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We estimated the genetic diversity of 50 Jatropha curcas samples from the Costa Rican
germplasm bank using 18 EST-SSR, one G-SSR and nrDNA-ITS markers. We also evaluated
the phylogenetic relationships among samples using nuclear ribosomal ITS markers. Non-
toxicity was evaluated using G-SSRs and SCARs markers. A Neighbor-Joining (NJ) tree and
a Maximum Likelihood (ML) tree were constructed using SSR markers and ITS sequences,
respectively. Heterozygosity was moderate (He = 0.346), but considerable compared to
worldwide values for J. curcas. The PIC (PIC = 0.274) and inbreeding coefficient (f = -0.102)
were both low. Clustering was not related to the geographical origin of accessions.
International accessions clustered independently of collection sites, suggesting a lack of
genetic structure, probably due to the wide distribution of this crop and ample gene flow.
Molecular markers identified only one non-toxic accession (JCCR-24) from Mexico. This
work is part of a countrywide effort to characterize the genetic diversity of the Jatropha
curcas germplasm bank in Costa Rica.
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ABSTRACT

We estimated the genetic diversity of 50 Jatropha curcas samples from the Costa Rican
germplasm bank using 18 EST-SSR, one G-SSR and ntDNA-ITS markers. We also evaluated the
phylogenetic relationships among samples using nuclear ribosomal ITS markers. Non-toxicity was
evaluated using G-SSRs and SCARs markers. A Neighbor-Joining (NJ) tree and a Maximum
Likelihood (ML) tree were constructed using SSR markers and ITS sequences, respectively.
Heterozygosity was moderate (He = 0.346), but considerable compared to worldwide values for J.
curcas. The PIC (PIC = 0.274) and inbreeding coefficient (f = -0.102) were both low. Clustering
was not related to the geographical origin of accessions. International accessions clustered
independently of collection sites, suggesting a lack of genetic structure, probably due to the wide
distribution of this crop and ample gene flow. Molecular markers identified only one non-toxic
accession (JCCR-24) from Mexico. This work is part of a countrywide effort to characterize the

genetic diversity of the Jatropha curcas germplasm bank in Costa Rica.
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INTRODUCTION

The use of fossil fuels for energy production is being discouraged because of global warming and
fluctuating market prices. This situation has motivated research on alternative fuel sources such as
biodiesel from corn or palm oil (7o & Grafton, 2015). Jatropha curcas is being explored as a new
biofuel crop (Islam et al., 2013). It is planted on approximately 1.8 million ha in Indonesia, China,
Brazil and Africa, and has the potential to become a biofuel crop in India and other tropical
countries (Carels, 2013). J. curcas, a member of the Euphorbiaceae family, is native to America
and has a pantropical distribution. It grows well under unfavorable climatic and soil conditions,
making it an attractive biofuel crop. Average oil content per seed is 40-45 % (Jongschaap et al.,
2007). Biofuel from this species is similar in quality to biofuels derived from conventional crops
like canola, linseed and sunflower, and surpasses the quality of biofuels produced from soybean

(Basili & Fontini, 2012).

The potential of J. curcas has not been fully exploited, mainly because of its variable and
unpredictable oil yield that limits large-scale cultivation. Genetic improvement may alleviate this
problem; however, characterization of the available germplasm is needed for breeding programs
to be efficient (King et al., 2015; Mastan et al., 2012). Over the past decade, J. curcas germplasm
has been genetically evaluated in India, China, Brazil, Mexico, Costa Rica and Central America
(Avendario et al., 2015, Basha & Sujatha, 2007; China Plant BOL Group et al., 2011, Montes
Osorio etal., 2014, Pecina-Quintero et al., 2014, Rosado et al., 2010; Wen et al., 2010). Molecular
markers such as RAPDs, ISSRs, AFLPs, genomic simple sequence repeats (G-SSR) and expressed
sequence tags-SSR (EST-SSR) have all been used to assess the genetic diversity of J. curcas
collections. These studies have revealed low levels of genetic variability in India and Brazil (China

Plant BOL Group et al., 2011; Rosado et al., 2010, Sun et al., 2008, Yadav et al., 2011). Numerous
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authors consider Mexico and Central America to be the center of origin and diversification
(Abdulla et al., 2009; Basha et al., 2009; Heller, 1996, Openshaw, 2000; Pamidimarri,
Chattopadhyay & Reddy, 2008; Pamidimarri & Reddy, 2014, Pecina-Quintero et al., 2011,
Tatikonda et al., 2009), and high levels of genetic diversity in Guatemala (Raposo et al., 2014)
and Mexico support this hypothesis (Ambrosi et al., 2010, Ovando-Medina, Adriano-Anaya &
Vasquez-Ovando, 2013; Ovando-Medina et al., 2011; Pamidimarri & Reddy, 2014; Pecina-
Quintero et al.,, 2011). However, these studies have consistently shown a lack of relationship
between the geographic proximity of collection sites and the genetic similarity among accessions,
because collection sites rarely represent the place of origin of accessions.

Another limitation to large-scale production of J. curcas is the possible toxicity of the seed. Both
toxic and non-toxic genotypes of J. curcas are known (Insanu et al., 2013). Varieties with a non-
toxic seed cake would be more readily accepted by local farmers because sub-products of the oil
extraction process could be utilized for animal feeding (Makker & Becker, 2015). Therefore, it is
important to evaluate materials stored in germoplasm banks for non-toxicity. Non-toxic genotypes
have been described in Mexican accessions (Vera-Castillo et al., 2014). As with variation in
toxicity, genotypes with variable seed oil content and number of seeds may surface in other Latin
American regions and contribute to J. curcas breeding programs all over the world.

In the past decade, SSR markers have proven useful for the analysis of genetic diversity. Simple
sequence repeats that identify variability in transcribed genomic regions can be found in EST
libraries. They may facilitate the identification of functional candidate genes, increase the
efficiency of marker-assisted selection and serve as markers for comparative mapping (Varshney,
Graner & Sorrells, 2005). Nuclear ribosomal-DNA internal transcribed spacers (nrDNA ITS) are

sequence-based markers that have been used in phylogenetic studies and to assess genetic diversity
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at the species level in a wide range of taxonomic groups (Nieto-Feliner & Rosello, 2007). 1TS
markers have been developed for J. curcas (Pecina-Quintero et al., 2011) and are believed to have
greater discriminatory capacity than plastid 7bcL and matK markers (China Plant BOL Group et
al., 2011). SSR and ITS markers used together allow for a better understanding of the evolutionary
history of undomesticated species such as J. curcas.

Prior to the current study, the genetic variability of the Costa Rican J. curcas germplasm bank had
not been studied. The present study explores the molecular diversity of accessions using EST-SSR
and G-SSR markers and evaluates the phylogenetic relationships between them using nuclear
ribosomal ITS markers. Alleles associated with J. curcas toxicity were also evaluated with G-

SSRs and sequence characterized amplified region (SCAR) markers.

MATERIALS & METHODS

DNA collection and extraction

The germplasm bank of Jatropha curcas in Costa Rica includes accessions from Honduras, Brazil,
India, Mexico, El Salvador, Ecuador, Uganda, Colombia and South Africa. Costa Rican accessions
include only spontaneously occurring individuals collected in the field and vegetatively
propagated. The collection does not include material from commercial plantations (Fig. 1).
International accessions originated from seeds collected from spontaneously occurring plants in
each country. All accessions are maintained by vegetative propagation in the germplasm bank
located at the Fabio Baudrit Experimental Station (10°00'10.3"N, 84°16'17.6"W) at Universidad

de Costa Rica.

For genetic analysis, two young leaves were collected from each of 50 plants representing different

accessions in the germplasm bank (Table 1). Vegetative material was frozen and later lyophilized
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for DNA extraction. Nucleic acids were extracted using the Moller et al. (1992) protocol and

quantified using a Nanodrop (Thermo Scientific).

SSR analysis

Eighteen EST-SSRs and one G-SSR marker (Wen et al., 2010) were used to analyze the 50 samples
(Table 2). PCR was performed in a final volume of 25 pL. with 1 X PCR buffer, 400 uM dNTPs,
0.4 uM of each primer, and 1 U Taq DNA polymerase (Thermo Scientific). Amplification
conditions included an initial denaturation at 94 °C for 1 min, followed by 35 cycles of 94 °C for
1 min, 42-50 °C for 1 min (depending on the annealing temperature of each primer pair) and 72
°C for 1 min, with a final extension of 72 °C for 10 min. Results were visualized in 4-6 %
polyacrylamide gels dyed with silver nitrate. To confirm the results, duplicates of 10 % of the
samples were made. Acrylamide gels were scored manually in the GNU Image Manipulation
Program (www.gimp.org) and a data matrix with band size data was created. The SSRs were
scored according to amplicon size. The software Microchecker was used to test for null alleles and

allelic dropout (van Qosterhout et al., 2004).

nrDNA-ITS region amplification and sequencing

ITS primers were used to elucidate phylogenetic relationships between accessions. The primer pair
JCITS-1-F (5"-ACCTGCGGAAGGATCATTGTCGAAA-3") and JCITS- 2-R
(5'CCTGGGGTCGCGATGTGAGCGT 3") was used (Pamidimarri, Chattopadhyay & Reddy,
2008) in a PCR reaction with a final volume of 25 pL and a final concentration of 1 X reaction
buffer, 1.5 mM MgCl,, 0.2 uM of each primer, 0.2 mM dNTPs, 1 U Tag DNA polymerase

(Thermo Scientific) and 50 ng of DNA. The PCR program consisted of an initial denaturation step
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of 94 °C for 1 min, followed by 30 cycles of 40 s at 94 °C, 65 °C for 1 min and 72 °C for 1 min.
The final extension step was 5 min at 72 °C. The PCR products were sent to Macrogen® for

sequencing. The obtained sequences were aligned and submitted to Genbank (www.ncbi.com).

Data analysis

Genetic diversity was quantified as the expected heterozygosity, the Polymorphism Information
content (PIC) and the inbreeding coefficient (f). The PIC index describes the probability that two
random accessions would have different alleles at a random locus (Smith et al., 2004). All estimates
were calculated using the Powermarker 3.25 software (Liu & Muse, 2005). The validity of all
estimates was assessed by means of 50 000 bootstraps.

To determine the genetic relation between accessions, we calculated the du? genetic distance
between accessions using the POPULATIONS software
(http://bioinformatics.org/~tryphon/populations/). The du? metric developed by Goldstein et al.
(1995) is based on the stepwise mutation model and estimated distances are a linear function of
divergence time; this distance is preferred for taxa that have diverged widely (Goldstein et al.,
1995). We used the distance matrix to construct a Neighbor-Joining (NJ) tree using the default
parameters in POPULATIONS. The standardized genetic distance matrix was also used to perform a
Principal Coordinates Analysis (PCA) in GenAlEx 6.5 (Peakall & Smouse, 2012).

For phylogenetic analysis, ITS sequences for J. curcas samples from Mexico, India, Cape Verde,
Spain, Africa and Madagascar were downloaded from GenBank (http://www.ncbi.nlm.nih.gov).
Sequences from Costa Rican samples were edited with BioEdit software version 7.2.5 and aligned
using the MAFFT algorithm in the GUIDANCE server. To compare the phylogenetic relationship

of GenBank sequences with those from the Costa Rican J. curcas germplasm bank, we initially
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used jModelTest 2.1.7 (Santorum et al., 2014) to define the optimum substitution model for all
sequences and the GTR model (Tavaré, 1986) with uniform rates was chosen. A maximum
likelihood (ML) tree was constructed with 3 000 bootstrap replications and expressed as the

number of base substitutions per site using MEGA 6.0 (Tamura et al., 2013).

Toxicity evaluation

Plant toxicity was evaluated by the presence of alleles from three SSR markers associated with
lack of toxicity (Table 3) (Vischi, Raranciuc & Baldini, 2013). PCR amplification was achieved
in a final volume of 25 puL with a final concentration of 1 X reaction buffer, 1.5 mM of MgCl,, 0.2
uM of each primer, 0.2 mM dNTPs, 1 U Taq DNA polymerase (Thermo Scientific) and 50 ng/ul
DNA sample. The PCR program had an initial denaturation of 94 °C for 1 min, 30 cycles of 40 s
at 94 °C, 65 °C for 1 min, 72 °C for 1 min and a final extension of 5 min at 72 °C. Results were
visualized by genotyping with fluorescent dyes (FAM, VIC and PET) (Vischi, Raranciuc &
Baldini, 2013) in a 3130 sequencer (Applied Biosystems). Two SCAR markers (ISPJ1 and ISPJ2)
were also used to evaluate alleles for toxicity in all accessions following the protocol of Basha &
Sujatha (2007). ISPJ1 amplifies a 543 bp fragment and is specific for toxic genotypes, while ISPJ2
is specific for non-toxic genotypes and amplifies a 1096 bp fragment. Results were visualized in a
2 % agarose gel run for one hour and dyed with GelRed (Biotium). Plants were scored as toxic or

non-toxic based on the presence and size of amplicons.

RESULTS

Genetic diversity analysis
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Genetic diversity was estimated using 18 SSR-ESTs and one G-SSR marker. Average
heterozygosity (He) was 0.346 + 0.062 (+ SD). Polymorphism information contents (PIC) ranged
from 0.042 to 0.677, with a mean PIC of 0.274 &+ 0.165. We did not find evidence of inbreeding f
=-0.102 + 0.346 (Table 4).

The NJ tree did not show a clear clustering pattern (Fig. 2) and clusters did not reflect geographic
proximity. Accessions from countries located in close proximity such as Colombia (JCCR-38) and
Ecuador (JCCR-25) did not seem to be genetically close to each other. In contrast, samples from
distant locations clustered together, for example, India (JCCR-INDIA) and Costa Rica (JCCR-14);
South Africa (JCCR-47) and Honduras (JCCR-2); Brazil (JCCR-16) and Costa Rica (JCCR-MIR);
and Mexico (JCCR-24) and Ecuador (JCCR-25). Within Costa Rica, there was no evidence of
geographic structure. Samples collected from sites separated by more than 300 km grouped
together (JCCR-20, JCCR-7).

Our PCA analysis produced comparable results. Genetic information accounted for 41.26 % of the
observed variance; the first two components explained 19.17 % and 11.86 % of the total variance,
respectively. We did not observe distinct groups of accessions in a biplot of the first two
components (Fig. 3). Accessions from the same country did not group together, such as those from
Mexico (JCCR-24 and JCCR-31) and India (JCCR-INDIA and JCCR-27 INDIA). Costa Rican
accessions were scattered throughout the plot without any discernible pattern. These results were

congruent with our NJ tree.

nrDNA-ITS sequence analysis
As with the NJ and PCA analysis, the observed patterns from the Maximum Likelihood (ML) tree
did not reflect the geographic origin of the accessions (Fig. 4) and in most cases, the clades grouped

in polytomies. International and Costa Rican accessions from this research were scattered
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throughout the tree (JCC-38, JCCR-2, JCCRLEP, JCCR33-1, JCCR31, JCCR21, JCCRI19,
JCCRY, JCCRS, JCCR7, JCCR3), they grouped with sequences from Mexico and with individuals
from Spain, Cape Verde, Africa and Madagascar (GenBank accession numbers EU700449,
EU70055, EU70046, EU70045, respectively). It is important to mention that the observed
clustering of germplasm independent of geographical origin could be an artifact of unequal
sampling, as the majority of the samples used in this research were from Costa Rica and only one

or two representatives from each of the other countries were included.

Toxicity evaluation

A single Mexican accession (JCCR-24) was identified as non-toxic by the SSR primer set (JCT-
31, JCT-27 and JcSSR-26) and both SCAR primers ISPJ1 and ISPJ2. ISPJ1 also identified non-
toxic genotypes in two other accessions: JCCR-32 and JCCR-43. Using ISPJ2, accessions JCCR-
22 and JCCR25 were identified as non-toxic. These results need to be corroborated using in vivo

assays.

DISCUSSION

Genetic diversity of Jatropha curcas

Our study is the first to provide genetic diversity estimates for Costa Rican J. curcas samples.
Based on morphological and molecular evidence, different authors support the idea that Mexico
and Central America may be the center of origin and diversification for J. curcas (Pamidimarri &
Reddy, 2014, Pecina-Quintero et al., 2014). Pecina-Quintero et al. (2014) found high genetic
diversity of J. curcas in Mexico. Grativol et al. (2010) analyzed 332 accessions from 12 locations
in Brazil using ISSR primers and reported lower genetic diversity than that reported in Mexico.

Pamidimarri & Reddy (2014) used RAPD and AFLPs to analyze the molecular diversity of 42
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Indian accessions of J. curcas and found a mean percentage of polymorphism (PP) of 26.47. In
the same study, the average PP of Mexican accessions was 33.18. The mean PP of the germplasm
samples excluding the Indian accessions was 35.86, supporting the hypothesis that Indian
germplasm is less diverse than germplasm in other regions of the world (Colombo, Second &
Charrier, 2000; Ram, Kumar & Bhatt, 2004). Montes et al. (2014) also found higher genetic
diversity in Mexican and Central American accessions compared to those from other parts of the
world. Given the observed levels of genetic diversity, Costa Rica may be a secondary center of
origin or diversification for this species (Pamidimarri & Reddy 2014, Pecina-Quintero et al.,
2014). However, comparisons are limited since few studies have evaluated genetic diversity of J.
curcas germplasm using EST-SSR markers. Wen et al. (2010) evaluated 45 accessions from
Indonesia, Grenada, South America and two Chinese provinces, and found a mean genetic
diversity of 0.3819. The most diverse locations were South America and Yunnan with H= 0.33
and H= 0.3473, respectively. In another study, 50 EST-SSR markers were used to evaluate 25
Indian accessions and an average He of 0.30 was found (Yadav et al., 2011). As in our study,
accessions clustered independently of geographic origin. Our PIC estimates (PIC=0.274 + 0.165)
were comparable to those obtained by Yadav et al. (2011) (PIC= 0.25 £ 0.16) and are considered
moderately informative (Botstein et al., 1980).

In Costa Rica, Jatropha curcas is typically not cultivated commercially. Plants usually grow as
hedgerows and are occasionally reproduced by farmers through cuttings. Our samples represent
plants growing spontaneously in the field; no commercially grown material was included in the
study. Therefore, our genetic diversity estimates represent the standing natural variation of this
species. However, since EST-SSR markers were developed from expressed sequence tag libraries,

they reside within genes and are subject to selection, which reduces unfavorable polymorphisms
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(Cova et al., 2012; Ellis & Burke 2007). EST-SSR markers are less polymorphic than genomic
SSRs (Song et al., 2012) and consequently, genetic diversity may have been underestimated in this
study. J. curcas is a predominantly outcrossing species (tm= 0.683) (Bressan et al., 2013). As
expected, we found no significant evidence of inbreeding (f = -0.102). High rates of gene flow
should produce low levels of inbreeding, which would result in the low structure suggested by our
NJ and ML clustering. Low inbreeding coefficients were also estimated in Mexico and South
America (Ambrosi et al., 2010). Although inbreeding was negligible in the present study, in other
parts of the world such as India and Brazil, lower genetic diversity has been attributed to increased
selfing or a high paternity correlation due to the spread of introductions across the country through
vegetative propagation, recent common ancestry, drift, and intensive selection of the currently
cultivated materials since the time of introduction (Basha & Sujatha, 2007, Bressan et al., 2013,

Rosado et al., 2010).

Phylogenetic analysis of Jatropha curcas

Several studies of J. curcas have shown that collection sites do not necessarily reflect the genetic
origin of accessions (Ambrosi et al., 2010; Maghuly et al., 2015). Our NJ tree and PCA analysis
(Fig.2 and Fig.3) showed no correlation between genetic similarity and geographic proximity. For
example, the two Mexican accessions, JCCR-24 and JCCR-31, clustered in different putative
groups. Also, the two Indian accessions (JCCR-27 and JCCR-INDIA) did not seem to be related.
J. curcas is widely cultivated and plants are exchanged commonly. Accessions from the same
country may come from diverse origins and thus may be placed in different clades. Our analysis
suggests that collection sites may not necessarily represent local germplasm, but genetically

distinct lineages from different geographic regions. Material exchanges between American,
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African and Asian collections have occurred commonly over the last 200 years (Heller, 1996) and
may have resulted in founder effects in Africa and Asia (Henning, 2007; Lengkeek, 2007,
Pamidimarri & Reddy 2014). For example, according to Pamidimarri & Reddy (2014), Portuguese
seafarers introduced accessions from Mexico and Central America to India through two dispersal
routes: one brought J. curcas through Africa, Madagascar and finally to India, while the other
passed through Spain on its way to India. These migration routes support our findings of a widely
dispersed plant with little geographic structure.

The observed ML tree topology may be an artifact of the low level of genetic structure seen in our
other analysis. Concurrently, low levels of inbreeding suggest considerable gene flow may be
occurring inJ. curcas in Costa Rica. Although our samples did not cluster similarly across analysis,
a general lack of group structure was maintained throughout. The lack of consensus between
clustering algorithms may be attributed to the nature of the different markers used. We analyzed
multiple EST-SSR loci distributed throughout the genome (Davies & Bermingham, 2002;
Pamidimarri & Reddy, 2014), and we are confident that we have accounted for a significant
portion of the genetic variability in this species. Costa Rican diversity estimates may be improved
by enriching the germplasm bank with more accessions from the Caribbean and southern parts of

the country.

Toxicity evaluation of J. curcas

Our results show that only one of the accessions, Mexican JCCR-24, had all of the alleles that
indicate non-toxicity. This accession was previously confirmed as non-toxic by in vivo evaluation
(Basha & Sujatha, 2007). JCCR-24 could be used as a parental plant in a breeding program to

obtain dual-purpose non-toxic plants, thereby increasing the attractiveness of J. curcas as a biofuel
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plant (King et al., 2013). In other samples, only one or two toxic alleles were detected, depending
on the primers used. This may have been due to variations present in Costa Rican genotypes. SSR
markers are very polymorphic (Powell et al., 1996). The primers used to detect non-toxicity were
developed from Mexican, Asian and African accessions (Basha & Sujatha, 2007; Phumichai et
al., 2011) and their ability to detect toxicity may differ for genotypes from other parts of the world.
It is possible that other Costa Rican accessions have alleles that have not yet been identified as
indicative of non-toxicity, and in this case, the non-toxic nature of the accessions would have been

overlooked. In vivo evaluations are needed to confirm this hypothesis.
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Figure 1

Map of Costa Rica

Map of Costa Rica with sites where Jatropha curcas accessions were collected. A) North
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Figure 2

Neighbor-Joining (NJ) tree

Neighbor-Joining (N)) tree based on a genetic distance matrix from 19 microsatellite data

from 50 germplasm accessions of J. curcas.
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Figure 3

Principal coordinate analysis

Principal coordinate analysis created with GenAIEx based on the du? genetic distance
estimated in the Populations software with 19 microsatellites from 50 germplasm accessions

of J. curcas from the Costa Rican germplasm bank evaluated in this study.
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Figure 4

Maximum likelihood phylogenetic tree

Maximum likelihood phylogenetic tree generated with 60 Jatropha curcas samples. Analyzed

sequences represent the nrDNA-ITS region. The tree was constructed with the GTR model

using a jModelTest analysis with 3000 bootstraps and uniform substitution rates in the MEGA

6.0 software. Only bootstrap values higher than 50 % are shown. The bar indicates the

substitutions per site. Blue boxes show the sequences obtained from the current work in

Costa Rica. Other accessions were obtained from Genbank for comparison.
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Table 1(on next page)

Germplasm bank information

Germplasm bank identification number, geographical collection sites and Genbank Accession
number of nrDNA-ITS region for each of the J. curcas accessions in the Fabio Baudrit

Experimental Station used in the study.
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Genbank accesion

Germplasm code Country Location
number
JCCR-1 Costa Rica Orotina KU561406
JCCR-3 Costa Rica Orotina KU561407
JCCR-4 Costa Rica San Mateo KU561408
JCCR-5 Costa Rica Cafias KU561375
JCCR-6 Costa Rica San Antonio KU561376
JCCR-7 Costa Rica Cafias KU561377
JCCR-8 Costa Rica Abangares KU561378
JCCR-9 Costa Rica Guapinol KU561379
JCCR-10 Costa Rica Cafias KU561380
JCCR-11 Costa Rica San Antonio KU561381
JCCR-12 Costa Rica San Mateo KU561409
JCCR-13 Costa Rica Orotina KU561382
JCCR-14 Costa Rica Turrubares KU561383
JCCR-15 Costa Rica Abangares KU561384
JCCR-18 Costa Rica Bagaces KU561386
JCCR-19 Costa Rica Cafias KU561387
JCCR-20 Costa Rica San Vito KU561388
JCCR-21 Costa Rica Capulin KU561389
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JCCR-23

JCCR-26

JCCR-28

JCCR-29

JCCR-30

JCCR-32

JCCR-33.1

JCCR-33.2

JCCR-34

JCCR-35

JCCR-36

JCCR-37

JCCR-40

JCCR-41

JCCR-43

JCCR-45

JCCR-46

JCCR-MIR

JCCR-ANA

JCCR-MG

JCCR-LEP

Costa Rica

Costa Rica

Costa Rica

Costa Rica

Costa Rica

Costa Rica

Costa Rica

Costa Rica

Costa Rica

Costa Rica

Costa Rica

Costa Rica

Costa Rica

Costa Rica

Costa Rica

Costa Rica

Costa Rica

Costa Rica

Costa Rica

Costa Rica

Costa Rica

San Antonio

Capulin

Upala

Bagaces

Coto 54

Bagaces

Los Santos

Los Santos

FabioBaudrit

Abangares

Turrubares

Unknown

Lagunilla

CATIE

Turrubares

Unknown

Diquis

Miramar

Anabel

Montana Grande

Lepanto

KU561391

KU561394

KU561396

KU561397

KU561398

KU561400

KU561404

KU561405

KU561401

KU561402

KU561403

KU561410

KU561411

KU561412

KUS561413

KU561415

KU561416

KU561422

KU561418

KU561421

KUS561420
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JCCR-2 Honduras Unknown KU561423

JCCR-16 Brazil Unknown KU561385
JCCR-22 Uganda Unknown KU561390
JCCR-24 Mexico Unknown KU561392
JCCR-31 Mexico Unknown KU561399
JCCR-25 Ecuador Manabi KUS561393
JCCR-27 India Unknown KU561395
JCCR-INDIA India Unknown KU561419
JCCR-38 Colombia Unknown KU561424
JCCR-44 El Salvador Unknown KU561414
JCCR-47 South Africa Unknown KU561417
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Table 2(on next page)

Primers used for evaluation of J. curcas

EST-SSR and G-SSR primers used for evaluation of Jatropha curcas germplasm.
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N

ID Forward Primer Reverse Primer T Expected size (bp)
(°C)*
JESR-001 AACCACAGGAGTTGGTAATG  GAAAGAAGCAACAGAAATGG 50 307
JESR-028 ACTTCCTTCAGATCATGCAC CTGGGTAATCTTGTTCCAAA 52 292
JESR-047 GTTGATACTGGAAGTGAGCC TGTGTTCAAAGGTGATGAGA 52 398
JESR-086 TCCCTCTCCTTCAGATTAAA ATGATAGCCAAACAGCAACT 54 333
JESR-092 CTCTGAGAATTGAACCATCC GGGAACAAAGAAATTACTGG 54 378
JESR-093 CACCTCCCATTAGGGTTT CTAATCGACGCTGATAATCC 54 239
JESR-095 AATGAGTCTGACAATCAGGG GCATGCTCTGTTCTGCTT 54 336
JESR-096 ACACAAACACAATCAACAGC CGCGACTCACTTTGTATGTA 54 244
JESR-098 AGATCACAAGGATCACAAGG GCAGTTGTCAAACACTAGCA 54 290
JESR-099 ATAATGGCAAACAAGTGGTC TGGTAGTGTTGTTCTTGCAG 54 305
JESR-101 ATCCTAACACAGTTGCCATC AAACTCAACCAAACCACAAC 54 230
JESR-102 ATCCTTCTGCAGTAGCCATA TTATATGCTACACATCAACCTG 54 278
JESR-103 CAAGTTCGAGGAGTACAAGG TGTTACAACGAGATGAGTGC 54 292
JESR-104 CCACAGTTCATCCTCAATTT GATATTCACTCTGGAACCCA 54 308
JESR-118 CTAAAGGCTGTGAAGAAGGA TCCGAGCCAATTTCTTATTA 54 276
JESR-161 AAGAAGTGTATGGGTTGCAC TACGATACCTAGGGCTACGA 56 323
JESR-162 ACTGATGGGTATGTGAGAGG TTCTTCATCATGGCTACCTT 56 220
JESR-163 CAGAAACGGAGAGGTCTG AGATTGGAAGAGGAGAGGAG 56 144
JESR-164 AGCCCAGTCTCGCGGAAG CAGTTCCCTTCAGAAGCTC 56 231
JESR-178 CTTTAGTCCACCTCAAGTGC TGCAGCAATCAACTCTACTG 56 375
JSSR-203 ATCCTTGCCTGACATTTTGC TTCGCAGAGTCCAATTGTTG 55 210

* Ta = annealing temperature
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Table 3(on next page)

Primers used to evaluate toxicity of accessions

Primers used to evaluate toxicity of accessions in the germplasm bank.
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11

12

13

14

15

Primer Primer sequences Expected size non- Expected size
T (°O)
ID toxic (bp) toxic (bp)
F: 5-CATTAGAATGGACGGCTA-3’
JCT27 60 259 253
R: 5-GCGTGAAGCTTTGATTTGA-3’
F: 5'"-CATACAAAGCCTTGTCC-3"
JcSSR-26 55 210 230
R: 5"-AACAGCATAATACGACTC-3"
F: 5"-TGGAAAACGAATGAGGCTCT-3
JCT31 59 214 208
R: 5'-GGACACTCTGGAAAGGAACG-3’
F: 5'-GAGAGAGAGAGAGAGGTG-3"
ISPJ1 54 NA* 543
R-5'-GAGAGAGAGAGAGAAAACAAT-3"
F- 5" GAGAGAGAGAGTTGGGTG-3’
ISPJ2 54 1096 NA

R-5"AGAGAGAGAGAGCTAGAGAG-3’

*NA: No amplification expected
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Table 4(on next page)

Parameters of genetic diversity information obtained
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SSR name He* PIC* f*

JEST-01 0.375 0.551 0.411
JEST-28 0 0.043 0.001
JEST-47 0.050 0.048 -0.0129
JEST-86 0 0.336 0.001
JEST-92 0814 0.370 0654
JEST-93 0.327 0.250 -0.160
JEST-95 0.217 0.175 -0.111
JEST-96 0.380 0.260 -0.225
JEST-98 0.043 0114 0.650
JEST-99 0.280 0.236 0110
JEST-101 0.500 0.357 0.062
JEST-102 0.325 0.235 0182
JEST-118 0.313 0238 -0.175
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10

JEST-161 0.043 0.042 -0.011
JEST-162 0.500 0.677 0.300
JEST-163 0.245 0.192 0.129
JEST-164 0.721 0.355 -0.555
JEST-178 0.512 0.364 -0.058
JSSR-203 0.933 0.375 -0.862
Mean 0.346 0.274 -0.102
SD 0.062 0.165 0.346

* He: Heterozygosity, PIC: Polymorphism information content, f: inbreeding coefficient
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