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ABSTRACT12

In this paper we introduce SNF, a framework that synthesizes (S) network function (NF) service chains

by eliminating redundant I/O and repeated elements, while consolidating stateful cross layer packet

operations across the chain. SNF uses graph composition and set theory to determine traffic classes

handled by a service chain composed of multiple elements. It then synthesizes each traffic class using a

minimal set of new elements that apply single-read-single-write and early-discard operations.
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Our SNF prototype takes a baseline state-of-the-art network functions virtualization (NFV) framework to

the level of performance required for practical NFV service deployments. Software-based SNF realizes

long (up to 10 NFs) and stateful service chains that achieve line-rate 40 Gbps throughput (up to 8.5x

greater than the baseline NFV framework). Hardware-assisted SNF, using a commodity OpenFlow switch,

shows that our approach scales at 40 Gbps for Internet Service Provider-level NFV deployments.
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INTRODUCTION23

Middleboxes hold a prominent position in today’s networks as they substantially enrich the dataplane’s24

functionality (Sherry et al., 2012; Gember-Jacobson et al., 2014). However, to manage traditional25

middleboxes requires costly capital and operational expenditures; hence, network operators are adopting26

network functions virtualization (NFV) (European Telecommunications Standards Institute, 2012).27

Among the first challenges in NFV was to scale software-based packet processing by exploiting the28

characteristics of modern hardware architectures. To do so, several works leveraged parallelism first across29

multiple servers and then across multiple cores, sockets, memory controllers, and graphical processing30

units (GPUs) (Han et al., 2010; Kim et al., 2015b) within a single server (Dobrescu et al., 2009, 2010).31

Attaining hardware-based forwarding performance was difficult to achieve, even with highly-scalable32

software-based packet processing frameworks. The main reason was the poor I/O performance of these33

frameworks. Thus, the focus of both industry and academia shifted to customizing the operating systems34

(OSs) to achieve high-speed network I/O. For example, by using batch packet processing (Kim et al.,35

2012), static memory pre-allocation, and zero copy data transfers (Rizzo, 2012; DPDK, 2016).36

Modern applications require combinations of network functions (NFs), also known as service chains,37

to satisfy their services’ quality requirements (Quinn and Nadeau, 2015). With all the above advancements38

in place, NFV instances achieved line-rate forwarding at tens of millions of packets per second (Mpps);39

however, performance issues remain when several NFs are chained together. State-of-the-art frameworks40

such as ClickOS (Martins et al., 2014) and NetVM (Hwang et al., 2014) have reported substantial41

throughput degradation when realizing chains of interconnected, monolithic NFs.42

The first consolidation attempts targeted application layer (e.g., deep packet inspection (DPI)) (Bremler-43

Barr et al., 2014) and session layer (e.g., HTTP) (Sekar et al., 2012) consolidation. However, a lot of44

redundancy still resides lower in the network stack. Anderson et al. (2012) describe how xOMB allows45

them to build programmable and extensible open middleboxes specialized for request/response based46

communication. In addition, Slick (Anwer et al., 2015) introduced a programming language to deploy47
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network-wide service chains, driven by a controller. Slick avoids redundant operations and shares common48

elements; however, its decentralized consolidation still realizes a chain of NFs as distributed processes.49

Most recently, E2 (Palkar et al., 2015) showed how to schedule NFs across a cluster of machines for high50

throughput. Also, OpenBox (Bremler-Barr et al., 2016) introduced an algorithm that merges processing51

graphs from different NFs into a single processing graph. Contemporaneously with E2 and OpenBox, our52

work implements the mechanisms fully specified in (Enguehard, 2016) and represents the next logical53

step of high-performance NFV research ∗.54

In the case of network-wide deployments, chains suffer from the latency imposed by interconnecting55

different machines, processes, and switches, along with potential virtualization overheads. In the case56

of single-server deployments, where the NFs are pinned to a specific (set of) core(s), throughput is57

bounded by the increasing number of context switches as the length of the chain increases. Based on58

our measurements, context switches cause a domino effect on cache utilization because of continuous59

data invalidations and the number of CPU cycles spent forwarding packets along the chain. This leads to60

increased end-to-end packet latency and considerable variation in latency (jitter).61

In this paper, we describe the design and implementation of the Synthesized Network Functions (SNF),62

our approach for dramatically increasing the performance of NFV service chains. The idea in SNF is63

simple: create spatial correlation to execute service chains as close as possible to the speed of CPU cores64

operating on the fastest, L1 cache of modern multi-core machines. SNF leverages the ever-continuing65

increases in core counts of modern machines and the recent advances in user-space networking.66

SNF automatically derives traffic classes of packets that are traversing a provider-specified service67

chain of NFs. Packets in a traffic class are all processed the same way. Additionally, SNF handles stateful68

NFs. Using its understanding of each of the per-traffic class chains, SNF then synthesizes equivalent,69

high-performance NFs for each of the traffic classes. In a straightforward SNF deployment, one CPU core70

processes one traffic class. In realistic scenarios, SNF allocates multiple CPU cores to execute different71

sets of traffic classes in isolation (see § 2).72

SNF’s optimization process performs the following tasks: (i) consolidates all the read operations of a73

traffic class into one element, (ii) early-discards those traffic classes that lead to packet drops, and (iii)74

associates each traffic class with a write-once element. Moreover, SNF shares elements among NFs to75

avoid unnecessary overhead, and compresses the number and length of the chain’s traffic classes. Finally,76

SNF scales with an increasing number of NFs and traffic classes.77

This architecture shifts the challenge to packet classification, as one component of SNF has to78

classify an incoming packet into one of the pre-determined traffic classes, and pass it to the synthesized79

function. We extended popular, open-source software to improve the performance of software-only packet80

classification. In addition, we employed an OpenFlow (McKeown et al., 2008) switch as a packet classifier81

demonstrating the performance possible by a sufficiently powerful programmable network interface82

(commonly abbreviated as NIC). The benefits for network operators are multifold: (i) SNF dramatically83

increases the throughput of long NF chains, and achieves low latency, and (ii) it does so while preserving84

the functionality of the original service chains.85

We implemented the SNF design principles into an appropriately modified version of the Click (Kohler86

et al., 2000) framework. To demonstrate SNF’s superior performance, we compare it against the fastest87

Click variant todate, called FastClick (Barbette et al., 2015). To show SNF’s generality we tested its88

performance in three uses cases: (i) a chain of software routers, (ii) nested network address and port89

translators (NAPTs) (Liu et al., 2014), and (iii) access control lists (ACLs) using actual NF configurations90

taken from Internet Service Providers (ISPs) (Taylor and Turner, 2007).91

Our evaluation shows that software-based SNF achieves 40 Gbps, even with small Ethernet frames,92

across long (up to 10 NFs), stateful chains. In particular, it achieves up to 8.5x more throughput and 10x93

lower latency with 2-3.5x lower latency variance than the original NF chains implemented with FastClick-94

when running on the same hardware. Offloading traffic classification to a commodity OpenFlow switch95

allows SNF to realize realistic ISP-level chains at 40 Gbps (for most of the frame sizes), while bounding96

the median chain latency below 100 µs (measured from separate sending and receiving machines).97

In the rest of this paper, we provide an overview of SNF in § 2. We introduce our synthesis approach98

in § 3 and a motivating example in § 4. Implementation details and performance evaluation are presented99

in § 5 and § 6 respectively. We discuss verification aspects in § 7. § 8 discusses the limitations of this100

work and § 9 positions our work with respect to the state of the art. Finally, § 10 concludes this paper.101

∗We provide a detailed comparison of our work with both E2 and OpenBox in § 9.

2/20

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2477v2 | CC BY 4.0 Open Access | rec: 28 Sep 2016, publ: 28 Sep 2016



SNF OVERVIEW102

The idea of synthesizing network service components consorts with a powerful property: the data103

correlation of network traffic. In a network system, this property is mapped to a spatial locality with104

respect to the caches. SNF aggregates parts of the flow space into traffic class units (TCUs) (the detailed105

definition is in § 3.1), which are then mapped to sets of (re)write operations. By carefully setting the CPU106

affinity of each TCU, this aggregation enforces a large degree of correlation in the traffic requests (seen as107

logical units of data) resulting in high cache hit rates.108

Our overarching goal is to design a system that efficiently utilizes per core and across cores cache109

hierarchies. With this in mind, we design SNF based on Figure 1. Let us assume that a network operator110

wants to deploy a service chain between network domains 1 and 2. For simplicity let us also assume that111

there is one NIC per domain. A set of dedicated cores (i.e., Core 1 and 2 for the NICs facing domains 1112

and 2, respectively) undertakes to read and write frames at line-rate. Once a set of frames is received, say113

by core 1, it is transferred to the available processing cores (i.e., Cores 3 to k). Frame transfers can occur114

at high speed via a shared cache, which has substantial capacity in modern hardware architectures.115

Core 1

Multi-threaded SNF Classifier with 
chain-level traffic class units (TCUs)

SNF Rewriter-Core 3

SNF Rewriter-Core 4

SNF Rewriter-Core 5

SNF Rewriter-Core k

Traffic
Domain 

1

Symmetric Receive-Side Scaling

Bi-directional Flow

Traffic
Domain 

2
...

Dedicated cores per NIC for I/O

Core 2

SNF Synthesizer with stateful per core rewriters

Figure 1. An overview of SNF running on a machine with k CPU cores and 2 NICs. Dedicated CPU

cores per NIC deliver bi-directional flows to packet processing CPU cores via Symmetric RSS. Processing

cores concurrently classify traffic and access individual, stateful SNF rewriters to modify the traffic.

Once a processing core acquires a frame, it executes SNF as shown in Figure 1. First the core116

classifies the frame (green rectangles in Figure 1) in one of the chain’s TCUs and then applies the117

required synthesized modifications (blue rounded-rectangle in Figure 1) that correspond to this TCU. Both118

classification and modification processes are highly parallelized as different cores can simultaneously119

drive frames that belong to different TCUs out of the chain. We detail both processes in § 3.2.120

However, the key point of Figure 1 lies in the fact that a core’s pipeline shares nothing with any other121

pipeline. We employed the symmetric Receive Side Scaling (RSS) (Intel, 2016) scheme by Woo and Park122

(2012) to hash input traffic in a way that a flows’ bi-directional packets are always served by the same123

SNF rewriter, hence the same processor. This scheme allows a processing core to drive a TCU at the124

maximum processing speed of the machine.125

Main Objectives126

The primary goal of SNF is to eliminate redundancy along the chain. The sources of redundancy in127

current NF chains and the solutions that our approach offers are:128

A. Multiple network I/O interactions between the chain and the backend dataplane occur because each129

NF is an individual process. We solve this by placing NF chains in a single logical entity. Once a packet130

enters this entity, it does not exit until all the chain operations are applied.131

B. Late packet drops appear in NF chain implementations when packets unnecessarily pass through132

several elements before getting dropped. SNF discards these packets as early as possible.133

C. Multiple read operations on the same field occur because each NF contains its own decision elements.134

A typical example is an Internet protocol (IP) lookup in a chain of routers. While SNF is parsing the135
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initial chain, it marks the read operations and constructs traffic classes encoded as paths of elements in a136

directed acyclic graph (DAG). Then, SNF synthesizes these elements into a single classifier to realize137

both routing and filtering.138

D. Multiple write operations on the same field overwrite previous values. For example, the IP checksum139

is modified twice when a decrement time to live (TTL) operation follows a destination IP address140

modification. SNF associates a set of (stateful) write operations with a traffic class, hence it can modify141

each field of a traffic class all at once.142

Next, we describe in detail how SNF automatically synthesizes the equivalent of a service chain.143

SNF ARCHITECTURE144

Taking into account the main objectives listed above, this section presents the design of SNF. § 3.1145

defines the synthesis abstraction, § 3.2 presents the formal synthesis steps, and § 3.3 describes how146

stateful functions are realized.147

Abstract Service Chain Representation148

The crux of SNF’s design is an abstract service chain representation. We begin by describing a149

mathematical model to represent packet units in § 3.1.1. Next, we model an NF’s behavior in an abstract150

way in § 3.1.2. Finally, we define our target service-level network function in § 3.1.3.151

Packet Unit Representation152

Inspired by the approach of Kazemian et al. (2012), we represent each packet as a vector in a multi-

dimensional space. However, we follow a protocol-aware approach by dividing a packet according to the

unsigned integer value of the different header fields. Thus, if p is an IPv4/TCP packet, we represent it as:

p = (pip version, pip ihl, ..., ptcp sport, ptcp dport, ...)

From now on, we call P the space of all possible packets. For a given header field f of length l bits, we

define a field filter Ff as a union of disjoint intervals (0,2l−1):

Ff =
⋃

si⊂(0,2l−1)

si where

{

∀i, si is an interval

∀i 6= j, si∩ s j = /0

This allows grouping packets into a data structure that we call a packet filter, defined as a logical

expression of the form:

φ = {(p1, ..., pn) ∈ P|(p1 ∈ F1)∧ ...∧ (pn ∈ Fn)}

where (F1, ...,Fn) are field filters. The space of all possible packet filters is Φ. Then:

u :

{

φ 7→ (F1, ..,Fn)
Φ 7→ {(F1, ..,Fn)|∀i,Fi}(F1,..,Fn)

is a bijection and we can assimilate φ to (F1, ...,Fn).153

If φ1 and φ2 are two packet filters defined by their field filters (F1,1, ...,F1,n) and (F2,1, ...,F2,n), then154

φ1∩φ2 is also a packet filter and is defined as (F1,1∩F2,1, ...,F1,n∩F2,n).155

Network Function Representation156

Network functions typically apply read and write operations to traffic. While our packet unit

representation allows us to compose complex read operations across the entire header space, we still need

the means to modify traffic. For this, we define an operation as a function ω : P 7→Φ that associates a set

of possible outputs to a packet. We add the additional constraint that for any given operation ω , there is

ω1, ...,ωn ∈ N
N such as:

∀p = (p1, ..., pn) ∈ P,ω(p) = (ω1(p1), ...,ωn(pn))

Note that we use sets of possible values (instead of fixed values) to model cases where the actual value is157

chosen at run-time (e.g., source port in an S-NAT). Therefore, SNF does support both deterministic and158

conditional operations.159
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If we define Ω as the space of all possible operations, we can express a processing unit PU as a

conditional function that maps packet filters to operations:

PU : p 7→











ω1(p) if p ∈ φ1

...

ωm(p) if p ∈ φm

where (ω1, ...,ωm) ∈Ω
m are operations and (φ1, ...,φm) ∈Φ

m are mutually distinct packet filters.160

An NF is simply a DAG of PUs. For instance, SNF can express a simplified router’s NF as follows:

NFROUT ER : PU{Lookup}→ PU{DecIPT T L}→ PU{IPChecksum}→ PU{MAC}

where, 4 PUs take place. An IP lookup PU is followed by decrement IP TTL, IP checksum update, and161

source and destination MAC address modification PUs.162

The Synthesized Network Function163

In the previous section we laid the foundation to construct NFs as graphs of PUs. Now, at the service

level where multiple NFs can be chained, we define a TCU as a set of packets/flows, represented by

disjoint unions of packet filters, that are processed in the same fashion (i.e., undergo the same set of

synthesized operations). This definition allows us to construct the service chain’s SynthesizedNF function

(in short SNF) as a DAG of PUs, or equivalently, as a map of TCUs that associates operations to their

packet filters:

SynthesizedNF : Φ 7→Ω

Formally, the complexity of the SynthesizedNF is upper-bounded by the function O(n ·m), where n is the164

number of TCUs and m is the number of packet filters (or conditions) per TCU. Each TCU turns a textual165

packet filter specification (such as “proto tcp && dst net 10.0/16 && src port 80”) into a binary decision166

tree traversed by each packet. Therefore, in the absolute worst case, an input packet might traverse a167

skewed binary tree of the last TCU, yielding the above complexity bound. The average case occurs168

in a relatively balanced tree (O(logm)), in which case the average complexity of the SynthesizedNF is169

bounded by the function O(n · logm).170

Synthesis Steps171

Leveraging the abstractions introduced in § 3.1, we detail the steps that translate a set of NFs into an172

equivalent SNF. The SNF architecture is comprised of three modules (shown in Figure 2). We describe173

each module in the following sections.174

Service Chain Configurator175

The top left box in Figure 2 is the Service Chain Configurator; the interface that a network operator176

uses to specify a service chain to be synthesized by SNF. Two inputs are required: a set of service177

components (i.e., NFs), along with their topology. SNF abstracts packet processing by using graph theory.178

That said, a chain is described as a DAG of interconnected NFs (i.e., chain-level DAG), where each NF is179

a DAG of abstract packet processing elements (i.e., NF DAG). The NF DAG is implementation-agnostic,180

similar to the approaches of Bremler-Barr et al. (2016); Anwer et al. (2015); Kohler et al. (2000). The181

network operator enters these inputs in a configuration file using the following notation:182

Vertices (NFs): Each service component (i.e., an NF) of a chain is a vertex in the chain-level DAG183

for which, the Service Chain Configurator expects a name and an NF DAG specification (see Figure 2).184

Each NF can have any number of input and output ports as specified by its DAG. An NF with one input185

and one output interface is denoted as: [inter f ace0]NF1[inter f ace1].186

Edges (NF inter-connections): The connections between NFs are the edges of the chain-level DAG.187

We interconnect two NFs as follows: NF1[inter f ace1]→ [inter f ace0]NF2.188

No loops: Since the chain-level DAG is acyclic by construction, SNF must prevent loops (e.g., two189

interfaces of the same NF cannot be connected to each other).190

Entry points: In addition to the internal connections within a chain (i.e., connections between NFs),191

the Service Chain Configurator also requires the entry points of the chain. These points are the interfaces192

of the chain with the outside world and indicate the existence of traffic sources. An interface that is neither193

internal nor an entry point can only be an end-point; these interfaces are discovered by the Service Chain194

Parser as described below.195
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NFCHAIN
(pkt,port)

DISCARDCHAIN

NFK(pkt,port)
NFK

NF 
Specifications

NFKNF 
Topology

NFM

NFL

NFL NFM
RDNFK WRNFK

Chain NFs

NFM(pkt,port)

RDNFM WRNFM

NFL(pkt,port)

RDNFL WRNFL

RDCHAIN

Decompose 
Read & Write 
Operations

WRCHAIN

State 
Management

1. Traverse 
Synthesized-DAG

Build Synthesized-DAG of Processing Units

2. Build service-level 
traffic class units

Conditions on 
header fields

Single Read per 
Traffic Class Unit

Single Write 
per Traffic Class Unit

Early drop after 
single read

3. Map traffic class 
units to write operations

4. Generate chain-level 
NF

Service Chain Configurator Service Chain Parser

Service Chain Synthesizer

Figure 2. The SNF framework. The network operator inputs a service chain and its topology (top left part).

SNF parses the chained NFs, decomposes their read and write parts, and composes a Synthesized-DAG

(top right part). While traversing the Synthesized-DAG, SNF builds the TCUs of the chain, associates

them with write/discard operations, leading to a synthesized chain-level NF.

Service Chain Parser196

The Service Chain Configurator outputs a chain-level DAG that describes the chain to the Service197

Chain Parser. As shown in the top right box of Figure 2, the parser iterates through all of the input NF198

DAGs (i.e., one per NF); while parsing each NF DAG, the parser marks each element according to its199

type. We categorize NF elements in four types: I/O, parsing, read, and write elements. As an example200

NF, consider a router that consists of interconnected elements, such as ReadFrame, StripEthernetHeader,201

IPLoookUp, and DecrementIPTTL. ReadFrame is an I/O element, StripEthernetHeader is a parsing202

element (moves a frame’s pointer), IPLoookUp is a read element, while DecrementIPTTL is a write203

element.204

The parser stitches together all the NF DAGs based on the topology graph and builds a Synthesized-205

DAG (see Figure 2) that represents the entire chain. This process begins from an entry point and searches206

recursively until an output element is found. If the output element leads to another NF, the parser keeps a207

jump pointer and cross checks that the encountered interfaces match the interfaces declared in the Service208

Chain Configurator. After collecting this information, the parser omits the I/O elements because one of209

SNF’s objectives is to eliminate inter-NF I/O interactions. The process continues until an output element210

that is not in the topology is found; such an element can only be an end-point. Along the path to an211

output element the parser separates the read from the write elements and transforms NF elements into212

PUs, according to § 3.1.2. Next, the parser considers the next entry point until all are exhausted.213

The final output of the Service Chain Parser is a large Synthesized-DAG of PUs that models the214

behavior of the entire input service chain.215

Service Chain Synthesizer216

After building the Synthesized-DAG, our next target is to create the SynthesizedNF introduced217

in § 3.1.3. To do so, we need to derive the SNF’s TCUs. To build a TCU we execute the following steps:218

from each entry port of the Synthesized-DAG, we start from the identity TCU tcu0 ∈ Φ×Ω defined219

as: tcu0 = (P, idP), where idP is the identity function of P, i.e., ∀x ∈ P, idP(x) = x. Conceptually, tcu0220

represents an empty packet filter and no operations, which is equivalent to a transparent NF. Then, we221

search the Synthesized-DAG, while updating our TCU as we encounter conditional (read) or modification222

(write) elements. Algorithms 1 and 2 build the TCUs using an adapted depth-first search (DFS) of the223

Synthesized-DAG.224

Now let us consider a TCU t, defined by its packet filter φ and its operation ω , that traverses a PU U225

using the adapted DFS. The TRAVERSE function in Algorithm 1 creates a new TCU for each possible226
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pair of (ωi,φi). In particular, it creates a new packet filter φ ′ returned by the INTERSECT function (line 3).227

This function is described in Algorithm 2 and considers previous write operations while updating a packet228

filter. For each field filter φi of a packet filter, the function checks whether the value has been modified by229

the corresponding ωi operation (condition in line 8) and whether the written value is in the intersecting230

field filter φ 0
i (line 10). It then updates the TCU by intersecting it with the new filter, if the value has not231

been modified (action in line 8). After the INTERSECT function returns in Algorithm 1, TRAVERSE creates232

a new operation by composing ω and ωi (line 4).233

The recursive algorithm terminates in two cases: (i) when the packet filter of the current TCU is the234

empty set, in which case the function does not return anything, (ii) when the PU U does not have any235

successors, in which case it returns the current TCUs. In the latter case, the returned TCUs comprise the236

final SynthesizedNF function.237

Algorithm 1 Building the SNF TCUs

1: function TRAVERSE(t = (φ ,ω),U = {(φi,ωi)i≤m})
2: for i ∈ (1,m) do0

3: φ ′← INTERSECT(t,φi)

4: ω ′← ωi ◦ω

5: t ′ = (φ ′,ω ′)
6: TRAVERSE(t ′,U.successors[i])

Algorithm 2 Intersecting a TCU with a filter

1: function INTERSECT(t = (φ ,ω),φ 0)

2: φ ′← P

3: (ω1, ...,ωn)← ω.COORDINATES

4: (φ1, ...,φn)← φ .COORDINATES

5: (φ 0
1 , ...,φ

0
n )← φ 0

.COORDINATES

6: (φ ′1, ...,φ
′
n)← φ ′.COORDINATES

7: for i ∈ (1,n) do

8: if ωi = idN then φ ′i ← φi∩φ 0
i

9: else

10: if ωi(φi)⊂ φ 0
i then φ ′i ← φi

11: elseφ ′i ← /0

12: return φ ′

238

Managing Stateful Functions239

A difficulty when synthesizing NF chains is managing successive stateful functions. It is crucial to240

ensure that the states are properly located in a synthesized NF and that every packet is matched against241

the correct state table. At the same time, SNF should hold the promise that NFV service chains must be242

realized without redundancy, hence single-read and single-write operations must be applied per packet.243

To highlight the challenges of maintaining the state in a chain of NFs, consider the example topology244

shown in Figure 3. In this example, a large network operator has run out of private IPv4 addresses in the245

10.0/8 prefix and has been forced to share the same network prefix between two distinct zones (i.e., zones246

1 and 2), using a chain of NAPTs. This is not unlikely to happen, as an 8-byte network prefix contains less247

than 17 million addresses and recent surveys have predicted that 50 billion addresses will be connected to248

the Internet by 2020 (Evans, D., 2011).249

Consolidating this chain of NFs into a single SNF instance poses a problem. That is, traffic originating250

from zones 1 and 2 shares the same source IP address and port range, but to ensure that all the traffic is251

translated properly, the corresponding synthesized chain must share their NAPT table. However, since252

traffic also shares the same destination prefix (i.e., towards the same Internet gateway), a host from the253

outside world cannot possibly distinguish the zone where the traffic is originating from.254

Obviously, the question that SNF has to address in general, and particularly in this example is: “How255

can we synthesize a chain of NFs, ensuring that (i) traffic mappings are unique and (ii) no redundant256

operations will be applied?” To solve this conundrum, the SNF design respects the following properties:257

NAPT 2NAPT 1Zone 1
10.0/8

Zone 2
10.0/8

Internet

Figure 3. Example of stateful NAPT chains, where two zones share the same IPv4 prefix.
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Property 1 We enforce the uniqueness of flow mappings by ensuring that all egress traffic that shares258

the same last stateful (re)write operation also shares the same state table.259

Property 2 The state table of SNF must be origin-aware. To redirect ingress traffic towards the260

correct interface, while respecting the single-read principle of SNF, the SNF state table261

must collocate flow information and the origin interface for each flow.262

To generalize the state management problem, Figure 4 shows how SNF handles stateful configurations263

with e.g., three egress interfaces. We apply “Property 1” by having exactly one stateful (re)write element264

(denoted as Stateful RW) per egress interface. We apply “Property 2” by having one input port in each of265

these (re)write elements, associated with an ingress interface. Therefore, a state table in SNF not only266

contains flow-related information, but also keeps a linking of a flow entry with its origin interface.

Outbound Traffic
Stateful
RW 1

ingress
if1

ingress
if2

egress
if1

egress
if2

egress
if3

Inbound Traffic

Classifier

Classifier

Classifier

Classifier

Classifier

ingress
if1

ingress
if2

Drop Drop

Stateful
RW 2

Stateful
RW 3

Stateful
RW 1

Stateful
RW 2

Stateful
RW 3

Figure 4. State management in SNF.
267

A MOTIVATING USE CASE268

To understand how SNF works and what benefits it can offer, we quantify the processing and I/O269

redundancies in an example use case of an NF chain and then compare it to its synthesized counterpart.270

We use Click to specify the NF DAGs of this example, but SNF is applicable to other frameworks.271

The example chain consists of a NAPT, a L4 firewall (FW), and a L3 load balancer (LB) that process272

transmission control protocol (TCP) and user datagram protocol (UDP) traffic as shown in Figure 5.

NF1  - NAPT

ReadFrame
192.168.0.1

Strip Ethernet Header

Destination IP LookUp
192.168.0/24 → 0
10.1/16          → 1
0.0.0.0/0        → 2

Read IP Address

Decrement IP TTL

IP Fragmentation
MTU 1500 bytes

Rewrite Flow
UDP->ip_src 10.0.0.1,

port_src 1000-9000
TCP->ip_dst 10.1.1.2)

Encapsulate Ethernet
Src:MAC1, Dst:MAC2

Strip Ethernet Header

Decrement IP TTL

IP Fragmentation
MTU 1500 bytes

Filter IP Traffic
allow src IP 10.0.0.1 

&& 
udp_dst port 1234,

drop the rest

Encapsulate Ethernet
Src:MAC3, Dst:MAC4

Strip Ethernet Header

Decrement IP TTL

IP Fragmentation
MTU 1500 bytes

Rewrite Flow
Apply Round-Robin 

(RR) to dst IP 
addresses

10.0.1.1, 10.0.1.2

Encapsulate Ethernet
Src:MAC5, Dst:MAC6

NF2  - L4 FW NF3  - L3 LB

 WriteFrame

Classify IP Traffic
UDP, TCP, drop

ReadFrame
10.0.0.2

 WriteFrame  WriteFrame

ReadFrame
10.0.0.3

Domain 
10.1/16

Domain 
10.0/16

Figure 5. The internal components of an example NAPT - L4 FW - L3 LB chain.
273
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The TCP traffic is NAPT’ed in the first NF and then leaves the chain, while UDP is filtered at the FW274

(the second NF) and the UDP datagrams with destination port 1234 are load balanced across two servers275

by the last NF. For simplicity, we discuss only the traffic going in the direction from the NAPT to the LB.276

The rectangular operations in Figure 5 are interface-dependent, e.g., an “Encapsulate Ethernet”277

operation encapsulates the IP packets in Ethernet frames before passing them to the next NF where a278

“Strip Ethernet Header” operation turns them back into IP packets. Such operations occur 3 times because279

there are 3 NFs, instead of only once (because the processing operates at the IP layer). Ideally, strip280

should be applied before, and Ethernet encapsulation after all of the IP processing operations. Similarly,281

the “IP Fragmentation” should only be applied before the final Ethernet encapsulation.282

The remaining operations (illustrated as rounded rectangles) of the three processing stages are283

those that (i) make decisions based upon the contents of specific packet fields (read operations with a284

solid round outline, e.g., “Classify IP Traffic” and “Filter IP Traffic”) or (ii) modify the packet header285

(rewrite operations with a blue dashed outline e.g., “Rewrite Flow” and “Decrement IP TTL”). We286

found redundancy in both types of operations. In the read operations, one IP classifier is sufficient to287

accommodate the three traffic classes of this example and perform the routing. Thus, all the round-outlined288

operations with solid lines (green) can be replaced by a single “Classify IP Traffic” operation.289

Large savings are also possible with the rewrite operations. For example, the initial chain calculates290

the TTL field 3 times and IP checksum 5 times, whereas only one computation for these fields suffices291

in the synthesized chain. Based on our measurements on an Intel Xeon E5 processor the checksum292

calculations cost 10-40 CPU cycles/packet. By integrating the “Decrement IP TTL” into the “Rewrite293

Flow” operation and enforcing the checksum calculation only once, saves 237 CPU cycles/packet.294

Figure 6 depicts a synthesized version of the NF chain shown in Figure 5. Following the SNF paradigm295

presented in § 3, the synthesized chain forms a graph with two main parts. The left-most part (rounded296

rectangles with solid outline in Figure 6) encodes all the read operations by composing paths that begin297

from a specific interface and traverse the three traffic classes of this chain, until a packet is output or298

dropped. Each path keeps a union of filters that represents the header space that matches the respective299

traffic class. In this example, the filter for e.g., the allowed UDP packets is the union of the protocol and300

destination port numbers. Such a filter is part of a classifier whose output port is linked with a set of write301

operations (dashed vertices in Figure 6) associated with this traffic class (right-most part of the graph).302

As shown in Figure 6, with SNF a packet passes through all the read operations once (guaranteeing303

a single-read) and either the packet is discarded early or each header field is written once (ensuring a304

single-write) before exiting the chain.305

Synthesizing the counterpart of this example implies several code modifications to avoid the306

redundancy caused by the design of each NF. To apply a per flow, per-field single-write operation we307

ensure that the “Rewrite Flow” will smartly calculate the checksums once IP addresses, ports, and the IP308

TTL fields are written. Therefore, in this example we saved four unnecessary operations (3 “Decrement IP309

TTL” and 1 “Rewrite Flow”) and four checksum calculations (3 IP and 1 IP/UDP). Moreover, integrating310

all decisions (i.e., routing, filtering) in one classifier caused this operation to be slightly heavier, but saved311

another two redundant function calls to “Destination IP LookUp” and “Filter IP Traffic” respectively.312

The final form of the synthesized chain requires only 5 processing operations to transfer the UDP313

datagrams along the entire chain. The initial chain implements the same functionality using 18 processing314

Rewrite Flow
ip_dst: 10.1.1.2

Classify IP 
Traffic ● Rewrite a traffic class at once.

● Keep state.

Strip Ethernet 
Header

Encapsulate 
Ethernet

Src:MAC1,Dst:MAC6

ReadFrame
192.168.0.1

WriteFrame
To 10.0/16

Early Discard

Rewrite Flow

Synthesized read
operations

Synthesized write operations

udp dst 1234
tcp
all

ip_src: 10.0.0.1,
ip_dst: RR(10.0.1.1/10.0.1.2), 

port_src: 1000-9000
IP 

Fragmentation
MTU 1500 bytes

A unique set of header 
fields for each traffic class.

3 x Decrement IP TTL

IP/UDP Checksum once 

IP Checksum once 

1 x Decrement IP TTL

Packets to be dropped pass 
only through the read stage.

Encapsulate 
Ethernet

Src:MAC1,Dst:MAC2

WriteFrame
To 10.1/16

IP 
Fragmentation
MTU 1500 bytes

Figure 6. The synthesized chain equivalent to Figure 5. The SNF contributions are shown in floating text.
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operations and two additional pairs of I/O operations. Based on our measurements the total processing315

cost of the initial chain is 2206 cycles/packet, while the synthesized chain requires 3x less (roughly 720)316

cycles/packet. If we account for the extra I/O cost per hop for the initial chain the difference becomes317

even greater. In production service chains, where packets arrive at high rates, this overhead can play a318

major role in limiting the throughput of the chain and the imposed latency; therefore, the advantages of319

synthesizing more complex service chains than this simple use case are expected to be even greater.320

IMPLEMENTATION321

As we stated earlier, SNF’s basic assumption is that each input service component (i.e., NF) is322

expressed as a graph (i.e., the NF DAG), composed of individual packet processing elements. This allows323

SNF to parse the NF DAG and infer the internal operations of each NF, producing a synthesized equivalent.324

Among the several candidate platforms that allow such a representation, we developed our prototype atop325

Click because it is the most widely used NFV platform in the academia. Many earlier efforts built upon it326

to improve its performance and scalability, hence we believe that this choice will maximize SNF’s impact327

as it allows direct comparison with state-of-the-art Click variants such as RouteBricks (Dobrescu et al.,328

2009), PacketShader (Han et al., 2010), Double-Click (Kim et al., 2012), SNAP (Sun and Ricci, 2013),329

ClickOS (Martins et al., 2014), and FastClick (Barbette et al., 2015).330

We adopt FastClick as the basis of SNF as it uses DPDK, a state-of-the-art user-space I/O framework331

that exploits modern hardware amenities (including multiple CPU cores) and NIC features (including332

multiple queues and offloading mechanisms). Along with batch processing, non-uniform memory access333

support, and fine grained CPU core affinity techniques, FastClick scales a single router achieving line-rate334

throughput at 40 Gbps. SNF aims for similar performance for an entire service chain.335

FastClick Extensions336

We implemented SNF in C++11. The modules depicted in Figure 2 are 14376 lines of code.337

The integration with FastClick required another 1500 lines of code (modifications and extensions).338

Although FastClick improves a router’s throughput and latency, it lacks features required for broader NFV339

applications; therefore, we made the following extensions to target a service-oriented platform:340

Extension 1: Stateful elements that deal with flow processing such as IP/UDP/TCPRewriter were not341

equipped with FastClick’s optimizations such as computational batching or cache prefetching. Moreover,342

these elements were not designed to be thread-safe hence they could cause race conditions when accessed343

by multiple CPU cores at the same time. We designed thread-safe data structures for these elements while344

also applying the necessary modifications to equip them with the FastClick optimizations.345

Extension 2: We tailored several packet modification FastClick elements to comply with the synthesis346

principles, as we found that their implementation was not aligned with our single-write approach. For347

instance, we improved the IP/UDP/TCP checksum calculations by calling the respective functions only348

once all the header field modifications are applied. Moreover, we extended IP/UDP/TCPRewriter elements349

with additional input arguments. These arguments extend the elements’ packet modification capabilities350

(e.g., decrement IP TTL field to avoid unnecessary element calls) and guarantee that a packet entering351

these elements undergo a single-write operation per header field.352

Extension 3: We developed a new element, called IPSynthesizer, in the heart of our execution model353

shown in Figure 1. This element implements per-core stateful flow tables that can be safely accessed in354

parallel allowing multiple TCUs to be processed at the same time. To avoid inter-core communication,355

thus keep the per-core cache(s) hot, we extended the RSS mechanism of DPDK (see Figure 1) using a356

symmetric approach proposed by Woo and Park (2012).357

Extension 4: To make software-based classification more scalable, we implemented the lazy subtraction358

algorithm introduced in Header Space Analysis (HSA) (Kazemian et al., 2012). With this extension,359

SNF aggregates common IP prefixes in a filter and applies the longest one while building a TCU, thus360

producing shorter traffic class expressions. †361

Our prototype supports a large variety of packet processing libraries, fully covering both native362

FastClick and hypervisor-based ClickOS deployments. Our prototype also takes advantage of FastClick’s363

computation batching with a processing core moving a group of packets between the classifier and the364

synthesizer with a single function call. New packet processing elements can be incorporated with minor365

effort. We made the FastClick extensions available at Katsikas, Georgios (2016).366

†This extension is not a direct part of FastClick, since the optimized classification rules are computed by SNF beforehand; then,

SNF uses these rules as arguments when calling FastClick’s Classifier or IPClassifer elements.
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PERFORMANCE EVALUATION367

Recent efforts, such as ClickOS (Martins et al., 2014) and NetVM (Hwang et al., 2014), are unable368

to maintain constant high throughput and low latency for chains of more than 3 NFs when processing369

packets at high speed. This problem hinders large-scale hypervisor-based NFV deployments that could370

reduce network operators’ expenses and provide more flexible network management and services (Cisco,371

2014; SDX Central, 2015).372

We envision SNF to be the key component of future NFV deployments, thus we evaluate the synthesis373

process using real service chains to exercise its true potential. In this section, we demonstrate SNF’s374

ability to address three types of service chains:375

Chain 1: Scale a long series of routers at the cost of a single router.376

Chain 2: Nest multiple NAPT middleboxes.377

Chain 3: Implement high performance ACLs of increasing cardinality at the borders of ISP networks.378

We use the experimental setup described in § 6.1 to measure the performance of the above three types379

of chains and answer the following questions: Can we synthesize (stateful) chains without sacrificing380

throughput as we increase the chain length (see § 6.2, § 6.3)? What is the effect of different packet sizes on381

a system’s throughput (see § 6.3)? What are the current limits of purely software-based packet processing382

(see § 6.4) and how can we overcome them (see § 6.5)?383

Testbed384

We conducted our experiments on six identical machines each with a dual socket 16-core Intelr385

Xeonr CPU E5-2667 v3 clocked at 3.20 GHz. The cache sizes are: 2x32 KB L1, 256 KB L2, and 20 MB386

L3. Hyper-threading is disabled and the OS is the Ubuntu 14.04.1 distribution with Linux kernel v.3.13.387

Each machine has two dual-port 10 GbE Intel 82599 ES NICs.388

Unless stated otherwise, we use two machines to generate and sink bi-directional traffic using389

MoonGen (Emmerich et al., 2015), a DPDK-based traffic generator. MoonGen allows us to saturate 10390

Gbps NICs on a single machine using a set of cores, while receiving the same amount of traffic on another391

set of cores. To gain insight into the performance of the service chains, we measure the throughput and392

end-to-end latency to traverse the chains, at the endpoints. We use FastClick as a baseline and compare393

FastClick against SNF (which extends FastClick). We create service chains that run natively in a single394

process using RSS and multiple CPU cores, as this is the fastest FastClick configuration. We follow two395

different setups for our software-based and hardware-assisted SNF deployments as follows.396

Software-based SNF: In § 6.2, § 6.3, and § 6.4 we stress different purely software-based NFV service397

chains that run in one machine following the execution model of Figure 1. This machine has 4 10 GbE398

NICs connected to the two traffic source/sink machines (two NICs on each machine), hence the total399

capacity of the NFV machine is 40 Gbps. The goal of this testbed is to show how much NFV processing400

FastClick and SNF can fit into a single machine and what processing limits this machine has.401

Hardware-assisted SNF: For the complex NFV service chains, presented in § 6.4, we also deploy a402

testbed (see § 6.5) where we offload the traffic classification to a Noviflow 1132 OpenFlow switch with403

firmware 300.1.0. The switch is connected with two 10 GbE NICs to each of the two senders/receivers,404

and with one link to each of the four processing servers in our SNF cluster. This testbed has a total of405

40 Gbps capacity (same as the software-based setup above), but the processing is distributed to more406

machines in order to show how our SNF system scales.407

A Chain of Routers at the Cost of One408

This first use case targets a direct comparison with the state-of-the-art. Specifically, we chain409

a popular implementation of a software-based router that, after several years of successful research410

contributions (Dobrescu et al., 2009; Han et al., 2010; Kim et al., 2012; Sun and Ricci, 2013; Martins411

et al., 2014; Barbette et al., 2015), achieves scalable performance at tens of Gbps.412

As we show in this section, a naive chaining of individual, fast NFs does not achieve high performance.413

To examine this we linearly connect 1-10 FastClick routers, where each router has four 10 Gbps ports414

(hence such a chain has a 40 Gbps link capacity). The down-pointing (green) triangular points of Figure 7415

show the throughput achieved by these chains versus the increasing length of the chains, when we inject416

60-bytes long frames, excluding the cyclic redundant check (CRC). The maximum throughput for this417

frame size size is 31.5 Gbps and this is the limit of our NICs, as reported earlier (Barbette et al., 2015).418
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Figure 7. Throughput (Gbps) of chained routers and NAPTs using (i) FastClick and (ii) SNF versus

the numbers of chained NFs (60-byte frames are injected at 40 Gbps). Bigger batch sizes achieve higher

throughput.

In our experiment, FastClick can operate at the maximum throughput only for a chain of 1 or 2419

routers. As denoted by the equation in this fit to the graph, after this point there is a quadratic throughput420

degradation that results in a chain of 10 routers achieving less that 10 Gbps of throughput.421

SNF automatically synthesizes this simple chain (shown with red squares) to achieve the maximum422

possible throughput using this hardware, despite the increasing length of the chain. The fitted equation423

confirms that SNF operates at the speed of the NICs.424

Stateful Service Chaining425

The problem of Service Function Chaining has been recently investigated by Quinn and Nadeau (Quinn426

and Nadeau, 2015) and several relevant use cases (Liu et al., 2014) have been proposed. In some of427

these use cases, traffic needs to support distinct address families while traversing different networks. For428

instance, within an ISP, IPv4/IPv6 traffic might either be directed to NAT64 (Bagnulo et al., 2011), or429

a Carrier Grade NAT (Perreault et al., 2013). In more extreme cases, this traffic might originate from430

different access networks such as fixed broadband, mobile, datacenters, or cloud customer premises (CPE),431

thus causing the nested NAT problem (Penno et al., 2013).432

The goal of this use case is to test SNF in such a stateful context using a chain of 1-10 NAPTs. Each433

NAPT maintains a state table that stores the original and translated source and destination IP addresses434

and ports of each flow, associated with the input interface where a flow was originated. The rhomboid435

points of Figure 7 show that the chains of FastClick NAPTs suffer a steeper (according to the fitted436

equation) quadratic degradation than the FastClick routers. Although we extended FastClick to support437

thread-safe, parallelized NAPT operations across multiple cores, it is still unable to drive the NAPT chain438

at line-rate, despite using 8 CPU cores and 128-packet batches.439

SNF requires a certain batch size to realize the synthesized NAPT chains at the speed of hardware as440

shown by the black circles of Figure 7. The curve with the up-pointing (blue) triangles indicates that a441

batch size of 32 packets leads to a slight throughput degradation after the 6th NAPT in the chain. State442

lookup and management operations executed for every packet cause this degradation. Depending on443

the performance targets, a network operator might tolerate an increased latency to achieve the higher444

throughput offered by an increased batch size.445

Next, we explore the effect of different frame sizes on the chains of routers and NAPTs. We run the446

longest chain (i.e., 10 NFs) for frame sizes in [60, 1500] (bytes). Figure 8 shows that SNF follows the447

NICs’ performance achieving line-rate forwarding at 40 Gbps for frames greater than 128 bytes. FastClick448

catches up the line-rate performance for frame sizes greater than 800-1000 bytes.449
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Real Service Chain Deployments450

Another common use case for an ISP is to deploy a service chain of a FW, a router, and a NAPT as451

depicted in Figure 9. The FW of such a chain may contain thousands of rules in its ACL causing serious452

performance issues for software-based NF implementations.453

In this section we measure the performance of SNF using actual FW configurations of increasing454

cardinality and complexity, while exploring the limits of software-based packet processing on our hardware.455

We utilize a set of three actual ACLs (Taylor and Turner, 2007), taken from several ISPs, to deploy the456

service chain of Figure 9. The FW implements one ACL with 251, 713, or 8550 entries. The second NF457

is a standards-compliant IP router that redirects packets either towards the ISP’s domain (intra-ISP traffic458

with prefix 204.152.0.0/16) or to the Internet. For the latter traffic, the third NF interconnects the ISP with459

the Internet by performing source and destination NAPT.460

We use the above ACLs to generate traces of 64-byte frames that systematically exercise all of their461

entries. The generated packets emulate intra-ISP, inbound and outbound Internet traffic (see Figure 9).462

Figure 10 presents the performance of the 3 chains versus the different frames sizes (64, 128, 256, and463

1500 bytes). We implemented the chains in FastClick and a purely software-based SNF using the full464

capacity of our processor’s socket (i.e., 8 cores in one machine), symmetric RSS, and a batch size of 128465

packets.466

Figure 10a shows that the small ACL (251 rules), executed as a single FastClick instance, achieves467

satisfactory throughput, equal to its synthesized counterpart. This indicates that a small ISP or a chain468

Router

NAPT Internet

FW

ISP Network
204.152/16

Inbound traffic
Outbound traffic

      Intra-ISP traffic

Figure 9. An ISP’s service chain that serves inbound and outbound Internet traffic as well as intra-ISP

traffic using three NFs.
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Figure 10. System’s performance versus 4 frame sizes (64, 128, 256, and 1500 bytes) of three different

ISP-level chains with 251, 713, and 8550 rules in their ACLs. FastClick and SNF implement these chains

in software using 8 CPU cores (in a single machine with four NICs), symmetric RSS, and batch size of

128 packets. Input rates are 40 Gbps for the throughput test and 5 Gbps for the latency test.

deployment in small subnets (e.g., using links with capacity equal or less than 10 Gbps) may not fully469

benefit from SNF. As depicted in Figure 10b, the latency is also bounded below 100 µs. This time is470

dominated by the fact that our traffic flows as follows: traffic originating from one machine enters an SNF471

server and, after being processed, sent back to the origin server. We believe that the observed latency472

values are realistic for such a topology.473

However, for the ACLs with 713 and 8550 rules the combination of all possible traffic classes474

among the FW, router, and NAPT boxes causes the classification tree of the chain to explode in size,475

hence synthesis is a powerful yet necessary solution. This causes three problems to FastClick: (i)476

the throughput when executing the last two ACLs (713, and 8550 rules) is reduced by almost 1.5x-10x477

respectively (on average), (ii) the median latency of the largest ACL is at least an order of magnitude478

greater than the median latencies of the smaller ACLs (see Figure 10b), and consequently (iii) the 99th
479

percentile of the latency increases (up to almost 4 ms).480

In contrast, SNF effectively synthesizes the large ACLs (i.e., 713 and 8550 rules) maintaining high481

throughput despite their increasing complexity. In the case of 713 rules, the synthesis is so effective that482

leads to better throughput than the 251-rule case. Regarding latency, SNF demonstrates 1.1-10x lower483

median latency (bounded below 500 µs) and 2-3.5x lower latency variance (slightly above 1 ms in some484

cases). The throughput gain of SNF is up to 8.5x greater than the FastClick chains.485

Hardware-accelerated SNF486

The results presented in the previous section show that software-based SNF cannot handle packet487

processing at a high enough rate when the NFs are complex. We analyzed the root cause and concluded488

that the packet classifier (that dispatches incoming packets to synthesized NFs) is the bottleneck. To489

overcome this problem, we run additional experiments, in which we offload packet classification to a490

hardware OpenFlow switch (since commodity NICs do not offer sufficient programmability). By doing491

so, we showcase SNF’s ability to scale to high data rates with realistic NFs. In addition, we hint at the492

performance that is potentially achievable by offloading packet classification to a programmable interface.493

Throughput Measurements494

This extended version of SNF includes a script that converts the classification rules computed by the495

original SNF to OpenFlow 1.3 rules. The translation is not straightforward because the switch rules are496

less expressive than the ones accepted by the NFs. Specifically, rules that match on TCP and UDP port497

ranges are problematic. While OpenFlow does allow only matches on concrete values of ports, naive498

unrolling of ranges into multiple OpenFlow matches leads to an unacceptable number of rules. Instead,499

we solve the problem by utilizing a pipeline of flow tables available in the switch. The first two tables500

match only on the source and destination ports respectively, assign them to ranges, and write metadata that501

defines the range. Further tables include the real ACL rules and also match on the metadata previously502

added to a packet. Moreover, since the rules in the NFs are explored in the top-to-bottom order, we503

emulate the same behavior by assigning decreasing priorities to the OpenFlow rules.504

We use the same sets of ACLs as before, and evaluate throughput and latency in the hardware-505

accelerated SNF. We first measure the throughput that SNF can achieve leveraging OpenFlow classification.506
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Figure 11. Hardware-assisted SNF’s performance versus 4 frame sizes (64, 128, 256, and 1500 bytes)

of three different ISP-level chains with 251, 713, and 8550 rules in their ACLs. SNF’ s classification is

offloaded to an OpenFlow switch, while stateful processing occurs in 4 servers connected to the switch.

Input rates are 40 Gbps for the throughput test and 5 Gbps for the latency test.

We design an experiment where two machines use a total of four 10 Gbps links to send traffic. The packets507

are crafted so that they uniformly exercise all visible classification rules (some rules from the original508

data set are fully covered by other rules). We use the same frame sizes as in § 6.4. The switch classifies509

the packets and forwards them across four SNF servers that are using 10 Gbps links to connect to the510

switch. The servers work in two modes: (i) forward only, where they do not implement any NFs and511

simply forward packets (the first bar in each pair in Figure 11a), and (ii) synthesized mode, where they512

implement the real NF chain (the second bar in each pair in Figure 11a). Additionally, for comparison,513

we created an experiment where the switch installs only four basic classification rules (to do simple514

forwarding) to measure the performance of the NFs themselves (the last pair of bars in Figure 11a).515

We observe that throughput depends mostly on the frame size. The system can operate at almost 20516

Gbps for small frames (i.e., 64 bytes), and it reaches the full line-rate for 256-byte frames. Interestingly,517

the rule set size does not affect the throughput.518

In the real data sets, the second bar in each pair is almost as high as the first one, which shows that the519

software part of SNF does not limit the performance. Finally, with simple forwarding rules in the switch520

(the first pair of bars in Figure 11a) the overall throughput is high even for small frames, which confirms521

that packet processing at the switch is the bottleneck of the whole system. To further prove this point, we522

run an experiment with only 2 ports sending traffic at an aggregate speed of 20 Gbps. In this case, SNF523

processes packets at the line-rate except for the smallest frames, where it achieves 15 Gbps.524

Latency Measurements525

A middlebox chain should induce low, bounded packet processing delays. In this set of experiments,526

we send traffic at a lower rate and measure latency. The setup is the same as in the previous scenario.527

Thus, the latency we show includes the time for frames to be: (i) transmitted out of the network interface528

of the traffic generating machines, (ii) received, processed, and forwarded by the OpenFlow switch, (iii)529

received, processed, and forwarded by the SNF machines, and (iv) received by the destination server (the530

same machine as the sender).531

Figure 11b shows the latency depending on the frame size and the synthesized function (results for532

the input rate of 20 Gbps are very similar). Our results show that the median latencies are low and stable533

across all frame sizes and chains. There are several main observations here. First, the 75th percentiles534

(marked by the top horizontal line of the boxplots) are close to the median latencies and we find this result535

to be encouraging. Second, large frames (i.e., 1500 bytes) face two times greater median latency than the536

smaller ones regardless of the rule configuration. Third, there are outliers that are an order of magnitude537

less/greater than the medians (e.g., 10 µs at the 1st and 100 µs at 99th percentiles for 64-byte frames and538

80 µs at the 1st and 800 µs at 99th percentiles for MTU-sized frames). Part of this latency variance is539

due to the batch I/O and processing techniques of the FastClick framework; as shown in Figure 11, these540

techniques offer high throughput, but have a well-studied effect on the latency variance.541
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VERIFICATION542

In this section we discuss possible tools that could be utilized to systematically verify the correctness543

of the synthesis proposed by SNF.544

Recent efforts have employed model checking (Canini et al., 2012; Kim et al., 2015a) techniques545

to explore the (voluminous) state space of modern networked systems in an attempt to find state546

inconsistencies due to etc. bugs or misconfigurations. Symbolic execution has also been utilized either547

alone (Kuzniar et al., 2012; Dobrescu and Argyraki, 2014) or combined with model checking (Canini548

et al., 2012), to systematically identify representative input events (i.e., packets) that can adequately549

exercise code paths without requiring to exhaust the input space (hence bound the verification time).550

Specifically, Software Dataplane Verification (Dobrescu and Argyraki, 2014) is a close fit for verifying551

NFV service chains. The authors proposed a scalable approach to verifying complex NFV pipelines, by552

verifying each internal element of the pipeline in isolation; then by composing the results the authors553

proved certain properties about the entire pipeline. One could use this tool to systematically verify a554

complex part of SNF, which is the traffic classification. However, this tool might not be able to provide555

sound proofs regarding all the stateful modifications of SNF, since the authors verified only two simple556

stateful cases (i.e., a NAT and a traffic monitor) and did not generalize their ideas for a broader list of557

NFV flow modification elements.558

SOFT (Kuzniar et al., 2012) could also be employed to test the interoperability between a chain559

realized with and without SNF. In other words, SOFT could inject a broad set of inputs to test whether560

the SynthesizedNF defined in § 3.1.3 outputs packets that are identical with the packets delivered by the561

original set of NFs. Similarly, HSA (Kazemian et al., 2012) could be used to verify loop-freedom, slice562

isolation, and reachability properties of SNF service chains. Unfortunately, HSA statically operates on563

a snapshot of the network configuration, hence is unable to track dynamic state modifications caused564

by continuous events. Similarly, SOFT is a special-purpose verification engine for software-defined565

networking (SDN) agent implementations. Therefore, both works require significant additional effort to566

verify stateful NFV pipelines.567

Finally, translating an SNF processing graph into a finite state machine understandable by Kinetic (Kim568

et al., 2015a) would potentially allow Kinetic to use its model checker to verify certain properties for the569

entire pipeline. However, Kinetic does not systematically verify the actual code that runs in the network,570

but rather builds and verifies a model of this code. Therefore, we are concerned (i) whether a Kinetic571

model can sufficiently cover complex service chains such as the ISP-level chains presented in § 6.4 and572

(ii) whether Kinetic’s located packet equivalence classes (LPECs) can handle the complex TCUs of SNF573

without causing state space explosion.574

To summarize, although the works above have provided remarkable advancements in software575

verification, a substantial amount of additional research is required to provide strong guarantees about the576

correctness of SNF. For this reason, in this paper we focus our attention on delivering ultra high speed577

pipelines for complex and stateful NFV service chains and leave the verification of SNF as a future work.578

LIMITATIONS579

We do not attempt to provide a solution that can synthesize arbitrary software components, but rather580

target a broad but finite set of middlebox-specific NFs that operate on the entire space of a packet’s header.581

SNF makes two assumptions:582

1. An NFV provider must specify an NF as an ensemble of abstract packet processing elements (i.e.,583

the NF DAG defined in § 3.2.1). We believe that this is a reasonable assumption, followed also584

by other state-of-the-art approaches such as Click, Slick, and OpenBox. However, if a middlebox585

provider does not want to share this information under non-disclosure or via a licensing agreement,586

SNF can synthesize the middleboxes before and after this provider’s middlebox. This is possible587

by omitting the processing graph of this middlebox from the inputs given to the Service Chain588

Configurator (see § 3.2.1).589

2. No further decision (i.e., read) utilizes an already rewritten field, therefore, an LB that splits traffic590

based on source port after a source NAPT, might not work. Similarly, in this case, SNF can exclude591

the LB from the synthesis.592

Moreover, our tool does not support network-wide placement of the chain’s components, but we593

envision SNF being integrated in controllers, such as E2 or Slick.594
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RELATED WORK595

Over the last decade, there has been considerable evolution of software-based packet processing596

architectures that realize wireline throughputs, while providing flexible and cost effective in-cloud597

network processing.598

Monolithic middlebox implementations. Until recently, most NFV approaches have treated NFs as599

monolithic entities placed at arbitrary locations in the network. In this context, even with the assistance600

of state-of-the-art OSs, such as the Click-based (Kohler et al., 2000) ClickOS (Martins et al., 2014) as601

well as fast network I/O (Rizzo, 2012; DPDK, 2016) and processing (Kim et al., 2012, 2015b; Barbette602

et al., 2015) mechanisms, chaining more than 2 NFs leads to serious performance degradation as stated603

by the authors of both ClickOS and NetVM (Hwang et al., 2014). The main reason, also shown in our604

experiments, for this poor performance is the I/O overhead due to forwarding packets along physically605

remote and virtualized NFs. More recently, OpenNetVM (Zhang et al., 2016) showed that VM-based606

NFV deployments do not scale with increasing number of chained instances, hence opted for NFs running607

in lightweight Docker (Docker, 2016) containers interconnected with shared memory segments.608

Consolidation at the machine level. Concentrating network processing into a single machine is a609

logical way to overcome the limitations stated above. CoMb (Sekar et al., 2012) consolidates middlebox-610

oriented flow processing into one machine, mainly at the session layer. Similarly, OpenNF (Gember-611

Jacobson et al., 2014) provides a programming interface to migrate NFs, which can in turn be collocated612

in a physical server. DPIaaS (Bremler-Barr et al., 2014) reuses the costly deep packet inspection (DPI)613

logic across multiple instances. RouteBricks (Dobrescu et al., 2009) exploits parallelism to scale software614

routers across multiple servers and cores within a single server, while PacketShader (Han et al., 2010) and615

NBA (Kim et al., 2015b) take advantage of cheap and powerful auxiliary hardware components such as616

GPUs to provide fast packet processing. All of these works only partially exploit the benefits of sharing617

common middlebox functionality, thus they are far from supporting optimized service chains.618

Consolidation at the individual function level is the next level of composition of scalable and619

efficient NF deployments. In this context, Open Middleboxes (xOMB) (Anderson et al., 2012) proposes620

an incrementally scalable network processing pipeline based on triggers that pass the flow control from621

one element to another in a pipeline. The xOMB architecture allows great flexibility in sharing parts of the622

pipeline; however, it only targets request-oriented protocols and services, unlike our generic framework.623

Slick (Anwer et al., 2015) operates on the same level of packet processing as SNF to compose624

distributed, network-wide service chains driven by a controller. Slick provides its own programming625

language to achieve this composition and unlike our work, it addresses placement requirements. Slick is626

very efficient when deploying service chains that are not necessarily collocated. However, we argue that627

in many cases all the NFs of a service chain need to be deployed in one machine and effectively being628

dispatched across cores in the same socket. Slick does not allow all the NF elements to be physically629

placed into a single process. Our work goes beyond Slick by trading the flexibility of placing NF elements630

on demand for extensive consolidation of the chain processing. Our synthesized SNF realizes such chains631

with zero context switching and zero redundancy of individual packet operations.632

Very recently, Bremler-Barr et al. (2016) applied the SDN control and dataplane separation paradigm633

to OpenBox; a framework for network-wide deployment and management of NFs. OpenBox applications634

input different NF specifications to the OpenBox controller via a north-bound application programming635

interface. The controller communicates the NF specifications to the OpenBox Instances (OBIs) that636

constitute the actual dataplane, ensuring smart NF placement and scaling. An interesting feature of the637

OpenBox controller is its ability to merge different processing graphs, from different NFs, into a single638

and shorter processing graph, similar to our SNF. The authors of OpenBox made a similar observation639

with us regarding the need to classify the traffic of a service chain only once, and then apply a set of640

operations that originate from the different NFs of the chain.641

However, OpenBox does not highly optimize the result chain-level processing graph for two reasons:642

(i) The OpenBox merge algorithm can only merge homogeneous packet modification elements (i.e.,643

elements with the same type). For example, two “Decrement IP TTL” elements, that each decrements644

the TTL field by one, can be merged into a single element that directly decrements the TTL field by two.645

Imagine, however, the case where OpenBox has to merge the NFs of Figure 5. In this example, OpenBox646

cannot merge the “Rewrite Flow” element (that modifies the source and destination IP addresses as well647

as the source port of UDP packets) with the 3 “Decrement IP TTL” elements, since these elements do not648

belong to the same type. This means that the final OpenBox graph will have 2 distinct packet modification649
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elements (i.e., 1 “Rewrite Flow” and 1 “Decrement IP TTL”) and each element has to compute the IP and650

UDP checksums separately. Therefore, OpenBox does not completely eliminate redundant operations.651

In contrast, SNF effectively synthesized the operations of all these elements into a single element (see652

Figure 6) that computes the IP and UDP checksums only once. Consequently, SNF produces both a653

shorter processing graph and a synthesized chain with no redundancy, hence achieving lower latency.654

(ii) Although OpenBox can merge the classification elements of a chain into a single classifier, the655

authors have not addressed how they handle the increased complexity of the final classifier. Our preliminary656

experiments showed that in complex use cases, such as the ISP-level traffic classification presented in § 6.4,657

the complexity of the chain-level classifier dramatically increases with increasing number of ACL rules.658

Therefore, SNF implements the lazy subtraction optimization proposed by Kazemian et al. (2012). The659

benefits of this algorithm are stated in § 5.1.660

Finally, the authors of OpenBox did not stress the limits of the OpenBox framework in their661

performance evaluation. An input packet rate of 1-2 Gbps cannot adequately stress the memory utilization662

of the OBIs. Moreover, there is limited discussion related to how OpenBox exploits the multi-core663

capacities of modern NFV infrastructures. In contrast, in § 6.2, § 6.3, and § 6.4 we demonstrated how SNF664

realizes complex, purely software-based service chains at 40 Gbps line-rate. This is possible by exploiting665

multiple CPU cores and by fitting most of the data of an entire service chain into those cores’ L1 caches.666

Scheduling NFs for high throughput. Recently, the E2 framework (Palkar et al., 2015) demonstrated667

a scalable way of deploying NFV services. E2 mainly tackles placement, elastic scaling, and service668

composition by introducing pipelets. A pipelet defines a traffic class and a corresponding DAG of NFs669

that should process this traffic class. SNF’s TCUs are somewhat similar to E2’s pipelets but SNF aims to670

make them more efficient. Concretely, an SNF TCU is not processed by a DAG of NFs, but rather by a671

highly optimized piece of code (produced by the synthesizer) that directly applies a set of operations to672

this specific traffic class.673

Impact. E2 can use SNF to fit more service chains into one machine, hence postpone its elastic scaling.674

Existing approaches can transparently use our extensions to provide services such as (i) lightweight675

Xen VMs that run synthesized ClickOS instances using the netmap network I/O, (ii) parallelized service676

chains using the multi-server, multi-core RouteBricks architecture, and (iii) synthesized chains that are677

load balanced across heterogeneous hardware components (i.e., CPU and GPU) using NBA.678

CONCLUSION679

We have addressed the problem of synthesizing chains of NFs with SNF. SNF requires minimal I/O680

interactions with the NFV platform and applies single-read-single-write operations on the packets, while681

early-discarding irrelevant traffic classes. SNF maintains state across NFs.To realize the above properties,682

we parse the chained NFs and build a classification graph whose leaves represent unique traffic class units.683

In each leaf we perform a set of packet header modifications to generate an equivalent configuration that684

implements the same functionality as the initial chain using a minimal set of elements.685

SNF synthesizes stateful chains that appear in production ISP-level networks realizing high throughput686

and low latency, while outperforming state-of-the-art works.687
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