# A peer-reviewed version of this preprint was published in PeerJ on 9 February 2017.

<u>View the peer-reviewed version</u> (peerj.com/articles/2931), which is the preferred citable publication unless you specifically need to cite this preprint.

Vásquez-Mayorga M, Fuchs EJ, Hernández EJ, Herrera F, Hernández J, Moreira I, Arnáez E, Barboza NM. 2017. Molecular characterization and genetic diversity of *Jatropha curcas* L. in Costa Rica. PeerJ 5:e2931 <a href="https://doi.org/10.7717/peerj.2931">https://doi.org/10.7717/peerj.2931</a>



# Molecular characterization and genetic diversity of *Jatropha* curcas L. in Costa Rica

Marcela Vásquez-Mayorga  $^1$ , Eric J Fuchs  $^2$ , Eduardo J Hernández  $^1$ , Franklin Herrera  $^3$ , Jesús Hernández  $^4$ , Ilenana Moreira  $^5$ , Elizabeth Arnáez  $^6$ , Natalia M Barboza Corresp. 1, 7, 8

Corresponding Author: Natalia M Barboza Email address: natalia.barboza@ucr.ac.cr

We estimated the genetic diversity of 50 *Jatropha curcas* samples from the Costa Rican germplasm bank using 18 EST-SSR, one G-SSR and nrDNA-ITS markers. We also evaluated the phylogenetic relationships among samples using nuclear ribosomal ITS markers. Nontoxicity was evaluated using G-SSRs and SCARs markers. A Neighbor-Joining (NJ) tree and a Maximum Likelihood (ML) tree were constructed using SSR markers and ITS sequences, respectively. Heterozygosity was moderate (He = 0.346), but considerable compared to worldwide values for *J. curcas*. The PIC (PIC = 0.274) and inbreeding coefficient (f = -0.102) were both low. Clustering was not related to the geographical origin of accessions. International accessions clustered independently of collection sites, suggesting a lack of genetic structure, probably due to the wide distribution of this crop and ample gene flow. Molecular markers identified only one non-toxic accession (JCCR-24) from Mexico. This work is part of a countrywide effort to characterize the genetic diversity of the *Jatropha curcas* germplasm bank in Costa Rica.

<sup>1</sup> Centro de Investigación en Biología Celular y Molecular, Universidad de Costa Rica, San Pedro, San José, Costa Rica

<sup>&</sup>lt;sup>2</sup> Escuela de Biología, Universidad de Costa Rica, San Pedro, San José, Costa Rica

<sup>&</sup>lt;sup>3</sup> Estación Experimental Fabio Baudrit Moreno, Universidad de Costa Rica, Alajuela, Costa Rica

<sup>&</sup>lt;sup>4</sup> Ministerio de Agricultura y Ganadería, San José, Costa Rica

<sup>&</sup>lt;sup>5</sup> Escuela de Biología, Instituto Tecnológico de Costa Rica, Cartago, Costa Rica

<sup>&</sup>lt;sup>6</sup> Escuela de Biología, Instituto Tecnológico de Costa Rica, Cartago, Cartago, Costa Rica

<sup>7</sup> Escuela de Tecnología de Alimentos, Universidad de Costa Rica, San Pedro, San José, Costa Rica

<sup>&</sup>lt;sup>8</sup> Centro Nacional en Ciencia y Tecnología de Alimentos, Universidad de Costa Rica, San Pedro, San José, Costa Rica



- 1 Molecular characterization and genetic diversity of Jatropha curcas L. in Costa Rica
- 2 Marcela Vásquez-Mayorga<sup>1</sup>, Eric J. Fuchs<sup>2</sup>, Eduardo J. Hernández<sup>1</sup>, Franklin Herrera<sup>3</sup>, Jesús
- 3 Hernández<sup>4</sup>, Ileana Moreira<sup>5</sup>, Elizabeth Arnáez<sup>5</sup>, Natalia Barboza<sup>1,6,7</sup>
- 4 1 Centro de Investigación en Biología Celular y Molecular, Universidad de Costa Rica, San José,
- 5 Costa Rica
- 6 2 Escuela de Biología, Universidad de Costa Rica, San José, Costa Rica
- 7 3 Estación Experimental Fabio Baudrit Moreno, Universidad de Costa Rica, Alajuela, Costa Rica
- 8 4 Ministerio de Agricultura y Ganadería, Costa Rica, San José, Costa Rica
- 9 5 Escuela de Biología, Instituto Tecnológico de Costa Rica, Cartago, Costa Rica
- 10 6 Escuela de Tecnología de Alimentos, Universidad de Costa Rica, San José, Costa Rica
- 7 Centro Nacional en Ciencia y Tecnología de Alimentos, Universidad de Costa Rica, San José,
- 12 Costa Rica
- 14 Corresponding Author:
- 15 Natalia Barboza
- 16 Ciudad de la Investigación, San Pedro, San José, 11501-2060 Costa Rica
- 17 Email address: natalia.barboza@ucr.ac.cr

13

19

20

21



|   | DC | TD | •   | $\mathbf{CT}$ |
|---|----|----|-----|---------------|
| A | DO | TR | . А | C I           |

| We estimated the genetic diversity of 50 Jatropha curcas samples from the Costa Rican                |
|------------------------------------------------------------------------------------------------------|
| germplasm bank using 18 EST-SSR, one G-SSR and nrDNA-ITS markers. We also evaluated the              |
| phylogenetic relationships among samples using nuclear ribosomal ITS markers. Non-toxicity was       |
| evaluated using G-SSRs and SCARs markers. A Neighbor-Joining (NJ) tree and a Maximum                 |
| Likelihood (ML) tree were constructed using SSR markers and ITS sequences, respectively.             |
| Heterozygosity was moderate (He = $0.346$ ), but considerable compared to worldwide values for $J$ . |
| curcas. The PIC (PIC = 0.274) and inbreeding coefficient ( $f = -0.102$ ) were both low. Clustering  |
| was not related to the geographical origin of accessions. International accessions clustered         |
| independently of collection sites, suggesting a lack of genetic structure, probably due to the wide  |
| distribution of this crop and ample gene flow. Molecular markers identified only one non-toxic       |
| accession (JCCR-24) from Mexico. This work is part of a countrywide effort to characterize the       |
| genetic diversity of the <i>latropha curcas</i> germplasm bank in Costa Rica                         |



43

#### INTRODUCTION

fluctuating market prices. This situation has motivated research on alternative fuel sources such as 44 biodiesel from corn or palm oil (To & Grafton, 2015). Jatropha curcas is being explored as a new 45 biofuel crop (*Islam et al.*, 2013). It is planted on approximately 1.8 million ha in Indonesia, China, 46 47 Brazil and Africa, and has the potential to become a biofuel crop in India and other tropical countries (Carels, 2013). J. curcas, a member of the Euphorbiaceae family, is native to America 48 and has a pantropical distribution. It grows well under unfavorable climatic and soil conditions, 49 making it an attractive biofuel crop. Average oil content per seed is 40-45 % (Jongschaap et al., 50 2007). Biofuel from this species is similar in quality to biofuels derived from conventional crops 51 like canola, linseed and sunflower, and surpasses the quality of biofuels produced from soybean 52 (*Basili & Fontini*, 2012). 53 The potential of J. curcas has not been fully exploited, mainly because of its variable and 54 unpredictable oil yield that limits large-scale cultivation. Genetic improvement may alleviate this 55 problem; however, characterization of the available germplasm is needed for breeding programs 56 to be efficient (King et al., 2015; Mastan et al., 2012). Over the past decade, J. curcas germplasm 57 has been genetically evaluated in India, China, Brazil, Mexico, Costa Rica and Central America 58 59 (Avendaño et al., 2015; Basha & Sujatha, 2007; China Plant BOL Group et al., 2011; Montes Osorio et al., 2014; Pecina-Quintero et al., 2014; Rosado et al., 2010; Wen et al., 2010). Molecular 60 markers such as RAPDs, ISSRs, AFLPs, genomic simple sequence repeats (G-SSR) and expressed 61 sequence tags-SSR (EST-SSR) have all been used to assess the genetic diversity of J. curcas 62 collections. These studies have revealed low levels of genetic variability in India and Brazil (China 63 Plant BOL Group et al., 2011; Rosado et al., 2010; Sun et al., 2008; Yadav et al., 2011). Numerous 64

The use of fossil fuels for energy production is being discouraged because of global warming and



authors consider Mexico and Central America to be the center of origin and diversification 65 (Abdulla et al., 2009; Basha et al., 2009; Heller, 1996; Openshaw, 2000; Pamidimarri, 66 Chattopadhyay & Reddy, 2008; Pamidimarri & Reddy, 2014; Pecina-Ouintero et al., 2011; 67 Tatikonda et al., 2009), and high levels of genetic diversity in Guatemala (Raposo et al., 2014) 68 and Mexico support this hypothesis (Ambrosi et al., 2010; Ovando-Medina, Adriano-Anaya & 69 Vásquez-Ovando, 2013; Ovando-Medina et al., 2011; Pamidimarri & Reddy, 2014; Pecina-70 Quintero et al., 2011). However, these studies have consistently shown a lack of relationship 71 between the geographic proximity of collection sites and the genetic similarity among accessions, 72 because collection sites rarely represent the place of origin of accessions. 73 Another limitation to large-scale production of *J. curcas* is the possible toxicity of the seed. Both 74 toxic and non-toxic genotypes of J. curcas are known (Insanu et al., 2013). Varieties with a non-75 toxic seed cake would be more readily accepted by local farmers because sub-products of the oil 76 extraction process could be utilized for animal feeding (Makker & Becker, 2015). Therefore, it is 77 important to evaluate materials stored in germoplasm banks for non-toxicity. Non-toxic genotypes 78 have been described in Mexican accessions (Vera-Castillo et al., 2014). As with variation in 79 toxicity, genotypes with variable seed oil content and number of seeds may surface in other Latin 80 81 American regions and contribute to *J. curcas* breeding programs all over the world. In the past decade, SSR markers have proven useful for the analysis of genetic diversity. Simple 82 sequence repeats that identify variability in transcribed genomic regions can be found in EST 83 84 libraries. They may facilitate the identification of functional candidate genes, increase the efficiency of marker-assisted selection and serve as markers for comparative mapping (Varshney, 85 86 Graner & Sorrells, 2005). Nuclear ribosomal-DNA internal transcribed spacers (nrDNA ITS) are 87 sequence-based markers that have been used in phylogenetic studies and to assess genetic diversity



at the species level in a wide range of taxonomic groups (Nieto-Feliner & Roselló, 2007). ITS

markers have been developed for *J. curcas* (*Pecina-Quintero et al., 2011*) and are believed to have

90 greater discriminatory capacity than plastid rbcL and matK markers (China Plant BOL Group et

91 al., 2011). SSR and ITS markers used together allow for a better understanding of the evolutionary

92 history of undomesticated species such as *J. curcas*.

Prior to the current study, the genetic variability of the Costa Rican J. curcas germplasm bank had

not been studied. The present study explores the molecular diversity of accessions using EST-SSR

and G-SSR markers and evaluates the phylogenetic relationships between them using nuclear

96 ribosomal ITS markers. Alleles associated with J. curcas toxicity were also evaluated with G-

SSRs and sequence characterized amplified region (SCAR) markers.

98

99

100

103

106

107

97

#### **MATERIALS & METHODS**

#### **DNA** collection and extraction

101 The germplasm bank of *Jatropha curcas* in Costa Rica includes accessions from Honduras, Brazil,

102 India, Mexico, El Salvador, Ecuador, Uganda, Colombia and South Africa. Costa Rican accessions

include only spontaneously occurring individuals collected in the field and vegetatively

propagated. The collection does not include material from commercial plantations (Fig. 1).

105 International accessions originated from seeds collected from spontaneously occurring plants in

each country. All accessions are maintained by vegetative propagation in the germplasm bank

located at the Fabio Baudrit Experimental Station (10°00'10.3"N, 84°16'17.6"W) at Universidad

108 de Costa Rica.

For genetic analysis, two young leaves were collected from each of 50 plants representing different

accessions in the germplasm bank (Table 1). Vegetative material was frozen and later lyophilized



for DNA extraction. Nucleic acids were extracted using the *Möller et al.* (1992) protocol and quantified using a Nanodrop (Thermo Scientific).

113

114

#### SSR analysis

Eighteen EST-SSRs and one G-SSR marker (Wen et al., 2010) were used to analyze the 50 samples 115 116 (Table 2). PCR was performed in a final volume of 25 μL with 1 X PCR buffer, 400 μM dNTPs, 0.4 µM of each primer, and 1 U Tag DNA polymerase (Thermo Scientific). Amplification 117 conditions included an initial denaturation at 94 °C for 1 min, followed by 35 cycles of 94 °C for 118 1 min, 42-50 °C for 1 min (depending on the annealing temperature of each primer pair) and 72 119 120 °C for 1 min, with a final extension of 72 °C for 10 min. Results were visualized in 4-6 % polyacrylamide gels dyed with silver nitrate. To confirm the results, duplicates of 10 % of the 121 samples were made. Acrylamide gels were scored manually in the GNU Image Manipulation 122 123 Program (www.gimp.org) and a data matrix with band size data was created. The SSRs were scored according to amplicon size. The software Microchecker was used to test for null alleles and 124 allelic dropout (van Oosterhout et al., 2004). 125

126

127

#### nrDNA-ITS region amplification and sequencing

ITS primers were used to elucidate phylogenetic relationships between accessions. The primer pair 128 129 JCITS-1-F (5'-ACCTGCGGAAGGATCATTGTCGAAA-3') and JCITS-2-R 130 (5'CCTGGGGTCGCGATGTGAGCGT 3') was used (Pamidimarri, Chattopadhyay & Reddy, 2008) in a PCR reaction with a final volume of 25 μL and a final concentration of 1 X reaction 131 buffer, 1.5 mM MgCl<sub>2</sub>, 0.2 µM of each primer, 0.2 mM dNTPs, 1 U Taq DNA polymerase 132 133 (Thermo Scientific) and 50 ng of DNA. The PCR program consisted of an initial denaturation step



of 94 °C for 1 min, followed by 30 cycles of 40 s at 94 °C, 65 °C for 1 min and 72 °C for 1 min.

135 The final extension step was 5 min at 72 °C. The PCR products were sent to Macrogen® for

sequencing. The obtained sequences were aligned and submitted to Genbank (www.ncbi.com).

137

138

136

#### Data analysis

139 Genetic diversity was quantified as the expected heterozygosity, the Polymorphism Information content (PIC) and the inbreeding coefficient (f). The PIC index describes the probability that two 140 random accessions would have different alleles at a random locus (Smith et al., 2004). All estimates 141 were calculated using the Powermarker 3.25 software (Liu & Muse, 2005). The validity of all 142 143 estimates was assessed by means of 50 000 bootstraps. To determine the genetic relation between accessions, we calculated the  $\delta \mu^2$  genetic distance 144 between accessions using the **POPULATIONS** software 145 (http://bioinformatics.org/~tryphon/populations/). The  $\delta\mu^2$  metric developed by Goldstein et al. 146 (1995) is based on the stepwise mutation model and estimated distances are a linear function of 147 divergence time; this distance is preferred for taxa that have diverged widely (Goldstein et al., 148 1995). We used the distance matrix to construct a Neighbor-Joining (NJ) tree using the default 149 150 parameters in POPULATIONS. The standardized genetic distance matrix was also used to perform a 151 Principal Coordinates Analysis (PCA) in GenAlEx 6.5 (Peakall & Smouse, 2012). For phylogenetic analysis, ITS sequences for *J. curcas* samples from Mexico, India, Cape Verde, 152 Spain, Africa and Madagascar were downloaded from GenBank (http://www.ncbi.nlm.nih.gov). 153 154 Sequences from Costa Rican samples were edited with BioEdit software version 7.2.5 and aligned using the MAFFT algorithm in the GUIDANCE server. To compare the phylogenetic relationship 155 of GenBank sequences with those from the Costa Rican J. curcas germplasm bank, we initially 156



used jModelTest 2.1.7 (*Santorum et al., 2014*) to define the optimum substitution model for all sequences and the GTR model (*Tavaré, 1986*) with uniform rates was chosen. A maximum likelihood (ML) tree was constructed with 3 000 bootstrap replications and expressed as the number of base substitutions per site using MEGA 6.0 (*Tamura et al., 2013*).

#### **Toxicity evaluation**

Plant toxicity was evaluated by the presence of alleles from three SSR markers associated with lack of toxicity (Table 3) (*Vischi, Raranciuc & Baldini, 2013*). PCR amplification was achieved in a final volume of 25 μL with a final concentration of 1 X reaction buffer, 1.5 mM of MgCl<sub>2</sub>, 0.2 μM of each primer, 0.2 mM dNTPs, 1 U Taq DNA polymerase (Thermo Scientific) and 50 ng/μl DNA sample. The PCR program had an initial denaturation of 94 °C for 1 min, 30 cycles of 40 s at 94 °C, 65 °C for 1 min, 72 °C for 1 min and a final extension of 5 min at 72 °C. Results were visualized by genotyping with fluorescent dyes (FAM, VIC and PET) (*Vischi, Raranciuc & Baldini, 2013*) in a 3130 sequencer (Applied Biosystems). Two SCAR markers (ISPJ1 and ISPJ2) were also used to evaluate alleles for toxicity in all accessions following the protocol of *Basha & Sujatha* (2007). ISPJ1 amplifies a 543 bp fragment and is specific for toxic genotypes, while ISPJ2 is specific for non-toxic genotypes and amplifies a 1096 bp fragment. Results were visualized in a 2 % agarose gel run for one hour and dyed with GelRed (Biotium). Plants were scored as toxic or non-toxic based on the presence and size of amplicons.

#### **RESULTS**

#### 178 Genetic diversity analysis



Genetic diversity was estimated using 18 SSR-ESTs and one G-SSR marker. Average 179 heterozygosity (He) was  $0.346 \pm 0.062$  ( $\pm$  SD). Polymorphism information contents (PIC) ranged 180 from 0.042 to 0.677, with a mean PIC of 0.274  $\pm$  0.165. We did not find evidence of inbreeding f 181 = -0.102 + 0.346 (Table 4). 182 The NJ tree did not show a clear clustering pattern (Fig. 2) and clusters did not reflect geographic 183 184 proximity. Accessions from countries located in close proximity such as Colombia (JCCR-38) and Ecuador (JCCR-25) did not seem to be genetically close to each other. In contrast, samples from 185 distant locations clustered together, for example, India (JCCR-INDIA) and Costa Rica (JCCR-14); 186 South Africa (JCCR-47) and Honduras (JCCR-2); Brazil (JCCR-16) and Costa Rica (JCCR-MIR); 187 and Mexico (JCCR-24) and Ecuador (JCCR-25). Within Costa Rica, there was no evidence of 188 geographic structure. Samples collected from sites separated by more than 300 km grouped 189 together (JCCR-20, JCCR-7). 190 Our PCA analysis produced comparable results. Genetic information accounted for 41.26 % of the 191 observed variance; the first two components explained 19.17 % and 11.86 % of the total variance, 192 respectively. We did not observe distinct groups of accessions in a biplot of the first two 193 components (Fig. 3). Accessions from the same country did not group together, such as those from 194 195 Mexico (JCCR-24 and JCCR-31) and India (JCCR-INDIA and JCCR-27 INDIA). Costa Rican accessions were scattered throughout the plot without any discernible pattern. These results were 196 197 congruent with our NJ tree.

198

199

#### nrDNA-ITS sequence analysis

As with the NJ and PCA analysis, the observed patterns from the Maximum Likelihood (ML) tree did not reflect the geographic origin of the accessions (Fig. 4) and in most cases, the clades grouped in polytomies. International and Costa Rican accessions from this research were scattered



throughout the tree (JCC-38, JCCR-2, JCCRLEP, JCCR33-1, JCCR31, JCCR21, JCCR19, JCCR9, JCCR8, JCCR7, JCCR3), they grouped with sequences from Mexico and with individuals from Spain, Cape Verde, Africa and Madagascar (GenBank accession numbers EU700449, EU70055, EU70046, EU70045, respectively). It is important to mention that the observed clustering of germplasm independent of geographical origin could be an artifact of unequal sampling, as the majority of the samples used in this research were from Costa Rica and only one or two representatives from each of the other countries were included.

#### **Toxicity evaluation**

- A single Mexican accession (JCCR-24) was identified as non-toxic by the SSR primer set (JCT-
- 31, JCT-27 and JcSSR-26) and both SCAR primers ISPJ1 and ISPJ2. ISPJ1 also identified non-
- toxic genotypes in two other accessions: JCCR-32 and JCCR-43. Using ISPJ2, accessions JCCR-
- 214 22 and JCCR25 were identified as non-toxic. These results need to be corroborated using in vivo
- 215 assays.

216

217

218

210

#### DISCUSSION

#### Genetic diversity of Jatropha curcas

- Our study is the first to provide genetic diversity estimates for Costa Rican J. curcas samples.
- Based on morphological and molecular evidence, different authors support the idea that Mexico
- 221 and Central America may be the center of origin and diversification for *J. curcas* (*Pamidimarri &*
- 222 Reddy, 2014; Pecina-Quintero et al., 2014). Pecina-Quintero et al. (2014) found high genetic
- 223 diversity of *J. curcas* in Mexico. *Grativol et al.* (2010) analyzed 332 accessions from 12 locations
- in Brazil using ISSR primers and reported lower genetic diversity than that reported in Mexico.
- 225 Pamidimarri & Reddy (2014) used RAPD and AFLPs to analyze the molecular diversity of 42



227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

Indian accessions of *J. curcas* and found a mean percentage of polymorphism (PP) of 26.47. In the same study, the average PP of Mexican accessions was 33.18. The mean PP of the germplasm samples excluding the Indian accessions was 35.86, supporting the hypothesis that Indian germplasm is less diverse than germplasm in other regions of the world (Colombo, Second & Charrier, 2000; Ram, Kumar & Bhatt, 2004). Montes et al. (2014) also found higher genetic diversity in Mexican and Central American accessions compared to those from other parts of the world. Given the observed levels of genetic diversity, Costa Rica may be a secondary center of origin or diversification for this species (Pamidimarri & Reddy 2014; Pecina-Quintero et al., 2014). However, comparisons are limited since few studies have evaluated genetic diversity of J. curcas germplasm using EST-SSR markers. Wen et al. (2010) evaluated 45 accessions from Indonesia, Grenada, South America and two Chinese provinces, and found a mean genetic diversity of 0.3819. The most diverse locations were South America and Yunnan with H= 0.33 and H= 0.3473, respectively. In another study, 50 EST-SSR markers were used to evaluate 25 Indian accessions and an average He of 0.30 was found (Yadav et al., 2011). As in our study, accessions clustered independently of geographic origin. Our PIC estimates (PIC=  $0.274 \pm 0.165$ ) were comparable to those obtained by Yadav et al. (2011) (PIC=  $0.25 \pm 0.16$ ) and are considered moderately informative (Botstein et al., 1980). In Costa Rica, Jatropha curcas is typically not cultivated commercially. Plants usually grow as hedgerows and are occasionally reproduced by farmers through cuttings. Our samples represent plants growing spontaneously in the field; no commercially grown material was included in the study. Therefore, our genetic diversity estimates represent the standing natural variation of this species. However, since EST-SSR markers were developed from expressed sequence tag libraries, they reside within genes and are subject to selection, which reduces unfavorable polymorphisms



(Cova et al., 2012; Ellis & Burke 2007). EST-SSR markers are less polymorphic than genomic SSRs (Song et al., 2012) and consequently, genetic diversity may have been underestimated in this study. J. curcas is a predominantly outcrossing species (tm= 0.683) (Bressan et al., 2013). As expected, we found no significant evidence of inbreeding (f = -0.102). High rates of gene flow should produce low levels of inbreeding, which would result in the low structure suggested by our NJ and ML clustering. Low inbreeding coefficients were also estimated in Mexico and South America (Ambrosi et al., 2010). Although inbreeding was negligible in the present study, in other parts of the world such as India and Brazil, lower genetic diversity has been attributed to increased selfing or a high paternity correlation due to the spread of introductions across the country through vegetative propagation, recent common ancestry, drift, and intensive selection of the currently cultivated materials since the time of introduction (Basha & Sujatha, 2007; Bressan et al., 2013; Rosado et al., 2010).

#### Phylogenetic analysis of Jatropha curcas

Several studies of *J. curcas* have shown that collection sites do not necessarily reflect the genetic origin of accessions (*Ambrosi et al., 2010; Maghuly et al., 2015*). Our NJ tree and PCA analysis (Fig.2 and Fig.3) showed no correlation between genetic similarity and geographic proximity. For example, the two Mexican accessions, JCCR-24 and JCCR-31, clustered in different putative groups. Also, the two Indian accessions (JCCR-27 and JCCR-INDIA) did not seem to be related. *J. curcas* is widely cultivated and plants are exchanged commonly. Accessions from the same country may come from diverse origins and thus may be placed in different clades. Our analysis suggests that collection sites may not necessarily represent local germplasm, but genetically distinct lineages from different geographic regions. Material exchanges between American,



273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

African and Asian collections have occurred commonly over the last 200 years (Heller, 1996) and may have resulted in founder effects in Africa and Asia (Henning, 2007; Lengkeek, 2007; Pamidimarri & Reddy 2014). For example, according to Pamidimarri & Reddy (2014), Portuguese seafarers introduced accessions from Mexico and Central America to India through two dispersal routes: one brought J. curcas through Africa, Madagascar and finally to India, while the other passed through Spain on its way to India. These migration routes support our findings of a widely dispersed plant with little geographic structure. The observed ML tree topology may be an artifact of the low level of genetic structure seen in our other analysis. Concurrently, low levels of inbreeding suggest considerable gene flow may be occurring in *J. curcas* in Costa Rica. Although our samples did not cluster similarly across analysis, a general lack of group structure was maintained throughout. The lack of consensus between clustering algorithms may be attributed to the nature of the different markers used. We analyzed multiple EST-SSR loci distributed throughout the genome (Davies & Bermingham, 2002; Pamidimarri & Reddy, 2014), and we are confident that we have accounted for a significant portion of the genetic variability in this species. Costa Rican diversity estimates may be improved by enriching the germplasm bank with more accessions from the Caribbean and southern parts of the country.

289

290

291

292

293

294

#### **Toxicity evaluation of** *J. curcas*

Our results show that only one of the accessions, Mexican JCCR-24, had all of the alleles that indicate non-toxicity. This accession was previously confirmed as non-toxic by *in vivo* evaluation (*Basha & Sujatha, 2007*). JCCR-24 could be used as a parental plant in a breeding program to obtain dual-purpose non-toxic plants, thereby increasing the attractiveness of *J. curcas* as a biofuel



plant (*King et al., 2013*). In other samples, only one or two toxic alleles were detected, depending on the primers used. This may have been due to variations present in Costa Rican genotypes. SSR markers are very polymorphic (*Powell et al., 1996*). The primers used to detect non-toxicity were developed from Mexican, Asian and African accessions (*Basha & Sujatha, 2007; Phumichai et al., 2011*) and their ability to detect toxicity may differ for genotypes from other parts of the world. It is possible that other Costa Rican accessions have alleles that have not yet been identified as indicative of non-toxicity, and in this case, the non-toxic nature of the accessions would have been overlooked. *In vivo* evaluations are needed to confirm this hypothesis.

303

304

295

296

297

298

299

300

301

302

#### **ACKNOWLEDGEMENTS**

- We thank the Estación Experimental Fabio Baudrit Moreno (EEFBM) of the Universidad de Costa
- 306 Rica for the collection and maintenance of the germplasm bank.

307

308

309

#### ADDITIONAL INFORMATION

#### **DNA Submission to GenBank**

- The following information was supplied regarding the submission of DNA sequences: GenBank
- 311 accession no.: KU561375, KU561376, KU561377, KU561378, KU561379, KU561380,
- 312 KU561381, KU561382, KU561383, KU561384, KU561385, KU561386, KU561387, KU561388,
- 313 KU561389, KU561390, KU561391, KU561393, KU561394, KU561395, KU561396, KU561397,
- 314 KU561398, KU561399, KU561400, KU561401, KU561402, KU561403, KU561404, KU561405,
- 315 KU561406, KU561407, KU561408, KU561409, KU561410, KU561411, KU561412, KU561413,
- 316 KU561414, KU561415, KU561416, KU561417, KU561418, KU561419, KU561420, KU561421,
- 317 KU561422, KU561423, KU561424.

- REFERENCES
- 320 Abdulla JM, Janagoudar BS, Biradar DP, Ravikumar RL, Koti RV, Patil SJ. 2009. Genetic
- diversity analysis of elite Jatropha curcas L. genotypes using randomly amplified polymorphic
- 322 DNA markers. *Journal of Agricultural Science* 22:293-295.
- Ambrosi DG, Galla G, Purelli M, Barbi T, Fabbri A, Lucretti S, Sharbel TF, Barcaccia G.
- 2010. DNA Markers and FCSS Analysis Shed Light on the Genetic Diversity and Reproductive
- 325 Strategy of *Jatropha curcas L. Diversity* 2:810-836 DOI10.3390/d2050810.
- 326 Avendaño R, García Díaz E, Valdez-Melara M, Chaves Solano N, Mora Villalobos A,
- 327 Aguilar Cascante F, Williamson Benavides B, Solís-Ramos L. 2015. Genetic Diversity
- 328 Analysis of *Jatropha* Species from Costa Rica Using AFLP Markers. *American Journal of Plant*
- 329 Sciences 6:2426-2438 DOI10.4236/ajps.2015.614245.
- Basili M, Fontini F. 2012. Biofuel from *Jatropha curcas*: Environmental sustainability and option
- 331 value. *Ecological Economics* 78:1-8 DOI10.1016/j.ecolecon.2012.03.010.
- Basha SD, Sujatha M. 2007. Inter and intrapopulation variability of *Jatropha curcas* (L.)
- characterized by RAPD and ISSR markers and development of population-specific SCAR
- markers. *Euphytica* 156:375-386 DOI 10.1007/s10681-007-9387-5.
- Basha SD, Francis G, Becker K, Makkar HPS, Sujatha M. 2009. A comparative study of
- biochemical traits and molecular markers for assessment of relationships between *Jatropha curcas*
- germplasm in China. *Biomass & Bioenergy* 7:1-12 DOI10.1016/j.plantsci.2009.03.008.
- Botstein D, White RL, Skolnick M, Davis RW. 1980. Construction of a genetic linkage map in
- man using restriction fragment length polymorphisms. The American Journal of Human Genetics
- 340 32:314-331.



- 341 Bressan EA, Sebbenn AM, Rodrigues Ferreira R, Lee TSG, Figueira A. 2013. Jatropha curcas
- L. (Euphorbiaceae) exhibits mixed mating system, high correlate mating and apomixis. Tree
- 343 Genetics & Genomes 9:1089-197 DOI 10.1007/s11295-013-0623-y.
- Carels N. 2013. Towards the domestication of *Jatropha*: The integration of science. In: Bahadur
- B, Sujatha M, Carels N (ed) Jatropha Challenges for a New Energy Crop: Volume II. Springer,
- 346 New York, 263-299.
- China Plant BOL Group, De-Zhu L, Lian-Ming G, Hong-Tao L, Hong W, Xue-Jun G, Jian-
- Quan L, Zhi-Duan C, Shi-Liang Z, Shi-Lin C, Jun-Bo Y, Cheng-Xin F, Chun-Xia Z, Hai-Fei
- 349 Y, Ying-Jie Z, Yong-Shuai S, Si-Yun C, Lei Z, Kun W, Tuo Y, Guang-Wen D. 2011.
- Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be
- 351 incorporated into the core barcode for seed plants. PNAS 108:19641-19646 DOI
- 352 10.1073/pnas.1104551108.
- Colombo C, Second G, Charrier A. 2000. Diversity within American cassava germplasm based
- on RAPD markers. *Genetics and Molecular Biology* 23:189–199.
- Cova V, Perini D, Soglio V, Komjanc M, van de Weg E, Glessler C, Gianfranceschi L. 2012.
- 356 Exploiting expressed sequence tag database for mapping markers associated with fruit
- development and fruit quality in apple. *Molecular Breeding* 29:699-715.
- Davies N, Bermingham E. 2002. The historical biogeography of two Caribbean butterflies
- 359 (Lepidoptera: heliconiidae) as inferred from genetic variation at multiple loci. Evolution 56:573–
- 360 589.
- 361 Ellis JR, Burke JM. 2007. EST-SSRs as a resource for population genetic analysis. Heredity
- 362 99:125–132.



- 363 Goldstein DB, Ruiz Linares A, Cavalli Sforza LL, Feldman MW. 1995. An evaluation of
- genetic distances for use with microsatellite loci. *Genetics* 139:463-471.
- 365 Grativol C, da Fonseca Lira-Medeiros C, Hemerly AS, Ferreira PCG. 2010. High efficiency
- and reliability of inter-simple sequence repeats (ISSR) markers for evaluation of genetic diversity
- in Brazilian cultivated *Jatropha curcas* L. accessions. *Molecular Biology Reports* 38:4245-4256
- 368 DOI 10.1007/s11033-010-0547-7.
- 369 **Heller J. 1996.** Physic Nut Jatropha curcas L. Promoting the Conservation and use of
- 370 *Underutilized and Neglected Crops.* Rome: IPGRI, 10–11.
- Henning RK. 2007. Jatropha curcas L. In: van der Vossen HAM, Mkamilo GS, ed. Plant
- 372 Resources of the Tropical Africa: Volume I. Vegetable oils PROTA Fondation, Wageningen, The
- 373 Netherlands, 14:116–122.
- Insanu M, Dimaki C, Wilkins R, Brooker J, van der Linde P, Kayser O. 2013. Rational use
- of *Jatropha curcas* L. in food and medicine: from toxicity problems to safe applications.
- 376 Phytochemistry review 12:107–119.
- 377 Islam A, Taufiq-Yap YH, Chu CH, Ravindra P, Chan ES. 2013. Transesterification of palm
- oil using KF and NaNO3 catalysts supported on spherical millimetric γ-Al2O3. Renewable Energy
- 379 59:23–29.
- Jongschaap REE, Corré WJ, Bindraban PS, Brandenburg, WA. 2007. Claims and Facts. In:
- 381 Jatropha curcas L.: Global Jatropha curcas Evaluation, Breeding and propagation programme.
- Report 158 Plant Research International BV, Wageningen, The Netherlands, 42.
- 383 King AJ, Montes LR, Clarke JG, Affleck J, Li Y, Witsenboer H, van der Vossen E, van der
- Linde P, Tripathi Y, Tavares E, Shukla P, Rajasekaran T, van Loo EN, Graham IA. 2013.
- 385 Linkage mapping in the oilseed crop *Jatropha curcas* L. reveals a locus controlling the



- biosynthesis of phorbol esters which cause seed toxicity. Plant Biotechnology J 11:986–996 DOI
- 387 10.1111/pbi.12092.
- King AJ, Montes LR, Clarke JG, Itzep J, Perez CA, Jongschaap RE, Visser RG, van Loo
- EN, Graham I. 2015. Identification of QTL markers contributing to plant growth, oil yield and
- fatty acid composition in the oilseed crop Jatropha curcas L. Biotechnology for Biofuels 8:1-17
- 391 DOI 10.1186/s13068-015-0326-8.
- Lengkeek AG. 2007. The *Jatropha curcas* agroforestry strategy of Mali Biocarburant SA. In:
- Proceedings of the FACT Seminar on *Jatropha curcas* L. Agronomy and Genetics. Wageningen,
- The Netherlands, 597.
- 395 Liu K, Muse SV. 2005. PowerMarker: an integrated analysis environment for genetic marker
- analysis. *Bioinformatics* 21:228-2129 DOI 10.1093/bioinformatics/bti282.
- 397 Maghuly F, Jankowicz-Cieslak J, Parbinger S, Till BJ, Laimer M. 2015. Geographic origin is
- not supported by the genetic variability found in a large living collection of *Jatropha curcas* with
- 399 accessions from three continents. *Biotechnology Journal* 10:536-551 DOI
- 400 10.1002/biot.201400196.
- 401 Makker HPD, Becker K. 2015. *Jatropha curcas*, a promising crop for the generation of biodisel
- and value-added coproducts. European Journal of Lipid Science and Technology 11:773-787 DOI
- 403 10.1002/ejlt.200800244.
- 404 Mastan S, Sudheer P, Rahman H, Ghosh A, Rathore M, Ravi Prakash C, Chikara J. 2012.
- 405 Molecular characterization of intra-population variability of *Jatropha curcas* L. using DNA based
- 406 molecular markers. *Molecular Biology Reports* 39:4383-4390 DOI 10.1007/s11033-011-1226-z.



- 407 Möller EM, Bahnweg G, Sandermann H, Geiger HH. 1992. A simple and efficient protocol for
- 408 isolation of high molecular weight DNA from filamentous fungi, fruit bodies, and infected plant
- 409 tissues. Nucleic Acids Research 22: 6115-6116.
- 410 Montes Osorio LR, Torres Salvador AF, Jongschaap REE, Azurdia C, Berduo J, Trindade
- 411 LM, Visser RGF, Loo EN van. 2014. High level of molecular and phenotypic biodiversity in
- 412 Jatropha curcas from Central America compared to Africa, Asia and South America. BMC Plant
- 413 Biology 14:19 DOI10.1186/1471-2229-14-77.
- Nieto-Feliner G, Roselló JA. 2007. Better the devil you know? Guideline for insightful utilization
- of nrDNA ITS in species-level evolutionary studies in plants. Molecular Phylogenetics and
- 416 Evolution 44:911-919.
- 417 **Openshaw K. 2000.** A review of *Jatropha curcas*: an oil plant of unfulfilled promise. *Biomass &*
- 418 Bioenergy 19:1-15 DOI 10.1016/S0961-9534(00)00019-2.
- 419 Ovando-Medina I, Espinosa GF, Nuñez FJ, Salvador FM. 2011. Genetic variation in Mexican
- 420 Jatropha curcas L. estimated with seed oil fatty acids. Journal of Oleo Science 60:301-311.
- 421 Ovando-Medina I, Adriano-Anaya L, Vásquez-Ovando A. 2013. Genetic diversity of *Jatropha*
- curcas in southern Mexico. In: Bahadur B, Sujatha M, Carels N (ed) Jatropha Challenges for a
- New Energy Crop. Springer, New York, pp 263-299,
- Pamidimarri SDV, Chattopadhyay B, Reddy MP. 2008. Genetic divergence and phylogenetic
- analysis of genus Jatropha based on nuclear ribosomal DNA ITS sequence. Molecular Biology
- 426 Reports 36:1929-1935 DOI 10.1007/s11033-008-9401-6.
- 427 Pamidimarri SDV, Reddy MO. 2014. Phylogeography and molecular diversity analysis of
- 428 Jatropha curcas L. and the dispersal route revealed by RAPD, AFLP and nrDNA-ITS analysis.
- 429 *Molecular Biology Reports* 41:3225-34 DOI 10.1007/s11033-014-3185-7.



- 430 Peakall R, Smouse PE. 2012. GenAlEx 6.5: genetic analysis in Excel. Population genetic
- software for teaching and research-an update. *Bioinformatics* 28:2537-2539.
- Pecina-Quintero V, Amaya JL, Zamarripa A, Montes N, Núñez C, Solís J. 2011. Molecular
- characterization of Jatropha curcas L. genetic resources from Chiapas, México through AFLP
- 434 markers. *Biomass & Bioenergy* 35:1897-1905 DOI 10.1016/j.biombioe.2011.01.027.
- Pecina-Quintero V, Anaya-Lopez JL, Zamarripa-Colmenero A, Nunez-Colin CA. 2014.
- 436 Genetic structure of Jatropha curcas L. in Mexico and probable center of origin. Biomass &
- 437 *Bioenergy* 60:147–155 DOI 10.1016/j.biombioe.2013.11.005.
- 438 Phumichai C, Phumichai T, Kongsiri N, Wongkaew A, Sripichit P, Kaveeta R. 2011. Isolation
- 439 of 55 microsatellite markers for Jatropha curcas and its closely related species. Biologia
- 440 Plantarum
- 441 55:387-390.
- Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A. 1996. The
- comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis.
- 444 Molecular Breeding 2:225-238.
- Ram J, Kumar A, Bhatt J. 2004. Plant diversity in six forest types of Uttaranchal, Central
- 446 Himalaya, India. Current Science 86:975-978.
- Raposo RS, Souza IGB, Veloso MEC, Kobayashi AK, Laviola BG, Diniz FM. 2014.
- Development of novel simple sequence repeat markers from a genomic sequence survey database
- 449 and their application for diversity assessment in *Jatropha curcas* germplasm from Guatemala.
- 450 Genetics and molecular research 13:6099-6106 DOI 10.4238/2014.August.7.25.
- Rosado TB, Laviola BG, Faria DA, Pappas MR, Bhering LL, Quirino B, Grattapaglia D.
- 452 **2010.** Molecular markers reveal limited genetic diversity in a large germplasm collection of the



- 453 biofuel crop Jatropha curcas L. in Brazil. Crop Science 50:2372-2382 DOI
- 454 10.2135/cropsci2010.02.0112.
- Santorum JM, Darriba D, Taboada GL, Posada D. 2014. jmodeltest.org: selection of nucleotide
- 456 substitution models on the cloud. Bioinformatics 30:1310–1311 DOI
- 457 10.1093/bioinformatics/btu032.
- Smith JSC, Chin ECL, Shu H, Smith OS, Wall SJ, Senior ML, Mitchell SE, Kresovich S,
- **Ziegle J. 1997.** An evaluation of the utility of SSR loci as molecular markers in maize (Zea mays
- 460 L.): comparisons with data from RFLPs and pedigree. Theoretical and Applied Genetics 95:163–
- 461 173.
- Song YP, Jiang XB, Zhang M, Wang ZL, Bo WH, An XM, Zhang DQ, Zhang ZY. 2012.
- Differences of EST-SSR and genomic-SSR markers in assessing genetic diversity in poplar.
- 464 Forestry Studies in China 14:1-7 DOI 10.1007/s11632-012-0106-5.
- Sun QB, Li LF, Li Y, Wu GJ, Ge XJ. 2008. SSR and AFLP markers reveal low genetic diversity
- 466 in the biofuel plant Jatropha curcas in China. Crop Science 48:1865-1871 DOI
- 467 10.2135/cropsci2008.02.0074.
- 468 Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: Molecular
- Evolutionary Genetics Analysis Version 6.0. *Molecular Biology and Evolution* 30:2725-2729 DOI
- 470 10.1093/molbev/mst197.
- 471 Tatikonda L, Wani PS, Kannan S, Beerelli N, Sreedevi KT, Hoisington AD. 2009. AFLP based
- 472 molecular characterization of an elite germplasm collection of *Jatropha curcas* L., biofuel plant.
- 473 *Plant Science* 176:505-513.
- 474 **Tayaré S. 1986.** Some probabilistic and statistical problems in the analysis of DNA sequences. In:
- 475 American Mathematical Society. Lectures on Mathematics in the Life Sciences 17:57-86.



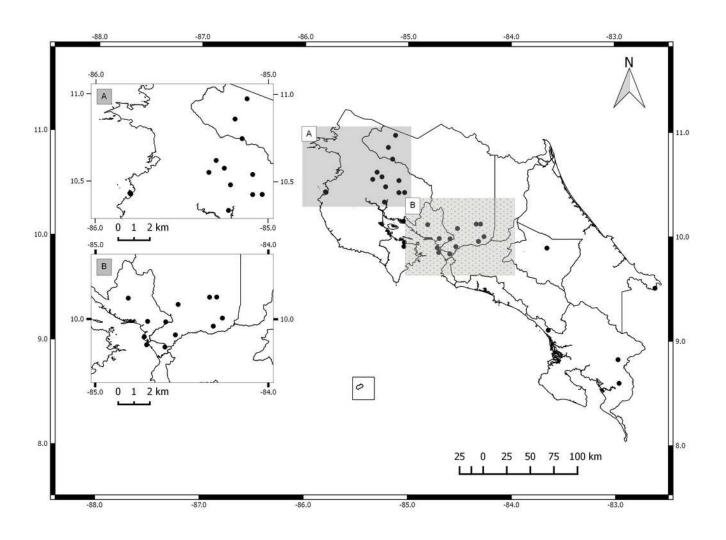
- 476 To H, Grafton Q. 2015. Oil prices, biofuels production and food security: past trends and future
- 477 challenges. *Food Security* 7:323-336 DOI 10.1007/s12571-015-0438-9
- van Oosterhout C, Hutchinson WF, Wills DP, Shipley P. 2004. MICRO-CHECKER: software
- 479 for identifying and correcting genotyping errors in microsatellite data. *Molecular Ecology Notes*
- 480 4:535-538 DOI 10.1111/j.1471-8286.2004.00684.x.
- Varshney RK, Graner A, Sorrells ME. 2005. Genic microsatellite markers in plants: features
- and applications. *Trends in Biotechnology* 23:48-55 DOI 10.1016/j.tibtech.2004.11.005.
- Vera-Castillo YB, Cuevas JA, Valenzuela-Zapata AG, Urbano B, Gonzalez-Andres F. 2014.
- 484 Biodiversity and indigenous management of the endangered non-toxic germplasm of Jatropha
- 485 curcas L. in the Totonacapan (Mexico), and the implications for its conservation. Genetic
- 486 Resources and Crop Evolution 61:1263-1278 DOI: 10.1007/s10722-014-0109-2.
- Vischi M, Raranciuc S, Baldini M. 2013. Evaluation of genetic diversity between toxic and non
- 488 toxic Jatropha curcas L. accessions using a set of simple sequence repeat (SSR) markers. African
- 489 *Journal of Biotechnology* 12: 265-274 DOI 10.5897/AJB12.2656.
- 490 Wen M, Wang H, Xia Z, Zou M, Lu C, Wang W. 2010. Development of EST-SSR and genomic
- SSR markers to assess genetic diversity in *Jatropha curcas* L. *BMC Research Notes* 3:4210 DOI
- 492 10.1186/1756-0500-3-42.
- 493 Yadav HK, Ranjan A, Asif MH, Mantri S, Sawant SV, Tuli R. 2011. EST-derived SSR markers
- 494 in *Jatropha curcas* L. development, characterization, polymorphism, and transferability across the
- 495 species/genera. Tree Genetics & Genomes 7:207-219 DOI: 10.1007/s11295-010-0326-6.

497





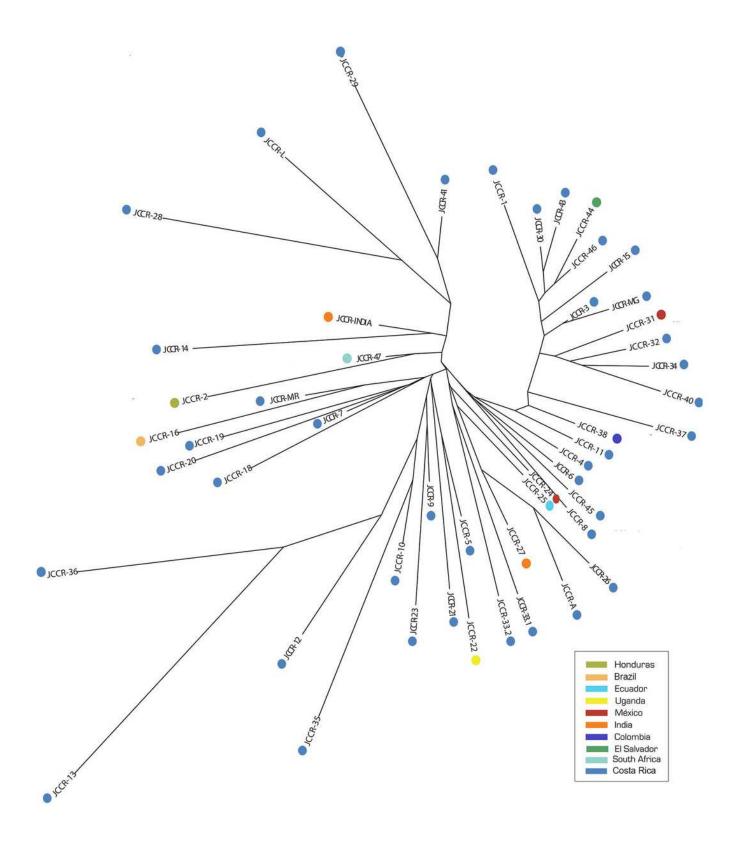
- 501 List of tables
- Table 1. Germplasm bank identification number, geographical collection sites and Genbank
- Accession number of nrDNA-ITS region for each of the *J. curcas* accessions in the Fabio Baudrit
- 504 Experimental Station used in the study.
- Table 2. EST-SSR and G-SSR primers used for evaluation of *Jatropha curcas* germplasm.
- Table 3. Primers used to evaluate toxicity of accessions in the germplasm bank.
- \*NA: No amplification expected
- Table 4. Parameters of genetic diversity and information contents of eighteen EST-SSR markers
- and one SSR used to analyze 50 *J. curcas* accessions.
- \*He: Heterozygosity, PIC: Polymorphism information content, f: inbreeding coefficient
- 511 List of figures
- Fig. 1. Map of Costa Rica with sites where *Jatropha curcas* accessions were collected. A) North
- 513 Pacific Region. B) Central Pacific Region.
- Fig. 2. Neighbor-Joining (NJ) tree based on a genetic distance matrix from 19 microsatellite data
- from 50 germplasm accessions of *J. curcas*.
- Fig. 3. Principal coordinate analysis created with GenAlEx based on the  $\delta\mu^2$  genetic distance
- estimated in the POPULATIONS software with 19 microsatellites from 50 germplasm accessions of
- 518 *J. curcas* from the Costa Rican germplasm bank evaluated in this study.
- Fig. 4. Maximum likelihood phylogenetic tree generated with 60 Jatropha curcas samples.
- 520 Analyzed sequences represent the nrDNA-ITS region. The tree was constructed with the GTR
- model using a jModelTest analysis with 3000 bootstraps and uniform substitution rates in the
- 522 MEGA 6.0 software. Only bootstrap values higher than 50 % are shown. The bar indicates the




- 523 substitutions per site. Blue boxes show the sequences obtained from the current work in Costa
- Rica. Other accessions were obtained from Genbank for comparison.



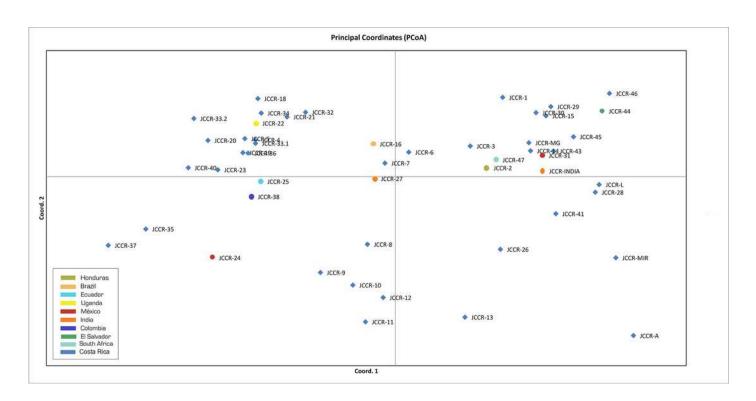
### Map of Costa Rica


Map of Costa Rica with sites where *Jatropha curcas* accessions were collected. A) North Pacific Region. B) Central Pacific Region





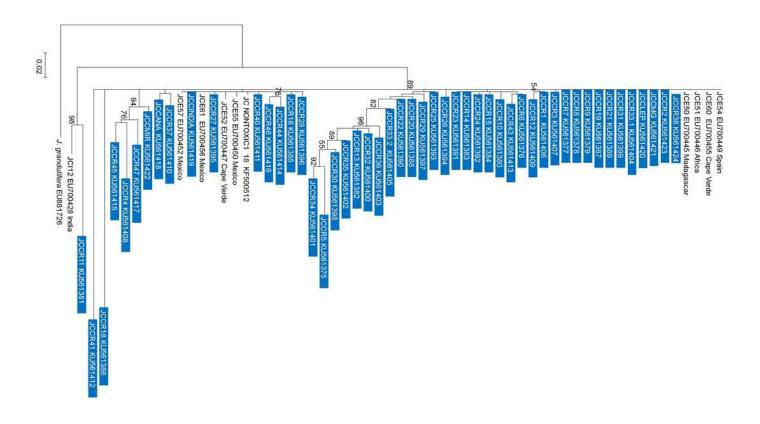
Neighbor-Joining (NJ) tree


Neighbor-Joining (NJ) tree based on a genetic distance matrix from 19 microsatellite data from 50 germplasm accessions of *J. curcas*.





### Principal coordinate analysis


Principal coordinate analysis created with GenAlEx based on the  $\delta\mu^2$  genetic distance estimated in the Populations software with 19 microsatellites from 50 germplasm accessions of *J. curcas* from the Costa Rican germplasm bank evaluated in this study.





Maximum likelihood phylogenetic tree

Maximum likelihood phylogenetic tree generated with 60 *Jatropha curcas* samples. Analyzed sequences represent the nrDNA-ITS region. The tree was constructed with the GTR model using a jModelTest analysis with 3000 bootstraps and uniform substitution rates in the MEGA 6.0 software. Only bootstrap values higher than 50 % are shown. The bar indicates the substitutions per site. Blue boxes show the sequences obtained from the current work in Costa Rica. Other accessions were obtained from Genbank for comparison.





### Table 1(on next page)

Germplasm bank information

Germplasm bank identification number, geographical collection sites and Genbank Accession number of nrDNA-ITS region for each of the *J. curcas* accessions in the Fabio Baudrit Experimental Station used in the study.

| Germplasm code | Country    | Location    | Genbank accesion |
|----------------|------------|-------------|------------------|
| JCCR-1         | Costa Rica | Orotina     | KU561406         |
| JCCR-3         | Costa Rica | Orotina     | KU561407         |
| JCCR-4         | Costa Rica | San Mateo   | KU561408         |
| JCCR-5         | Costa Rica | Cañas       | KU561375         |
| JCCR-6         | Costa Rica | San Antonio | KU561376         |
| JCCR-7         | Costa Rica | Cañas       | KU561377         |
| JCCR-8         | Costa Rica | Abangares   | KU561378         |
| JCCR-9         | Costa Rica | Guapinol    | KU561379         |
| JCCR-10        | Costa Rica | Cañas       | KU561380         |
| JCCR-11        | Costa Rica | San Antonio | KU561381         |
| JCCR-12        | Costa Rica | San Mateo   | KU561409         |
| JCCR-13        | Costa Rica | Orotina     | KU561382         |
| JCCR-14        | Costa Rica | Turrubares  | KU561383         |
| JCCR-15        | Costa Rica | Abangares   | KU561384         |
| JCCR-18        | Costa Rica | Bagaces     | KU561386         |
| JCCR-19        | Costa Rica | Cañas       | KU561387         |
| JCCR-20        | Costa Rica | San Vito    | KU561388         |
| JCCR-21        | Costa Rica | Capulin     | KU561389         |



| JCCR-23   | Costa Rica | San Antonio    | KU561391 |
|-----------|------------|----------------|----------|
| JCCR-26   | Costa Rica | Capulin        | KU561394 |
| JCCR-28   | Costa Rica | Upala          | KU561396 |
| JCCR-29   | Costa Rica | Bagaces        | KU561397 |
| JCCR-30   | Costa Rica | Coto 54        | KU561398 |
| JCCR-32   | Costa Rica | Bagaces        | KU561400 |
| JCCR-33.1 | Costa Rica | Los Santos     | KU561404 |
| JCCR-33.2 | Costa Rica | Los Santos     | KU561405 |
| JCCR-34   | Costa Rica | FabioBaudrit   | KU561401 |
| JCCR-35   | Costa Rica | Abangares      | KU561402 |
| JCCR-36   | Costa Rica | Turrubares     | KU561403 |
| JCCR-37   | Costa Rica | Unknown        | KU561410 |
| JCCR-40   | Costa Rica | Lagunilla      | KU561411 |
| JCCR-41   | Costa Rica | CATIE          | KU561412 |
| JCCR-43   | Costa Rica | Turrubares     | KU561413 |
| JCCR-45   | Costa Rica | Unknown        | KU561415 |
| JCCR-46   | Costa Rica | Diquis         | KU561416 |
| JCCR-MIR  | Costa Rica | Miramar        | KU561422 |
| JCCR-ANA  | Costa Rica | Anabel         | KU561418 |
| JCCR-MG   | Costa Rica | Montaña Grande | KU561421 |
| JCCR-LEP  | Costa Rica | Lepanto        | KU561420 |
|           |            |                |          |



| JCCR-2     | Honduras     | Unknown | KU561423 |
|------------|--------------|---------|----------|
| JCCR-16    | Brazil       | Unknown | KU561385 |
| JCCR-22    | Uganda       | Unknown | KU561390 |
| JCCR-24    | Mexico       | Unknown | KU561392 |
| JCCR-31    | Mexico       | Unknown | KU561399 |
| JCCR-25    | Ecuador      | Manabí  | KU561393 |
| JCCR-27    | India        | Unknown | KU561395 |
| JCCR-INDIA | India        | Unknown | KU561419 |
| JCCR-38    | Colombia     | Unknown | KU561424 |
| JCCR-44    | El Salvador  | Unknown | KU561414 |
| JCCR-47    | South Africa | Unknown | KU561417 |



### Table 2(on next page)

Primers used for evaluation of J. curcas

EST-SSR and G-SSR primers used for evaluation of Jatropha curcas germplasm.

| ID       | Forward Primer       | Reverse Primer         | T <sub>A</sub> (°C)* | Expected size (bp) |
|----------|----------------------|------------------------|----------------------|--------------------|
| JESR-001 | AACCACAGGAGTTGGTAATG | GAAAGAAGCAACAGAAATGG   | 50                   | 307                |
| JESR-028 | ACTTCCTTCAGATCATGCAC | CTGGGTAATCTTGTTCCAAA   | 52                   | 292                |
| JESR-047 | GTTGATACTGGAAGTGAGCC | TGTGTTCAAAGGTGATGAGA   | 52                   | 398                |
| JESR-086 | TCCCTCTCCTTCAGATTAAA | ATGATAGCCAAACAGCAACT   | 54                   | 333                |
| JESR-092 | CTCTGAGAATTGAACCATCC | GGGAACAAAGAAATTACTGG   | 54                   | 378                |
| JESR-093 | CACCTCCCATTAGGGTTT   | CTAATCGACGCTGATAATCC   | 54                   | 239                |
| JESR-095 | AATGAGTCTGACAATCAGGG | GCATGCTCTGTTCTGCTT     | 54                   | 336                |
| JESR-096 | ACACAAACACAATCAACAGC | CGCGACTCACTTTGTATGTA   | 54                   | 244                |
| JESR-098 | AGATCACAAGGATCACAAGG | GCAGTTGTCAAACACTAGCA   | 54                   | 290                |
| JESR-099 | ATAATGGCAAACAAGTGGTC | TGGTAGTGTTGTTCTTGCAG   | 54                   | 305                |
| JESR-101 | ATCCTAACACAGTTGCCATC | AAACTCAACCAAACCACAAC   | 54                   | 230                |
| JESR-102 | ATCCTTCTGCAGTAGCCATA | TTATATGCTACACATCAACCTG | 54                   | 278                |
| JESR-103 | CAAGTTCGAGGAGTACAAGG | TGTTACAACGAGATGAGTGC   | 54                   | 292                |
| JESR-104 | CCACAGTTCATCCTCAATTT | GATATTCACTCTGGAACCCA   | 54                   | 308                |
| JESR-118 | CTAAAGGCTGTGAAGAAGGA | TCCGAGCCAATTTCTTATTA   | 54                   | 276                |
| JESR-161 | AAGAAGTGTATGGGTTGCAC | TACGATACCTAGGGCTACGA   | 56                   | 323                |
| JESR-162 | ACTGATGGGTATGTGAGAGG | TTCTTCATCATGGCTACCTT   | 56                   | 220                |
| JESR-163 | CAGAAACGGAGAGGTCTG   | AGATTGGAAGAGGAGAGGAG   | 56                   | 144                |
| JESR-164 | AGCCCAGTCTCGCGGAAG   | CAGTTCCCTTCAGAAGCTC    | 56                   | 231                |
| JESR-178 | CTTTAGTCCACCTCAAGTGC | TGCAGCAATCAACTCTACTG   | 56                   | 375                |
| JSSR-203 | ATCCTTGCCTGACATTTTGC | TTCGCAGAGTCCAATTGTTG   | 55                   | 210                |

2 \*  $\overline{T_A}$  = annealing temperature

4

3



### Table 3(on next page)

Primers used to evaluate toxicity of accessions

Primers used to evaluate toxicity of accessions in the germplasm bank.

| Primer   | Primer sequences              | T (9C)             | Expected size non- | <b>Expected size</b> |
|----------|-------------------------------|--------------------|--------------------|----------------------|
| ID       |                               | $T_{m}(^{\circ}C)$ | toxic (bp)         | toxic (bp)           |
| JCT27    | F: 5'-CATTAGAATGGACGGCTA-3'   | 60                 | 259                | 253                  |
| JC127    | R: 5'-GCGTGAAGCTTTGATTTGA-3'  | 00                 | 239                | 233                  |
| r gan ac | F: 5'-CATACAAAGCCTTGTCC-3'    | 55                 | 210                | 220                  |
| JcSSR-26 | R: 5'-AACAGCATAATACGACTC-3'   | 55                 | 210                | 230                  |
|          | F: 5'-TGGAAAACGAATGAGGCTCT-3' | 50                 | 214                | 200                  |
| JCT31    | R: 5'-GGACACTCTGGAAAGGAACG-3' | 59                 | 214                | 208                  |
|          | F: 5'-GAGAGAGAGAGAGGTG-3'     | 5.4                | NT A +             | 5.42                 |
| ISPJ1    | R-5'-GAGAGAGAGAGAAAACAAT-3'   | 54                 | NA*                | 543                  |
| ISPJ2    | F- 5'GAGAGAGAGAGTTGGGTG-3'    | 5.4                | 4006               | NA                   |
|          | R-5'AGAGAGAGAGAGCTAGAGAG-3'   | 54                 | 1096               |                      |

\*NA: No amplification expected



17



## Table 4(on next page)

Parameters of genetic diversity information obtained

| SSR name | He*   | PIC*  | f*      |
|----------|-------|-------|---------|
| JEST-01  | 0.375 | 0.551 | 0.411   |
| JEST-28  | 0     | 0.043 | 0.001   |
| JEST-47  | 0.050 | 0.048 | -0.0129 |
| JEST-86  | 0     | 0.336 | 0.001   |
| JEST-92  | 0.814 | 0.370 | -0.654  |
| JEST-93  | 0.327 | 0.250 | -0.160  |
| JEST-95  | 0.217 | 0.175 | -0.111  |
| JEST-96  | 0.380 | 0.260 | -0.225  |
| JEST-98  | 0.043 | 0.114 | 0.650   |
| JEST-99  | 0.280 | 0.236 | -0.110  |
| JEST-101 | 0.500 | 0.357 | -0.062  |
| JEST-102 | 0.325 | 0.235 | -0.182  |
| JEST-118 | 0.313 | 0.228 | -0.175  |



| JEST-161        | 0.043 | 0.042 | -0.011 |
|-----------------|-------|-------|--------|
| <b>JEST-162</b> | 0.500 | 0.677 | 0.300  |
| <b>JEST-163</b> | 0.245 | 0.192 | -0.129 |
| JEST-164        | 0.721 | 0.355 | -0.555 |
| <b>JEST-178</b> | 0.512 | 0.364 | -0.058 |
| JSSR-203        | 0.933 | 0.375 | -0.862 |
| Mean            | 0.346 | 0.274 | -0.102 |
| SD              | 0.062 | 0.165 | 0.346  |

<sup>\*</sup> He: Heterozygosity, PIC: Polymorphism information content, f: inbreeding coefficient