

A peer-reviewed version of this preprint was published in PeerJ
on 14 November 2016.

View the peer-reviewed version (peerj.com/articles/cs-98), which is the
preferred citable publication unless you specifically need to cite this
preprint.

Katsikas GP, Enguehard M, Kuźniar M, Maguire Jr GQ, Kostić D. 2016.
SNF: synthesizing high performance NFV service chains. PeerJ Computer
Science 2:e98 https://doi.org/10.7717/peerj-cs.98

https://doi.org/10.7717/peerj-cs.98
https://doi.org/10.7717/peerj-cs.98

SNF: Synthesizing high performance1

NFV service chains2

Georgios P. Katsikas1, Marcel Enguehard2,3, Maciej Kuźniar1,3

Gerald Q. Maguire Jr.1, and Dejan Kostić1
4

1KTH Royal Institute of Technology, Kista, Sweden5

2Network and Computer Science Department (INFRES), Telecom ParisTech, Paris,6

France7

3Paris Innovation and Research Laboratory (PIRL), Cisco Systems, Paris, France8

Corresponding author:9

Georgios P. Katsikas1
10

Email address: katsikas@kth.se11

ABSTRACT12

In this paper we introduce SNF, a framework that synthesizes (S) network function (NF) service chains

by eliminating redundant I/O and repeated elements, while consolidating stateful cross layer packet

operations across the chain. SNF uses graph composition and set theory to determine traffic classes

handled by a service chain composed of multiple elements. It then synthesizes each traffic class using a

minimal set of new elements that apply single-read-single-write and early-discard operations.

13

14

15

16

17

Our SNF prototype takes a baseline state of the art network functions virtualization (NFV) framework to

the level of performance required for practical NFV service deployments. Software-based SNF realizes

long (up to 10 NFs) and stateful service chains that achieve line-rate 40 Gbps throughput (up to 8.5x

greater than the baseline NFV framework). Hardware-assisted SNF, using a commodity OpenFlow switch,

shows that our approach scales at 40 Gbps for Internet Service Provider-level NFV deployments.

18

19

20

21

22

INTRODUCTION23

Middleboxes hold a prominent position in today’s networks as they substantially enrich the dataplane’s24

functionality (Sherry et al., 2012; Gember-Jacobson et al., 2014). However, to manage traditional25

middleboxes requires costly capital and operational expenditures; hence, network operators are adopting26

network functions virtualization (NFV) (European Telecommunications Standards Institute, 2012).27

Among the first challenges in NFV was to scale software-based packet processing by exploiting the28

characteristics of modern hardware architectures. To do so, several works leveraged parallelism first across29

multiple servers and then across multiple cores, sockets, memory controllers, and graphical processing30

units (GPUs) (Han et al., 2010; Kim et al., 2015b) within a single server (Dobrescu et al., 2009, 2010).31

Attaining hardware-based forwarding performance was difficult to achieve, even with highly-scalable32

software-based packet processing frameworks. The main reason was the poor I/O performance of these33

frameworks. Thus, the focus of both industry and academia shifted to customizing operating systems34

(OSs) to achieve high-speed network I/O. For example, by using batch packet processing (Kim et al.,35

2012), static memory pre-allocation, and zero copy data transfers (Rizzo, 2012; DPDK, 2016).36

Modern applications require combinations of network functions (NFs), also known as service chains,37

to satisfy their services’ quality requirements (Quinn and Nadeau, 2015). With all the above advancements38

in place, NFV instances achieved line-rate forwarding at tens of millions of packets per second (Mpps);39

however, performance issues remain when several NFs are chained together. State of the art frameworks40

such as ClickOS (Martins et al., 2014) and NetVM (Hwang et al., 2014) have reported substantial41

throughput degradation when realizing chains of interconnected, monolithic NFs.42

The first consolidation attempts targeted application layer (e.g., deep packet inspection (DPI)) (Bremler-43

Barr et al., 2014) and session layer (e.g., HTTP) (Sekar et al., 2012) consolidation. However, a lot of44

redundancy still resides lower in the network stack. Anderson et al. (2012) describe how xOMB allows45

them to build programmable and extensible open middleboxes specialized for request/response based46

communication. In addition, Slick (Anwer et al., 2015) introduced a programming language to deploy47

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2477v3 | CC BY 4.0 Open Access | rec: 20 Oct 2016, publ: 20 Oct 2016

network-wide service chains, driven by a controller. Slick avoids redundant operations and shares common48

elements; however, its decentralized consolidation still realizes a chain of NFs as distributed processes.49

Most recently, E2 (Palkar et al., 2015) showed how to schedule NFs across a cluster of machines for high50

throughput. Also, OpenBox (Bremler-Barr et al., 2016) introduced an algorithm that merges processing51

graphs from different NFs into a single processing graph. Contemporaneously with E2 and OpenBox, our52

work implements the mechanisms specified in (Enguehard, 2016) and represents the next logical step in53

high-performance NFV research. A detailed comparison with both E2 and OpenBox is given in § 9.54

In the case of network-wide deployments, chains suffer from the latency imposed by interconnecting55

different machines, processes, and switches, along with potential virtualization overheads. In the case56

of single-server deployments, where the NFs are pinned to a specific (set of) core(s), throughput is57

bounded by the increasing number of context switches as the length of the chain increases. Based on58

our measurements, context switches cause a domino effect on cache utilization because of continuous59

data invalidations and the number of CPU cycles spent forwarding packets along the chain. This leads to60

increased end-to-end packet latency and considerable variation in latency (jitter).61

In this paper, we describe the design and implementation of Synthesized Network Functions (SNF),62

our approach for dramatically increasing the performance of NFV service chains. The idea behind SNF63

is simple: create spatial correlation in order to execute service chains at the speed of the CPU cores64

operating on the fastest, i.e., L1, cache of modern multi-core machines. SNF leverages the ever-continuing65

increases in numbers of cores of modern multi-core processor architectures and the recent advances in66

user-space networking.67

Packets in a traffic class are all processed the same way. SNF automatically derives traffic classes of68

packets that are traversing a provider-specified service chain of NFs. Additionally, SNF handles stateful69

NFs. Using its understanding of each of the per-traffic class chains, SNF then synthesizes equivalent,70

high-performance NFs for each of the traffic classes. In a straightforward SNF deployment, one CPU71

core processes one traffic class. In practice, SNF allocates multiple CPU cores to execute different sets of72

traffic classes in isolation (see § 2).73

SNF’s performance acceleration process performs the following tasks: (i) consolidates all the read74

operations of a traffic class into one element, (ii) early-discards those traffic classes that lead to packet75

drops, and (iii) associates each traffic class with a write-once element. Moreover, SNF shares elements76

among NFs to avoid unnecessary overhead, and compresses the number and length of the chain’s traffic77

classes. Finally, SNF scales with an increasing number of NFs and traffic classes.78

This architecture shifts the challenge to packet classification, as one component of SNF has to79

classify each incoming packet into one of the pre-determined traffic classes, and pass it to the synthesized80

function. We extended popular, open-source software to improve the performance of software-only packet81

classification. In addition, we employed an OpenFlow (McKeown et al., 2008) switch as a packet classifier82

to demonstrate the performance that would be possible with a sufficiently powerful programmable network83

interface (commonly abbreviated as NIC). The benefits of SNF for network operators are multifold: (i)84

SNF dramatically increases the throughput of long NF chains, while achieving low latency, and (ii) it85

does so while preserving the functionality of the original service chains.86

We implemented the SNF design principles into a modified version of the Click (Kohler et al., 2000)87

framework. To demonstrate SNF’s performance, we compare it against the fastest Click variant to date,88

called FastClick (Barbette et al., 2015). To show SNF’s generality we tested its performance in three use89

cases: (i) a chain of software routers, (ii) nested network address and port translators (NAPTs) (Liu et al.,90

2014), and (iii) access control lists (ACLs) using actual NF configurations taken from Internet Service91

Providers (ISPs) (Taylor and Turner, 2007).92

Our evaluation shows that software-based SNF achieves 40 Gbps, even with small Ethernet frames,93

across long (up to 10 NFs), stateful chains. In particular, it achieves up to 8.5x more throughput and 10x94

lower latency with 2-3.5x lower latency variance than the original NF chains implemented with FastClick95

(when running on the same hardware). Offloading traffic classification to a commodity OpenFlow switch96

allows SNF to realize realistic ISP-level chains at 40 Gbps (for most frame sizes), while bounding the97

median chain latency to below 100 µs (measured from separate sending and receiving machines).98

In the rest of this paper, we provide an overview of SNF in § 2. We introduce our synthesis approach99

in § 3 and a motivating example in § 4. Implementation details and performance evaluation are presented100

in § 5 and § 6 respectively. We discuss verification aspects in § 7. § 8 discusses the limitations of this101

work and § 9 positions our work with respect to the state of the art. Finally, § 10 concludes this paper.102

2/20

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2477v3 | CC BY 4.0 Open Access | rec: 20 Oct 2016, publ: 20 Oct 2016

SNF OVERVIEW103

The idea of synthesizing network service components consorts with a powerful property: data104

correlation in network traffic. In a network system, this property is mapped to spatial locality with respect105

to the receiver’s caches. SNF aggregates parts of the flow space into traffic class units (TCUs) (a detailed106

definition is given in § 3.1). Finally, these TCUs are mapped to sets of (re)write operations. By carefully107

setting the CPU affinity of each TCU, this aggregation enforces a high degree of correlation in the traffic108

(seen as logical units of data) resulting in high cache hit rates.109

Our overarching goal is to design a system that efficiently utilizes per core and across cores cache110

hierarchies. With this in mind, we design SNF based on Figure 1. In the example shown in this figure we111

assume that a network operator wants to deploy a service chain between network domains 1 and 2. For112

simplicity we also assume that there is one NIC per domain. A set of dedicated cores (i.e., Core 1 and 2113

for the NICs facing domains 1 and 2, respectively) attempts to read and write frames at line-rate. Once a114

set of frames is received, say by core 1, it is transferred to the available processing cores (i.e., Cores 3 to115

k). Frame transfers can occur at high speed via a shared cache, which typically has substantial capacity in116

modern hardware architectures.117

Core 1

Multi-threaded SNF Classifier with
chain-level traffic class units (TCUs)

SNF Rewriter-Core 3

SNF Rewriter-Core 4

SNF Rewriter-Core 5

SNF Rewriter-Core k

Traffic
Domain

1

Symmetric Receive-Side Scaling

Bi-directional Flow

Traffic
Domain

2
...

Dedicated cores per NIC for I/O

Core 2

SNF Synthesizer with stateful per core rewriters

Figure 1. An overview of SNF running on a machine with k CPU cores and 2 NICs. Dedicated CPU

cores per NIC deliver bi-directional flows to packet processing CPU cores via Symmetric RSS. Processing

cores concurrently classify traffic and access individual, stateful SNF rewriters to modify the traffic.

Once a processing core acquires a frame, it executes SNF as shown in Figure 1. First the core118

classifies the frame (green rectangles in Figure 1) in one of the chain’s TCUs and then applies the119

required synthesized modifications (blue rounded-rectangle in Figure 1) that correspond to this TCU. Both120

classification and modification processes are highly parallelized as different cores can simultaneously121

process frames that belong to different TCUs. We detail both processes in § 3.2.122

The key point of Figure 1 is that a core’s pipeline shares nothing with any other pipeline. We employed123

the symmetric Receive Side Scaling (RSS) (Intel, 2016) scheme by Woo and Park (2012) to hash input124

traffic such that bi-directional flows are always served by the same SNF rewriter, hence the same processor.125

This scheme allows a core to process a TCU at the maximum processing speed of the machine.126

Main Objectives127

The primary goal of SNF is to eliminate redundancy along the chain. The sources of redundancy in128

current NF chains and the solutions that our approach offers are:129

Multiple network I/O interactions between the chain and the backend dataplane occur because each NF130

is an individual process. We solve this by placing NF chains in a single logical entity. Once a packet131

enters this entity, it does not exit until all the chain’s operations are applied.132

Late packet drops appear in NF chain implementations when packets unnecessarily pass through several133

elements before being dropped. SNF discards these packets as early as possible.134

Multiple read operations on the same field occur because each NF contains its own decision elements.135

A typical example is an Internet protocol (IP) lookup in a chain of routers. While SNF is parsing the136

3/20

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2477v3 | CC BY 4.0 Open Access | rec: 20 Oct 2016, publ: 20 Oct 2016

initial chain, it collects the read operations and constructs traffic classes encoded as paths of elements in a137

directed acyclic graph (DAG). Then, SNF synthesizes these elements into a single classifier to realize138

both routing and filtering.139

Multiple write operations on the same field overwrite previous values. For example, the IP checksum140

is modified twice when a decrement time to live (TTL) operation follows a destination IP address141

modification. SNF associates a set of (stateful) write operations with a traffic class, hence it can modify142

each field of a traffic class all at once.143

Next, we describe in detail how SNF automatically synthesizes the equivalent of a service chain.144

SNF ARCHITECTURE145

Taking into account the main objectives listed above, this section presents the design of SNF: § 3.1146

defines the synthesis abstraction, § 3.2 presents the formal synthesis steps, and § 3.3 describes how147

stateful functions are realized.148

Abstract Service Chain Representation149

The crux of SNF’s design is an abstract service chain representation. We begin by describing a150

mathematical model to represent packet units in § 3.1.1. Next, we model an NF’s behavior in an abstract151

way in § 3.1.2. Finally, we define our target service-level network function in § 3.1.3.152

Packet Unit Representation153

Inspired by the approach of Kazemian et al. (2012), we represent each packet as a vector in a multi-

dimensional space. However, we follow a protocol-aware approach by dividing a packet according to the

unsigned integer value of the different header fields. Thus, if p is an IPv4/TCP packet, we represent it as:

p = (pip version, pip ihl, ..., ptcp sport, ptcp dport, ...)

From now on, we call P the space of all possible packets. For a given header field f of length l bits, we

define a field filter Ff as a union of disjoint intervals (0,2l−1):

Ff =
⋃

si⊂(0,2l−1)

si where

{

∀i, si is an interval

∀i 6= j, si∩ s j = /0

This allows grouping packets into a data structure that we call a packet filter, defined as a logical

expression of the form:

φ = {(p1, ..., pn) ∈ P|(p1 ∈ F1)∧ ...∧ (pn ∈ Fn)}

where (F1, ...,Fn) are field filters. The space of all possible packet filters is Φ. Then:

u :

{

φ 7→ (F1, ..,Fn)
Φ 7→ {(F1, ..,Fn)|∀i,Fi}(F1,..,Fn)

is a bijection and we can assimilate φ to (F1, ...,Fn).154

If φ1 and φ2 are two packet filters defined by their field filters (F1,1, ...,F1,n) and (F2,1, ...,F2,n), then155

φ1∩φ2 is also a packet filter and is defined as (F1,1∩F2,1, ...,F1,n∩F2,n).156

Network Function Representation157

Network functions typically apply read and write operations to traffic. While our packet unit

representation allows us to compose complex read operations across the entire header space, we still need

the means to modify traffic. For this, we define an operation as a function ω : P 7→Φ that associates a set

of possible outputs to a packet. We add the additional constraint that for any given operation ω , there is

ω1, ...,ωn ∈ N
N such as:

∀p = (p1, ..., pn) ∈ P,ω(p) = (ω1(p1), ...,ωn(pn))

Note that we use sets of possible values (instead of fixed values) to model cases where the actual value158

is chosen at run-time (e.g., source port in an S-NAT). Therefore, SNF supports both deterministic and159

conditional operations.160

4/20

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2477v3 | CC BY 4.0 Open Access | rec: 20 Oct 2016, publ: 20 Oct 2016

If we define Ω as the space of all possible operations, we can express a processing unit PU as a

conditional function that maps packet filters to operations:

PU : p 7→











ω1(p) if p ∈ φ1

...

ωm(p) if p ∈ φm

where (ω1, ...,ωm) ∈Ω
m are operations and (φ1, ...,φm) ∈Φ

m are mutually distinct packet filters.161

An NF is simply a DAG of PUs. For instance, SNF can express a simplified router’s NF as follows:

NFROUT ER : PU{Lookup}→ PU{DecIPT T L}→ PU{IPChecksum}→ PU{MAC}

with 4 PUs: an IP lookup PU is followed by decrement IP TTL, IP checksum update, and source and162

destination MAC address modification PUs.163

The Synthesized Network Function164

In the previous section we laid the foundation to construct NFs as graphs of PUs. Now, at the service

level where multiple NFs can be chained, we define a TCU as a set of packets, represented by disjoint

unions of packet filters, that are processed in the same fashion (i.e., undergo the same set of synthesized

operations), hence are part of a flow or similar flows. This definition allows us to construct the service

chain’s SynthesizedNF function as a DAG of PUs, or equivalently, as a map of TCUs that associates

operations to their packet filters:

SynthesizedNF : Φ 7→Ω

Formally, the complexity of the SynthesizedNF is upper-bounded by the function O(n ·m), where n is the165

number of TCUs and m is the number of packet filters (or conditions) per TCU. Each TCU turns a textual166

packet filter specification (such as “proto tcp && dst net 10.0/16 && src port 80”) into a binary decision167

tree traversed by each packet. Therefore, in the worst case, an input packet might traverse a skewed168

binary tree of the last TCU, yielding the above complexity bound. The average case occurs in a relatively169

balanced tree (O(logm)), in which case the average complexity of the SynthesizedNF is bounded by the170

function O(n · logm).171

Synthesis Steps172

Leveraging the abstractions introduced in § 3.1, we detail the steps that translate a set of NFs into an173

equivalent SNF. The SNF architecture is comprised of three modules (shown in Figure 2). We describe174

each module in the following sections.175

Service Chain Configurator176

The top left box in Figure 2 is the Service Chain Configurator; the interface that a network operator177

uses to specify a service chain to be synthesized by SNF. Two inputs are required: a set of service178

components (i.e., NFs), along with their topology. SNF abstracts packet processing by using graph theory.179

That said, a chain is described as a DAG of interconnected NFs (i.e., chain-level DAG), where each NF is180

a DAG of abstract packet processing elements (i.e., NF DAG). The NF DAG is implementation-agnostic,181

similar to the approaches of Bremler-Barr et al. (2016); Anwer et al. (2015); Kohler et al. (2000). The182

network operator enters these inputs in a configuration file using the following notation:183

Vertices (NFs): Each service component (i.e., an NF) of a chain is a vertex in the chain-level DAG184

for which, the Service Chain Configurator expects a name and an NF DAG specification (see Figure 2).185

Each NF can have any number of input and output ports as specified by its DAG. An NF with one input186

and one output interface is denoted as: [inter f ace0]NF1[inter f ace1].187

Edges (NF inter-connections): The connections between NFs are the edges of the chain-level DAG.188

We interconnect two NFs as follows: NF1[inter f ace1]→ [inter f ace0]NF2.189

No loops: Since the chain-level DAG is acyclic by construction, SNF must prevent loops (e.g., two190

interfaces of the same NF cannot be connected to each other).191

Entry points: In addition to the internal connections within a chain (i.e., connections between NFs),192

the Service Chain Configurator also requires the entry points of the chain. These points are the interfaces193

of the chain with the outside world and indicate the existence of traffic sources. An interface that is neither194

internal nor an entry point can only be an end-point; these interfaces are discovered by the Service Chain195

Parser as described below.196

5/20

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2477v3 | CC BY 4.0 Open Access | rec: 20 Oct 2016, publ: 20 Oct 2016

NFCHAIN
(pkt,port)

DISCARDCHAIN

NFK(pkt,port)
NFK

NF
Specifications

NFKNF
Topology

NFM

NFL

NFL NFM
RDNFK WRNFK

Chain NFs

NFM(pkt,port)

RDNFM WRNFM

NFL(pkt,port)

RDNFL WRNFL

RDCHAIN

Decompose
Read & Write
Operations

WRCHAIN

State
Management

1. Traverse
Synthesized-DAG

Build Synthesized-DAG of Processing Units

2. Build service-level
traffic class units

Conditions on
header fields

Single Read per
Traffic Class Unit

Single Write
per Traffic Class Unit

Early drop after
single read

3. Map traffic class
units to write operations

4. Generate chain-level
NF

Service Chain Configurator Service Chain Parser

Service Chain Synthesizer

Figure 2. The SNF framework. The network operator inputs a service chain and its topology (top left part).

SNF parses the chained NFs, decomposes their read and write parts, and composes a Synthesized-DAG

(top right part). While traversing the Synthesized-DAG, SNF builds the TCUs of the chain, associates

them with write/discard operations, leading to a synthesized chain-level NF.

Service Chain Parser197

The Service Chain Configurator outputs a chain-level DAG that describes the chain to the Service198

Chain Parser. As shown in the top right box of Figure 2, the parser iterates through all of the input NF199

DAGs (i.e., one per NF); while parsing each NF DAG, the parser marks each element according to its200

type. We categorize NF elements in four types: I/O, parsing, read, and write elements. As an example201

NF, consider a router that consists of interconnected elements, such as ReadFrame, StripEthernetHeader,202

IPLoookUp, and DecrementIPTTL. ReadFrame is an I/O element, StripEthernetHeader is a parsing203

element (moves a frame’s pointer), IPLoookUp is a read element, and DecrementIPTTL is a write204

element.205

The parser stitches together all the NF DAGs based on the topology graph and builds a Synthesized-206

DAG (see Figure 2) that represents the entire chain. This process begins from an entry point and searches207

recursively until an output element is found. If the output element leads to another NF, the parser keeps a208

jump pointer and cross checks that the encountered interfaces match the interfaces declared in the Service209

Chain Configurator. After collecting this information, the parser omits the I/O elements because one of210

SNF’s objectives is to eliminate inter-NF I/O interactions. The process continues until an output element211

that is not in the topology is found; such an element can only be an end-point. Along the path to an212

output element the parser separates the read from the write elements and transforms NF elements into213

PUs, according to § 3.1.2. Next, the parser considers the next entry point until all are exhausted.214

The final output of the Service Chain Parser is a large Synthesized-DAG of PUs that models the215

behavior of the entire input service chain.216

Service Chain Synthesizer217

After building the Synthesized-DAG, our next target is to create the SynthesizedNF introduced218

in § 3.1.3. To do so, we need to derive the SNF’s TCUs. To build a TCU we execute the following steps:219

from each entry port of the Synthesized-DAG, we start from the identity TCU tcu0 ∈ Φ×Ω defined220

as: tcu0 = (P, idP), where idP is the identity function of P, i.e., ∀x ∈ P, idP(x) = x. Conceptually, tcu0221

represents an empty packet filter and no operations, which is equivalent to a transparent NF. Then, we222

search the Synthesized-DAG, while updating our TCU as we encounter conditional (read) or modification223

(write) elements. Algorithms 1 and 2 build the TCUs using an adapted depth-first search (DFS) of the224

Synthesized-DAG.225

Now let us consider a TCU t, defined by its packet filter φ and its operation ω , that traverses a PU U226

using the adapted DFS. The TRAVERSE function in Algorithm 1 creates a new TCU for each possible227

6/20

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2477v3 | CC BY 4.0 Open Access | rec: 20 Oct 2016, publ: 20 Oct 2016

pair of (ωi,φi). In particular, it creates a new packet filter φ ′ returned by the INTERSECT function (line 3).228

This function is described in Algorithm 2 and considers previous write operations while updating a packet229

filter. For each field filter φi of a packet filter, the function checks whether the value has been modified by230

the corresponding ωi operation (condition in line 8) and whether the written value is in the intersecting231

field filter φ 0
i (line 10). It then updates the TCU by intersecting it with the new filter, if the value has not232

been modified (action in line 8). After the INTERSECT function returns in Algorithm 1, TRAVERSE creates233

a new operation by composing ω and ωi (line 4).234

The recursive algorithm terminates in two cases: (i) when the packet filter of the current TCU is the235

empty set, in which case the function does not return anything, (ii) when the PU U does not have any236

successors, in which case it returns the current TCUs. In the latter case, the returned TCUs comprise the237

final SynthesizedNF function.238

Algorithm 1 Building the SNF TCUs

1: function TRAVERSE(t = (φ ,ω),U = {(φi,ωi)i≤m})
2: for i ∈ (1,m) do0

3: φ ′← INTERSECT(t,φi)

4: ω ′← ωi ◦ω

5: t ′ = (φ ′,ω ′)
6: TRAVERSE(t ′,U.successors[i])

Algorithm 2 Intersecting a TCU with a filter

1: function INTERSECT(t = (φ ,ω),φ 0)

2: φ ′← P

3: (ω1, ...,ωn)← ω.COORDINATES

4: (φ1, ...,φn)← φ .COORDINATES

5: (φ 0
1 , ...,φ

0
n)← φ 0

.COORDINATES

6: (φ ′1, ...,φ
′
n)← φ ′.COORDINATES

7: for i ∈ (1,n) do

8: if ωi = idN then φ ′i ← φi∩φ 0
i

9: else

10: if ωi(φi)⊂ φ 0
i then φ ′i ← φi

11: elseφ ′i ← /0

12: return φ ′

239

Managing Stateful Functions240

A difficulty when synthesizing NF chains is managing successive stateful functions. It is crucial to241

ensure that the states are properly located in a synthesized NF and that every packet is matched against242

the correct state table. At the same time, SNF should ensure that NFV service chains be realized without243

redundancy, hence single-read and single-write operations must be applied per packet.244

To highlight the challenges of maintaining the state in a chain of NFs, consider the example topology245

shown in Figure 3. In this example, a large network operator has run out of private IPv4 addresses in the246

10.0/8 prefix and has been forced to share the same network prefix between two distinct zones (i.e., zones247

1 and 2), using a chain of NAPTs. This is likely to happen, as an 8-bit network prefix contains less than248

17 million addresses and recent surveys have predicted that 50 billion devices will be connected to the249

Internet by 2020 (Evans, D., 2011).250

Consolidating this chain of NFs into a single SNF instance poses a problem. That is, traffic originating251

from zones 1 and 2 share the same source IP address and port range, but to ensure that all the traffic is252

translated properly, the corresponding synthesized chains must share their NAPT table. However, since253

traffic also shares the same destination prefix (i.e., towards the same Internet gateway), a host from the254

outside world cannot possibly distinguish the zone where the traffic originates from.255

Obviously, the question that SNF has to address in general, and particularly in this example is: “How256

can we synthesize a chain of NFs, ensuring that (i) traffic mappings are unique and (ii) no redundant257

operations will be applied?” To solve this conundrum, the SNF design respects the following properties:258

NAPT 2NAPT 1Zone 1
10.0/8

Zone 2
10.0/8

Internet

Figure 3. Example of stateful NAPT chains, where two zones share the same IPv4 prefix.

7/20

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2477v3 | CC BY 4.0 Open Access | rec: 20 Oct 2016, publ: 20 Oct 2016

Property 1: We enforce the uniqueness of flow mappings by ensuring that all egress traffic that shares259

the same last stateful (re)write operation also shares the same state table.260

Property 2: The state table of SNF must be origin-aware. To redirect ingress traffic towards the261

correct interface, while respecting the single-read principle of SNF, the SNF state table262

must collocate flow information and the origin interface for each flow.263

To generalize the state management problem, Figure 4 illustrates how SNF handles stateful264

configurations with three egress interfaces. We apply “Property 1” by having exactly one stateful265

(re)write element (denoted as Stateful RW) per egress interface. We apply “Property 2” by having one266

input port in each of these (re)write elements, associated with an ingress interface. Therefore, a state table267

in SNF not only contains flow-related information, but also links a flow entry and its origin interface.

Outbound Traffic
Stateful
RW 1

ingress
if1

ingress
if2

egress
if1

egress
if2

egress
if3

Inbound Traffic

Classifier

Classifier

Classifier

Classifier

Classifier

ingress
if1

ingress
if2

Drop Drop

Stateful
RW 2

Stateful
RW 3

Stateful
RW 1

Stateful
RW 2

Stateful
RW 3

Figure 4. State management in SNF.
268

A MOTIVATING USE CASE269

To understand how SNF works and what benefits it can offer, we quantify the processing and I/O270

redundancies in an example use case of an NF chain and then compare it to its synthesized counterpart.271

We use Click to specify the NF DAGs of this example, but SNF is applicable to other frameworks. The272

example chain consists of a NAPT, a layer 4 firewall (FW), and a layer 3 load balancer (LB) that process273

transmission control protocol (TCP) and user datagram protocol (UDP) traffic as shown in Figure 5.

NF1 - NAPT

ReadFrame
192.168.0.1

Strip Ethernet Header

Destination IP LookUp
192.168.0/24 → 0
10.1/16 → 1
0.0.0.0/0 → 2

Read IP Address

Decrement IP TTL

IP Fragmentation
MTU 1500 bytes

Rewrite Flow
UDP->ip_src 10.0.0.1,

port_src 1000-9000
TCP->ip_dst 10.1.1.2)

Encapsulate Ethernet
Src:MAC1, Dst:MAC2

Strip Ethernet Header

Decrement IP TTL

IP Fragmentation
MTU 1500 bytes

Filter IP Traffic
allow src IP 10.0.0.1

&&
udp_dst port 1234,

drop the rest

Encapsulate Ethernet
Src:MAC3, Dst:MAC4

Strip Ethernet Header

Decrement IP TTL

IP Fragmentation
MTU 1500 bytes

Rewrite Flow
Apply Round-Robin

(RR) to dst IP
addresses

10.0.1.1, 10.0.1.2

Encapsulate Ethernet
Src:MAC5, Dst:MAC6

NF2 - L4 FW NF3 - L3 LB

 WriteFrame

Classify IP Traffic
UDP, TCP, drop

ReadFrame
10.0.0.2

 WriteFrame WriteFrame

ReadFrame
10.0.0.3

Domain
10.1/16

Domain
10.0/16

Figure 5. The internal components of an example NAPT - L4 FW - L3 LB chain.
274

8/20

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2477v3 | CC BY 4.0 Open Access | rec: 20 Oct 2016, publ: 20 Oct 2016

The TCP traffic is NAPT’ed in the first NF and then leaves the chain, while UDP is filtered at the FW275

(the second NF) and the UDP datagrams with destination port 1234 are load balanced across two servers276

by the last NF. For simplicity, we discuss only the traffic going in the direction from the NAPT to the LB.277

The rectangular operations in Figure 5 are interface-dependent, e.g., an “Encapsulate Ethernet”278

operation encapsulates the IP packets in Ethernet frames before passing them to the next NF where a279

“Strip Ethernet Header” operation turns them back into IP packets. Such operations occur 3 times because280

there are 3 NFs, instead of only once (because the processing operates at the IP layer). Ideally, strip281

should be applied before, and Ethernet encapsulation after all of the IP processing operations. Similarly,282

the “IP Fragmentation” should only be applied before the final Ethernet encapsulation.283

The remaining operations (illustrated as rounded rectangles) of the three processing stages are284

those that (i) make decisions based upon the contents of specific packet fields (read operations with a285

solid round outline, e.g., “Classify IP Traffic” and “Filter IP Traffic”) or (ii) modify the packet header286

(rewrite operations with a blue dashed outline e.g., “Rewrite Flow” and “Decrement IP TTL”). We287

found redundancy in both types of operations. In the read operations, one IP classifier is sufficient to288

accommodate the three traffic classes of this example and perform the routing. Thus, all the round-outlined289

operations with solid lines (green) can be replaced by a single “Classify IP Traffic” operation.290

Large savings are also possible with the rewrite operations. For example, the initial chain calculates291

the TTL field 3 times and IP checksum 5 times, whereas only one computation for these fields suffices292

in the synthesized chain. Based on our measurements on an Intel Xeon E5 processor the checksum293

calculations cost 10-40 CPU cycles/packet. By integrating the “Decrement IP TTL” into the “Rewrite294

Flow” operation and performing the checksum calculation only once, saves 237 CPU cycles/packet.295

Figure 6 depicts a synthesized version of the NF chain shown in Figure 5. Following the SNF paradigm296

presented in § 3, the synthesized chain forms a graph with two main parts. The left-most part (rounded297

rectangles with solid outline in Figure 6) encodes all the read operations by composing paths that begin298

from a specific interface and traverse the three traffic classes of this chain, until a packet is output or299

dropped. Each path keeps a union of filters that represents the header space that matches the respective300

traffic class. In this example, the filter for e.g., the allowed UDP packets is the union of the protocol and301

destination port numbers. Such a filter is part of a classifier whose output port is linked with a set of write302

operations (dashed vertices in Figure 6) associated with this traffic class (right-most part of the graph).303

As shown in Figure 6, with SNF a packet passes through all the read operations once (guaranteeing304

a single-read) and either the packet is discarded early or each header field is written once (ensuring a305

single-write) before exiting the chain.306

Synthesizing the counterpart of this example implies several code modifications to avoid the307

redundancy caused by the design of each NF. To apply a per flow, per-field single-write operation308

we ensure that the “Rewrite Flow” will only calculate the checksums once IP addresses, ports, and the IP309

TTL fields are written. Therefore, in this example we saved four unnecessary operations (3 “Decrement IP310

TTL” and 1 “Rewrite Flow”) and four checksum calculations (3 IP and 1 IP/UDP). Moreover, integrating311

all decisions (i.e., routing, filtering) in one classifier caused the classifier to be slightly heavier, but saved312

another two redundant function calls to “Destination IP LookUp” and “Filter IP Traffic” respectively.313

The final form of the synthesized chain requires only 5 processing operations to transfer the UDP314

datagrams along the entire chain. The initial chain implements the same functionality using 18 processing315

Rewrite Flow
ip_dst: 10.1.1.2

Classify IP
Traffic ● Rewrite a traffic class at once.

● Keep state.

Strip Ethernet
Header

Encapsulate
Ethernet

Src:MAC1,Dst:MAC6

ReadFrame
192.168.0.1

WriteFrame
To 10.0/16

Early Discard

Rewrite Flow

Synthesized read
operations

Synthesized write operations

udp dst 1234
tcp
all

ip_src: 10.0.0.1,
ip_dst: RR(10.0.1.1/10.0.1.2),

port_src: 1000-9000
IP

Fragmentation
MTU 1500 bytes

A unique set of header
fields for each traffic class.

3 x Decrement IP TTL

IP/UDP Checksum once

IP Checksum once

1 x Decrement IP TTL

Packets to be dropped pass
only through the read stage.

Encapsulate
Ethernet

Src:MAC1,Dst:MAC2

WriteFrame
To 10.1/16

IP
Fragmentation
MTU 1500 bytes

Figure 6. The synthesized chain equivalent to Figure 5. The SNF contributions are shown in floating text.

9/20

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2477v3 | CC BY 4.0 Open Access | rec: 20 Oct 2016, publ: 20 Oct 2016

operations and two additional pairs of I/O operations. Based on our measurements the total processing316

cost of the initial chain is 2014 cycles/packet, while the synthesized chain requires 3x less (roughly 695)317

cycles/packet. If we account for the extra I/O cost per hop for the initial chain the difference becomes318

even greater. In production service chains, where packets arrive at high rates, this overhead can play a319

major role in limiting the throughput of the chain and the imposed latency; therefore, the advantages of320

synthesizing more complex service chains than this simple use case are expected to be even greater.321

IMPLEMENTATION322

As we stated earlier, SNF’s basic assumption is that each input service component (i.e., NF) is323

expressed as a graph (i.e., the NF DAG), composed of individual packet processing elements. This allows324

SNF to parse the NF DAG and infer the internal operations of each NF, producing a synthesized equivalent.325

Among the several candidate platforms that allow such a representation, we developed our prototype atop326

Click because it is the most widely used NFV platform in the academia. Many earlier efforts built upon it327

to improve its performance and scalability, hence we believe that this choice maximizes SNF’s impact328

as it allows direct comparison with state of the art Click variants such as RouteBricks (Dobrescu et al.,329

2009), PacketShader (Han et al., 2010), Double-Click (Kim et al., 2012), SNAP (Sun and Ricci, 2013),330

ClickOS (Martins et al., 2014), and FastClick (Barbette et al., 2015).331

We adopt FastClick as the basis of SNF as it uses DPDK, a state of the art user-space I/O framework332

that exploits modern hardware amenities (including multiple CPU cores) and NIC features (including333

multiple queues and offloading mechanisms). Along with batch processing, non-uniform memory access334

support, and fine grained CPU core affinity techniques, FastClick can realize a single router achieving335

line-rate throughput at 40 Gbps. SNF aims for similar performance for an entire service chain.336

FastClick Extensions337

We implemented SNF in C++11. The modules depicted in Figure 2 are 14376 lines of code. The338

integration with FastClick required another 1500 lines of code (including modifications and extensions).339

Although FastClick improves a router’s throughput and latency, it lacks features required for broader NFV340

applications; therefore, we made the following extensions to target a service-oriented platform:341

Extension 1: Stateful elements that deal with flow processing (such as IP/UDP/TCPRewriter) were not342

originally equipped with FastClick’s accelerations such as computational batching or cache prefetching.343

Moreover, these elements were not designed to be thread-safe, hence they could cause race conditions344

when accessed by multiple CPU cores at the same time. We designed thread-safe data structures for these345

elements while also applying the necessary modifications to equip them with the FastClick accelerations.346

Extension 2: We tailored several packet modification FastClick elements to comply with the synthesis347

principles, as we found that their implementation was not aligned with our single-write approach. For348

instance, we improved the IP/UDP/TCP checksum calculations by calling the respective functions only349

once all the header field modifications are applied. Moreover, we extended IP/UDP/TCPRewriter elements350

with additional input arguments. These arguments extend the elements’ packet modification capabilities351

(e.g., decrement IP TTL field to avoid unnecessary element calls) and guarantee that a packet entering352

these elements undergo a single-write operation per header field.353

Extension 3: We developed a new element, called IPSynthesizer, in the heart of our execution model (as354

shown in Figure 1). This element implements per-core stateful flow tables that can be safely accessed in355

parallel allowing multiple TCUs to be processed at the same time. To avoid inter-core communication,356

thus keeping the per-core cache(s) hot, we extended the RSS mechanism of DPDK (see Figure 1) using a357

symmetric approach proposed by Woo and Park (2012).358

Extension 4: To make software-based classification more scalable, we implemented the lazy subtraction359

algorithm introduced in Header Space Analysis (HSA) (Kazemian et al., 2012). With this extension,360

SNF aggregates common IP prefixes in a filter and applies the longest one while building a TCU, thus361

producing shorter traffic class expressions.∗362

Our prototype supports a large variety of packet processing libraries, fully covering both native363

FastClick and hypervisor-based ClickOS deployments. Our prototype also takes advantage of FastClick’s364

computation batching with a processing core moving a group of packets between the classifier and the365

synthesizer with a single function call. New packet processing elements can be incorporated with minor366

effort. We made the FastClick extensions available at Katsikas (2016).367

∗This extension is not a direct part of FastClick, since the compressed classification rules are computed by SNF beforehand;

then, SNF passes these rules to FastClick’s classification elements.

10/20

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2477v3 | CC BY 4.0 Open Access | rec: 20 Oct 2016, publ: 20 Oct 2016

PERFORMANCE EVALUATION368

Recent efforts, such as ClickOS (Martins et al., 2014) and NetVM (Hwang et al., 2014), are unable369

to maintain constant high throughput and low latency for chains of more than 3 NFs when processing370

packets at high speed. This problem hinders large-scale hypervisor-based NFV deployments that could371

reduce network operators’ expenses and provide more flexible network management and services (Cisco,372

2014; SDX Central, 2015).373

We envision SNF to be the key component of future NFV deployments, thus we evaluate the synthesis374

process using real service chains to exercise its true potential. In this section, we demonstrate SNF’s375

ability to address three types of service chains:376

Chain 1: Scale a long series of routers at the cost of a single router.377

Chain 2: Nest multiple NAPT middleboxes.378

Chain 3: Implement high performance ACLs of increasing cardinality at the borders of ISP networks.379

We use the experimental setup described in § 6.1 to measure the performance of the above three types380

of chains and answer the following questions: Can we synthesize (stateful) chains without sacrificing381

throughput as we increase the chain length (see § 6.2 and § 6.3)? What is the effect of different packet382

sizes on a system’s throughput (see § 6.3)? What are the current limits of purely software-based packet383

processing (see § 6.4) and how can we overcome them (see § 6.5)?384

Testbed385

We conducted our experiments on six identical machines each with a dual socket 16-core Intelr386

Xeonr CPU E5-2667 v3 clocked at 3.20 GHz. The cache sizes are: 2x32 KB L1, 256 KB L2, and 20 MB387

L3. Hyper-threading is disabled and the OS is the Ubuntu 14.04.1 distribution with Linux kernel v.3.13.388

Each machine has two dual-port 10 GbE Intel 82599 ES NICs.389

Unless stated otherwise, we use two machines to generate and sink bi-directional traffic using390

MoonGen (Emmerich et al., 2015), a DPDK-based traffic generator. MoonGen allows us to saturate 10391

Gbps NICs on a single machine using a set of cores, while receiving the same amount of traffic on another392

set of cores. To gain insight into the performance of the service chains, we measure the throughput and393

end-to-end latency to traverse the chains, at the endpoints. We use FastClick as a baseline and compare394

FastClick against SNF (which extends FastClick). We create service chains that run natively in a single395

process using RSS and multiple CPU cores, as this is the fastest FastClick configuration. The two different396

setups utilized by our software-based and hardware-assisted deployments are:397

Software-based setup: In § 6.2, § 6.3, and § 6.4 we stress different purely software-based NFV398

service chains that run in one machine following the execution model of Figure 1. This machine has two399

dual port 10 GbE NICs connected to the two traffic source/sink machines (two NICs per machine), hence400

the total capacity of the NFV machine is 40 Gbps. The goal of this testbed is to show how much NFV401

processing FastClick and SNF can be performed by a single machine and what processing limits this402

machine has.403

Hardware-assisted setup: For the complex NFV service chains, presented in § 6.4, we deployed a404

testbed where we offload the traffic classification to a NoviFlow 1132 OpenFlow switch with firmware405

version 300.1.0. The switch is connected to two 10 GbE NICs via each of the two senders/receivers, and406

with one 10 GbE link to each of the four processing servers in our SNF cluster. This testbed has a total of407

40 Gbps capacity (the same as the software-based setup above), but the processing is distributed to more408

machines in order to show how our SNF system scales.409

A Chain of Routers at the Cost of One410

This first use case targets a direct comparison with the state of the art. Specifically, we chain411

a popular implementation of a software-based router that, after several years of successful research412

contributions (Dobrescu et al., 2009; Han et al., 2010; Kim et al., 2012; Sun and Ricci, 2013; Martins413

et al., 2014; Barbette et al., 2015), achieves scalable performance at tens of Gbps.414

As we show in this section, a naive chaining of individual, fast NFs does not achieve high performance.415

To quantify this we linearly connect 1-10 FastClick routers, where each router has four 10 Gbps ports416

(hence such a chain has a 40 Gbps link capacity). The down-pointing (green) triangular points in Figure 7417

show the throughput achieved by these chains as a function of the increasing length of the chains, when418

we inject 60-bytes frames, excluding the cyclic redundant check (CRC). The maximum throughput for419

this frame size size is 31.5 Gbps and this is the limit of our NICs, as reported earlier (Barbette et al., 2015).420

11/20

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2477v3 | CC BY 4.0 Open Access | rec: 20 Oct 2016, publ: 20 Oct 2016

In our experiment, FastClick can operate at the maximum throughput only for a chain of 1 or 2 routers.421

After this point there is a quadratic throughput degradation, as denoted by the equation’s fit to the graph,422

that results in a chain of 10 routers achieving less that 10 Gbps of throughput.423

SNF automatically synthesizes this simple chain (shown with red squares) to achieve the maximum424

possible throughput of this hardware, despite the increasing length of the chain. The fitted equation425

confirms that SNF operates at the speed of the NICs.426

 0

 5

 10

 15

 20

 25

 30

 35

 40

1 2 3 4 5 6 7 8 9 10

T
h

ro
u

g
h

p
u

t
(G

b
p

s
)

Number of chained NFs

Routers - SNF (Batch 32) Throughput(Gbps):mean(31.577),std(0.041)

NAPTs - SNF (Batch 128) Throughput(Gbps):mean(31.483),std(0.251)

NAPTs - SNF (Batch 32) Throughput(Gbps)= -0.4·NFs +32.7,R2=0.70

Routers - FastClick (Batch 128) Throughput(Gbps)=+44.8·NFs2-7.4·NFs+0.39

NAPTs - FastClick (Batch 128) Throughput(Gbps)=+35.8·NFs2-7.5·NFs+0.46

Figure 7. Throughput (Gbps) of chained routers and NAPTs using (i) FastClick and (ii) SNF versus

the numbers of chained NFs (60-byte frames are injected at 40 Gbps). Bigger batch sizes achieve higher

throughput.

Stateful Service Chaining427

The problem of Service Function Chaining has been recently investigated by Quinn and Nadeau (Quinn428

and Nadeau, 2015) and several relevant use cases (Liu et al., 2014) have been proposed. In some of429

these use cases, traffic needs to support distinct address families while traversing different networks. For430

instance, within an ISP, IPv4/IPv6 traffic might either be directed to a NAT64 (Bagnulo et al., 2011) or431

a Carrier Grade NAT (Perreault et al., 2013). In more extreme cases, this traffic might originate from432

different access networks (such as fixed broadband, mobile, datacenters, or cloud customer premises),433

thus causing the nested NAT problem (Penno et al., 2013).434

The goal of this use case is to test SNF in such a stateful context using a chain of 1-10 NAPTs. Each435

NAPT maintains a state table that stores the original and translated source and destination IP addresses436

and ports of each flow, associated with the input interface where a flow was originated. The rhomboid437

points of Figure 7 show that the chains of FastClick NAPTs suffer a steeper (according to the fitted438

equation) quadratic degradation than the FastClick routers. Although we extended FastClick to support439

thread-safe, parallelized NAPT operations across multiple cores, it is still unable to drive the NAPT chain440

at line-rate, despite using 8 CPU cores and 128-packet batches.441

SNF requires a certain batch size to realize the synthesized NAPT chains at the speed of hardware as442

shown by the black circles of Figure 7. The curve with the upward-pointing (blue) triangles indicates443

that a batch size of 32 packets leads to a slight throughput degradation after the 6th NAPT in the chain.444

State lookup and management operations executed for every packet cause this degradation. Depending445

on the performance targets, a network operator might tolerate an increased latency to achieve the higher446

throughput offered by an increased batch size.447

Next, we explore the effect of different frame sizes on the chains of routers and NAPTs. We run the448

longest chain (i.e., 10 NFs) for frame sizes in the range of [60, 1500] (bytes). Figure 8 shows that SNF449

matches the NICs’ performance and achieves line-rate forwarding at 40 Gbps for frames larger than 128450

bytes. In contrast, FastClick only achieves line-rate performance for frame sizes greater than 800-1000451

bytes.452

12/20

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2477v3 | CC BY 4.0 Open Access | rec: 20 Oct 2016, publ: 20 Oct 2016

 0

 5

 10

 15

 20

 25

 30

 35

 40

64 140 250 400 600 800 1000 1200 1500

T
h

ro
u

g
h

p
u

t
(G

b
p

s
)

Frame Size without CRC (bytes)

10 SNF Routers (Batch 32)

10 SNF NAPTs (Batch 128)

10 SNF NAPTs (Batch 32)

10 FastClick Routers (Batch 128)

10 FastClick NAPTs (Batch 128)

Figure 8. Throughput of 10 routers and NAPTs chained using (i) FastClick and (ii) SNF versus the frame

size in bytes (without CRC). The different frames are injected at 40 Gbps.

Real Service Chain Deployments453

Another common use case for an ISP is to deploy a service chain of a FW, a router, and a NAPT as454

depicted in Figure 9. The FW of such a chain may contain thousands of rules in its ACL causing serious455

performance issues for software-based NF implementations.456

In this section we measure the performance of SNF using actual FW configurations of increasing457

cardinality and complexity, while exploring the limits of software-based packet processing on our hardware.458

We utilize a set of three actual ACLs (Taylor and Turner, 2007), taken from several ISPs, to deploy the459

service chain of Figure 9. The FW implements one ACL with 251, 713, or 8550 entries. The second NF460

is a standards-compliant IP router that redirects packets either towards the ISP’s domain (intra-ISP traffic461

with prefix 204.152.0.0/16) or to the Internet. For the latter traffic, the third NF interconnects the ISP with462

the Internet by performing source and destination NAPT.463

We use the above ACLs to generate traces of 64-byte frames that systematically exercise all of their464

entries. The generated packets emulate intra-ISP, inbound and outbound Internet traffic (see Figure 9).465

Figure 10 presents the performance of the 3 chains versus the different frames sizes (64, 128, 256, and466

1500 bytes). We implemented the chains in FastClick and a purely software-based SNF using the full467

capacity of our processor’s socket (i.e., 8 cores in one machine), symmetric RSS, and a batch size of 128468

packets.469

Figure 10a shows that the small ACL (251 rules), executed as a single FastClick instance, achieves470

satisfactory throughput, equal to its synthesized counterpart. This indicates that a small ISP or a chain471

Router

NAPT Internet

FW

ISP Network
204.152/16

Inbound traffic
Outbound traffic

 Intra-ISP traffic

Figure 9. An ISP’s service chain that serves inbound and outbound Internet traffic as well as intra-ISP

traffic using three NFs.

13/20

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2477v3 | CC BY 4.0 Open Access | rec: 20 Oct 2016, publ: 20 Oct 2016

 0

 10

 20

 30

 40

64 128 256 1500

T
h

ro
u

g
h

p
u

t
(G

b
p

s
)

Frame Size without CRC (bytes)

ACL 251-FastClick

ACL 251- SNF Soft

ACL 713-FastClick

ACL 713- SNF Soft

ACL 8550-FastClick

ACL 8550- SNF Soft

Server Forwarding

(a) Throughput (Gbps)

 10

 100

 1000

64 128 256 1500

L
a

te
n

c
y

 (
µ

s
)

Frame Size without CRC (bytes)

ACL 251-FastClick

ACL 251- SNF Soft

ACL 713-FastClick

ACL 713- SNF Soft

ACL 8550-FastClick

ACL 8550- SNF Soft

Server Forwarding

(b) Latency (µs) on a logarithmic scale. The lower and

upper percentiles are 1% and 99% respectively.

Figure 10. System’s performance versus 4 frame sizes (64, 128, 256, and 1500 bytes) of three different

ISP-level chains with 251, 713, and 8550 rules in their ACLs. FastClick and SNF implement these chains

in software using 8 CPU cores (in a single machine with four NICs), symmetric RSS, and batch size of

128 packets. Input rates are 40 Gbps for the throughput test and 5 Gbps for the latency test.

deployment in small subnets (e.g., using links with capacity equal or less than 10 Gbps) may not fully472

benefit from SNF. As depicted in Figure 10b, the latency is also bounded below 100 µs. This time is473

dominated by the fact that our traffic flows as follows: traffic originating from one machine enters an SNF474

server and, after being processed, sent back to the origin server. We believe that the observed latency475

values are realistic for such a topology.476

However, for the ACLs with 713 and 8550 rules the combination of all possible traffic classes among477

the FW, router, and NAPT boxes causes the classification tree of the chain to explode in size, hence478

synthesis is a powerful yet necessary solution. This causes three problems for FastClick: (i) the throughput479

when executing the last two ACLs (713, and 8550 rules) is reduced by almost 1.5x-10x respectively (on480

average), (ii) the median latency of the largest ACL is at least an order of magnitude greater than the481

median latencies of the smaller ACLs (see Figure 10b), and consequently (iii) the 99th percentile of the482

latency increases (up to almost 4 ms).483

In contrast, SNF effectively synthesizes the large ACLs (i.e., 713 and 8550 rules) maintaining high484

throughput despite their increasing complexity. In the case of 713 rules, the synthesis is so effective485

that the throughput is better than the 251-rule case. Regarding latency, SNF demonstrates 1.1-10x lower486

median latency (bounded below 500 µs) and 2-3.5x lower latency variance (slightly above 1 ms in some487

cases). The throughput gain of SNF is up to 8.5x greater than the FastClick chains.488

Hardware-accelerated SNF489

The results presented in the previous section show that software-based SNF cannot handle packet490

processing at a high enough rate when the NFs are complex. We analyzed the root cause and concluded491

that the packet classifier (that dispatches incoming packets to synthesized NFs) is the bottleneck. To492

overcome this problem, we run additional experiments, in which we offload packet classification to a493

hardware OpenFlow switch (since commodity NICs do not offer sufficient programmability). By doing494

so, we showcase SNF’s ability to scale to high data rates with realistic NFs. In addition, we hint at the495

performance that is potentially achievable by offloading packet classification to a programmable interface.496

Throughput Measurements497

This extended version of SNF includes a script that converts the classification rules computed by the498

original SNF to OpenFlow 1.3 rules. This translation is not straightforward because the switch rules are499

less expressive than the rules accepted by the NFs. Specifically, rules that match on TCP and UDP port500

ranges are problematic. While OpenFlow only allows matches on concrete values of ports, naive unrolling501

of ranges into multiple OpenFlow matches leads to an unacceptable number of rules. Instead, we solve the502

problem by utilizing a pipeline of flow tables available within the switch. The first two tables match only503

on the source and destination ports respectively, assign them to ranges, and write metadata that defines504

the range. Further tables include the real ACL rules and also match on the metadata previously added to a505

packet. Moreover, since the rules in the NFs are explored in a top-to-bottom order, we emulate the same506

behavior by assigning decreasing priorities to the OpenFlow rules.507

We use the same sets of ACLs as before, and evaluate throughput and latency in the hardware-508

accelerated SNF. We first measure the throughput that SNF can achieve leveraging OpenFlow classification.509

14/20

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2477v3 | CC BY 4.0 Open Access | rec: 20 Oct 2016, publ: 20 Oct 2016

 0

 10

 20

 30

 40

64 128 256 1500

T
h

ro
u

g
h

p
u

t
(G

b
p

s
)

Frame Size without CRC (bytes)

ACL 251-NFV Fwd

ACL 251-NFV Synth

ACL 713-NFV Fwd

ACL 713-NFV Synth

ACL 8550-NFV Fwd

ACL 8550-NFV Synth

No ACL-NFV Synth

No ACL-NFV Fwd

(a) Throughput (Gbps)

 10

 100

 1000

64 128 256 1500

L
a

te
n

c
y

 (
µ

s
)

Frame Size without CRC (bytes)

ACL 251-NFV Fwd

ACL 251-NFV Synth

ACL 713-NFV Fwd

ACL 713-NFV Synth

ACL 8550-NFV Fwd

ACL 8550-NFV Synth

No ACL-NFV Synth

No ACL-NFV Fwd

(b) Latency (µs) on a logarithmic scale. The lower and

upper percentiles are 1% and 99% respectively.

Figure 11. Hardware-assisted SNF’s performance versus 4 frame sizes (64, 128, 256, and 1500 bytes) of

three different ISP-level chains with 251, 713, and 8550 rules in their ACLs. SNF’ s classification is

offloaded to an OpenFlow switch, while stateful processing occurs in 4 servers connected to the switch.

Input rates are 40 Gbps for the throughput test and 5 Gbps for the latency test.

We design an experiment where two machines use a total of four 10 Gbps links to send traffic. The packets510

are crafted so that they uniformly exercise all visible classification rules (some rules from the original511

data set are fully covered by other rules). We use the same frame sizes as in § 6.4. The switch classifies512

the packets and forwards them across four SNF servers that are using 10 Gbps links to connect to the513

switch. The servers work in two modes: (i) forward only, where they do not implement any NFs and514

simply forward packets (the first bar in each pair in Figure 11a), and (ii) synthesized mode, where they515

implement the real NF chain (the second bar in each pair in Figure 11a). Additionally, for comparison,516

we created an experiment where the switch installs only four basic classification rules (to do simple517

forwarding) to measure the performance of the NFs themselves (the last pair of bars in Figure 11a).518

We observe that throughput depends mostly on the frame size. The system can operate at almost 20519

Gbps for small frames (i.e., 64 bytes), and it reaches the full line-rate for 256-byte frames. Interestingly,520

the rule set size does not affect the throughput.521

In the real data sets, the second bar in each pair is almost as high as the first one, which shows that the522

software part of SNF does not limit the performance. Finally, with simple forwarding rules in the switch523

(the first pair of bars in Figure 11a) the overall throughput is high even for small frames, which confirms524

that packet processing at the switch is the bottleneck of the whole system. To further prove this point, we525

run an experiment with only 2 ports sending traffic at an aggregate speed of 20 Gbps. In this case, SNF526

processes packets at the line-rate except for the smallest frames, where it achieves 15 Gbps.527

Latency Measurements528

A middlebox chain should induce low, bounded packet processing delays. In this set of experiments,529

we send traffic at a lower rate and measure latency. The setup is the same as in the previous scenario.530

Thus, the latency we show includes the time for frames to be: (i) transmitted out of the network interface531

of the traffic generating machines, (ii) received, processed, and forwarded by the OpenFlow switch, (iii)532

received, processed, and forwarded by the SNF machines, and (iv) received by the destination server (the533

same machine as the sender).534

Figure 11b shows the latency depending on the frame size and the synthesized function (results for535

the input rate of 20 Gbps are very similar). Our results show that the median latencies are low and stable536

across all frame sizes and chains. There are several main observations here. First, the 75th percentiles537

(marked by the top horizontal line of the boxplots) are close to the median latencies and we find this result538

to be encouraging. Second, large frames (i.e., 1500 bytes) face two times greater median latency than the539

smaller ones regardless of the rule configuration. Third, there are outliers that are an order of magnitude540

less/greater than the medians (e.g., 10 µs at the 1st and 100 µs at 99th percentiles for 64-byte frames and541

80 µs at the 1st and 800 µs at 99th percentiles for MTU-sized frames). Part of this latency variance is542

due to the batch I/O and processing techniques of the FastClick framework; as shown in Figure 11, these543

techniques offer high throughput, but have a well-studied effect on the latency variance.544

15/20

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2477v3 | CC BY 4.0 Open Access | rec: 20 Oct 2016, publ: 20 Oct 2016

VERIFICATION545

In this section we discuss tools that could potentially be utilized to systematically verify the correctness546

of the synthesis proposed by SNF.547

Recent efforts have employed model checking (Canini et al., 2012; Kim et al., 2015a) techniques548

to explore the (voluminous) state space of modern networked systems in an attempt to find state549

inconsistencies due to bugs, misconfigurations, or other sources. Symbolic execution has also been550

utilized either alone (Kuzniar et al., 2012; Dobrescu and Argyraki, 2014) or combined with model551

checking (Canini et al., 2012), to systematically identify representative input events (i.e., packets) that552

can adequately exercise code paths without requiring exhaustive exploration of the input space (hence553

bounding the verification time).554

Specifically, Software Dataplane Verification (Dobrescu and Argyraki, 2014) might be suitable for555

verifying NFV service chains. Dobrescu and Argyraki (2014) proposed a scalable approach to verifying556

complex NFV pipelines, by verifying each internal element of the pipeline in isolation; then by composing557

the results the authors proved certain properties about the entire pipeline. One could use this tool to558

systematically verify a complex part of SNF, specifically the traffic classification. However, this tool might559

not be able to provide sound proofs regarding all the stateful modifications of SNF, since Dobrescu and560

Argyraki verified only two simple stateful cases (i.e., a NAT and a traffic monitor) and did not generalize561

their ideas to a broader list of NFV flow modification elements.562

SOFT (Kuzniar et al., 2012) could be employed to test the interoperability between a chain realized563

with and without SNF. In other words, SOFT could inject a broad set of inputs to test whether the564

SynthesizedNF defined in § 3.1.3 outputs packets that are identical with the packets delivered by the565

original set of NFs. Similarly, HSA (Kazemian et al., 2012) could be used to verify loop-freedom, slice566

isolation, and reachability properties of SNF service chains. Unfortunately, HSA statically operates on a567

snapshot of the network configuration, hence is unable to track dynamic state modifications caused by568

continuous events. SOFT is a special-purpose verification engine for software-defined networking (SDN)569

agent implementations. Therefore, both tools would require significant additional effort to verify stateful570

NFV pipelines.571

Finally, translating an SNF processing graph into a finite state machine understandable by Kinetic (Kim572

et al., 2015a) would potentially allow Kinetic to use its model checker to verify certain properties for the573

entire pipeline. However, Kinetic does not systematically verify the actual code that runs in the network,574

but rather builds and verifies a model of this code. Therefore, it is unclear (i) whether a Kinetic model can575

sufficiently cover complex service chains such as the ISP-level chains presented in § 6.4 and (ii) whether576

Kinetic’s located packet equivalence classes (LPECs) can handle the complex TCUs of SNF without577

causing state space explosion.578

To summarize, although the works above provide remarkable advancements in software verification, a579

substantial amount of additional research is required to provide strong guarantees about the correctness of580

SNF. As the focus of this paper is to deliver high speed pipelines for complex and stateful NFV service581

chains, the verification of SNF is left as future work.582

LIMITATIONS583

We do not attempt to synthesize arbitrary software components, but rather target a broad but finite set584

of middlebox-specific NFs that operate on a packet’s header. SNF makes two assumptions:585

1. An NFV provider must specify an NF as an ensemble of abstract packet processing elements (i.e.,586

using the NF DAG defined in § 3.2.1). We believe that this is a reasonable requirement and is587

comparable to the approach followed by other state of the art approaches (such as Click, Slick, and588

OpenBox). However, if a middlebox provider does not want to share this information, even under589

non-disclosure or via a licensing agreement, then SNF can synthesize the middleboxes before and590

after this provider’s middlebox. This is possible by omitting the processing graph of this middlebox591

from the inputs given to the Service Chain Configurator (see § 3.2.1).592

2. No further decision (i.e., read) utilizes an already rewritten field, therefore, an LB that splits traffic593

based on source port after a source NAPT, might not be synthesizable. In such a case, SNF can594

exclude the LB from the synthesis.595

Moreover, our tool does not support network-wide placement of the chain’s components, but we596

envision SNF being integrated in controllers, such as E2 or Slick.597

16/20

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2477v3 | CC BY 4.0 Open Access | rec: 20 Oct 2016, publ: 20 Oct 2016

RELATED WORK598

Over the last decade, there has been considerable evolution of software-based packet processing599

architectures that realize wireline throughputs, while providing flexible and cost effective in-cloud600

network processing.601

Monolithic middlebox implementations. Until recently, most NFV approaches have treated NFs as602

monolithic entities placed at arbitrary locations in the network. In this context, even with the assistance603

of state of the art OSs, such as the Click-based ClickOS (Martins et al., 2014) together with fast604

network I/O (Rizzo, 2012; DPDK, 2016) and processing (Kim et al., 2012, 2015b; Barbette et al., 2015)605

mechanisms, chaining more than 2 NFs leads to serious performance degradation as stated by the authors606

of both ClickOS and NetVM (Hwang et al., 2014). The main reason as shown in our experiments, for this607

poor performance is the I/O overhead due to forwarding packets along physically separate and virtualized608

NFs. More recently, OpenNetVM (Zhang et al., 2016) showed that VM-based NFV deployments do609

not scale with increasing number of chained instances, hence opted for NFs running in lightweight610

Docker (Docker, 2016) containers interconnected with shared memory segments.611

Consolidation at the machine level. Concentrating network processing into a single machine is a612

logical way to overcome the limitations stated above. CoMb (Sekar et al., 2012) consolidates middlebox-613

oriented flow processing into one machine, mainly at the session layer. Similarly, OpenNF (Gember-614

Jacobson et al., 2014) provides a programming interface to migrate NFs, which can in turn be collocated615

in a physical server. DPIaaS (Bremler-Barr et al., 2014) reuses the costly deep packet inspection (DPI)616

logic across multiple instances. RouteBricks (Dobrescu et al., 2009) exploits parallelism to scale software617

routers across multiple servers and cores within a single server, while PacketShader (Han et al., 2010) and618

NBA (Kim et al., 2015b) take advantage of cheap and powerful auxiliary hardware components (such as619

GPUs) to provide fast packet processing. All of these works only partially exploit the benefits of sharing620

common middlebox functionality, thus they are far from supporting optimized service chains.621

Consolidation at the individual function level is the next level of composition of scalable and622

efficient NF deployments. In this context, Open Middleboxes (xOMB) (Anderson et al., 2012) proposes623

an incrementally scalable network processing pipeline based on triggers that pass the flow control from624

one element to another in a pipeline. The xOMB architecture allows great flexibility in sharing parts of the625

pipeline; however, it only targets request-oriented protocols and services, unlike our generic framework.626

Slick (Anwer et al., 2015) operates on the same level of packet processing as SNF to compose627

distributed, network-wide service chains driven by a controller. Slick provides its own programming628

language to achieve this composition and unlike our work, it addresses placement requirements. Slick is629

very efficient when deploying service chains that are not necessarily collocated. However, we argue that630

in many cases all the NFs of a service chain need to be deployed in one machine in order to effectively631

dispatch processing across cores in the same socket. Slick does not allow all of the NF elements to be632

physically placed into a single process. Our work goes beyond Slick by trading the flexibility of placing633

NF elements on demand for extensive consolidation of the processing of the chain. Our synthesized SNF634

realizes such consolidated chains with zero context switching and zero redundancy of individual packet635

operations.636

Very recently, Bremler-Barr et al. (2016) applied the SDN control and dataplane separation paradigm637

to OpenBox; a framework for network-wide deployment and management of NFs. OpenBox applications638

input different NF specifications to the OpenBox controller via a north-bound application programming639

interface. The controller communicates the NF specifications to the OpenBox Instances (OBIs) that640

constitute the actual dataplane, ensuring smart NF placement and scaling. An interesting feature of the641

OpenBox controller is its ability to merge different processing graphs, from different NFs, into a single642

and shorter processing graph, similar to our SNF. The authors of OpenBox made a similar observation643

as we did regarding the need to classify the traffic of a service chain only once, and then apply a set of644

operations that originate from the different NFs of the chain.645

However, OpenBox does not highly consolidate the result chain-level processing graph for two646

reasons:647

(i) The OpenBox merge algorithm can only merge homogeneous packet modification elements (i.e.,648

elements with the same type). For example, two “Decrement IP TTL” elements, that each decrements649

the TTL field by one, can be merged into a single element that directly decrements the TTL field by two.650

Imagine, however, the case where OpenBox has to merge the NFs of Figure 5. In this example, OpenBox651

cannot merge the “Rewrite Flow” element (that modifies the source and destination IP addresses as well652

17/20

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2477v3 | CC BY 4.0 Open Access | rec: 20 Oct 2016, publ: 20 Oct 2016

as the source port of UDP packets) with the 3 “Decrement IP TTL” elements, since these elements do not653

belong to the same type. This means that the final OpenBox graph will have 2 distinct packet modification654

elements (i.e., 1 “Rewrite Flow” and 1 “Decrement IP TTL”) and each element has to compute the IP and655

UDP checksums separately. Therefore, OpenBox does not completely eliminate redundant operations.656

In contrast, SNF effectively synthesized the operations of all these elements into a single element (see657

Figure 6) that computes the IP and UDP checksums only once. Consequently, SNF produces both a658

shorter processing graph and a synthesized chain with no redundancy, hence achieving lower latency.659

(ii) Although OpenBox can merge the classification elements of a chain into a single classifier,660

the authors have not addressed how they handle the increased complexity of the final classifier. Our661

preliminary experiments showed that in complex use cases, such as the ISP-level traffic classification662

presented in § 6.4, the complexity of the chain-level classifier dramatically increases with increasing663

number of ACL rules. Therefore, SNF implements the lazy subtraction technique proposed by Kazemian,664

Varghese, and McKeown Kazemian et al. (2012). The benefits of this technique are stated in § 5.1.665

Finally, the authors of OpenBox did not stress the limits of the OpenBox framework in their666

performance evaluation. An input packet rate of 1-2 Gbps cannot adequately stress the memory utilization667

of the OBIs. Moreover, there is limited discussion in their paper of how OpenBox exploits the multi-core668

capacities of modern NFV infrastructures. In contrast, in § 6.2, § 6.3, and § 6.4 we demonstrated how669

SNF realizes complex, purely software-based service chains at a 40 Gbps line-rate. This is possible by670

exploiting multiple CPU cores and by fitting most of the data needed by an entire service chain into those671

cores’ L1 caches.672

Scheduling NFs for high throughput. Recently, the E2 framework (Palkar et al., 2015) demonstrated673

a scalable way of deploying NFV services. E2 mainly tackles placement, elastic scaling, and service674

composition by introducing pipelets. A pipelet defines a traffic class and a corresponding DAG of NFs675

that should process this traffic class. SNF’s TCUs are somewhat similar to E2’s pipelets, but SNF aims to676

make them more efficient. Concretely, an SNF TCU is not processed by a DAG of NFs, but rather by a677

highly optimized piece of code (produced by the synthesizer) that directly applies a set of operations to678

this specific traffic class.679

Impact. E2 can use SNF to fit more service chains into one machine, hence postpone its elastic scaling.680

Existing approaches can transparently use our extensions to provide services such as (i) lightweight Xen681

VMs that run synthesized ClickOS instances using netmap network I/O, (ii) parallelized service chains682

using the multi-server, multi-core RouteBricks architecture, and (iii) synthesized chains that are load683

balanced across heterogeneous hardware components (i.e., CPU and GPU) using NBA.684

CONCLUSION685

We have addressed the problem of synthesizing chains of NFs with SNF. SNF requires minimal I/O686

interactions with the NFV platform and applies single-read-single-write operations on the packets, while687

early-discarding irrelevant traffic classes. SNF maintains state across NFs.To realize the above properties,688

we parse the chained NFs and build a classification graph whose leaves represent unique traffic class units.689

In each leaf we perform a set of packet header modifications to generate an equivalent configuration that690

implements the same functionality as the initial chain using a minimal set of elements.691

SNF synthesizes stateful chains that appear in production ISP-level networks realizing high throughput692

and low latency, while outperforming state of the art works.693

REFERENCES694

Anderson, J. W., Braud, R., Kapoor, R., Porter, G., and Vahdat, A. (2012). xOMB: Extensible Open695

Middleboxes with Commodity Servers. In Proceedings of the Eighth ACM/IEEE Symposium on696

Architectures for Networking and Communications Systems, ANCS ’12, pages 49–60, New York, NY,697

USA. ACM.698

Anwer, B., Benson, T., Feamster, N., and Levin, D. (2015). Programming Slick Network Functions. In699

Proceedings of the 1st ACM SIGCOMM Symposium on Software Defined Networking Research, SOSR700

’15, pages 14:1–14:13, New York, NY, USA. ACM.701

Bagnulo, M., Matthews, P., and van Beijnum, I. (2011). Stateful NAT64: Network Address and Protocol702

Translation from IPv6 Clients to IPv4 Servers. Internet Request for Comments (RFC) 6146 (Proposed703

Standard).704

18/20

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2477v3 | CC BY 4.0 Open Access | rec: 20 Oct 2016, publ: 20 Oct 2016

Barbette, T., Soldani, C., and Mathy, L. (2015). Fast Userspace Packet Processing. In Proceedings of705

the Eleventh ACM/IEEE Symposium on Architectures for Networking and Communications Systems,706

ANCS ’15, pages 5–16, Washington, DC, USA. IEEE Computer Society.707

Bremler-Barr, A., Harchol, Y., and Hay, D. (2016). OpenBox: A Software-Defined Framework for708

Developing, Deploying, and Managing Network Functions. In Proceedings of the 2016 Conference on709

ACM SIGCOMM 2016 Conference, SIGCOMM ’16, pages 511–524, New York, NY, USA. ACM.710

Bremler-Barr, A., Harchol, Y., Hay, D., and Koral, Y. (2014). Deep Packet Inspection as a Service. In711

Proceedings of the 10th ACM International on Conference on Emerging Networking Experiments and712

Technologies, CoNEXT ’14, pages 271–282, New York, NY, USA. ACM.713

Canini, M., Venzano, D., Perešı́ni, P., Kostić, D., and Rexford, J. (2012). A NICE Way to Test Openflow714

Applications. In Proceedings of the 9th USENIX Conference on Networked Systems Design and715

Implementation, NSDI’12, pages 10–10, Berkeley, CA, USA. USENIX Association.716

Cisco (2014). Scaling NFV - The Performance Challenge.717

Dobrescu, M. and Argyraki, K. (2014). Software Dataplane Verification. In Proceedings of the 11th718

USENIX Conference on Networked Systems Design and Implementation, NSDI’14, pages 101–114,719

Berkeley, CA, USA. USENIX Association.720

Dobrescu, M., Argyraki, K., Iannaccone, G., Manesh, M., and Ratnasamy, S. (2010). Controlling721

Parallelism in a Multicore Software Router. In Proceedings of the Workshop on Programmable Routers722

for Extensible Services of Tomorrow, PRESTO ’10, pages 2:1–2:6, New York, NY, USA. ACM.723

Dobrescu, M., Egi, N., Argyraki, K., Chun, B.-G., Fall, K., Iannaccone, G., Knies, A., Manesh, M., and724

Ratnasamy, S. (2009). RouteBricks: Exploiting Parallelism to Scale Software Routers. In Proceedings725

of the ACM SIGOPS 22Nd Symposium on Operating Systems Principles, SOSP ’09, pages 15–28, New726

York, NY, USA. ACM.727

Docker (2016). Docker Containers. Accessed: October 17, 2016.728

DPDK (2016). Data Plane Development Kit (DPDK). Accessed: October 17, 2016.729

Emmerich, P., Gallenmüller, S., Raumer, D., Wohlfart, F., and Carle, G. (2015). MoonGen: A Scriptable730

High-Speed Packet Generator. In Proceedings of the 2015 ACM Conference on Internet Measurement731

Conference, IMC ’15, pages 275–287, New York, NY, USA. ACM.732

Enguehard, M. (2016). Hyper-NF: synthesizing chains of virtualized network functions. Master’s thesis,733

KTH Royal Institute of Technology, School of Information and Communication Technology, Kista,734

Stockholm, Sweden. TRITA-ICT-EX, 2016:2.735

European Telecommunications Standards Institute (2012). NFV Whitepaper. https://portal.736

etsi.org/NFV/NFV_White_Paper.pdf.737

Evans, D. (2011). The internet of things: How the next evolution of the internet is changing everything.738

Cisco Internet Business Solutions Group (IBSG), pages 1–11.739

Gember-Jacobson, A., Viswanathan, R., Prakash, C., Grandl, R., Khalid, J., Das, S., and Akella, A.740

(2014). OpenNF: Enabling Innovation in Network Function Control. In Proceedings of the 2014 ACM741

Conference on SIGCOMM, SIGCOMM ’14, pages 163–174, New York, NY, USA. ACM.742

Han, S., Jang, K., Park, K., and Moon, S. (2010). PacketShader: A GPU-accelerated Software Router.743

SIGCOMM Comput. Commun. Rev., 40(4):195–206.744

Hwang, J., Ramakrishnan, K. K., and Wood, T. (2014). NetVM: High Performance and Flexible745

Networking Using Virtualization on Commodity Platforms. In Proceedings of the 11th USENIX746

Conference on Networked Systems Design and Implementation, NSDI’14, pages 445–458, Berkeley,747

CA, USA. USENIX Association.748

Intel (2016). Receiver-Side Scaling (RSS). Accessed: October 17, 2016.749

Katsikas, G. P. (2016). SNF extensions of FastClick’s stateful flow processing elements. Accessed:750

October 17, 2016.751

Kazemian, P., Varghese, G., and McKeown, N. (2012). Header Space Analysis: Static Checking752

for Networks. In Proceedings of the 9th USENIX Conference on Networked Systems Design and753

Implementation, NSDI’12, pages 9–9, Berkeley, CA, USA. USENIX Association.754

Kim, H., Reich, J., Gupta, A., Shahbaz, M., Feamster, N., and Clark, R. (2015a). Kinetic: Verifiable755

Dynamic Network Control. In Proceedings of the 12th USENIX Conference on Networked Systems756

Design and Implementation, NSDI’15, pages 59–72, Berkeley, CA, USA. USENIX Association.757

Kim, J., Huh, S., Jang, K., Park, K., and Moon, S. (2012). The Power of Batching in the Click Modular758

Router. In Proceedings of the Asia-Pacific Workshop on Systems, APSYS ’12, pages 14:1–14:6, New759

19/20

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2477v3 | CC BY 4.0 Open Access | rec: 20 Oct 2016, publ: 20 Oct 2016

https://portal.etsi.org/NFV/NFV_White_Paper.pdf
https://portal.etsi.org/NFV/NFV_White_Paper.pdf
https://portal.etsi.org/NFV/NFV_White_Paper.pdf

York, NY, USA. ACM.760

Kim, J., Jang, K., Lee, K., Ma, S., Shim, J., and Moon, S. (2015b). NBA (Network Balancing Act): A761

High-performance Packet Processing Framework for Heterogeneous Processors. In Proceedings of the762

Tenth European Conference on Computer Systems, EuroSys ’15, pages 22:1–22:14, New York, NY,763

USA. ACM.764

Kohler, E., Morris, R., Chen, B., Jannotti, J., and Kaashoek, M. F. (2000). The Click Modular Router.765

ACM Trans. Comput. Syst., 18(3):263–297.766

Kuzniar, M., Peresini, P., Canini, M., Venzano, D., and Kostić, D. (2012). A SOFT Way for Openflow767

Switch Interoperability Testing. In Proceedings of the 8th International Conference on Emerging768

Networking Experiments and Technologies, CoNEXT ’12, pages 265–276, New York, NY, USA. ACM.769

Liu, W., Li, H., Huang, O., Boucadair, M., Leymann, N., Fu, Q., Sun, Q., Pham, C., Huang, C., Zhu, J.,770

and He, P. (2014). Service Function Chaining (SFC) General Use Cases. Internet-Draft draft-liu-sfc-771

use-cases-08, IETF Secretariat. Expired on March 21, 2015.772

Martins, J., Ahmed, M., Raiciu, C., Olteanu, V., Honda, M., Bifulco, R., and Huici, F. (2014). ClickOS773

and the Art of Network Function Virtualization. In Proceedings of the 11th USENIX Conference774

on Networked Systems Design and Implementation, NSDI’14, pages 459–473, Berkeley, CA, USA.775

USENIX Association.776

McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J., Shenker, S., and777

Turner, J. (2008). OpenFlow: Enabling Innovation in Campus Networks. SIGCOMM Comput. Commun.778

Rev., 38(2):69–74.779

Palkar, S., Lan, C., Han, S., Jang, K., Panda, A., Ratnasamy, S., Rizzo, L., and Shenker, S. (2015). E2:780

A Framework for NFV Applications. In Proceedings of the 25th Symposium on Operating Systems781

Principles, SOSP ’15, pages 121–136, New York, NY, USA. ACM.782

Penno, R., Wing, D., and Boucadair, M. (2013). PCP Support for Nested NAT Environments. Internet-783

Draft draft-penno-pcp-nested-nat-03, IETF Secretariat. Expired on July 25, 2013.784

Perreault, S., Yamagata, I., Miyakawa, S., Nakagawa, A., and Ashida, H. (2013). Common Requirements785

for Carrier-Grade NATs (CGNs). Internet Request for Comments (RFC) 6888 (Best Current Practice).786

Quinn, P. and Nadeau, T. (2015). Problem Statement for Service Function Chaining. Internet Request for787

Comments (RFC) 7498 (Informational).788

Rizzo, L. (2012). Netmap: A Novel Framework for Fast Packet I/O. In Proceedings of the 2012 USENIX789

Conference on Annual Technical Conference, USENIX ATC’12, pages 9–9, Berkeley, CA, USA.790

USENIX Association.791

SDX Central (2015). Performance - Still Fueling the NFV Discussion.792

Sekar, V., Egi, N., Ratnasamy, S., Reiter, M. K., and Shi, G. (2012). Design and Implementation793

of a Consolidated Middlebox Architecture. In Proceedings of the 9th USENIX Conference on794

Networked Systems Design and Implementation, NSDI’12, pages 24–24, Berkeley, CA, USA. USENIX795

Association.796

Sherry, J., Hasan, S., Scott, C., Krishnamurthy, A., Ratnasamy, S., and Sekar, V. (2012). Making797

Middleboxes Someone else’s Problem: Network Processing As a Cloud Service. In Proceedings of the798

ACM SIGCOMM 2012 Conference on Applications, Technologies, Architectures, and Protocols for799

Computer Communication, SIGCOMM ’12, pages 13–24, New York, NY, USA. ACM.800

Sun, W. and Ricci, R. (2013). Fast and Flexible: Parallel Packet Processing with GPUs and Click. In801

Proceedings of the Ninth ACM/IEEE Symposium on Architectures for Networking and Communications802

Systems, ANCS ’13, pages 25–36, Piscataway, NJ, USA. IEEE Press.803

Taylor, D. E. and Turner, J. S. (2007). ClassBench: A Packet Classification Benchmark. IEEE/ACM804

Trans. Netw., 15(3):499–511.805

Woo, S. and Park, K. (2012). Scalable TCP Session Monitoring with Symmetric Receive-side Scaling.806

KAIST Technical Report. pages 1–7.807

Zhang, W., Liu, G., Zhang, W., Shah, N., Lopreiato, P., Todeschi, G., Ramakrishnan, K., and Wood, T.808

(2016). OpenNetVM: A Platform for High Performance Network Service Chains. In Proceedings of the809

2016 ACM SIGCOMM Workshop on Hot Topics in Middleboxes and Network Function Virtualization.810

ACM.811

20/20

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2477v3 | CC BY 4.0 Open Access | rec: 20 Oct 2016, publ: 20 Oct 2016

