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We estimated the genetic diversity of 50 Jatropha curcas samples from the Costa Rican

germplasm bank using 18 EST-SSR, one G-SSR and nrDNA-ITS markers. We also evaluated

the phylogenetic relationships among samples using nuclear ribosomal ITS markers. Non-

toxicity was evaluated using G-SSRs and SCARs markers. A Neighbor-Joining (NJ) tree and

a Maximum Likelihood (ML) tree were constructed using SSR markers and ITS sequences,

respectively. Heterozygosity was moderate (He = 0.346), but considerable compared to

worldwide values for J. curcas. The PIC (PIC = 0.274) and inbreeding coefficient (f = -0.102)

were both low. Clustering was not related to the geographical origin of accessions.

International accessions clustered independently of collection sites, suggesting a lack of

genetic structure, probably due to the wide distribution of this crop and ample gene flow.

Molecular markers identified only one non-toxic accession (JCCR-24) from Mexico. This

work is part of a countrywide effort to characterize the genetic diversity of the Jatropha

curcas germplasm bank in Costa Rica.
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23 ABSTRACT 

24 We estimated the genetic diversity of 50 Jatropha curcas samples from the Costa Rican 

25 germplasm bank using 18 EST-SSR, one G-SSR and nrDNA-ITS markers. We also evaluated the 

26 phylogenetic relationships among samples using nuclear ribosomal ITS markers. Non-toxicity was 

27 evaluated using G-SSRs and SCARs markers. A Neighbor-Joining (NJ) tree and a Maximum 

28 Likelihood (ML) tree were constructed using SSR markers and ITS sequences, respectively. 

29 Heterozygosity was moderate (He = 0.346), but considerable compared to worldwide values for J. 

30 curcas. The PIC (PIC = 0.274) and inbreeding coefficient (f = -0.102) were both low. Clustering 

31 was not related to the geographical origin of accessions. International accessions clustered 

32 independently of collection sites, suggesting a lack of genetic structure, probably due to the wide 

33 distribution of this crop and ample gene flow. Molecular markers identified only one non-toxic 

34 accession (JCCR-24) from Mexico. This work is part of a countrywide effort to characterize the 

35 genetic diversity of the Jatropha curcas germplasm bank in Costa Rica.
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42 INTRODUCTION

43 The use of fossil fuels for energy production is being discouraged because of global warming and 

44 fluctuating market prices. This situation has motivated research on alternative fuel sources such as 

45 biodiesel from corn or palm oil (To & Grafton, 2015). Jatropha curcas is being explored as a new 

46 biofuel crop (Islam et al., 2013). It is planted on approximately 1.8 million ha in Indonesia, China, 

47 Brazil and Africa, and has the potential to become a biofuel crop in India and other tropical 

48 countries (Carels, 2013). J. curcas, a member of the Euphorbiaceae family, is native to America 

49 and has a pantropical distribution. It grows well under unfavorable climatic and soil conditions, 

50 making it an attractive biofuel crop. Average oil content per seed is 40-45 % (Jongschaap et al., 

51 2007). Biofuel from this species is similar in quality to biofuels derived from conventional crops 

52 like canola, linseed and sunflower, and surpasses the quality of biofuels produced from soybean 

53 (Basili & Fontini, 2012). 

54 The potential of J. curcas has not been fully exploited, mainly because of its variable and 

55 unpredictable oil yield that limits large-scale cultivation. Genetic improvement may alleviate this 

56 problem; however, characterization of the available germplasm is needed for breeding programs 

57 to be efficient (King et al., 2015; Mastan et al., 2012). Over the past decade, J. curcas germplasm 

58 has been genetically evaluated in India, China, Brazil, Mexico, Costa Rica and Central America 

59 (Avendaño et al., 2015; Basha & Sujatha, 2007; China Plant BOL Group et al., 2011; Montes 

60 Osorio et al., 2014; Pecina-Quintero et al., 2014; Rosado et al., 2010; Wen et al., 2010). Molecular 

61 markers such as RAPDs, ISSRs, AFLPs, genomic simple sequence repeats (G-SSR) and expressed 

62 sequence tags-SSR (EST-SSR) have all been used to assess the genetic diversity of J. curcas 

63 collections. These studies have revealed low levels of genetic variability in India and Brazil (China 

64 Plant BOL Group et al., 2011; Rosado et al., 2010; Sun et al., 2008; Yadav et al., 2011). Numerous 
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65 authors consider Mexico and Central America to be the center of origin and diversification 

66 (Abdulla et al., 2009; Basha et al., 2009; Heller, 1996; Openshaw, 2000; Pamidimarri, 

67 Chattopadhyay & Reddy, 2008; Pamidimarri & Reddy, 2014; Pecina-Quintero et al., 2011; 

68 Tatikonda et al., 2009), and high levels of genetic diversity in Guatemala (Raposo et al., 2014) 

69 and Mexico support this hypothesis (Ambrosi et al., 2010; Ovando-Medina, Adriano-Anaya & 

70 Vásquez-Ovando, 2013; Ovando-Medina et al., 2011; Pamidimarri & Reddy, 2014; Pecina-

71 Quintero et al., 2011). However, these studies have consistently shown a lack of relationship 

72 between the geographic proximity of collection sites and the genetic similarity among accessions, 

73 because collection sites rarely represent the place of origin of accessions. 

74 Another limitation to large-scale production of J. curcas is the possible toxicity of the seed. Both 

75 toxic and non-toxic genotypes of J. curcas are known (Insanu et al., 2013). Varieties with a non-

76 toxic seed cake would be more readily accepted by local farmers because sub-products of the oil 

77 extraction process could be utilized for animal feeding (Makker & Becker, 2015). Therefore, it is 

78 important to evaluate materials stored in germoplasm banks for non-toxicity. Non-toxic genotypes 

79 have been described in Mexican accessions (Vera-Castillo et al., 2014). As with variation in 

80 toxicity, genotypes with variable seed oil content and number of seeds may surface in other Latin 

81 American regions and contribute to J. curcas breeding programs all over the world. 

82 In the past decade, SSR markers have proven useful for the analysis of genetic diversity. Simple 

83 sequence repeats that identify variability in transcribed genomic regions can be found in EST 

84 libraries. They may facilitate the identification of functional candidate genes, increase the 

85 efficiency of marker-assisted selection and serve as markers for comparative mapping (Varshney, 

86 Graner & Sorrells, 2005). Nuclear ribosomal-DNA internal transcribed spacers (nrDNA ITS) are 

87 sequence-based markers that have been used in phylogenetic studies and to assess genetic diversity 
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88 at the species level in a wide range of taxonomic groups (Nieto-Feliner & Roselló, 2007). ITS 

89 markers have been developed for J. curcas (Pecina-Quintero et al., 2011) and are believed to have 

90 greater discriminatory capacity than plastid rbcL and matK markers (China Plant BOL Group et 

91 al., 2011). SSR and ITS markers used together allow for a better understanding of the evolutionary 

92 history of undomesticated species such as J. curcas.

93 Prior to the current study, the genetic variability of the Costa Rican J. curcas germplasm bank had 

94 not been studied. The present study explores the molecular diversity of accessions using EST-SSR 

95 and G-SSR markers and evaluates the phylogenetic relationships between them using nuclear 

96 ribosomal ITS markers. Alleles associated with J. curcas toxicity were also evaluated with G-

97 SSRs and sequence characterized amplified region (SCAR) markers.

98

99 MATERIALS & METHODS

100 DNA collection and extraction 

101 The germplasm bank of Jatropha curcas in Costa Rica includes accessions from Honduras, Brazil, 

102 India, Mexico, El Salvador, Ecuador, Uganda, Colombia and South Africa. Costa Rican accessions 

103 include only spontaneously occurring individuals collected in the field and vegetatively 

104 propagated.  The collection does not include material from commercial plantations (Fig. 1). 

105 International accessions originated from seeds collected from spontaneously occurring plants in 

106 each country. All accessions are maintained by vegetative propagation in the germplasm bank 

107 located at the Fabio Baudrit Experimental Station (10°00'10.3"N, 84°16'17.6"W) at Universidad 

108 de Costa Rica.

109 For genetic analysis, two young leaves were collected from each of 50 plants representing different 

110 accessions in the germplasm bank (Table 1). Vegetative material was frozen and later lyophilized 
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111 for DNA extraction. Nucleic acids were extracted using the Möller et al. (1992) protocol and 

112 quantified using a Nanodrop (Thermo Scientific). 

113

114 SSR analysis 

115 Eighteen EST-SSRs and one G-SSR marker (Wen et al., 2010) were used to analyze the 50 samples 

116 (Table 2). PCR was performed in a final volume of 25 µL with 1 X PCR buffer, 400 µM dNTPs, 

117 0.4 µM of each primer, and 1 U Taq DNA polymerase (Thermo Scientific). Amplification 

118 conditions included an initial denaturation at 94 °C for 1 min, followed by 35 cycles of 94 °C for 

119 1 min, 42-50 °C for 1 min (depending on the annealing temperature of each primer pair) and 72 

120 °C for 1 min, with a final extension of 72 °C for 10 min. Results were visualized in 4-6 % 

121 polyacrylamide gels dyed with silver nitrate. To confirm the results, duplicates of 10 % of the 

122 samples were made. Acrylamide gels were scored manually in the GNU Image Manipulation 

123 Program (www.gimp.org) and a data matrix with band size data was created. The SSRs were 

124 scored according to amplicon size. The software Microchecker was used to test for null alleles and 

125 allelic dropout (van Oosterhout et al., 2004).

126

127 nrDNA-ITS region amplification and sequencing

128 ITS primers were used to elucidate phylogenetic relationships between accessions. The primer pair 

129 JCITS-1-F (5´-ACCTGCGGAAGGATCATTGTCGAAA-3´) and JCITS- 2-R 

130 (5´CCTGGGGTCGCGATGTGAGCGT 3´) was used (Pamidimarri, Chattopadhyay & Reddy, 

131 2008) in a PCR reaction with a final volume of 25 µL and a final concentration of 1 X reaction 

132 buffer, 1.5 mM MgCl2, 0.2 µM of each primer, 0.2 mM dNTPs, 1 U Taq DNA polymerase 

133 (Thermo Scientific) and 50 ng of DNA. The PCR program consisted of an initial denaturation step 
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134 of 94 °C for 1 min, followed by 30 cycles of 40 s at 94 °C, 65 °C for 1 min and 72 °C for 1 min. 

135 The final extension step was 5 min at 72 °C. The PCR products were sent to Macrogen® for 

136 sequencing. The obtained sequences were aligned and submitted to Genbank (www.ncbi.com). 

137

138 Data analysis 

139 Genetic diversity was quantified as the expected heterozygosity, the Polymorphism Information 

140 content (PIC) and the inbreeding coefficient (f). The PIC index describes the probability that two 

141 random accessions would have different alleles at a random locus (Smith et al., 2004). All estimates 

142 were calculated using the Powermarker 3.25 software (Liu & Muse, 2005). The validity of all 

143 estimates was assessed by means of 50 000 bootstraps. 

144 To determine the genetic relation between accessions, we calculated the ôý2 genetic distance 

145 between accessions using the POPULATIONS software 

146 (http://bioinformatics.org/~tryphon/populations/). The ôý2 metric developed by Goldstein et al. 

147 (1995) is based on the stepwise mutation model and estimated distances are a linear function of 

148 divergence time; this distance is preferred for taxa that have diverged widely (Goldstein et al., 

149 1995). We used the distance matrix to construct a Neighbor-Joining (NJ) tree using the default 

150 parameters in POPULATIONS. The standardized genetic distance matrix was also used to perform a 

151 Principal Coordinates Analysis (PCA) in GenAlEx 6.5 (Peakall & Smouse, 2012). 

152 For phylogenetic analysis, ITS sequences for J. curcas samples from Mexico, India, Cape Verde, 

153 Spain, Africa and Madagascar were downloaded from GenBank (http://www.ncbi.nlm.nih.gov). 

154 Sequences from Costa Rican samples were edited with BioEdit software version 7.2.5 and aligned 

155 using the MAFFT algorithm in the GUIDANCE server. To compare the phylogenetic relationship 

156 of GenBank sequences with those from the Costa Rican J. curcas germplasm bank, we initially 
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157 used jModelTest 2.1.7 (Santorum et al., 2014) to define the optimum substitution model for all 

158 sequences and the GTR model (Tavaré, 1986) with uniform rates was chosen. A maximum 

159 likelihood (ML) tree was constructed with 3 000 bootstrap replications and expressed as the 

160 number of base substitutions per site using MEGA 6.0 (Tamura et al., 2013).

161

162 Toxicity evaluation 

163 Plant toxicity was evaluated by the presence of alleles from three SSR markers associated with 

164 lack of toxicity (Table 3) (Vischi, Raranciuc & Baldini, 2013). PCR amplification was achieved 

165 in a final volume of 25 µL with a final concentration of 1 X reaction buffer, 1.5 mM of MgCl2, 0.2 

166 µM of each primer, 0.2 mM dNTPs, 1 U Taq DNA polymerase (Thermo Scientific) and 50 ng/µl 

167 DNA sample. The PCR program had an initial denaturation of 94 °C for 1 min, 30 cycles of 40 s 

168 at 94 °C, 65 °C for 1 min, 72 °C for 1 min and a final extension of 5 min at 72 °C. Results were 

169 visualized by genotyping with fluorescent dyes (FAM, VIC and PET) (Vischi, Raranciuc & 

170 Baldini, 2013) in a 3130 sequencer (Applied Biosystems). Two SCAR markers (ISPJ1 and ISPJ2) 

171 were also used to evaluate alleles for toxicity in all accessions following the protocol of Basha & 

172 Sujatha (2007). ISPJ1 amplifies a 543 bp fragment and is specific for toxic genotypes, while ISPJ2 

173 is specific for non-toxic genotypes and amplifies a 1096 bp fragment. Results were visualized in a 

174 2 % agarose gel run for one hour and dyed with GelRed (Biotium). Plants were scored as toxic or 

175 non-toxic based on the presence and size of amplicons.  

176

177 RESULTS

178 Genetic diversity analysis 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2469v2 | CC BY 4.0 Open Access | rec: 26 Jan 2017, publ: 27 Jan 2017

http://www.ncbi.nlm.nih.gov/pubmed/?term=Santorum%20JM%5Bauth%5D


179 Genetic diversity was estimated using 18 SSR-ESTs and one G-SSR marker. Average 

180 heterozygosity (He) was 0.346 ± 0.062 (± SD). Polymorphism information contents (PIC) ranged 

181 from 0.042 to 0.677, with a mean PIC of 0.274 ± 0.165. We did not find evidence of inbreeding f 

182 = -0.102 + 0.346 (Table 4). 

183 The NJ tree did not show a clear clustering pattern (Fig. 2) and clusters did not reflect geographic 

184 proximity. Accessions from countries located in close proximity such as Colombia (JCCR-38) and 

185 Ecuador (JCCR-25) did not seem to be genetically close to each other. In contrast, samples from 

186 distant locations clustered together, for example, India (JCCR-INDIA) and Costa Rica (JCCR-14); 

187 South Africa (JCCR-47) and Honduras (JCCR-2); Brazil (JCCR-16) and Costa Rica (JCCR-MIR); 

188 and Mexico (JCCR-24) and Ecuador (JCCR-25). Within Costa Rica, there was no evidence of 

189 geographic structure. Samples collected from sites separated by more than 300 km grouped 

190 together (JCCR-20, JCCR-7).

191 Our PCA analysis produced comparable results. Genetic information accounted for 41.26 % of the 

192 observed variance; the first two components explained 19.17 % and 11.86 % of the total variance, 

193 respectively. We did not observe distinct groups of accessions in a biplot of the first two 

194 components (Fig. 3). Accessions from the same country did not group together, such as those from 

195 Mexico (JCCR-24 and JCCR-31) and India (JCCR-INDIA and JCCR-27 INDIA). Costa Rican 

196 accessions were scattered throughout the plot without any discernible pattern. These results were 

197 congruent with our NJ tree. 

198

199 nrDNA-ITS sequence analysis 

200 As with the NJ and PCA analysis, the observed patterns from the Maximum Likelihood (ML) tree 

201 did not reflect the geographic origin of the accessions (Fig. 4) and in most cases, the clades grouped 

202 in polytomies. International and Costa Rican accessions from this research were scattered 
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203 throughout the tree (JCC-38, JCCR-2, JCCRLEP, JCCR33-1, JCCR31, JCCR21, JCCR19, 

204 JCCR9, JCCR8, JCCR7, JCCR3), they grouped with sequences from Mexico and with individuals 

205 from Spain, Cape Verde, Africa and Madagascar (GenBank accession numbers EU700449, 

206 EU70055, EU70046, EU70045, respectively). It is important to mention that the observed 

207 clustering of germplasm independent of geographical origin could be an artifact of unequal 

208 sampling, as the majority of the samples used in this research were from Costa Rica and only one 

209 or two representatives from each of the other countries were included.

210 Toxicity evaluation 

211 A single Mexican accession (JCCR-24) was identified as non-toxic by the SSR primer set (JCT-

212 31, JCT-27 and JcSSR-26) and both SCAR primers ISPJ1 and ISPJ2. ISPJ1 also identified non-

213 toxic genotypes in two other accessions: JCCR-32 and JCCR-43. Using ISPJ2, accessions JCCR-

214 22 and JCCR25 were identified as non-toxic. These results need to be corroborated using in vivo 

215 assays. 

216

217 DISCUSSION

218 Genetic diversity of Jatropha curcas 

219 Our study is the first to provide genetic diversity estimates for Costa Rican J. curcas samples. 

220 Based on morphological and molecular evidence, different authors support the idea that Mexico 

221 and Central America may be the center of origin and diversification for J. curcas (Pamidimarri & 

222 Reddy, 2014; Pecina-Quintero et al., 2014). Pecina-Quintero et al. (2014) found high genetic 

223 diversity of J. curcas in Mexico. Grativol et al. (2010) analyzed 332 accessions from 12 locations 

224 in Brazil using ISSR primers and reported lower genetic diversity than that reported in Mexico. 

225 Pamidimarri & Reddy (2014) used RAPD and AFLPs to analyze the molecular diversity of 42 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2469v2 | CC BY 4.0 Open Access | rec: 26 Jan 2017, publ: 27 Jan 2017



226 Indian accessions of J. curcas and found a mean percentage of polymorphism (PP) of 26.47. In 

227 the same study, the average PP of Mexican accessions was 33.18. The mean PP of the germplasm 

228 samples excluding the Indian accessions was 35.86, supporting the hypothesis that Indian 

229 germplasm is less diverse than germplasm in other regions of the world (Colombo, Second & 

230 Charrier, 2000; Ram, Kumar & Bhatt, 2004). Montes et al. (2014) also found higher genetic 

231 diversity in Mexican and Central American accessions compared to those from other parts of the 

232 world. Given the observed levels of genetic diversity, Costa Rica may be a secondary center of 

233 origin or diversification for this species (Pamidimarri & Reddy 2014; Pecina-Quintero et al., 

234 2014). However, comparisons are limited since few studies have evaluated genetic diversity of J. 

235 curcas germplasm using EST-SSR markers. Wen et al. (2010) evaluated 45 accessions from 

236 Indonesia, Grenada, South America and two Chinese provinces, and found a mean genetic 

237 diversity of 0.3819. The most diverse locations were South America and Yunnan with H= 0.33 

238 and H= 0.3473, respectively. In another study, 50 EST-SSR markers were used to evaluate 25 

239 Indian accessions and an average He of 0.30 was found (Yadav et al., 2011). As in our study, 

240 accessions clustered independently of geographic origin. Our PIC estimates (PIC= 0.274 + 0.165) 

241 were comparable to those obtained by Yadav et al. (2011) (PIC= 0.25 ± 0.16) and are considered 

242 moderately informative (Botstein et al., 1980).

243 In Costa Rica, Jatropha curcas is typically not cultivated commercially. Plants usually grow as 

244 hedgerows and are occasionally reproduced by farmers through cuttings. Our samples represent 

245 plants growing spontaneously in the field; no commercially grown material was included in the 

246 study.  Therefore, our genetic diversity estimates represent the standing natural variation of this 

247 species.  However, since EST-SSR markers were developed from expressed sequence tag libraries, 

248 they reside within genes and are subject to selection, which reduces unfavorable polymorphisms 
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249 (Cova et al., 2012; Ellis & Burke 2007). EST-SSR markers are less polymorphic than genomic 

250 SSRs (Song et al., 2012) and consequently, genetic diversity may have been underestimated in this 

251 study. J. curcas is a predominantly outcrossing species (tm= 0.683) (Bressan et al., 2013). As 

252 expected, we found no significant evidence of inbreeding (f = -0.102). High rates of gene flow 

253 should produce low levels of inbreeding, which would result in the low structure suggested by our 

254 NJ and ML clustering. Low inbreeding coefficients were also estimated in Mexico and South 

255 America (Ambrosi et al., 2010). Although inbreeding was negligible in the present study, in other 

256 parts of the world such as India and Brazil, lower genetic diversity has been attributed to increased 

257 selfing or a high paternity correlation due to the spread of introductions across the country through 

258 vegetative propagation, recent common ancestry, drift, and intensive selection of the currently 

259 cultivated materials since the time of introduction (Basha & Sujatha, 2007; Bressan et al., 2013; 

260 Rosado et al., 2010). 

261

262 Phylogenetic analysis of Jatropha curcas

263 Several studies of J. curcas have shown that collection sites do not necessarily reflect the genetic 

264 origin of accessions (Ambrosi et al., 2010; Maghuly et al., 2015). Our NJ tree and PCA analysis 

265 (Fig.2 and Fig.3) showed no correlation between genetic similarity and geographic proximity. For 

266 example, the two Mexican accessions, JCCR-24 and JCCR-31, clustered in different putative 

267 groups. Also, the two Indian accessions (JCCR-27 and JCCR-INDIA) did not seem to be related. 

268 J. curcas is widely cultivated and plants are exchanged commonly. Accessions from the same 

269 country may come from diverse origins and thus may be placed in different clades. Our analysis 

270 suggests that collection sites may not necessarily represent local germplasm, but genetically 

271 distinct lineages from different geographic regions. Material exchanges between American, 
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272 African and Asian collections have occurred commonly over the last 200 years (Heller, 1996) and 

273 may have resulted in founder effects in Africa and Asia (Henning, 2007; Lengkeek, 2007; 

274 Pamidimarri & Reddy 2014). For example, according to Pamidimarri & Reddy (2014), Portuguese 

275 seafarers introduced accessions from Mexico and Central America to India through two dispersal 

276 routes: one brought J. curcas through Africa, Madagascar and finally to India, while the other 

277 passed through Spain on its way to India. These migration routes support our findings of a widely 

278 dispersed plant with little geographic structure.

279 The observed ML tree topology may be an artifact of the low level of genetic structure seen in our 

280 other analysis. Concurrently, low levels of inbreeding suggest considerable gene flow may be 

281 occurring in J. curcas in Costa Rica. Although our samples did not cluster similarly across analysis, 

282 a general lack of group structure was maintained throughout. The lack of consensus between 

283 clustering algorithms may be attributed to the nature of the different markers used. We analyzed 

284 multiple EST-SSR loci distributed throughout the genome (Davies & Bermingham, 2002; 

285 Pamidimarri & Reddy, 2014), and we are confident that we have accounted for a significant 

286 portion of the genetic variability in this species. Costa Rican diversity estimates may be improved 

287 by enriching the germplasm bank with more accessions from the Caribbean and southern parts of 

288 the country.

289

290 Toxicity evaluation of J. curcas 

291 Our results show that only one of the accessions, Mexican JCCR-24, had all of the alleles that 

292 indicate non-toxicity. This accession was previously confirmed as non-toxic by in vivo evaluation 

293 (Basha & Sujatha, 2007). JCCR-24 could be used as a parental plant in a breeding program to 

294 obtain dual-purpose non-toxic plants, thereby increasing the attractiveness of J. curcas as a biofuel 
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295 plant (King et al., 2013). In other samples, only one or two toxic alleles were detected, depending 

296 on the primers used. This may have been due to variations present in Costa Rican genotypes. SSR 

297 markers are very polymorphic (Powell et al., 1996). The primers used to detect non-toxicity were 

298 developed from Mexican, Asian and African accessions (Basha & Sujatha, 2007; Phumichai et 

299 al., 2011) and their ability to detect toxicity may differ for genotypes from other parts of the world. 

300 It is possible that other Costa Rican accessions have alleles that have not yet been identified as 

301 indicative of non-toxicity, and in this case, the non-toxic nature of the accessions would have been 

302 overlooked. In vivo evaluations are needed to confirm this hypothesis.

303
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Figure 1

Map of Costa Rica

Map of Costa Rica with sites where Jatropha curcas accessions were collected. A) North

Pacific Region. B) Central Pacific Region
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Figure 2

Neighbor-Joining (NJ) tree

Neighbor-Joining (NJ) tree based on a genetic distance matrix from 19 microsatellite data

from 50 germplasm accessions of J. curcas.
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Figure 3

Principal coordinate analysis

Principal coordinate analysis created with GenAlEx based on the ·¿2 genetic distance

estimated in the Populations software with 19 microsatellites from 50 germplasm accessions

of J. curcas from the Costa Rican germplasm bank evaluated in this study.
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Figure 4

Maximum likelihood phylogenetic tree

Maximum likelihood phylogenetic tree generated with 60 Jatropha curcas samples. Analyzed

sequences represent the nrDNA-ITS region. The tree was constructed with the GTR model

using a jModelTest analysis with 3000 bootstraps and uniform substitution rates in the MEGA

6.0 software. Only bootstrap values higher than 50 % are shown. The bar indicates the

substitutions per site. Blue boxes show the sequences obtained from the current work in

Costa Rica. Other accessions were obtained from Genbank for comparison.
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Table 1(on next page)

Germplasm bank information

Germplasm bank identification number, geographical collection sites and Genbank Accession

number of nrDNA-ITS region for each of the J. curcas accessions in the Fabio Baudrit

Experimental Station used in the study.
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1

Germplasm code Country Location

Genbank accesion 

number 

JCCR-1 Costa Rica Orotina  KU561406

JCCR-3 Costa Rica Orotina KU561407

JCCR-4 Costa Rica San Mateo KU561408

JCCR-5 Costa Rica Cañas KU561375

JCCR-6 Costa Rica San Antonio KU561376

JCCR-7 Costa Rica Cañas KU561377

JCCR-8 Costa Rica Abangares KU561378

JCCR-9 Costa Rica Guapinol KU561379

JCCR-10 Costa Rica Cañas KU561380

JCCR-11 Costa Rica San Antonio KU561381

JCCR-12 Costa Rica San Mateo KU561409

JCCR-13 Costa Rica Orotina KU561382

JCCR-14 Costa Rica Turrubares  KU561383

JCCR-15 Costa Rica Abangares  KU561384

JCCR-18 Costa Rica Bagaces KU561386

JCCR-19 Costa Rica Cañas KU561387

JCCR-20 Costa Rica San Vito KU561388

JCCR-21 Costa Rica Capulin KU561389
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JCCR-23 Costa Rica San Antonio KU561391

JCCR-26 Costa Rica Capulin KU561394

JCCR-28 Costa Rica Upala  KU561396

JCCR-29 Costa Rica Bagaces  KU561397

JCCR-30 Costa Rica Coto 54  KU561398

JCCR-32 Costa Rica Bagaces KU561400

JCCR-33.1 Costa Rica Los Santos KU561404

JCCR-33.2 Costa Rica Los Santos  KU561405

JCCR-34 Costa Rica FabioBaudrit KU561401

JCCR-35 Costa Rica Abangares  KU561402

JCCR-36 Costa Rica Turrubares  KU561403

JCCR-37 Costa Rica Unknown KU561410

JCCR-40 Costa Rica Lagunilla KU561411

JCCR-41 Costa Rica CATIE KU561412

JCCR-43 Costa Rica Turrubares  KU561413

JCCR-45 Costa Rica Unknown KU561415

JCCR-46 Costa Rica Diquis KU561416

JCCR-MIR Costa Rica Miramar KU561422

JCCR-ANA Costa Rica Anabel KU561418

JCCR-MG Costa Rica Montaña Grande KU561421

JCCR-LEP Costa Rica Lepanto  KU561420
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JCCR-2 Honduras Unknown KU561423

JCCR-16 Brazil Unknown  KU561385

JCCR-22 Uganda Unknown KU561390

JCCR-24 Mexico Unknown  KU561392

JCCR-31 Mexico Unknown KU561399

JCCR-25 Ecuador Manabí  KU561393

JCCR-27 India Unknown KU561395

JCCR-INDIA India Unknown KU561419

JCCR-38 Colombia Unknown
KU561424

JCCR-44 El Salvador Unknown KU561414

JCCR-47 South Africa Unknown KU561417

2
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Table 2(on next page)

Primers used for evaluation of J. curcas

EST-SSR and G-SSR primers used for evaluation of Jatropha curcas germplasm.
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1

ID Forward Primer Reverse Primer

TA 

(°C)*

Expected size (bp)

JESR-001 AACCACAGGAGTTGGTAATG GAAAGAAGCAACAGAAATGG 50 307

JESR-028 ACTTCCTTCAGATCATGCAC CTGGGTAATCTTGTTCCAAA 52 292

JESR-047 GTTGATACTGGAAGTGAGCC TGTGTTCAAAGGTGATGAGA 52 398

JESR-086 TCCCTCTCCTTCAGATTAAA ATGATAGCCAAACAGCAACT 54 333

JESR-092 CTCTGAGAATTGAACCATCC GGGAACAAAGAAATTACTGG 54 378

JESR-093 CACCTCCCATTAGGGTTT CTAATCGACGCTGATAATCC 54 239

JESR-095 AATGAGTCTGACAATCAGGG GCATGCTCTGTTCTGCTT 54 336

JESR-096 ACACAAACACAATCAACAGC CGCGACTCACTTTGTATGTA 54 244

JESR-098 AGATCACAAGGATCACAAGG GCAGTTGTCAAACACTAGCA 54 290

JESR-099 ATAATGGCAAACAAGTGGTC TGGTAGTGTTGTTCTTGCAG 54 305

JESR-101 ATCCTAACACAGTTGCCATC AAACTCAACCAAACCACAAC 54 230

JESR-102 ATCCTTCTGCAGTAGCCATA TTATATGCTACACATCAACCTG 54 278

JESR-103 CAAGTTCGAGGAGTACAAGG TGTTACAACGAGATGAGTGC 54 292

JESR-104 CCACAGTTCATCCTCAATTT GATATTCACTCTGGAACCCA 54 308

JESR-118 CTAAAGGCTGTGAAGAAGGA TCCGAGCCAATTTCTTATTA 54 276

JESR-161 AAGAAGTGTATGGGTTGCAC TACGATACCTAGGGCTACGA 56 323

JESR-162 ACTGATGGGTATGTGAGAGG TTCTTCATCATGGCTACCTT 56 220

JESR-163 CAGAAACGGAGAGGTCTG AGATTGGAAGAGGAGAGGAG 56 144

JESR-164 AGCCCAGTCTCGCGGAAG CAGTTCCCTTCAGAAGCTC 56 231

JESR-178 CTTTAGTCCACCTCAAGTGC TGCAGCAATCAACTCTACTG 56 375

JSSR-203 ATCCTTGCCTGACATTTTGC TTCGCAGAGTCCAATTGTTG 55 210

2 * TA = annealing temperature

3

4

5
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Table 3(on next page)

Primers used to evaluate toxicity of accessions

Primers used to evaluate toxicity of accessions in the germplasm bank.
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1

Primer 

ID

Primer sequences

Tm (°C)

Expected size non-

toxic (bp)

Expected size 

toxic (bp)

JCT27

F: 5´-CATTAGAATGGACGGCTA-3´

R: 5´-GCGTGAAGCTTTGATTTGA-3´

60 259 253

JcSSR-26

F: 5´-CATACAAAGCCTTGTCC-3´

R: 5´-AACAGCATAATACGACTC-3´

55 210 230

JCT31

F: 5´-TGGAAAACGAATGAGGCTCT-3´

R: 5´-GGACACTCTGGAAAGGAACG-3´

59 214 208

ISPJ1

F: 5´-GAGAGAGAGAGAGAGGTG-3´

R-5´-GAGAGAGAGAGAGAAAACAAT-3´

54 NA* 543

ISPJ2

F- 5´GAGAGAGAGAGTTGGGTG-3´

R-5´AGAGAGAGAGAGCTAGAGAG-3´

54 1096 NA

2 *NA: No amplification expected 

3

4

5

6

7

8

9

10

11

12

13

14

15
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18
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Table 4(on next page)

Parameters of genetic diversity information obtained
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1

SSR name He* PIC* f*

JEST-01 0.375 0.551 0.411

JEST-28
0 0.043

0.001

JEST-47 0.050
0.048

-0.0129

JEST-86
0 0.336

0.001

JEST-92
0.814

0.370
-0.654

JEST-93 0.327
0.250

-0.160

JEST-95 0.217
0.175

-0.111

JEST-96 0.380
0.260

-0.225

JEST-98 0.043
0.114 0.650

JEST-99 0.280 0.236
-0.110

JEST-101 0.500 0.357
-0.062

JEST-102 0.325
0.235 -0.182

JEST-118 0.313
0.228

-0.175
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JEST-161 0.043 0.042 -0.011

JEST-162 0.500
0.677

0.300

JEST-163 0.245 0.192
-0.129

JEST-164 0.721 0.355 -0.555

JEST-178 0.512 0.364 -0.058

JSSR-203 0.933 0.375 -0.862

Mean 0.346 0.274 -0.102

SD 0.062 0.165 0.346

2 * He: Heterozygosity, PIC: Polymorphism information content, f: inbreeding coefficient

3

4

5

6

7

8

9

10

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2469v2 | CC BY 4.0 Open Access | rec: 26 Jan 2017, publ: 27 Jan 2017


