A peer-reviewed version of this preprint was published in PeerJ on 18 January 2017.

View the peer-reviewed version (peerj.com/articles/2910), which is the preferred citable publication unless you specifically need to cite this preprint.

The wild tomato species *Solanum chilense* shows local variation in pathogen resistance between geographically distinct populations

Remco Stam Corresp., Daniela Scheikl, Aurélien Tellier

1 Section of Population Genetics, Technical University of Munich, Freising, Germany

Corresponding Author: Remco Stam
Email address: stam@wzw.tum.de

Wild tomatoes are a valuable source of disease resistance germplasm for tomato (*Solanum lycopersicum*) breeders. Many species are known to possess a certain degree of resistance against certain pathogens, however evolution of resistance traits is yet poorly understood. For some species, like *Solanum chilense*, both differences in habitat and within species genetic diversity is very large. Here we aim to investigate the occurrence of spatially heterogeneous coevolutionary pressures between populations of *S. chilense*. We investigate the phenotypic differences in disease resistance within *S. chilense* against three common tomato pathogens (*Alternaria solani*, *Phytophthora infestans* and a *Fusarium sp.*), and confirm high degrees of variability in resistance properties between selected populations. Using generalised linear mixed models, we show that disease resistance does not follow the known demographic patterns of the species. Models with up to five available climatic and geographic variables are required to best describe resistance differences, confirming the complexity of factors involved in local resistance variation. We confirm that within *S. chilense*, resistance properties against various pathogens show a mosaic pattern and do not follow environmental patterns, indicating the strength of local pathogen pressures. Our study can form the basis for further investigations of the genetic traits involved.
The wild tomato species *Solanum chilense* shows local variation in pathogen resistance between geographically distinct populations.

Remco Stam*, Daniela Scheikl, Aurélien Tellier

Section of Population Genetics, Technische Universität München, Liesel-Beckmann Strasse 2, 85354 Freising, Germany

*Author for Correspondence: Remco Stam: stam@wzw.tum.de
Abstract

Wild tomatoes are a valuable source of disease resistance germplasm for tomato (Solanum lycopersicum) breeders. Many species are known to possess a certain degree of resistance against certain pathogens, however evolution of resistance traits is yet poorly understood. For some species, like Solanum chilense, both differences in habitat and within species genetic diversity is very large. Here we aim to investigate the occurrence of spatially heterogeneous coevolutionary pressures between populations of S. chilense. We investigate the phenotypic differences in disease resistance within S. chilense against three common tomato pathogens (Alternaria solani, Phytophthora infestans and a Fusarium sp.) and confirm high degrees of variability in resistance properties between selected populations. Using generalised linear mixed models, we show that disease resistance does not follow the known demographic patterns of the species. Models with up to five available climatic and geographic variables are required to best describe resistance differences, confirming the complexity of factors involved in local resistance variation. We confirm that within S. chilense, resistance properties against various pathogens show a mosaic pattern and do not follow environmental patterns, indicating the strength of local pathogen pressures. Our study can form the basis for further investigations of the genetic traits involved.

Keywords

Host pathogen interaction, resistance, wild tomatoes, alternaria, fusarium, phytophthora, local variation
Background

In nature, plants are exposed to a wide range of pathogens and pests. While in most cases the plants appear non-specifically resistant against these threats, drastic or recurrent epidemics do occur (Thrall et al. 2001a, Soubeyrand et al. 2009) and variability in specific resistance to pathogens is observed (Thrall et al. 2001b, Salvaudon et al. 2008). Understanding how reciprocal co-adaptation of hosts and pathogens maintains such diversity has been a key question in theoretical and empirical evolutionary biology. Theoretically, negative direct frequency-dependent selection (ndFDS) is shown to be a necessary condition to maintain long-term stable diversity for resistance in plants and infectivity in pathogens (Tellier and Brown 2007). Seed banking, perenniality or polycyclic disease can generate ndFDS, while costs of resistance and infectivity (virulence) are necessary but not sufficient for stable long term polymorphism to occur (Tellier and Brown 2009, Brown and Tellier 2011). Another factor often suggested to maintain diversity is the spatial structure of host and pathogen populations. Spatial structure and migration of hosts and pathogens as well as population sizes and genetic drift generate patterns of local adaptation over space and time (Thrall and Burdon 2002, Gandon and Michalakis 2002). However, a spatial structure with homogeneous environment does not generate ndFDS (Thrall et al. 2002a, Tellier and Brown 2011) Stable long term polymorphism is favoured by spatially heterogeneous environments across which the prevalence and severity of disease or the costs of resistance and infectivity may differ (Gavrilets and Michalakis 2008, Moreno-Gamez et al. 2013).

From an ecological perspective, and based on the classic disease triangle from plant pathology (Agrios 2005) the outcome of species interactions are mediated by the abiotic and biotic environment. The influence of the environment generates therefore spatial and temporal variation in evolutionary and coevolutionary dynamics (Thompson 2005), and increasing evidence for geographical variation in coevolutionary dynamics and patterns of local adaptation
are found in microcosm experiments (Forde et al. 2004, Vogwill et al. 2009, Lopez-Pascua et al. 2010)

Nevertheless, few field systems exist to study and document the coevolution of plants and their pathogens occurring at short time scales and across several populations. One example is the wild flax – flax rust pathosystem, where local adaptations have been observed and the most resistant varieties of flax generally harboured more virulent strains of rust (Thrall et al. 2002a, Thrall and Burdon 2003). Similarly, the local adaptation of powdery mildew *Podosphaera plantaginis* to *Plantago lanceolata* populations spread over different islands off the coast of Sweden showed virulent strains to co-occur with more resistant plants (Laine 2005, Soubeyrand et al. 2009). In the latter plant-pathogen system, several mechanisms theoretically proposed to generate ndFDS have been shown to originate from the environmental heterogeneity across populations: 1) GxGxE interactions (host genotype x pathogen genotype x environment, for example (Laine 2006) 2) heterogeneity in disease incidence and prevalence determining thus epidemiological pressures (Soubeyrand et al. 2009) and co-infection (Susi et al. 2015) and 3) different strength of connectivity between populations accelerating or decelerating the speed of coevolution across the landscape (Jousimo et al. 2014). These factors are thus expected to promote and facilitate long term polymorphism at resistance and infectivity loci without unrealistic costs of these alleles. Here we aim to investigate the occurrence of spatially heterogeneous coevolutionary pressures between populations of *Solanum chilense*, a solanaceous wild species, and several pathogens in a relatively small geographical space which exhibits large variation in habitat quality and abiotic environmental factors.

Wild *Solanum* species are in general particularly good model species to study between and within species variation, because they occur in diverse geographic and climatic habitats and have a very well studied demography and known evolutionary history (Städler et al. 2005, 2008,
Additionally, several studies exist that suggest that at least bacterial resistance-associated genes are under selective pressure (Rose et al. 2005, 2007, 2011). *S. chilense* is native in South America, ranging from southern Peru to central Chile, in a broad range of habitats. *S. chilense* populations have been found from coastal regions, even in slightly alkaline environments, all the way to high altitude (>3000 m) mountain regions. It has been found in extreme dry habitats on the border of the Atacama dessert, as well as near rivers and creeks (Peralta et al. 2008).

S. chilense most likely originated with its sister species *S. peruvianum*, somewhere in southern Peru and then migrated south (Städler et al. 2008). A study of the species’ demography found four genetically distinct subgroups; one in the north of the range, one in the central region and two in the south (one on the coast and one at high altitudes). Interestingly, the two southern groups are, even though geographically close to each other, more related to the central group than to each other, possibly due to the separating effect of the extremely arid Atacama desert (Böndel et al. 2015). In addition, *S. chilense* shows clear climatic adaptations. Populations from drier regions are responding faster to drought (Fischer et al. 2013) and individual populations found at high altitudes (>3000 m) show higher freezing tolerance (Nosenko et al. 2016). *S. chilense* has also been the source of resistance loci against the fungus *Verticilium dahliae* (Tabaeizadeh et al. 1999) and against various viruses (Griffiths and Scott 2001, Ji et al. 2007, Verlaan et al. 2013). Seeing that *S. chilense* occurs in such a wide range of habitats and that the species shows specific signs of local climatic adaptations, we wondered whether we could find variation for pathogen resistance as well.

Since no exact data exist about the co-occurrence of wild pathogens and *S. chilense*, we chose to test *S. chilense* disease resistance properties with three widely studies and economically relevant pathogens, *Alternaria solani*, *Phytophthora infestans* and a *Fusarium* sp.
A. solani causes early blight and is amongst the most destructive diseases of tomato in tropical and subtropical regions, leading to yield losses of up to 80% in certain regions. A. solani has been found in central Peru and is known to cause disease not only on potato - its main host - but also on many other nightshades, including tomato (Song et al. 2011, Kumar et al. 2013). In addition, previous work has shown that A. solani resistance can be studied using detached leaf assays (Chaerani and Voorrips 2006, Chaerani et al. 2007).

Fusarium spp are pathogens that cause very severe disease symptoms on a very wide range of host plants that span almost the entire globe (Agrios 2005) Two Fusarium spp are on the top10 most important fungi in plant pathology (Dean et al. 2012) The F. oxysporium species complex comprises over 100 formae specialis that all infect specific hosts, including tomato (Michielse and Rep 2009). It is widely used to study molecular and genetic mechanisms involved in plant pathogen interactions (Houterman et al. 2008, Ma et al. 2013) and even though it is generally reported to be a vascular pathogen, it has regularly been successfully deployed in detached leaf infection assays (e.g. (Kavroulakis et al. 2007)).

Phytophthora infestans is an oomycete that causes late blight on potato and tomato. In potato alone the damage amounts up to $1 bn annually (Haverkort et al. 2009) Due to its economic value and the vast amount of molecular and genetic research performed on it, it is considered the most important oomycete plant pathogen (Kamoun et al. 2015). Like the other two pathogens used in this study, P. infestans strains have been sampled in parts of the natural habitat of S. chilense (Perez et al. 2001). The strain EC1 that we used has its origin in Ecuador and is particularly relevant for agriculture as it is a rather aggressive strain that is capable of overcoming certain novel genetic resistances (Foster et al. 2009, Nowicki et al. 2011).

Here we test the resistance of different S. chilense populations from three different regions in Chile and Peru, one central region and two southern regions, one coastal and one mountainous (see Fig1b) against the above mentioned pathogens. These group resemble very distinctive
habitats and can thus be used to investigate whether we see differences in infection rate
throughout the range of the species. We also test whether these differences show a linear
pattern when tested against geographical and climatic variables (e.g. north more resistant, high
precipitation more resistant) or whether a multitude of factors leads to specific local adaptations
to each of the three pathogens.
Methods

Plant growth

Seed batches were obtained from the tomato genomics resource centre (TGRC, Davis, USA).

We grew seven different Solanum chilense populations (accession numbers LA1963, LA2931, LA2932, LA3111, LA4107, LA4117 and LA4330) consisting of 10 different plants each and one Solanum pennellii (LA0716) population in our glasshouse from randomly chosen seeds. The plants were grown with 16h light and a minimum temperature of 18°C. Mature plants were cut back at a biweekly interval to assure young leaves of similar age were available at all times for all populations.

Pathogen propagation and spore production

Alternaria solani

A. solani strains B055 and St108 were obtained from the chair of Phytopathology at the TUM (Munich, Germany) and cultivated on SNA plates (at 22°C, 12h UV-A light, 12h darkness (induction of sporulation) and 85% humidity for 3 weeks. We harvested the spores with ddH₂O by scratching the mycelium with off the agar. The solution was filtered through 4 layers of mesh and diluted to a concentration of 5000 spores per ml. Each leaflet was infected with a 10µl droplet.

Phytophthora infestans

We obtained late blight pathogen P. infestans strain EC1 from the James Hutton Institute (Dundee, UK). It was cultivated on RyeB agar, incubated 6 days at RT in darkness, 3 days at RT and daylight. We scratched the mycelium with ice cold water with a pipette tip from the plate and store at 4°C until further use (up to 3 hours). The solution was diluted to 2000-3000 sporangia per ml and the leaflets were infected with 5µl of this solution.

Fusarium sp.

Fusarium infected lesions were identified on a few detached S. chilense leaves from our
glasshouse. These lesions were extracted and re-cultivated for several rounds on Potato-Dextrose-Agar (PDA) for clean-up. Microscopic observations and sequence analysis of a cloned Tubulin Beta gene confirmed the genus. Once clean, the Fusarium was grown on PDA for a minimum of four days at RT. Spores were harvested by adding ddH$_2$O and aspirating the liquid. The spores were diluted to 2x105-5x105 spores per ml and we infected the individual leaflets with 5µl of this solution.

All protocols for pathogen cultivation, including ingredients for the growth media can be found in more detail on https://www.protocols.io/view/Plant-Pathogen-Cultivation-fmkbk4w

Infection assays

To minimise the effect of variation between plants within one population, we collected leaves of same age randomly from 8 to 10 plants per population and shuffled them. We then drew the leaves randomly from that mix to distribute them over up to 9 boxes for each infection experiment. Each box contained 16 leaves (4 rows), from four different populations and each box contained different combinations of populations. Box number and leaf position were marked to later rule out possible effects. To eliminate the possible confounding effect of difference in surface coating composition between the different populations and remove any pathogens that accumulated on the plants during the growth time in the glass house, we washed them for 10 seconds with 70% Ethanol to sterilize the surface and remove natural wax layers before washing with ddH$_2$O. We assured the leaf surface was dry before drop inoculation. For each pathogen 16-24 leaves - about 100 leaflets - were infected for each population and the experiments were repeated four times, accumulating to about 450 – 500 infection events per pathogen. The Alternaria infections were done on the axial side of the leaf, Phytophthora and Fusarium infections were done on the abaxial side of the leaf. The leaves were incubated at RT and scored after 6 to 8 days, dependent on temperature and growth conditions in the lab.
Scoring and Data analysis

All data analysis was done using R (R foundation for statistical computing). Generalised Linear Mixed Models were made using the glmer option from the package lme4. To construct GLMM we used a binomial variable (y) consisting of the number of successful and unsuccessful infection events per leaf. The GLMM were constructed taking the leaf position in the box (leaf) and a combination of the box number and experimental date (exp:box) into account as random effects. For our first model populations names were used as fixed effects. (model1 = y ~ accession +(1|leaf)+(1|exp:box)). For the second model, we hierarchically tested different climatic and geographical parameters (e.g. model2 = y ~ geographic1 + climatic1 + climatic 2 + (1|leaf)+(1|exp:box)). Pairwise comparisons were examined using an implementation of Tukey Honest Significant Difference test as provided by function glht from the R package multcomp. The boxplots were drawn using the package ggplot2 and the heatmap using gplots. All packages are available through CRAN.

Distribution map and geographical characteristics

Geographical data for all populations were obtained from the Tomato Genome Resource Centre. Climatic data were extracted from the http://worldclim.org/ database. The species distribution map was drawn using the maps package in R. All geographic and climate data used can be found in S. data 1.
Results

S. chilense populations show different resistant properties against different pathogens

We selected seven populations that represent three previously described genotype groups (Böndel et al. 2015). Two populations originate from the central range (LA1958, LA3111), two from the coastal regions (LA2932, LA4107) and two from the southern mountainous region (LA4117, LA4330). A seventh population is geographically in the middle between the southern mountain and the central group (LA2931). Böndel et al. group it with the central populations, but assign properties of both groups to it. Figure 1A shows the species distribution and highlights the selected populations.

In some wild tomato species (e.g. *S. pennellii*), thick and sticky surface coating have a dramatic effect on pathogen ingress. In *S. chilense*, surface coatings are notably less thick, and resemble those of cultivated tomato, however to minimise the effect of difference in coating, as well as to sterilise the leaves, we washed all leaves briefly in 70% ethanol before infection. The effects of *S. chilense* surface sterilisation is noticeable during infection, but not as dramatic as with *S. pennellii* (S Figure 1).

We infected individual leaflets for up to 16 leaves of each population per experiment with *Alternaria solani* (str 108) and counted the occurrence of infected leaflets per leaf, as this represents the success rate of the pathogen to establish itself and overcome genetic resistance. Infection events, were scored as either negative (no infection or clear small necrotic lesions, indicating a hypersensitive response) or positive (ranging from growth just outside the droplet area up to full infection of the leaflet) (Fig 1B). We observed variation within each population. In almost all instances at least one leaf was fully infected whereas another was completely resistant. These outliers have large effect on the calculated mean fraction. To allow good judgement we report the 1st and 3rd quantile, the median value as well as the mean value for
each population (Fig 2). The mean and median of the infected fractions range from 0.35 and 0.42 for LA3111 to 0.74 and 0.81 for LA4330 or 0.67 and 0.82 for LA2932.

To test the robustness of our method, we did an additional infection with a second strain of *Alternaria* (B055). The overall infection rates are lower in this set of experiments (median of 0.54 compared to 0.62), however Figure S2 shows that just like for strain st108, LA3111 is the least infected population with a mean of 0.40 and LA4330 and LA2932 have a high median, with an infected fraction of 0.70 or 0.73 respectively.

With *Fusarium* we also see differences between the infected fraction of each population. Interestingly LA3111 is in this case the most infected population (mean: 0.72, median: 0.82) whereas LA4107 is the least susceptible (mean = 0.28, median = 0.11).

Finally, for *P. infestans*, the infected fractions again show a different pattern. The data show a larger spread as can be seen by the larger distance between the 1st and 3rd quartile and the lowest and highest mean and median fraction were closer together ranging from 0.30 and 0.21 for LA3111 to 0.60 and 0.70 for LA4330 (Fig 2C). LA3111, one population that seems particularly resistant against *Alternaria* and *Phytophthora* seems to be the most susceptible to *Fusarium*.

To test the significance of the differences and the effect of the different populations on infection, we constructed a general linearised mixed model (glmm). We assigned experimental parameters (data, box and leaf number) as random effects and tested whether there were significant differences between the populations for each infecting species by looking at the infection counts (y) per leaf. These models show that indeed there are highly significant differences (p<0.00001) in infection rates between some populations for all three pathogens tested (S Data 2).

Pairwise comparisons reveal individual differences between different pathogens.
To further determine which populations are different from each other, we performed pairwise comparisons using a variant of Tukey's Honest Significant Difference test. The observed pairwise differences are clearly distinct between the three pathogens. Figure 3 shows a summary heatmap of the differences, with corresponding estimates for each comparison. Cells with significant differences (p< 0.001) highlighted in green. All pairwise differences with their 95% confidence intervals are plotted in S. figure 3. Of the 63 pairwise comparisons, 32 show a significant difference in infection ratio. Overall, there are more significant differences between populations when it comes to Fusarium infection (15) than to Alternaria infection (10) or Phytophthora (7). Interestingly, some populations show the same result for all pathogens: there are no differences between LA1963 and LA2931 (both central) nor for LA2931 and LA4107 (south coast and central) or LA4107 and LA4117 (south coast and south mountain). Also, LA1963 is always more susceptible than LA2932 and LA4117 is always more susceptible than LA4330. In some cases a population in a pair is more resistant to one pathogen and more susceptible to another. LA4330 is more resistant than LA3111 to *Fusarium*, but less resistant to *Alternaria* and *Phytophthora*.

A mix of climatic and geographic variables affect pathogen resistance

To see whether a change in certain geographic and climatic conditions can be linked to an increase or decrease of resistance rates between populations, we built new glmms using such data. First we made a simple model for *Alternaria*, testing the infection counts (y) against either latitude or longitude, a combination of both or an interaction of both. This showed that both latitude and longitude have a significant effect (p < 0.001). A model with both parameters shows a better fit, whereas a model with an interaction does not. We extended the model to include both parameters (longitude + latitude) and to fit various environmental parameters (Table 1, S. Data 2). We obtained the best AIC (2641.8) for a model containing altitude, annual precipitation,
the temperature in the wettest and the temperature in the coldest quarter. Additions of other climatic data did not yield an improvement of the model. Table 1 shows that of all effects, longitude is the strongest effect, followed by the mean minimum temperature in winter, the annual precipitation and altitude. It should be noted that models that only take temperature effects into account do not account for significance. A glmm with the infection counts set against the previously identified genetic groups (y ~ group), yields a high AIC (2705). The model with the populations yields an as good AIC as the one with all available variables. This suggests that no single variable has a strong, exclusive correlation to infection rate and that each population represents its own micro environment with specific geographic and climate parameters that are all of influence.

Similar to *Alternaria*, we tested all variables for *Phytophthora* and *Fusarium*. The pattern seen for *Phytophthora* is almost identical to that of *Alternaria*. The AIC values are generally lower, but the trends are the same. Interestingly, *Fusarium* shows a slightly different picture. Whereas longitude is still the strongest effect, its significance is lower and the temperature in the coldest quarter of the year has a relatively large effect. The effect of altitude is not significant and differences in annual precipitation have a nearly negligible effect as well. As with *Alternaria*, the model testing for the group effect shows a lesser fit than the model per population (results for selected models can be found in S data 2).
The wild tomato *Solanum chilense* grows in a variety of habitats in Chile and Peru, ranging from lower coastal areas to very high altitudes (>3000m). These populations experience considerable variation in geographic parameters like precipitation and temperatures. It is known that *S. chilense* has a clear demographic pattern and signs of adaptations to climatic differences between different populations (Fischer et al. 2011, 2013, Nosenko et al. 2016). A demographic pattern of North-South colonisation is observable with larger and more diverse populations in the north of the range and smaller and less diverse populations in the south. In addition, there is little to no genetic exchange between some of the southern most populations that are separated by the extremely dry Atacama desert. This lead to the conclusion that *S. chilense* can be divided in a northern, a central and two southern genotype groups (Böndel et al. 2015).

We hypothesised that pathogen pressures must differ a lot between such diverse geographical locations and as such *S. chilense* should show signs of pathogen adaptations between the different populations. To test our hypothesis we performed infection assays with three global *Solanum* pathogens and with selected *S. chilense* populations. We observe clear differences between the infection success rates of the 3 pathogens on the different *S. chilense* populations, indeed suggesting local pathogen adaptations. We could observe a clear separation between the genotype groups, only for Alternaria infection, where the central populations are more susceptible than those from groups in the south. With the other pathogens, within-group differences exist. Pairwise comparisons confirmed that outcomes differ within groups and between pathogens. For example, a pair that shows significant differences for *Phytophthora* and *Alternaria* infection (LA1963-LA4330) does not show this for *Fusarium* or the other way around and very strong pairwise differences can even be seen within the previously identified genotype groups (e.g. LA2932-LA4107 with *Fusarium*). We also showed that there are no generally more resistant or more susceptible population. For example LA3111 is particularly resistant against...
Fusarium, but the most susceptible to *Phytophthora* and *Alternaria*.

We used a glmm to test which factors might contribute to these differences. Interestingly, whereas the species as a whole, shows a strong north-south demography, our analyses show that not latitude, but longitude is a very strong effect. This could at the one hand be explained due to the absence of the northern most group in our analysis, but a more likely explanation is the bigger geographic and associated climatic difference in the east-west gradient of the species, with low altitude coastal areas in the west, and high mountains in the east.

Temperature differences can have large effects on the prevalence of pathogen populations as shown for wild plant-pathosystems (Laine 2008) and also on crops, pathogens show adaptation to different temperature regimes (Mboup et al. 2012, Stefansson et al. 2013) The mountainous areas in our study have particularly cold winters and fairly low mean temperatures in summer, which could be detrimental for pathogen survival or slow its growth and thus reduce pathogen pressure.

Our results show indeed that temperature in winter as well as temperature in the wettest quarter have a significant effect on infection rate. The importance of overwintering inoculum has previously been shown to be a main predictor for *Podosphaera plantaginis* epidemics on *Plantago lanceolata* in the next growing season (Soubeyrand et al. 2009). However, it must be noted that models that only incorporate winter temperature or indeed any other single climatic variables effects did not show any significance. This is in line with a between species comparison for wild potato (Spooner et al. 2009) and might be related to the fact that some higher altitude locations also have the highest annual precipitation rates. For example for *P. infestans* a relative high humidity has large effects on successful sporulation (Harrison and Lowe 1989)

Our climate data were extracted from worldclim.org and might not provide the whole picture. For
example, precipitation data might be accurate, but do not take into account a common sea-fog phenomenon, that can be observed along the coast of Chile and Peru (Cereceda and Schemenauer 1991, Schemenauer and Cereceda 1992) This fog increases the local humidity for several hours up to several days in certain “fog basins”. Similarly, no data is available on any nearby streams, rivers or irrigation canals for any of the populations. For some populations, a note is available for the state of the site at the time of collection (e.g. “dry quebrada”), but it remains unknown whether these features are a constant or changed in the time before collection.

The best fitted models incorporate five climatic and geographic variables. Adding more variables did not improve the model, mainly due to the correlations between the available climate data. The strongest effects were observed for combinations of longitude and latitude together with climatic variables, indicating that one or two variables alone do not determine pathogen resistance. The latitude effect, which can be observed in the evolution of the species as a whole, seems to be less strong in our analyses, where longitude plays a larger role. Overall, our results indicate that indeed S. chilense shows local variations, which are possibly the result of adaptations to local pathogen pressures. The mosaic like structure of our results indicate that these resistances are likely caused by a multitude of factors. These findings are in line with several inter species studies in wild potato, where no correlation could be found between geographical location of the species and resistance against P. infestans (Khiutti et al. 2015) or A. solani (Jansky et al. 2008) To further unravel the combination of factors contributing to local variations, new sampling excursions would be required, that not just collect plant and pathogen, but also measure local geographic and climatic parameters.

In this study, several mechanisms theoretically proposed to generate stable long term polymorphism at host resistance and pathogen infectivity loci are shown to originate from the
environmental heterogeneity across populations. We conclude indeed on 1) the existence of possible GxGxE interactions for given host-pathogen interactions, 2) heterogeneity in disease incidence and prevalence across habitats, and most interestingly 3) a geographic mosaic of exposure to different pathogens species. The presence-absence of different above- and below-ground pathogens on the same plants may a key component of wild systems generating scenarios such as co-infection (Susi et al. 2015), cross-immunity or facilitation (Tack et al. 2015), with consequences for the genomics of pathogens (McMullan et al. 2015). Our research did not yet focus on any genetic differences underlying the variation in infection rates and linking phenotype to genotype should be one of the follow-up projects. Identification of the genes involved in these resistance variations could also help to identify which plant defence mechanisms are affected between populations and if there are indeed evolutionary differences between defence pathways in nonhost resistance compared to resistance variation within or in closely related species (Schulze-Lefert and Panstruga 2011, Stam et al. 2014). We have recently shown that targeted resequencing of genes of interest can be a potent tool to calculate evolutionary parameters of gene families of interest in wild tomato (Stam et al. 2016). Such resequencing studies could thus help to pinpoint how molecular mechanisms are affected by different pathogens as well as climatic variables.

Conclusions

Differences in pathogen disease resistance have been well described between many wild crop relatives. Here we presented a phenotypic study that shows specific pathogen adaptations between populations of one wild tomato species S. chilense. We showed that there are clear differences between individual populations. Using generalised linear mixed models, we show that this variation does not follow a simple geographical cline, that multiple climatic factors are needed to explain parts of the variation and that even within previously identified genotype groups resistance properties can differ dramatically. Our study confirms a mosaic pattern in
resistance properties within one species and can form the starting point for studies unravelling environmental effects on said properties as well as the genetic and molecular mechanisms involved in plant-pathogen coevolution.
Acknowledgements

We'd like to thank Hannes Rief and Giulia Schiavoni for help with the scoring of the infection assays, Hans Hausladen, Michael Heß and Regine Ditteman (TUM Phytopathology for providing the Alternaria strains and help with Fusarium isolation) and Brian Harrower (The James Hutton Institute, Dundee, UK) for providing Phytophthora. R. Stam is supported by the Alexander von Humboldt foundation.
References

Phytophthora Infestans. - Potato Res. 52: 249–264.

McMullan, M. et al. 2015. Evidence for suppression of immunity as a driver for genomic introgressions and host range expansion in races of Albugo candida, a generalist parasite.

S. chilense populations and phenotypic observations

A) A map showing the populations used in this study, belonging to the central (red), southern mountainous (blue) or southern coastal (green) region. The geographic range of whole species is depicted in the background (grey dots). B) The phenotypic observations after infection range from no visible symptoms (first row) and small black necrotic lesions resembling the Hypersensitive Response (HR, second row), both scored as 'not infected', to intermediate and strong infection (third and fourth row), both scored as 'infected'. In the columns from left to right: infection with Alternaria, Fusarium and Phytophthora. We could not observe HR in the Alternaria infections.
Alternaria infection
Hypersensitive Response
No symptoms

B
Alternaria Fusarium Phytophthora

Hypersensitive Response

infection

infection
Figure 2 (on next page)

Infected leaf fraction for different S. chilense populations

The boxplots show the median and 1st and 3rd quartile of the infected fractions per leaf for A) Alternaria, B) Fusarium and C) Phytophthora. The black dots represent the mean value for the infections. The Y axis ranges from 0 (no infected leaflets on a leaf) to 1 (all leaflets show infection). On the X axis, each population is represented. The colours correspond to the geographic regions as depicted in figure 1.
Populations with significant different infected fractions

Heatmap depicting whether a pairwise difference shows a significant result for Alternaria solani (left column), Fusarium sp. (middle column) and Phytophthera infestans (right column). Each row represents a pairwise comparison. Green cells represent a significant difference ($p < 0.001$ after multiple testing correction) and the numbers represent the estimated effect, with negative numbers indicating that the population mentioned on the left is less resistant than the one on the right.
<table>
<thead>
<tr>
<th>Alternaria</th>
<th>Fusarium</th>
<th>Phytophthora</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.55183</td>
<td>0.10738</td>
<td>-0.26040</td>
</tr>
<tr>
<td>-0.87557</td>
<td>-0.78253</td>
<td>-0.73009</td>
</tr>
<tr>
<td>0.29545</td>
<td>-1.11537</td>
<td>0.26290</td>
</tr>
<tr>
<td>-0.85150</td>
<td>0.71985</td>
<td>-0.26015</td>
</tr>
<tr>
<td>-0.46488</td>
<td>0.88139</td>
<td>-0.42327</td>
</tr>
<tr>
<td>-1.37044</td>
<td>0.02266</td>
<td>-1.23225</td>
</tr>
<tr>
<td>-0.32373</td>
<td>0.88991</td>
<td>-0.46969</td>
</tr>
<tr>
<td>0.84728</td>
<td>-1.22275</td>
<td>0.52330</td>
</tr>
<tr>
<td>-0.29967</td>
<td>0.61247</td>
<td>0.00025</td>
</tr>
<tr>
<td>0.08695</td>
<td>0.77401</td>
<td>0.16287</td>
</tr>
<tr>
<td>-0.81860</td>
<td>-0.08472</td>
<td>-0.97185</td>
</tr>
<tr>
<td>1.17102</td>
<td>-0.33285</td>
<td>0.99300</td>
</tr>
<tr>
<td>0.02407</td>
<td>1.59027</td>
<td>0.46994</td>
</tr>
<tr>
<td>0.41069</td>
<td>1.66391</td>
<td>0.30681</td>
</tr>
<tr>
<td>0.49487</td>
<td>0.80518</td>
<td>-0.50215</td>
</tr>
<tr>
<td>-1.14695</td>
<td>1.83522</td>
<td>-0.52305</td>
</tr>
<tr>
<td>-0.76033</td>
<td>1.99676</td>
<td>-0.68618</td>
</tr>
<tr>
<td>-1.66588</td>
<td>1.13803</td>
<td>-1.49316</td>
</tr>
<tr>
<td>0.38662</td>
<td>0.16154</td>
<td>-0.16312</td>
</tr>
<tr>
<td>-0.51894</td>
<td>-0.69719</td>
<td>-0.97210</td>
</tr>
<tr>
<td>-0.90556</td>
<td>-0.85873</td>
<td>-0.80897</td>
</tr>
</tbody>
</table>

LA1963 – LA2931
LA1963 – LA2932
LA1963 – LA3111
LA1963 – LA4107
LA1963 – LA4117
LA1963 – LA4330
LA2931 – LA2932
LA2931 – LA3111
LA2931 – LA4107
LA2931 – LA4117
LA2931 – LA4330
LA2932 – LA3111
LA2932 – LA4107
LA2932 – LA4117
LA2932 – LA4330
LA3111 – LA4107
LA3111 – LA4117
LA3111 – LA4330
LA4107 – LA4330
LA4117 – LA4330
Table 1 (on next page)

Table 1

Summary of GLMM results
<table>
<thead>
<tr>
<th>Model</th>
<th>Alternaria</th>
<th>Fusarium</th>
<th>Phytophthora</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 y~accession</td>
<td>2641.8</td>
<td>2307.6</td>
<td>1893.3</td>
</tr>
<tr>
<td>2 y~Lat</td>
<td>2708.6</td>
<td>2431.3</td>
<td>1958.3</td>
</tr>
<tr>
<td>3 y~Long</td>
<td>2815.1</td>
<td>2490.8</td>
<td>1965.8</td>
</tr>
<tr>
<td>4 y~Long+Lat</td>
<td>2703.9</td>
<td>2420.6</td>
<td>1945.4</td>
</tr>
<tr>
<td>5 y~Long*Lat</td>
<td>2705.8</td>
<td>2419.1</td>
<td>1947.4</td>
</tr>
<tr>
<td>6 y~Long+Lat+Alt+AnnPrecip+TempA+TempB</td>
<td>2641.8</td>
<td>2307.6</td>
<td>1893.3</td>
</tr>
<tr>
<td>7 y~Altitude</td>
<td>2843.3</td>
<td>2503.5</td>
<td>1985.1</td>
</tr>
<tr>
<td>8 y~Temp</td>
<td>2843.5</td>
<td>2506.5</td>
<td>1984.1</td>
</tr>
<tr>
<td>9 y~AnnPrecip</td>
<td>2757.2</td>
<td>2457.1</td>
<td>1968.4</td>
</tr>
<tr>
<td>10 y~group</td>
<td>2705.0</td>
<td>2489.7</td>
<td>1930.2</td>
</tr>
</tbody>
</table>