (F(1,58)=33.61, 

P<0.01) at the 30th day after castration (Figure 2A). To test the effect of castration on all 

syllables in the motif, we analyzed other syllables, as shown in Figure 1 A1, A2. The entropy of 

syllable ‘a’ in ‘pre’ was −2.76±0.06, while at the 30th day after castration the entropy changed to 

−2.48±0.05. Castration increased the entropy of syllable ‘a’ (F(1,58)=10.77, P<0.01). Castration 

also increased the entropy of other syllables (Figure 1A, B). 
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Next, we analyzed the % similarity of the motif. Castration significantly decreased the % 

similarity of the motif from 93.83±0.80 to 87.7±1.04 (F(1,58)=201.32, P<0.01) (Figure 2B). 

However, in the sham group the entropy of syllables and % similarity of the motif did not change 

before and after operation, and were similar to the control group (Figure 2A, B).

Electrophysiological properties of RA PNs

Twenty one RA PNs from 11 birds of the castrated group, 23 RA PNs from 12 birds of the control 

group, and 8 RA PNs from 4 birds of the sham group were recorded.

Castration decreased spontaneous firing rates in the cell-attached configuration

When cells were sealed, many RA PNs were spontaneously active in vitro, as described 

previously in wild song sparrows. Castration significantly affected the spontaneous firing rate of 

RA PNs compared with the control group (F(1,42)=7.85, P<0.01) and the sham group (F(1,19)=8.41, 

P<0.01) (Table 1, Figure 3A–C). The mean firing rate of RA PNs was approximately 1.5 times 

higher in the control group and sham group than that in the castrated group. 

Castration decreased spontaneous firing rates in the whole-cell configuration

In seasonally breeding songbirds, breeding conditions increase spontaneous firing rates in the 

whole-cell configuration. In our experiment, castration significantly decreased spontaneous firing 

rate of RA PNs compared with the control group (F(1,31)=6.65, P=0.015) and the sham group 

(F(1,22)=8.26, P<0.01) (Table 1, Figure 3D–F). 

Castration decreased evoked firing rates

AP firing rates evoked by depolarizing current injection were significantly decreased in the 

castrated group (Figure 4A, B). At the current of 100 pA for 500 ms, the mean number of evoked 

firing was 13.63±1.12 (n=15) in the castrated group, 18.00±0.72 (n=16) in the control group and 
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17.88±0.88 (n=8) in the sham group. Castration significantly decreased the evoked firing rates 

compared with the control group (F(1,31)=10.43, P<0.01) (Figure 4C) and the sham group 

(F(1,22)=5.76, P=0.048). When the currents were set from 0 to 200 pA for 500 ms at 50 pA steps 

and 10 s intervals, castration decreased the mean number of evoked firing, particularly at 50 pA, 

100 pA, 150 pA, and 200 pA (P<0.01). F-I curves were linearized. Castration significantly 

decreased the slope of F-I curve compared with the control group (F(1,31)=21.87, P<0.01) (Figure 

4D) and sham group (F(1,22)=27.89, P<0.01) (Table 1).

Castration decreased the membrane time constant and capacitance, but increased AHP time 

to peak

To compare input resistance, currents from −200 to 20 pA for 500 ms at 10 pA steps and 10 s 

intervals were injected. The slope of the I–V curve by linear fit was the input resistance. There 

was no significant difference between the castrated and control groups. Castration significantly 

decreased the membrane time constant compared with the control group (F(1,29)=10.62, P<0.01) 

(Figure 5A) and the sham group (F(1,21)=12.17, P<0.01). Castration also decreased membrane 

capacitance compared with the control group (F(1,29)=6.93, P=0.013) (Figure 5B) and the sham 

group (F(1.21)=8.35,  P<0.01). The intrinsic properties of spontaneous AP were also analyzed. AP 

threshold, AHP peak amplitude, half-width, and peak amplitude of the castration group were 

similar to the control and sham groups. However, castration significantly prolonged the AHP time 

to peak compared with the control group (F(1,29)=12.76, P<0.01) (Figure 5C, D) and the sham 

group (F(1,21)=13.32, P<0.01) (Table 1).
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Discussion

In the present study, castration decreased plasma testosterone levels in adult male zebra finches, 

although the decrease was not as marked as those previously reported . This difference may be 

due to residual testicular tissue in our study, or due to differences between breeding and non-

breeding zebra finches. 

High testosterone levels are associated with song stability, which reduces the potential for vocal 

plasticity. We found that castration also increased the entropy of syllable and decreased the % 

similarity of motif in the songs, suggesting that castration decreased the stability of syllables and 

songs. Like seasonally breeding songbirds, when the testosterone levels in adult male zebra 

finches are high, the song nuclei and the syringes are fully grown . Therefore, male zebra finches 

have the ability to produce highly stereotyped song. In our castrated birds, lower testosterone 

levels resulted in less stereotyped songs.

It was previously reported that testosterone regulates the electrophysiological properties of RA 

PNs . RA is an important premotor nucleus, and these changes in its intrinsic properties may 

directly modify the motor control of song production, resulting in changes in song stereotypy. In 

this study, castration decreased spontaneous and evoked firing rates, and the membrane time 

constant and capacitance, but increased AHP time to peak. These results indicate that castration 

decreased the excitability of the RA PNs, as previously reported . Castration also decreased the 

spontaneous firing rates and evoked firing rates, which reduce the ability of RA PNs to produce 

AP in response to synaptic input, particularly from HVC. Castration decreased the membrane 

time constant, which might reduce the time to integrate synaptic input. As such, RA PNs slowly 
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integrate relatively sparse inputs from the HVC to produce patterned firing that is closely 

correlated with song production . The decrease in membrane capacitance induced by castration 

may be related to the decrease of the size of RA PNs. Castration also increased the AHP time to 

peak, which may be associated with the suppression of large conductance calcium-activated 

potassium channels .

The HVC-RA pathway contributes to stable song, while the LMAN-RA pathway contributes to 

variable song . Testosterone-stimulated growth of the HVC is sufficient to induce growth of RA. 

High testosterone levels increase axonal density in the HVC-RA pathway. In our castrated birds, 

low testosterone levels may decrease axonal density in the HVC-RA pathway. High testosterone 

levels decrease levels of NR2B mRNA, which is modulatory subunits of N-methyl-D-aspartic 

acid receptor (NMDAR), within the LMAN and the RA . The LMAN-RA input is largely 

mediated by the NMDAR. In our castrated birds, low testosterone levels may increase the 

modulation of the LMAN-RA input by the NMDAR. These effects may produce unstable songs.

Finally, the castration-induced decrease in testosterone levels and excitability of the RA PNs may 

decrease the size of the song nuclei, the mass of the syrinx, and the synapses from the HVC to the 

RA, and increase the input from the LMAN to the RA. All of these effects would produce less 

stereotyped songs.

In conclusion, our study revealed that castration decreased song stereotypy and the excitability of 

RA PNs. The results provide a further understand of how androgens, rather than the photoperiod, 

modulate electrophysiological properties to change song behavior. 
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Property Castration Control Sham

Spontaneous firing rate

 (Hz) (cell-attached)

Resting membrane 

potential (mV) 

Spontaneous firing rate

(Hz) (Whole-cell)

Membrane time 

constant (ms) 

Input resistance (MΩ)

Capacitance (pF)

FI slope (Hz/pA)

AP threshold (mV) 

AHP peak amplitude 

(mV)

AHP time to peak (ms)

Half-width (ms)

Peak amplitude (mV)

8.13±1.00 (n=21)

-64.27±1.52 (n=16)

6.58±0.89 (n=15) 

25.44±3.58 (n=16)

197.75±10.25 (n=16) 

126.65±14.71 (n=16)

0.186±0.014 (n=15)

-50.12±1.73 (n=15)

-17.30±1.16 (n=15)

21.38±1.53 (n=15) 

1.10±0.10 (n=15)

42.32±2.44 (n=15)

12.49±1.17** (n=23)

-65.46±1.90 (n=17)

10.53±1.23* (n=16)

43.98±4.42** (n=16)

228.11±14.58 (n=17)

194.08±20.97* (n=16)

0.296±0.017** (n=13)

-49.59±1.74 (n=16)

-17.57±1.64 (n=16)

15.44±1.85** (n=16)

1.26±0.34 (n=16)

49.17±2.69 (n=16)

11.32±0.74 ** (n=10) 

-66.48±1.67 (n=8)

10.97±1.26** (n=8) 

46.28±4.46** (n=8)

226.98±17.33 (n=8)

201.49±21.88** (n=8)

0.289±0.016** (n=6)

-50.14±1.63 (n=8)

-16.05±1.70 (n=8)

15.03±2.03** (n=8)

0.99±0.13 (n=8)

48.99±2.50 (n=8)

Numbers in parentheses indicate sample size. *P<0.05; **P<0.01.373
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Figure legends

Figure 1 Song sonograms and entropy curves (white line) of castration and sham groups in 

adult male zebra finches. A1,A2. The motifs of two birds in the castration group at “pre” 

operation and the 30th day after castration, respectively. B1,B2. The motifs of two birds in the 

sham group at “pre” operation and the 30th day after sham operation, respectively. When white 

line became lower, the entropy of syllable was smaller.

Figure 2 The entropy of syllable and % similarity of motif in castration, control, and sham 

groups. A. Castration group increased the entropy of syllables. Control and sham groups did not 

change. B. Castration group exhibited decreased % similarity of motif. Control and sham groups 

showed no change.

Figure 3 The spontaneous firing of RA PNs in the cell-attached and whole-cell 

configuration. A, B. Example traces of spontaneous firing in RA PNs of the castration and 

control groups, respectively. C. Castration significantly decreased spontaneous firing rates. D, E. 

Example traces of spontaneous firing in RA PNs of the castration and control groups, 

respectively. F. Castration significantly decreased spontaneous firing rates.

Figure 4 The evoked firing of RA PNs in the whole-cell configuration. A, B. Example traces 

of AP firing in RA PNs of the castration and control groups in response to injecting a current of 

100 pA for 500 ms, respectively. C. Castration significantly decreased evoked firing rates when 
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injecting a current of 100 pA for 500 ms. D. F–I curve of the castration and control groups. The 

slope of the F–I curve in the castration group was lower than that of the control group.

Figure 5 The differences in membrane time constant, capacitance and AHP time to peak 

between the castration and control groups. A. Castration decreased the membrane time 

constant. B. Castration decreased the membrane capacitance. C. Example traces of AP in the 

castration and control groups, showing differences in the AHP time to peak. D. Castration 

prolonged the AHP time to peak.
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Figure 1

Figure 5 The differences in membrane time constant, capacitance and AHP time to 

peak between the castration and control groups.

A. Castration decreased the membrane time constant. B. Castration decreased the 

membrane capacitance. C. Example traces of AP in the castration and control groups, 

showing differences in the AHP time to peak. D. Castration prolonged the AHP time to peak.
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Figure 2

Figure 4 The evoked firing of RA PNs in the whole-cell configuration. A, B.

Example traces of AP firing in RA PNs of the castration and control groups in response to 

injecting a current of 100 pA for 500 ms, respectively. C. Castration significantly decreased 

evoked firing rates when injecting a current of 100 pA for 500 ms. D. F–I curve of the 

castration and control groups. The slope of the F–I curve in the castration group was lower 

than that of the control group.
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Figure 3

Figure 3 The spontaneous firing of RA PNs in the cell-attached and whole-cell 

configuration.

A, B. Example traces of spontaneous firing in RA PNs of the castration and control groups, 

respectively. C. Castration significantly decreased spontaneous firing rates. D, E. Example 

traces of spontaneous firing in RA PNs of the castration and control groups, respectively. F. 

Castration significantly decreased spontaneous firing rates.
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Figure 4

Figure 2 The entropy of syllable and % similarity of motif in castration, control, and sham 

groups.

A. Castration group increased the entropy of syllables. Control and sham groups did not 

change. B. Castration group exhibited decreased % similarity of motif. Control and sham 

groups showed no change.
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Figure 5

Figure 1 Song sonograms and entropy curves (white line) of castration and sham 

groups in adult male zebra finches.

A1,A2. The motifs of two birds in the castration group at “pre” operation and the 30th day 

after castration, respectively. B1,B2. The motifs of two birds in the sham group at “pre” 

operation and the 30th day after sham operation, respectively. When white line became 

lower, the entropy of syllable was smaller.
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