
Atropos: specific, sensitive, and speedy1

trimming of sequencing reads2

John P Didion1 and Francis S Collins1
3

1National Human Genome Research Institute, National Institutes of Health, Bethesda,4

MD5

Corresponding author:6

John P Didion1
7

Email address: john.didion@nih.gov8

ABSTRACT9

Summary. A key step in the transformation of raw sequencing reads into biological insights is the
trimming of adapter sequences and low-quality bases. Read trimming has been shown to increase
the quality and reliability while decreasing the computational requirements of downstream analyses.
Many read trimming software tools are available; however, no tool simultaneously provides the accuracy,
computational efficiency, and feature set required to handle the types and volumes of data generated in
modern sequencing-based experiments. Here we introduce Atropos and show that it trims reads with
high sensitivity and specificity while maintaining leading-edge speed. Compared to other state-of-the-art
read trimming tools, Atropos achieves a XX% increase in trimming accuracy and a decrease in execution
time of at least XX% (using 16 parallel execution threads). Furthermore, Atropos maintains high accuracy
even when trimming simulated data with a high rate of error. The accuracy, high performance, and
broad feature set offered by Atropos makes it an appropriate choice for the pre-processing of most
current-generation sequencing data sets. Availability. Atropos is open source and free software written
in Python and available at https://github.com/jdidion/atropos.

10

11

12

13

14

15

16

17

18

19

20

21

22

1 INTRODUCTION23

Sequencing on all current-generation sequencing technologies, including Illumina, SOLiD, PacBio, and24

Nanopore, requires a library construction step that involves ligation of short adapter sequences to the ends25

of the template DNA fragments. Depending on the sequencing platform and the fragment size distribution26

of the sequencing library, an often substantial fraction of reads will consist of both template and adapter27

sequences (Figure 1A). Additionally, the error rates of these sequencing technologies vary from ˜0.1% on28

Illumina to 5% or more on long-read sequencing platforms. Error rates tend to be enriched at the ends29

of reads (where adapters are located), thus exacerbating the effects of adapter contamination. Adapter30

contamination and sequencing errors can lead to increased rates of misaligned and unaligned reads, which31

results in errors in downstream analysis including spurious variant calls (Del Fabbro et al., 2013; Sturm32

et al., 2016). Certain sequencing protocols may introduce other artifacts in sequencing reads. For example,33

some methylation sequencing (Methyl-Seq) protocols result in artificially methylated bases at the 3’ ends34

of reads that can result in inflated estimates of methylation levels (Bock, 2012).35

Read trimming is an important step in the analysis pipeline to mitigate the effects of adapter contami-36

nation, sequencing errors, and other artifacts. The development of tools for read trimming is an active37

area of bioinformatics research, thus there are currently many options. In terms of adapter trimming,38

these tools fall into two general categories (Figure 1B): 1) those that rely solely on matching the adapter39

sequence (adapter-match trimming) using semi-global alignment (which is the only option available for40

single-end reads); and 2) those that leverage the overlap between paired-end reads to identify adapter41

starting positions (insert-match trimming) (Sturm et al., 2016). Cutadapt (Martin, 2011) is a mature and42

feature-rich example of a tool that provides adapter-match trimming, while SeqPurge (Sturm et al., 2016)43

is a recent example of a highly accurate insert-match trimmer designed specifically for paired-end data.44

Additionally, hybrid tools are available that optimize their choice of read trimming method based on45

the type of data. Skewer (Jiang et al., 2014) is a fast and accurate hybrid trimmer that works with both46

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2452v1 | CC BY 4.0 Open Access | rec: 15 Sep 2016, publ: 15 Sep 2016

https://github.com/jdidion/atropos

...TGAGACGAACTGATCGGAAGAGCACA

...TCTTAGTGCAAAGATCGGAAGAGCGT
...TGAGACGAACTGAGCGGAAAGAGCACA

GATCGGAA&GAGCACACGTCTGAACTCCAGTCAC

AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT
...TCTTAGTGCAAAGATCGG#AGACCGT

TTGCACTAAGATCGTGAGACGAACTGATCGGAAGAGCACA
ACGCTCTTCCGATCTTTGCACTAAGAACGTCAGACGAACT

TGAG'- template sequence
GATC'- adapter sequence
GATC'- adapter contamination
GA&TC'- gap (indel)
GAAGC'- mismatch
ACGCT'- trimmed sequence

A) B)

C)
TTGCACTAAGATCGTGAGACGAACTGATCGGAAGAGCACA

ACGCTCTTCCGATCTTTGCACTAAGAACGTCAGACGAACT

GATCGGAAGAGCTCACGTCTGAAGGCCAGTCACAAAAAAAACNNNANC...
AGATCGGAAGAGCGTC#TGTAGGGATAGAGTGTAAAAAAAAAAANNTC...

D) GATCGGAAGAGCACACGTCTGAACTCCAGTCAC

AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT

Discarded
Read Pair

TTGCACTAAGATCGTGAGACGAACTGATCGGAAGAGCACA
ACGCTCTTCCGATCTTTGCACTAAGAACGTCAGACGAACT

1/5 bp match, adapters found in overhangs (poor match)

23/25 bp match, adapters found in overhangs (best match)

TTGCACTAAGATCGTGAGACGAACTGATCGGAAGAGCACA
ACGCTCTTCCGATCTTTGCACTAAGAACGTCAGACGAACT

9/34 bp match, adapters not found in overhangs (poor match)

overhang

Figure 1. Adapter detection and trimming. A) When a fragment (insert) is shorter than the read
length, the read sequence will contain partial to full-length adapter sequences (orange). B) Adapters
contamination may be detected by adapter-match (top) or insert-match (bottom). C) Atropos uses
semi-global alignment to find the best insert match (if any) for which the overhangs contain adapter
contamination. D) If insert-match fails – for example when the adapter appears at or near the beginning of
the read – adapter-match is optionally performed. Reads that are too short after trimming are discarded.

single-end and paired-end data. However, choosing a read-trimming tool currently requires a trade-off47

between feature set, efficiency, and accuracy. Furthermore, even state-of-the-art tools still have a relatively48

high rate of over-trimming (removing usable template bases from reads) and/or under-trimming (leaving49

low-quality and adapter-derived bases in the read sequence) (Sturm et al., 2016).50

We sought to develop a read trimming tool that would combine the best aspects of currently available51

software to provide high speed and accuracy while also offering a rich feature set. To accomplish this aim,52

we used Cutadapt as a starting point, as it provides the broadest feature set of currently available tools and53

is published under the MIT license, which allows modification and improvement of the code. We focused54

on making three specific improvements to Cutadapt: 1) improve the accuracy of paired-end read trimming55

by implementing an insert-match algorithm; 2) improve the performance by adding multiprocessing56

support (as it is currently only able to use a single processor); and 3) add important additional features57

such as automated trimming of Methyl-Seq reads and automated detection of adapter sequences in reads58

where the experimental protocols are not known to the analyst. Because these modifications required59

substantial changes to the Cutadapt code base, and because there are software tools that depend on the60

current implementation of Cutadapt, we chose to ”fork” the Cutdapt code base and develop our software,61

Atropos, as a separate tool. Here, we show that we have accomplished our three aims. In addition to62

extending the already rich set of features provided by the original Cutadapt tool, Atropos demonstrates63

paired-end read trimming accuracy that is superior to other state-of-the-art tools, and it is among the64

fastest read trimming tools when a moderate number of parallel threads are used (4 or 8). Furthermore,65

Atropos achieves a performance increase that is roughly linear with the number of threads used, making it66

the fastest tool when 16 or more threads are available.67

2/10

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2452v1 | CC BY 4.0 Open Access | rec: 15 Sep 2016, publ: 15 Sep 2016

2 IMPLEMENTATION68

Atropos is developed in Python and is available to install from GitHub or via the pip package manager69

(see Data Availability).70

2.1 Insert Match Algorithm71

For each read pair, the insert-match algorithm finds all possible alignments between the first read and72

the reverse complement of the second read that satisfy user-specified minimum overlap and maximum73

mismatch thresholds (Figure 1C). The candidate alignments are tested in order of decreasing length74

until one is found in which the overhanging sequences on either end match the user-specified adapter75

sequences.76

To determine whether an adapter sequence is present in the overhang, our algorithm uses the same77

probabilistic approach as in the SeqPurge algorithm (Sturm et al., 2016). Briefly, starting at the end of the78

insert overlap, a pairwise comparison is made between the adapter and the read at each possible offset.79

The probability of a random match at k bases out of the n bases being compared is computed using the80

binomial distribution:81

P =
n

∑
i=k

n!
i!(n− i)!

pi(1− p)n−i (1)

The offset having the lowest random-match probability is taken to be the location of the adapter82

sequence, and all bases from that position to the 3’ end of the read are removed. If an adapter is only83

found in one of the two reads, then the same offset is used to trim both reads, under the assumption that84

the location of the adapter sequence must be symmetric across the read pair. If no adapter is found, then85

an adapter-match approach is optionally attempted in each read separately (Figure 1D).86

2.2 Parallel processing87

The performance improvements in Atropos relative to Cutadapt and other read trimming tools are based in88

two observations: 1) each read (or read pair) is trimmed separately, and thus trimming can be parallelized89

across multiple processor cores, and 2) a significant fraction of the execution time is spent decompressing90

input files and re-compressing results. Compression of sequencing data is increasingly becoming necessary91

due to the large volumes of data generated in sequencing experiments.92

To address the first bottleneck, we implemented a parallel processing pipeline based on the Python93

multiprocessing module . Briefly, a single thread is dedicated to a ”reader” process that loads reads94

(or read pairs) from input file(s), with support for a variety of data formats and automatic decompression95

of compressed data. Reads are loaded in batches, and each batch is added to an in-memory queue. A user-96

specified number of ”worker” threads (which is constrained by the number of processing cores available97

on the user’s system) extract batches from the queue and perform trimming and filtering operations98

on the reads in the same manner as Cutadapt. Atropos addresses the second bottleneck by offering a99

choice of three modes for writing the results to disk. The first two modes involve adding the results to a100

second queue, from which a dedicated ”writer” process extracts batches and performs the serialized write101

operation. These modes differ in how the trimmed reads are compressed – in ”worker compression” mode,102

each worker is responsible for compressing the results using the Python gzip module prior to placing103

the results on the queue, whereas in ”writer compression” mode, the writer process performs compression104

using the much faster system-level gzip program. The choice between these two modes is selected105

automatically based on the number of worker threads used, with worker compression becoming faster106

than writer compression when at least 8 threads are available. The third output mode, called ”parallel107

writing,” does not use a dedicated writer process (and thus an additional worker process can be used in108

its place). Instead, each worker process writes its results to a separate file. This can dramatically reduce109

the execution time of the program (˜100% reduction in our experiments; see Results) and is generally110

compatible with downstream analysis since most modern mapping and assembly tools accept multiple111

input files. An additional speed-up is gained by recognizing that the reader process often finishes loading112

data well before the worker processes finish processing it, thus an additional worker thread is started as113

soon as the reader process completes.114

3/10

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2452v1 | CC BY 4.0 Open Access | rec: 15 Sep 2016, publ: 15 Sep 2016

2.3 Adapter detection115

Often, details of sequencing library construction are not fully communicated from the individual or116

facility that generated the library to the individual(s) performing data analysis. Manual determination of117

sequencing adapters and other potential library contaminants can be a tedious and error-prone task. Thus,118

we implemented in Atropos a new ’detect’ command that automatically identifies adapters/contaminants119

from a sample of read sequences. First, a profile is built of k-mers (where k is a fixed number of120

consecutive nucleotides, defaulting to k = 12) within N read sequences (where N defaults to 10,000).121

When at least 8 consecutive A bases are detected, those bases along with all subsequent bases (in the 3’122

direction) are first trimmed, as that pattern is a strong indicator that the sequencer scanned past the end of123

the read (i.e. the length of the fragment + adapter is less than the read length; Figure 1D). Additionally,124

low-complexity reads are excluded, where complexity X(S) is defined as follows. Let C(i,S) be the125

number of elements of a nucleotide sequence S = s1, ...,sn, that are nucleotide i ∈ A,C,G,T .126

X(S) =−∑
C(i,S)∗ log(C(i,S))

log(2)
(2)

Sequences with X(S)< 1.0 are defined as low-complexity. All remaining k-mers are counted, and127

each k-mer is linked to all of the sequences from which it originated. This process continues iteratively for128

increasing values of k, with only those read sequences linked to high-abundance k-mers in the previous129

iteration being used to build the k-mer profile in the next iteration. k-mer K is considered high-abundance130

when:131

|K|> N ∗ (l− k+1)∗O
4k (3)

where l is the read length and O = 100 by default. Finally, high-abundance k-mers of all lengths132

are merged to eliminate shorter sequences that are fully contained in longer sequences. Optionally, the133

high-abundance k-mers are matched to a list of known adapters/contaminants. Atropos reports to the user134

an ordered list of up to 20 of the most likely contaminants.135

3 RESULTS136

3.1 Benchmarks137

Data Set Error Rate Read Length Total Read Pairs Reads w/ Adapters Adapter Bases

Simulated 1 0.20% 125 781,923 325,982 12,447,262
Simulated 2 0.60% 125 780,899 325,105 12,416,861
Simulated 3 1.20% 125 782,237 325,860 12,464,235
XXX Amplicon Unknown ??? 1,000,000 ???* ???*
GM12878 WGBS Unknown 125 1,000,000 16,999* 1,020,017*

Table 1. Description of data sets. *For the real data sets, total adapter content is unknown; we provide
the number of full-length adapters and adapter bases present.

We evaluated both the speed and the accuracy of Atropos relative to other state-of-the-art read138

trimming tools using both simulated and real-world data (Table 1). As trimming of single-end reads139

is unchanged from the original Cutadapt method and is also decreasing in relevance as most current140

experiments used paired-end data, we focused our benchmarking on trimming of paired-end reads. Sturm141

et al. demonstrate that Skewer (Jiang et al., 2014) and SeqPurge (Sturm et al., 2016) stand out as having142

superior performance in paired-end read trimming; thus, we chose to benchmark Atropos against these143

tools. We also evaluated the accuracy of our new insert-match algorithm against the original Cutadapt144

adapter-match algorithm.145

To simulate paired-end read data, we use the ART simulator (Huang et al., 2012) that was modified146

by Jiang et al. to add adapter sequences to the ends of simulated fragments. ART simulates reads based147

on empirically derived quality profiles specific to each sequencing platform. A quality profile consists148

4/10

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2452v1 | CC BY 4.0 Open Access | rec: 15 Sep 2016, publ: 15 Sep 2016

of distributions of quality scores for each nucleotide at each read position, expressed as read counts149

aggregated from multiple sequencing experiments, where quality scores are in Phred scale (−10log10(e),150

where e is the probability that the base call is erroneous). We developed an R script to artificially inflate151

the error rates in an ART profile to a user-defined level. For each row in the profile with quality score bins152

e1..en and corresponding read counts r1..rn, the overall error rate can be computed as:153

E =
∑

n
i=1 eiri

∑
n
i=1 ri

(4)

We use the R function optim with the variable metric (”BFGS”) algorithm to optimize a function154

that adds an equal number of counts C to each Phred-score bin in the distribution and then compares the155

overall error rate to the user-desired error rate E ′:156

f (C,E ′) =
∑

n
i=1 ei(ri +C)

∑
n
i=1(ri +C)

−E ′ (5)

We simulated ˜800k 125 bp paired-end reads using the Illumina 2500 profile at error rates that were157

low/typical (˜0.2%, the unmodified profile), intermediate (˜0.6%), and high (˜1.2%).158

We evaluated the accuracy of the tools on the simulated data by comparing each trimmed read pair159

to the known template sequence. We counted the frequency of following outcomes: the fragment does160

not contain adapters but is trimmed anyway (”wrongly trimmed”), the fragment is under-trimmed, or the161

fragment is over-trimmed. We also counted the total number of under- and over-trimmed bases.162

We also benchmarked the tools on a two real-world data sets of 1M read pairs each: an amplicon163

sequencing data set generated in our lab (REF: Maria’s paper) and 1M randomly sampled read pairs from164

a whole-genome bisulfite sequencing (WGBS) library generated from the GM12878 cell line as part of165

the ENCODE project (ENCODE Project Consortium, 2012). Since the genomic origins of the templates166

are not known a priori, we instead compared the read trimming tools based on improvement in the results167

of mapping the untrimmed versus trimmed reads. We used BWA MEM (Li, 2013) to map the amplicon168

reads to human genome build 37 (GRCh37), and we used bwa-meth (Pedersen et al., 2014) to map the169

WGBS reads to the bisulfite-converted GRCh37. We also compared the results of only adapter trimming170

to the results of adapter trimming plus additional quality trimming, using a minimum quality threshold of171

20. The supplement describes in detail how bisulfite reads are mapped and how we used the mapping172

information to determine the effects of read trimming.173

Although sequence analysis is sometimes performed using a desktop computer, analysis of the volumes174

of data currently being generated increasingly requires the use of high-throughput computing facilities175

(”clusters”). The hardware architecture of a cluster is often different from that of a desktop computer.176

Most importantly, storage in a cluster is typically centralized and accessed by the compute nodes via177

high-speed networking. Such an architecture inevitably adds latency to file reading and writing operations178

(”I/O”). Cluster nodes also typically have more processing cores and memory available than desktop179

computers. This means that the performance of software with intensive I/O usage (such as read trimming)180

is likely to be quite different on a desktop versus a cluster. To examine the impact of these architectural181

differences, we ran all benchmarks on both a desktop computer (a Mac Pro) having a 3.7 GHz quad-core182

Intel Xeon E5 processor and 32 GB RAM, and on a cluster node having 4 X 3.2 GHz eight-core Intel Xeon183

E5 processors and 128 Gb memory, and with all data being read from and written to network-accessible184

storage.185

Finally, we provide scripts in our GitHub repository that can be used to re-run our analysis, and that186

also enable other tool developers to benchmark their software against Atropos.187

3.2 Simulated Data188

3.2.1 Performance189

On a desktop computer with 4 processing cores, we found that Skewer had the fastest overall execution190

time and SeqPurge the slowest (2). Atropos running in parallel-write mode and using the adapter-match191

algorithm was nearly as fast as Skewer.192

As expected, execution times on a cluster node using 4 threads were approximately twice those193

observed on a desktop computer (3). Part of this difference may be explained by a slight difference in194

5/10

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2452v1 | CC BY 4.0 Open Access | rec: 15 Sep 2016, publ: 15 Sep 2016

Execution Time (sec.)
Program Min Max
Atropos (adapter + writer compr.) 41.07 55.51
Atropos (adapter + parallel write) 23.18 30.75
Atropos (insert + writer compr.) 41.75 56.22
Atropos (insert + parallel write) 32.98 41.33
SeqPurge 96.67 114.24
Skewer 20.75 29.40

Table 2. Execution time for programs running on desktop with 4 threads. Each program was executed
multiple times, and Atropos was run with all combinations of alignment algorithm (insert-match or
adapter-match) and output mode (writer-compression or parallel-write). The minimum and maximum
execution times for each program are shown, with the lowest overall execution time in bold.

Execution Time (Min|Max sec.)
Program 4 Threads 8 Threads 16 Threads
Atropos (adapter + worker compr.) 99.39 493.85 56.64 99.05 30.38 64.05
Atropos (adapter + writer compr.) 75.87 346.80 77.63 109.05 72.37 102.00
Atropos (adapter + parallel write) 46.35 121.18 27.63 34.39 21.27 25.40
Atropos (insert + worker compr.) 115.28 292.61 65.36 100.84 34.72 53.82
Atropos (insert + writer compr.) 77.27 119.45 77.53 108.97 72.01 109.27
Atropos (insert + parallel write) 65.30 137.21 36.65 47.14 21.57 28.11
SeqPurge 372.54 517.83 192.85 226.01 94.88 122.39
Skewer 40.12 122.07 40.22 58.78 40.80 100.71

Memory Usage (Min|Max Gb)
Atropos 1.2 2.0 0.011 0.012 0.008 0.008
SeqPurge 0.47 2.0 0.011 0.012 0.009 0.011
Skewer 0.51 1.8 0.011 0.012 0.012 0.014

Table 3. Top: Execution time for programs running on a cluster with 4, 8, or 16 threads. Each program
was executed multiple times, and Atropos was run with all combinations of alignment algorithm
(insert-match or adapter-match) and output mode (worker-compression, writer-compression or
parallel-write). The minimum and maximum execution times for each program are shown, and notable
results are highlighted in bold. Bottom: The minimum and maximum memory usage for each program
across all executions.

processor speeds (3.7 GHz on the desktop versus 3.2 GHz on the cluster node); however, we expect that195

most of the difference is due to the increased latency involved in network-based I/O on the cluster.196

Interestingly, when increasing the number of threads from 4 to 8 and 16, the execution time of Skewer197

remains unchanged, while Atropos and SeqPurge achieve roughly linear decreases in execution time.198

With 8 and 16 threads, Atropos in parallel-write mode is the fastest of the tools, and with 16 threads199

Atropos in worker-compression mode is also faster than SeqPurge and Skewer.200

On the other hand, Atropos uses significantly more memory than SeqPurge or Skewer (3). We expect201

this is partially due to overhead of automatic memory management in Python compared to C++ (in which202

SeqPurge and Skewer are implemented), but in larger part results from Atropos’ use of of in-memory203

queues to communicate between parallel processes. We note that Atropos provides parameters to limit204

memory usage (although typically at the expense of performance).205

3.2.2 Accuracy206

We found that the four adapter matching algorithms had different biases toward under- and over-trimming207

(Table 4). Across the three sequencing error rates, Skewer had the lowest frequency of wrongly trimming208

reads while SeqPurge had the highest. The Atropos adapter-match algorithm and Skewer had similarly low209

frequencies of over-trimming, while the Atropos insert-match algorithm and SeqPurge had similarly low210

frequencies of over-trimming. Overall, the Atropos insert-match algorithm and SeqPurge demonstrated211

the lowest error rates (0.01%).212

6/10

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2452v1 | CC BY 4.0 Open Access | rec: 15 Sep 2016, publ: 15 Sep 2016

Reads Bases

Program
Wrongly
Trimmed

Over-
trimmed Under-trimmed Total

Error
Over-

trimmed
Under-
trimmed

Total
Error

Error rate 0.2%
Atropos

adapter-match 51 (0.01%) 1 (0.00%) 28,991 (9.72%) 3.71% 490 102,133 0.054%
insert-match 134 (0.03%) 26 (0.01%) 27 (0.01%) 0.01% 1,036 66 0.001%

SeqPurge 2,639 (0.55%) 37 (0.01%) 29 (0.01%) 0.01% 7,708 29 0.004%
Skewer 10 (0.00%) 7 (0.00%) 283 (0.09%) 0.04% 21 22,029 0.012%

Error rate 0.6%
Atropos

adapter-match 72 (0.01%) 6 (0.00%) 28,843 (9.68%) 3.69% 733 101,839 0.054%
insert-match 168 (0.03%) 14 (0.00%) 31 (0.01%) 0.01% 1,434 62 0.001%

SeqPurge 2,595 (0.54%) 26 (0.01%) 38 (0.01%) 0.01% 6,701 41 0.004%
Skewer 6 (0.00%) 3 (0.00%) 413 (0.14%) 0.05% 9 36,685 0.019%

Error rate 1.2%
Atropos

adapter-match 76 (0.02%) 5 (0.00%) 30,152 (10.12%) 3.86% 721 117,027 0.062%
insert-match 175 (0.04%) 12 (0.00%) 46 (0.02%) 0.01% 1,440 110 0.001%

SeqPurge 2,652 (0.55%) 24 (0.01%) 34 (0.01%) 0.01% 7,628 36 0.004%
Skewer 7 (0.00%) 5 (0.00%) 644 (0.22%) 0.08% 12 67,066 0.035%

Table 4. Trimming accuracy on simulated data with three different base-call error rates.

In terms of numbers of over- and under-trimmed bases, the Atropos insert-match algorithm and213

SeqPurge clearly had the best performance (Table 4) at all sequencing error rates. The two algorithms214

had similarly low numbers of under-trimmed bases, but the Atropos insert-match algorithm had a lower215

number of over-trimmed bases, giving it the lowest overall error rate (0.001%). On the other hand, Skewer216

and the Atropos adapter-match algorithm left substantial numbers of under-trimmed bases, resulting in217

about 10-fold higher overall error rates.218

Additionally, we found that all tools discarded very similar numbers of reads (˜1.8%) that were below219

the minimum length threshold of 25 bp after trimming. These were reads with short insert sizes, which220

have a high rate of spurious mapping, and thus it is common practice to discard them.221

3.3 Real Data222

We first tested Atropos’ adapter detection module on the real data sets. Using the first 10,000 reads in each223

pair of FASTQ files, Atropos correctly detected that sequences of the adapters used in constructing each224

library. In the case of the WGBS data set, the adapters were found in the list of known contaminants (read225

1: ”TruSeq Adapter, Index 7” and read 2: ”TruSeq Universal Adapter”). On the other hand, a custom226

index was used in the read 1 adapter of the amplicon library. Atropos correctly identifies the custom index227

(AACGTGAT), and also correctly identifies the TruSeq Universal Adapter as the read 2 adapter.228

3.3.1 Performance229

We performed adapter trimming on the real data set in a cluster environments using 16 parallel cores.230

Again, we found Atropos (in worker-compression mode) to have the best performance both with and231

without additional quality trimming (Table 5). We also performed read mapping on the cluster with 16232

cores and observed that the trimmed reads produced by each combination of tool and quality threshold233

resulted in substantially different execution times (Table 5). The mapping of reads trimmed by Atropos234

using the adapter-match algorithm took twice as long as those trimmed by any other tool, while the reads235

trimmed by Atropos using the insert-match algorithm and no additional quality trimming took the least236

amount of time to map. At a quality trimming threshold of 20, the trimmed reads generated by SeqPurge237

mapped slightly faster than those generated by Atropos.238

7/10

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2452v1 | CC BY 4.0 Open Access | rec: 15 Sep 2016, publ: 15 Sep 2016

Trimming
Time (sec.)

Mapping
Time (min.)

Program Q0 Q20 Q0 Q20
WGBS Data

Untrimmed reads 45:45
Atropos 56.46 55.58 37:32 30:37
SeqPurge 70.37 80.33 39:10 31:55
Skewer 69.26 72.21 36:06 32:15

Table 5. Execution and read mapping times for programs trimming real data on a cluster with 16 threads.
Each program was executed with no additional quality trimming (Q0) and with quality trimming at a
minimum base quality of 20 (Q20). Atropos was run with the insert insert-match algorithm in
worker-compression mode. SeqPurge and Atropos were run with error correction enabled (Skewer
performs error correction by default).

3.3.2 Accuracy239

We chose to assess read trimming accuracy in practical terms – as the number of trimmed reads mapped240

at at given quality (MAPQ) cutoff, relative to the number of untrimmed reads mapped at that cutoff.241

We found that trimming by Atropos resulted in the greatest increase in number of mapped reads at all242

quality cutoffs (Figure 2). We found that trimming with SeqPurge resulted in similar, but smaller, gains in243

mapping quality, while trimming with Skewer resulted in the smallest gains in quality.244

Additionally, we found that additional quality trimming in addition to adapter trimming has a substan-245

tial negative effect on read mapping, at least for bisulfite reads mapped using bwa-meth. However, quality246

trimming by Skewer had the least negative effect on mapping quality of the three programs, and quality247

trimming by SeqPurge had the greatest negative effect on mapping quality.248

4 CONCLUSIONS249

Our results demonstrate that adapter trimming tools are approaching optimal accuracy, at least for the250

(currently) most common type of data – paired-end short reads with 3’ adapters. On synthetic data with251

varying error rates, Atropos (using our new insert-match algorithm) and SeqPurge both demonstrated252

nearly negligible overall error rates of 0.01% at the read level, and Atropos has the lowest base-level error253

rate of 0.001%.254

On real data, we also find that Atropos has superior performance, leading to the greatest increase in255

read mapping quality. We also find unequivocally that stringent quality trimming has a negative effect on256

WGBS data. For reads trimmed with a quality threshold of 20, all mapping statistics are worse than those257

for untrimmed reads.258

In terms of performance, Atropos is faster than SeqPurge, and is the overall fastest tool when at least259

16 processing cores are available.260

Thus, overall, Atropos offers the best combination of accuracy and performance of the tools that261

we evaluated. Furthermore, Atropos has the richest feature set of the three tools, including Methyl-262

Seq-specific trimming options, automated adapter detection, and support for data generated by many263

sequencing methods (ABI SOLiD, Illumina NextSeq, mate-pair libraries, and single-end sequencing).264

Finally, Atropos is easily installable on any system with Python 3.3+ (using the command ’pip install265

atropos’).266

5 DATA AVAILABILITY267

• Atropos can be installed from the Python Package Index (pypi) using the pip tool: ’pip install268

atropos’.269

• The Atropos source code, including all scripts needed to execute the analyses in this paper, are270

available at https://github.com/jdidion/atropos. The portions of Atropos developed271

by JPD are a work of the US government, and thus all copyright is waived under a CC0 1.0 Universal272

Public Domain Dedication (https://creativecommons.org/publicdomain/zero/273

1.0/).274

8/10

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2452v1 | CC BY 4.0 Open Access | rec: 15 Sep 2016, publ: 15 Sep 2016

https://github.com/jdidion/atropos
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

−5000

−2500

0

2500

0 20 40 60
Mapping Quality Score (MAPQ) Cutoff

D
iff

er
en

ce
 v

er
su

s
U

nt
rim

m
ed

 R
ea

ds
Q

● 0
20

Program
●

●

●

Atropos
SeqPurge
Skewer

Figure 2. Atropos trimming best improves mapping of real sequencing reads. Difference between
the number of trimmed and untrimmed reads mapped with quality (MAPQ) greater than or equal to each
cutoff (1..60 at intervals of 5). We mapped both untrimmed and trimmed reads to the genome. Reads
were trimmed with all three programs, both without additional quality trimming (Q=0) and with quality
trimming at a threshold of Q=20.

• The simulated data sets are also available in the Atropos GitHub repository.275

• The real amplicon data set is available at XXX.276

• The real GM12878 WGBS data (accession ENCLB794YYH) is available from the ENCODE project277

website: https://www.encodeproject.org/experiments/ENCSR890UQO/.278

6 ACKNOWLEDGEMENTS279

We would like to thank Marcel Martin and colleagues for publishing Cutadapt under an open source280

license that is compatible with modifications and improvements. JPD and FSC are funded by the NIH281

intramural program.282

REFERENCES283

Bock, C. (2012). Analysing and interpreting DNA methylation data. Nature Reviews Genetics, 13(10):705–284

719.285

Del Fabbro, C., Scalabrin, S., Morgante, M., and Giorgi, F. M. (2013). An extensive evaluation of read286

trimming effects on Illumina NGS data analysis. PLoS One, 8(12):e85024–None.287

ENCODE Project Consortium (2012). An integrated encyclopedia of DNA elements in the human genome.288

Nature, 489(7414):57–74.289

Huang, W., Li, L., Myers, J. R., and Marth, G. T. (2012). ART: a next-generation sequencing read290

simulator. Bioinformatics, 28(4):593–594.291

9/10

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2452v1 | CC BY 4.0 Open Access | rec: 15 Sep 2016, publ: 15 Sep 2016

https://www.encodeproject.org/experiments/ENCSR890UQO/

Jiang, H., Lei, R., Ding, S.-W., and Zhu, S. (2014). Skewer: a fast and accurate adapter trimmer for292

next-generation sequencing paired-end reads. BMC Bioinformatics, 15:182–None.293

Li, H. (2013). Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.294

arXiv:1303.3997 [q-bio]. arXiv: 1303.3997.295

Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. EMB-296

net.journal, 17(1):pp. 10–12.297

Pedersen, B. S., Eyring, K., De, S., Yang, I. V., and Schwartz, D. A. (2014). Fast and accurate alignment298

of long bisulfite-seq reads. arXiv:1401.1129 [q-bio]. arXiv: 1401.1129.299

Sturm, M., Schroeder, C., and Bauer, P. (2016). SeqPurge: highly-sensitive adapter trimming for300

paired-end NGS data. BMC Bioinformatics, 17:208.301

10/10

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2452v1 | CC BY 4.0 Open Access | rec: 15 Sep 2016, publ: 15 Sep 2016

	Introduction
	Implementation
	Insert Match Algorithm
	Parallel processing
	Adapter detection

	Results
	Benchmarks
	Simulated Data
	Performance
	Accuracy

	Real Data
	Performance
	Accuracy

	Conclusions
	Data availability
	Acknowledgements
	References

