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Dispersal events between habitat patches in a landscape mosaic can structure ecological communities

and influence the functioning of agrosystems. Here we investigated whether short-distance dispersal

events between vineyard and forest patches shape foliar fungal communities. We hypothesized that

these communities homogenize between habitats over the course of the growing season, particularly

along habitat edges, because of aerial dispersal of spores.

We monitored the richness and composition of foliar and airborne fungal communities over the season,

along transects perpendicular to edges between vineyard and forest patches, using Illumina sequencing

of the ITS2 region.

In contrast to our expectation, foliar fungal communities in vineyards and forest patches increasingly

differentiate over the growing season, even along habitat edges. Moreover, the richness of foliar fungal

communities in grapevine drastically decreased over the growing season, in contrast to that of forest

trees. The composition of airborne communities did not differ between habitats. The composition of oak

foliar fungal communities change between forest edge and centre.

These results suggest that dispersal events between habitat patches are not major drivers of foliar fungal

communities at the landscape scale. Selective pressures exerted in each habitat by the host plant, the

microclimate and the agricultural practices play a greater role, and might account for the differentiation

of foliar fugal communities between habitats.
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13 Summary

14 Background. Dispersal events between habitat patches in a landscape mosaic can structure 

15 ecological communities and influence the functioning of agrosystems. Here we investigated 

16 whether short-distance dispersal events between vineyard and forest patches shape foliar fungal 

17 communities. We hypothesized that these communities homogenize between habitats over the 

18 course of the growing season, particularly along habitat edges, because of aerial dispersal of 

19 spores. 

20 Methods. We monitored the richness and composition of foliar and airborne fungal communities 

21 over the season, along transects perpendicular to edges between vineyard and forest patches, 

22 using Illumina sequencing of the ITS2 region. 

23 Results. In contrast to our expectation, foliar fungal communities in vineyards and forest patches 

24 increasingly differentiate over the growing season, even along habitat edges. Moreover, the 

25 richness of foliar fungal communities in grapevine drastically decreased over the growing 

26 season, in contrast to that of forest trees. The composition of airborne communities did not differ 

27 between habitats. The composition of oak foliar fungal communities change between forest edge 

28 and centre. 

29 Discussion. These results suggest that dispersal events between habitat patches are not major 

30 drivers of foliar fungal communities at the landscape scale. Selective pressures exerted in each 

31 habitat by the host plant, the microclimate and the agricultural practices play a greater role, and 

32 might account for the differentiation of foliar fungal communities between habitats. 
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34 Introduction

35 Plant leaves provide one of the largest microbial habitats on Earth (Ruinen, 1956; Morris, 2001; 

36 Vorholt, 2012). They harbour highly diverse microbial communities, including many genera of 

37 bacteria and fungi (Lindow & Leveau, 2002; Vorholt, 2012; Turner et al., 2013). The eco-

38 evolutionary processes which shape these communities � dispersal, evolutionary diversification, 

39 selection and drift � are increasingly well understood (Hanson et al., 2012; Nemergut et al., 

40 2013; Vacher et al., 2016). This new eco-evolutionary framework will undoubtedly have 

41 important applications in agriculture. Indeed, crop performance depends on the balance and 

42 interactions between pathogenic and beneficial microbial species (Newton et al., 2010a, 2010b). 

43 Manipulating whole foliar microbial communities, by acting on the processes shaping them, 

44 could thus greatly improve crop health (Newton et al., 2010a; Xu et al., 2011). However, to reach 

45 this aim, a better understanding of the structure and dynamics of foliar microbial communities at 

46 the landscape scale is required. 

47 The landscape plays a key role in the dynamics of macro-organism populations interacting with 

48 crops, such as arthropod pests or their natural enemies (Norris & Kogan, 2000; Chaplin-Kramer 

49 et al., 2011). In ecology, the landscape is defined as an heterogeneous geographic area, 

50 characterized by a dynamic mosaic of interacting habitat patches (Bastian, 2001). Species 

51 movements between habitat patches - referred as dispersal (Vellend, 2010) - modulates the 

52 richness, composition and function of macro-organism communities (Hurst et al., 2013; Ma 

53 et al., 2013; Lacasella et al., 2014). In agricultural landscape, species dispersal between natural 

54 and managed habitats can trigger detrimental or beneficial effects in crops (Chaplin-Kramer 
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55 et al., 2011; Blitzer et al., 2012), particularly along the edges (Thomson & Hoffmann, 2009; 

56 Lacasella et al., 2014). 

57 The influence of dispersal events on the structure of foliar microbial communities at the 

58 landscape scale has hardly been studied. Many microbial species colonising plant leaves are 

59 horizontally transferred (i.e. from one adult plant to another) by airborne dispersal (Whipps et al., 

60 2008; Bulgarelli et al., 2013), while others can come from the seeds, the rhizosphere or the twigs 

61 (Vorholt, 2012). The foliar microbial communities of a given plant can therefore be influenced 

62 by those of its neighbours. Plant pathogens, for instance, can be transmitted from a reservoir 

63 plant to neighbouring plants (Power & Mitchell, 2004; Beckstead et al., 2010; Wilson et al., 

64 2014). These short-distance dispersal events could have a greater effect on the foliar microbial 

65 communities of annual or deciduous plants, because the leaves of those plants are colonised by 

66 micro-organisms every spring, after budbreak. 

67 In this study, we analysed the structure and dynamic of foliar and airborne fungal communities in 

68 a heterogeneous landscape consisting of vineyard and forest patches in the south west of France. 

69 Vineyards are human-engineered agro-ecosystems, characterized by a low specific and genetic 

70 diversity, and where weeds, pests and pathogens are regularly controlled with different cultural 

71 practices and pesticides to preserve yield and to reduce infection of leaves and grapes. 

72 Conversely, deciduous forests in this area remain little managed and much less homogeneous. 

73 We expected the fungal communities of forest patches to be richer than those of vineyards, 

74 because the higher plant species richness and biomass in forests increase the diversity of micro-

75 habitats available to foliar fungi. We also expected repeated dispersal events to homogenize 

76 foliar fungal communities between the two habitats over the course of the growing season, 

77 particularly along habitat edges. We thus tested the following hypotheses for both foliar and 
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78 airborne fungal communities: (1) community richness is higher in forests than in adjacent 

79 vineyards, (2) community similarity between the two habitats increase over the course of the 

80 growing season and (3) is higher along habitat edges.

81

82 Materials and methods

83 Sampling design

84 Three study sites, each consisting of a forest patch and an adjacent vineyard, were selected in the 

85 Bordeaux area (France). They were located in the domains of Châteaux Reignac (N44°54′03″, 

86 O0°25′01″), Grand-Verdus (N44°47′21″, O0°24′06″) and Couhins (N44°45′04″, O0°33′53″) 

87 (Fig. 1a). At each site, the edge between the forest patch and the vineyard was at least 100 m 

88 long. The width of each habitat, perpendicular to the edge, was at least 200 m. The forest patches 

89 at all three sites contained mostly deciduous species, dominated by pedunculate oak (Quercus 

90 robur L.). The second most frequent tree species was European hornbeam (Carpinus betulus L.) 

91 in Reignac and Grand-Verdus, and sweet chestnut (Castanea sativa Mill.) in Couhins. In the 

92 vineyards, the grapevine (Vitis vinifera L.) cultivar was Cabernet Sauvignon in Reignac and 

93 Grand-Verdus, and Merlot in Couhins. 

94 At each site, leaves were collected along three parallel transects perpendicular to the forest-

95 vineyard edge and separated by a distance of about five meters (Fig. 1b). Leaves were sampled at 

96 four locations along each transect: in the centre of the forest (100 m away from the edge), at the 

97 edge of the forest, at the edge of the vineyard and in the centre of the vineyard (100 m away from 

98 the edge). In forest patches, leaves were sampled from the two most abundant tree species. For 
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99 each sampling location and each transect, a single tree of each species was selected. Three leaves 

100 oriented in different directions were collected from each tree, at a height of 7 m. In vineyards, 

101 three leaves were collected from three adjacent cloned grapevine stocks. Each of the sampled 

102 leaves was selected from the base of the cane (one-year-old shoot), to ensure the collection of 

103 leaves of the same age on each date. The leaves were removed with scissors that had been 

104 sterilised with 96 % ethanol, and all contact of the leaves with the hands was carefully avoided. 

105 The leaves were stored in clear plastic bags containing silica gel to ensure rapid drying. In 

106 addition, grapevine leaves were placed between two sheets of sterile paper filter to ensure good 

107 dessication despite their thickness. Leaves were sampled on three dates in 2013: in May 

108 (between the 15th and 23rd), July (between the 16th and 18th) and October (3rd). The sampling 

109 dates chosen were as far removed as possible from the last chemical treatment performed in the 

110 vineyard (Supporting Information Table S1). 

111 Airborne particles were collected along the middle transect of each site, with two Coriolis air 

112 sampler devices positioned one meter above the ground. At each sampling location, three 

113 successive 10 minute sampling sessions were carried out, with a flow rate of 200 l/min.

114

115 DNA extraction and sequencing

116 Sample contamination was prevented by exposing all tools and materials required for sample 

117 processing and DNA extraction to UV light for 30 minutes in a laminar flow hood. Four discs 

118 (each 8.0 mm in diameter) were cut randomly from each leaf, in the flow hood, with a hole-

119 punch sterilised by flaming with 95 % ethanol. The four discs were placed in a single well of an 

120 autoclaved DNA extraction plate. Three wells were left empty as negative controls. Two 
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121 autoclaved metallic beads were added to each well, and the plant material was ground into a 

122 homogeneous powder with a Geno/Grinder 2010 (SPEX Sample Prep, Metuchen, NJ). 

123 The liquid used to collect airborne particles was transferred into sterile 15 ml centrifuge tubes. 

124 Each tube was then centrifuged for 30 minutes at 13000 RCF and the supernatant was removed 

125 with a sterile transfer pipette. The pellet was then transferred by resuspension to an autoclaved 

126 tube and freeze-dried. A tube of unused sampling liquid was treated in the same way and used as 

127 a negative control. Total DNA was extracted from each leaf and airborne sample with the 

128 DNeasy 96 Plant Kit (QIAGEN). Foliar DNA samples from the same tree were pooled, as were 

129 foliar DNA samples from the three adjacent grapevine stocks. 

130 Fungal ITS2 (Internal Transcribed Spacer 2) was amplified with the fITS7 (forward) and ITS4 

131 (reverse) primers (Ihrmark et al., 2012). Paired-end sequencing (300 bp) was then performed in a 

132 single run of an Illumina MiSeq sequencer, on the basis of V3 chemistry. PCR amplification, 

133 barcodes and MiSeq adapters addition, library sequencing and data preprocessing were carried 

134 out by the LGC Genomics sequencing service (Berlin, Germany). Sequences were deposited in 

135 the European Nucleotide Archive (ENA) database, under the PRJEB13880 project accession 

136 number.

137

138 Bioinformatic analysis

139 Sequences were first demultiplexed and filtered. All sequences with tag mismatches, missing 

140 tags, one-sided tags or conflicting tag pairs were discarded. Tags and Illumina TruSeq adapters 

141 were then clipped from all sequences, and sequences with a final length fewer than 100 bases 
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142 were discarded. All sequences with more than three mismatches with the ITS2 primers were 

143 discarded. Primers were then clipped and the sequence fragments were placed in a forward-

144 reverse primer orientation. Forward and reverse reads were then combined, and read pair 

145 sequences that could not be combined were discarded. 

146 The pipeline developed by Bálint et al. (2014) was used to process the sequences. The ITS2 

147 sequence was first extracted from each sequence with the FungalITSextractor (Nilsson et al., 

148 2010). All the sequences were then concatenated into a single fasta file, after adding the sample 

149 code in the label of each sequence. The sequences were dereplicated, sorted and singletons were 

150 discarded with VSEARCH (https://github.com/torognes/vsearch). The sequences were then 

151 clustered into molecular operational taxonomic units (OTUs) with the UPARSE algorithm 

152 implemented in USEARCH v8 (Edgar, 2013), with a minimum identity threshold of 97 %. 

153 Additional chimera detection was performed against the UNITE database (Kõljalg et al., 2013), 

154 with the UCHIME algorithm implemented in USEARCH v8 (Edgar et al., 2011). The OTU 

155 table, giving the number of sequences of each OTU for each sample, was created with 

156 USEARCH v8. 

157 OTUs were taxonomically assigned using the online BLAST web interface (Madden, 2013) 

158 against the GenBank database, by excluding environmental and metagenome sequences. The 

159 assignment with the lowest e-value was retained. The full taxonomic lineage of each assignment 

160 was retrieved from the GI number information provided by NCBI. All the OTUs assigned to 

161 plants or other organisms, and all unassigned OTUs were removed, to ensure that only fungal 

162 OTUs were retained.

163
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164 Statistical analyses

165 All statistical analyses were performed in the R environment. We computed 100 random rarefied 

166 OTU matrices, using the smallest number of sequences per sample as a threshold. The number of 

167 OTUs per sample (OTU richness) and the dissimilarity between samples (Bray-Curtis index 

168 based on abundances and Jaccard index based on occurrences) were calculated for each rarefied 

169 matrix and averaged (Cordier at al.,2012; Jakuschkin et al., 2016). However, because the 

170 relevance of rarefaction is debated in the scientific community (Hughes & Hellmann, 2005; 

171 McMurdie & Holmes, 2014), we also performed the analyses on the raw OTU matrix by 

172 including the square root of the total number of sequences per sample (abundance) as first 

173 explanatory variable in all the models. 

174 Type III ANOVA, which tests for the presence of an effect, given the other effects and the 

175 interactions (Herr, 1986), was used to assess the effect of host plant species (grapevine, oak, 

176 hornbeam and chestnut), sampling date (May, July, October), edge (habitat centre or edge) and 

177 their interactions on foliar OTU richness. Sampling site was included in the model as a random 

178 factor. Marginal and conditional coefficients of determination were calculated to estimate the 

179 variance explained by fixed factors (Rm
2) and fixed plus random factors (Rc

2). Post-hoc pairwise 

180 comparisons were then performed for each level of each factor, with Tukey�s adjustment 

181 method. A similar ANOVA was performed on airborne OTU richness, including habitat (forest 

182 and vineyard), sampling date, sampling site, and their interactions. 

183 Dissimilarities in composition between samples were represented by non-metric 

184 multidimensional scaling analysis (NMDS) and were analysed by permutational multivariate 

185 analyses of variance (PERMANOVA), including the same fixed factors as the ANOVAs, with 
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186 sampling sites treated as strata. We dealt with complex interactions in PERMANOVA results by 

187 calculating post-hoc PERMANOVAs, including sampling date, sampling site and their 

188 interaction, separately for each host plant species (or habitat for airborne samples). We then 

189 corrected the P-values for multiple testing, as described by Benjamini & Yekutieli (2001).

190

191 Results

192 Taxonomic description of foliar and airborne fungal communities

193 In total, we obtained 7 946 646 high-quality sequences, which clustered into 4 360 OTUs. 

194 Overall, 867 OTUs, corresponding to 4 600 179 sequences (57.9% of the raw OTU table) were 

195 not taxonomically assigned to fungi by BLAST. Among them, 4 451 913 sequences were 

196 assigned to plant sequences (Tracheophyta division), principally Vitis (59%), and Carpinus 

197 (35%) genus, showing that fITS7-ITS4 primers are not specific of fungi. These OTUs were 

198 removed. The negative controls contained 29 857 fungal sequences clustering into 337 OTUs. 

199 There is no consensus on how to deal with OTUs found in negative controls (Nguyen et al., 

200 2015; Galan et al., 2016). It is difficult to distinguish real contaminations - sequences originating 

201 from the people who performed the experiments, the laboratory environment and the DNA 

202 extraction kit � from cross-contaminations between samples, occuring during the DNA 

203 extraction, amplification and sequencing (Esling et al., 2015; Galan et al., 2016). It is highly 

204 probable that OTUs assigned to Erysiphe alphitoides, the agent responsible for the oak powdery 

205 mildew (1.5% of the negative control sequences; Jakuschkin et al., 2016) or Botrytis cinerea, 

206 responsible for the grey mold on grapes (1.2%; Jaspers et al., 2015) are likely cross-
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207 contaminations because they are strongly related to a specific host. Moreover, the removal of 

208 very abundant OTUs strongly altered the taxonomic composition of the samples, and removed 

209 some species known to be abundant on leaves such as Aureobasidium pullulans, known as very 

210 abundant on grapevine (Pinto & Gomes, 2016).We thus decided to retain all these OTUs in the 

211 dataset. Two samples containing very few sequences (<300 sequences) were removed. These 

212 samples corresponded to grapevine leaves collected at the Couhins site, in May. The first was 

213 collected in the centre of the vineyard, and the other was collected at its edge. Finally, the OTU 

214 table used for the analyses contained 196 samples and 3 487 fungal OTUs, corresponding to 

215 3 316 156 sequences. The number of sequences per sample ranged from 424 to 96 276, with a 

216 mean of 16 919. This OTU table was used for taxonomical description. Richness, Bray-Curtis 

217 and Jaccard averaged indices were calculated over 100 rarefactions of this OTU table, at a 

218 threshold of 420 sequences per sample.

219 The fungal communities of bioaerosols and leaves from forest trees and grapevines were 

220 dominated by ascomycetes (Fig. 2). The sequences assigned to Ascomycota division accounted 

221 for 85.7% of all the sequences, followed by Basidiomycota division (11.3%). Overall, 3.0% of 

222 the total sequences remained unassigned at the division level. Airborne and foliar samples shared 

223 1440 OTUs (Fig. 3), but there was a significant difference in the composition of foliar and 

224 airborne fungal communities (PERMANOVA F=20.15, p=0.001). The ten most abundant fungal 

225 OTUs were shared by airborne, forest foliar and grapevine foliar communities, but their relative 

226 abundance differed between each compartment (Table 1). 
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227 Variations in the richness of foliar and airborne fungal communities at the landscape scale

228 ANOVA revealed a significant effect of the interaction between host plant species and sampling 

229 date on the richness of foliar fungal communities (Table 2). Differences in fungal community 

230 richness between plant species were not significant in May and July (Fig. 4 and Fig. S1). In 

231 October, grapevine stocks had significantly less rich foliar fungal communities than oak (post-

232 hoc tests: P<0.0001; Fig. 4) and hornbeam trees (P<0.0001), but the richness of their fungal 

233 communities did not differ significantly from that of chestnut trees (P=0.147; Fig. S1). 

234 Hornbeam leaves harboured the richest communities of all the plant species considered (post-hoc 

235 tests: P<0.0001 between hornbeam and chestnut, P=0.0003 between hornbeam and oak, 

236 P<0.0001 between hornbeam and grapevine; Fig. S1). 

237 ANOVA post-hoc tests also revealed a significant decrease in fungal species richness in 

238 grapevine over the course of the growing season (P<0.0001 for each pairwise comparison; 

239 Fig. 4). Seasonal variations in fungal richness were less marked in oak (P=0.081, P=0.999 and 

240 P=0.004, respectively between May and July, July and October, May and October), chestnut 

241 (P=0.011, P=0.997 and P=0.0002, respectively) and hornbeam (P=1.00, P=0.144 and P=0.185, 

242 respectively). 

243 ANOVA also revealed a significant effect of the interaction between host plant species and edge 

244 on the richness of foliar fungal communities (Table 2). The richness of foliar fungal communities 

245 was significantly higher at the edge in oak (P=0.002), but not in hornbeam (P=0.100), chestnut 

246 (P=0.139), or grapevine (P=0.790) (Fig. S2). 

247 Habitat had a significant effect on the richness of airborne fungal communities (Table 2), which 

248 was significantly higher in forests than in vineyards. 
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249 Conclusions were similar on models performed without rarefaction (Supporting information, 

250 Table SI4).

251

252 Variations in the composition of foliar and airborne fungal communities at the landscape 

253 scale

254 PERMANOVA revealed a significant effect of the interaction between host plant species and 

255 sampling date on the composition of foliar fungal communities (Table 3). Bray-Curtis 

256 dissimilarities between oak and grapevine foliar fungal communities increased over the course of 

257 the growing season (mean ± SD; 0.47 ± 0.07 in May, 0.67 ± 0.09 in July and 0.91 ± 0.06 in 

258 October). These results are illustrated by non-metric multidimensional scaling (NMDS; Fig. 3a). 

259 Bray-Curtis dissimilarities also increased between each pair of host species (Supporting 

260 information, Table S2 and Fig. S3a). Similar results were obtained with the Jaccard dissimilarity 

261 index (Supporting information, Table S3 and Fig. S3b). 

262 PERMANOVA also revealed significant edge effects on the composition of foliar fungal 

263 communities, in interaction with host plant species and sampling date. Post-hoc PERMANOVAs 

264 computed separately for each host species indicated differences in community composition 

265 between the edge and centre of the forest for oak and hornbeam, in interaction with sampling 

266 date (F=1.68, P=0.031 and F=1.85, P=0.044, respectively). The composition of the fungal 

267 community did not differ between the edge and the centre of the habitat for chestnut (F=2.27, 

268 P=0.25) or grapevine (F=0.92, P=1). Finally, PERMANOVA analysis of Bray-Curtis 

269 dissimilarities revealed a significant effect of sampling date on bioaerosol composition (Table 3 

270 and Fig. 3b). Similar results were obtained for Jaccard dissimilarity (Supporting informtaion, 
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271 Table S3). Overall, similar results were also obtained without rarefying (Supporting information, 

272 Table S5). 

273

274 Discussion

275 To our knowledge, this is the first time that the spatial structure and the temporal dynamic of 

276 foliar and airborne fungal communities are assessed simultaneously at the landscape scale. We 

277 studied a landscape mosaic consisting of two main habitats, vineyard and forest patches. We 

278 expected that repeated dispersal events between habitat patches would homogenize the foliar 

279 communities over the course of the growing season. We expected the homogenization to be 

280 greater along habitat edges, where grapevine stocks and forest trees are closer to each other. 

281 Accordingly, we found that 26% of the OTUs are shared between airborne and foliar fungal 

282 communities. The most abundant ones are principally generalist species, such as Aureobasidium 

283 pullulans, Cladosporium sp. or Eppicoccum nigrum, which were already found as abundant in 

284 the microbiome of many species (Jumpponen & Jones, 2009; Zambell & White, 2014; Pinto & 

285 Gomes, 2016). This result confirms that many fungal species disperse through the atmosphere 

286 (Lindemann et al., 1982; Brown & Hovmøller, 2002; Bulgarelli et al., 2013). Moreover, while 

287 the richness of airborne fungal communities was higher in forest patches than in adjacent 

288 vineyards, their composition did not differ significantly, whatever the season. This lack of spatial 

289 variation in airborne fungal communities could account for the high similarity between foliar 

290 fungal communities of grapevine and forest tree species at the beginning of the growing season. 

291 Flushing leaves in May receive similar pools of fungal species through airborne dispersal, 

292 whatever the habitat and the host plant species. Our results suggest that dispersal of foliar fungal 
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293 communities is not limited at the landscape scale. Similar patterns were already observed at far 

294 larger spatial scales. The atmosphere is indeed considered as a continental and inter-continantal 

295 corridor for the dispersal of microorganisms (Finlay, 2002; Brown & Hovmøller, 2002; Womack 

296 et al., 2010; Barberán et al., 2014), resulting in global patterns across continents. However, our 

297 results contrast with the strong dispersal limitation observed at smaller scale (Bowers et al., 

298 2013). Peay et al. (2010) evidenced that ectomycorhizal richness is lower in small tree patches 

299 located 1km away from large tree patches than nearer ones. Dickie & Reich (2005) showed that 

300 the abundance and richness of ectomycorhizal fungi decreased up to 20m away from the forest 

301 edge. Galante et al. (2011) also showed that 95% of ectomycorhizal spores fell within 58cm from 

302 the source. While the dispersal of ectomycorhizal fungi can differ from the foliar ones because of 

303 the difference in the height of spore emission (Schmale & Ross, 2015), our failure to detect such 

304 dispersal limitation at low spatial scale can be explain by the short time of sampling of airborne 

305 communities (30 minutes), which can be insufficient to characterize properly the airborne fungal 

306 composition of the whole season.

307 Against expectation, we found that the composition of the foliar fungal communities of forest 

308 tree species and grapevine increasingly diverged from May to October. Besides, a severe decline 

309 in the richness of foliar fungal communities was observed in grapevine over the course of the 

310 growing season, but not in forest tree species. Despite an identical pool of airborne fungi in 

311 vineyards and forests, the selective pressures exerted on foliar fungal communities therefore 

312 differ between both habitats.These selective pressures can be exerted by several factors, 

313 including the host species, the microclimate and the agricultural practices.  Host-specificity has 

314 been demonstrated in foliar fungal communities (Kembel & Mueller, 2014; Lambais et al., 2014; 

315 Meiser et al., 2014). Our results paralleled these findings: in forest patches, foliar fungal 
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316 communities significantly differ among tree species at the end of the growing season. Seasonal 

317 variations in leaf physiology could also account for the observed temporal variations in foliar 

318 communities, especially the richness decline in grapevine fungal foliar communities. Older 

319 grapevine leaves indeed produce larger amounts of phytoalexins and tend to be more resistant to 

320 pathogens (Steimetz et al., 2012). Selection by the habitat can also be exerted by the 

321 microclimate (Vacher et al., 2016). Harsher microclimatic conditions in vineyards than in forests, 

322 especially in the summer, could account for the decline in fungal species richness in vineyards 

323 but not in forests. Particularly, greater exposure to UV and higher air temperatures in vineyards 

324 could decrease the survival of foliar fungi on grapevine leaves. By contrast, tree cover provides a 

325 milder microclimate which could be more suitable to foliar micro-organisms. Finally, selection 

326 by the habitat can be exerted by agricultural practices. A few studies showed that fungicide 

327 applications can reduce the diversity and alter the composition of the foliar microbial community 

328 (Gu et al., 2010; Moulas et al., 2013; Cordero-Bueso et al., 2014; Karlsson et al., 2014). 

329 However, several other studies showed that the foliar fungal communities of grapevine are 

330 highly resilient to some chemical or biological pesticides (Walter et al., 2007; Perazzolli et al., 

331 2014; Ottesen et al., 2015). Further research is required to assess the influence of fungicide 

332 applications on the observed decline in the richness of foliar fungal communities. 

333 Our study also showed, for the first time, significant edge effects on foliar fungal community 

334 assemblages. A higher level of foliar fungal community richness was found in oak trees growing 

335 at the edge of the forest than in oak trees growing 100 m away. Significant differences in 

336 community composition between the edge and the centre of the forest were also found for oak 

337 and hornbeam. Variations in microclimate and leaf physiology along the forest edge (Chen et al., 

338 1993; Zheng et al., 2005; Kunert et al., 2015) are more likely to account for this result than 
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339 species dispersal from vineyards to forest patches, since the foliar fungal communities of the two 

340 habitats diverged over the course of the growing season. The absence of edge effect in grapevine 

341 foliar fungal communities suggests that dispersal of fungal species from forests to vineyards has 

342 little influence on community composition and richness. This result contrasts with the findings of 

343 many studies on macro-organisms, reporting that dispersal events between managed and non-

344 managed habitats shape communities and influence ecosystem functioning and services 

345 (Thomson & Hoffmann, 2009; Rusch et al., 2010; Thomson et al., 2010; Chaplin-Kramer et al., 

346 2011; Blitzer et al., 2012). 

347

348 Conclusions

349 Our results suggest that dispersal events between habitat patches are not major drivers of foliar 

350 fungal communities at the landscape scale. Selective pressures exerted in each habitat by the 

351 plant host, the microclimate and the agricultural practices play a greater role, and might account 

352 for the differentiation of foliar fungal communities between habitats. However, our experimental 

353 design does not allow us to assess the relative influence of each factor in shaping foliar fungal 

354 communities. Our results suggest that the leaves of broad-leaf species are colonised by similar 

355 pools of airborne micro-organisms at the beginning of the growing season. The composition of 

356 foliar fungal communities then diverges between habitat patches and between plant species 

357 within the same habitat. In contrast, airborne communities remain similar between habitats. 

358 Overall, our results support those of Redford et al. (2010) and Morrison-Whittle & Goddard 

359 (2015) which indicated that selection predominates over dispersal in structuring plant microbial 

360 communities.
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564 Tables

565 Table 1 Taxonomic assignment of the 10 most abundant OTUs by the online BLAST analysis 

566 against the GenBank database. The environmental and metagenome sequences were excluded. 

567 Identity is the percentage identity between the OTU representative sequence and the closest 

568 matching sequence in GenBank. Taxa shown as unassigned at the species level (sp.) indicate 

569 OTUs assigned to at least two species of the same genus with identical e-value. Relative 

570 abundance are percentage of abundance of each data subset and brackets contain the rank of the 

571 OTU in each data subset.

Closest match Relative abundance in percent (rank)

GI number Identity Putative taxon Total Airborne
Forest

leaves

Grapevine

leaves

1034220623 100 Aureobasidium pullulans 15.48 3.8 (4) 12.6 (1) 55.9 (1)

1031917897 100 Cladosporium sp. 8.01 29.8 (1) 2.7 (11) 2.4 (5)

1049480240 85.6 Collophora hispanica 5.64 1.7 (7) 7.4 (2) 1.1 (13)

61619908 100 Ramularia endophylla 4.72 0.6 (20) 6.4 (3) 1.4 (12)

1035371449 100 Cladosporium sp. 4.51 13.7 (2) 2.3 (13) 1.8 (7)

530746702 100 Stromatoseptoria castaneicola 3.48 0.3 (31) 4.8 (4) 0.9 (15)

626419142 99.5 Taphrina carpini 3.35 1.3 (9) 4.3 (6) 0.7 (19)

1024249962 100 Erysiphe sp. 3.17 0.3 (33) 4.4 (5) 0.8 (16)

61619940 100 Naevala minutissima 2.99 1.2 (10) 3.8 (8) 0.7 (20)

961502090 91.0 Zeloasperisporium searsiae 2.93 0.2 (46) 4.1 (7) 0.6 (21)
572  

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2458v1 | CC BY 4.0 Open Access | rec: 20 Sep 2016, publ: 20 Sep 2016



573 Table 2 Effect of sampling date (May, July or October), host species (oak, hornbeam, chestnut 

574 or grapevine) or habitat (vineyard or forest), edge (habitat centre or center) and their interaction 

575 on OTU richness in foliar and airborne fungal communities, assessed using a type III ANOVA.

576 In both models, sampling site was included as a random variable. Rm
2 is the marginal coefficient 

577 of determination (for fixed effects) and Rc
2 the conditional coefficient of determination (for fixed 

578 and random effects). Bold values ares the significant ones.

F P-value Rm² (Rc²)

Foliar OTU richness

Date 44.49 <0.001 0.64 (0.71)

Species 14.97 <0.001

Edge 17.21 <0.001

D x S 23.42 <0.001

D x E 0.11 0.894

S x E 6.72 <0.001

D x S x E 1.13 0.347

Airborne OTU richness

Date 1.07 0.362 0.34 (0.52)

Habitat 10.19 0.004

Edge 4.20 0.052

D x H 0.86 0.436

D x E 1.40 0.267

H x E 0.01 0.912

D x H x E 1.678 0.209

579
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580 Table 3 Effect of sampling date (May, July or October), host species (oak, hornbeam, chestnut 

581 or grapevine) or habitat (vineyard or forest), edge (habitat centre or center) and their interaction 

582 on the composition of foliar and airborne fungal communities, assessed using a PERMANOVA. 

583 In both models, sampling site was included as a stratification variable. Bold values ares the 

584 significant ones.

F R² P-value

Foliar fungal community composition

Date 10.13 0.078 0.001

Species 13.70 0.158 0.001

Edge 3.94 0.015 0.001

D x Sp 6.92 0.160 0.001

D x E 2.05 0.016 0.007

Sp x E 2.22 0.026 0.001

D x Sp x E 1.08 0.025 0.239

Airborne fungal community composition

Date 2.94 0.157 0.001

Habitat 1.54 0.041 0.062

Edge 0.68 0.018 0.827

D x H 0.95 0.051 0.418

D x E 0.66 0.035 0.938

H x E 0.77 0.020 0.684

D x H x E 0.71 0.038 0.878

585
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586 Figures

587 Figure 1: Experimental design. (a) Geographical position of the three sampling sites, 

588 represented by red points. (b) Sampling design at each site. Leaf pictograms represent the 

589 sampling location of leaves in each site. Three leaves per plant species (i.e. grapevine in the 

590 vineyard and oak plus chestnut or hornbeam in the forest patch) were sampled at each 

591 location. Cloud pictograms represent the sampling location of airborne communities.

592
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593 Figure 2 Taxonomic composition of the airborne and foliar fungal communities in forest and 

594 vineyard habitats. The inner disc shows the proportion of sequences assigned to each taxonomic 

595 division, and the outer disc the proportion of sequences assigned to each class of the Ascomycota 

596 and Basidiomycota divisions.

597

598
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599 Figure 3 Venn diagramm giving the number of OTUs shared between the airborne, forest foliar 

600 and vineyard foliar communities.

601

602
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603 Figure 4 Richness of foliar fungal community in oak (green) and grapevine (red), depending on 

604 the sampling date. Error bars represent the standard error.

605
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606 Figure 5 NMDS representing dissimilarities in the composition of fungal communities. (a) 

607 Dissimilarities in the composition of foliar fungal communities between the host species (oak in 

608 green and grapevine in red), depending on the sampling date. The other two forest species are not 

609 shown here, to make the figure easier to read, and are presented in Fig. S2. The stress value 

610 associated with this representation was 0.170. (b) Airborne fungal communities between the 

611 habitat (forest in light-blue and vineyard in dark-blue), depending on the sampling date. The 

612 stress value associated with this representation was 0.188. Dissimilarities between samples were 

613 computed with the Bray-Curtis index, averaged over 100 random rarefactions of the OTU table. 

614 The confidence ellipsoid at the 0.68 level is shown, for all combinations of these two factors. 

615
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