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Differential Genotoxicity of Diphenyl Diselenide (PhSe)2 and 
Diphenyl Ditelluride (PhTe)2

Organoselenium compounds have been pointed out as therapeutic agents. In contrast, the 

potential therapeutic aspects of tellurides have not yet been demonstrated. The present study 

evaluated the comparative toxicological effects of diphenyl diselenide (PhSe)2 and diphenyl 

ditelluride (PhTe)2 in mice after in vivo administration. Genotoxicity (as determined by comet 

assay) and mutagenicicity were used as end-points of toxicity. Subcutaneous administration 

of high doses of (PhSe)2 or (PhTe)2 (500 mol/Kg) caused distinct genotoxicity in mice. μ

(PhSe)2 significantly decreased the DNA damage index after 48 and 96 hours of its injection 

(p<0.05). In contrast, (PhTe) caused a significant increase in DNA damage (p<0.05) after 48 

and 96 hours of intoxication. (PhSe)2 did not cause mutagenicity but (PhTe)2 increased the 

micronuclei frequency, indicating its mutagenic potential. The present study demonstrated 

that acute in vivo exposure to ditelluride caused genotoxicity in mice, which may be 

associated with pro-oxidant effects of diphenyl ditelluride. These results indicated that 

exposure to ditelluride can be genotoxic to mice and the use of this compound and possibly 

other related tellurides must be carefully controlled.

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.245v1 | CC-BY 3.0 Open Access | received: 13 Feb 2014, published: 13 Feb 2014

P
re
P
ri
n
ts



Differential Genotoxicity of Diphenyl Diselenide (PhSe)2 and Diphenyl Ditelluride (PhTe)2

Daiane Francine Meinerz,  Josiane Allebrandt, Douglas O. C. Mariano, Emily P. Waczuk, Felix Antunes 

Soares, Waseem Hassan * and João Batista T. Rocha*

Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade 

Federal de Santa Maria, Santa Maria, CEP 97105-900, RS, Brasil

Correspondence should be sent to:

* João B.T. da Rocha (PhD), jbtrocha@yahoo.com.br, and 

* Waseem Hassan (PhD), waseem_anw@yahoo.com

Departamento de Química, Centro de Ciências Naturais e Exatas, 

Universidade Federal de Santa Maria, 97105-900,

Santa Maria, RS, Brasil.

FAX: 55-55-32209462

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.245v1 | CC-BY 3.0 Open Access | received: 13 Feb 2014, published: 13 Feb 2014

P
re
P
ri
n
ts

mailto:waseem_anw@yahoo.com
mailto:jbtrocha@yahoo.com.br


Abstract

Organoselenium compounds have been pointed out as therapeutic agents. In contrast, the potential 

therapeutic  aspects  of  tellurides  have  not  yet  been  demonstrated.  The  present  study  evaluated  the 

comparative toxicological effects of diphenyl diselenide (PhSe)2  and diphenyl ditelluride (PhTe)2 in mice 

after in vivo administration. Genotoxicity (as determined by comet assay) and mutagenicicity were used 

as end-points of toxicity.  Subcutaneous administration of high doses of (PhSe)2 or (PhTe)2 (500 μmol/Kg) 

caused distinct genotoxicity in mice. (PhSe)2 significantly decreased the DNA damage index after 48 and 

96 hours  of  its  injection  (p<0.05).  In  contrast,  (PhTe)  caused a  significant  increase in  DNA damage 

(p<0.05) after 48 and 96 hours of intoxication. (PhSe)2  did not cause mutagenicity but (PhTe)2 increased 

the micronuclei frequency, indicating its mutagenic potential. The present study demonstrated that acute in 

vivo  exposure  to  ditelluride  caused  genotoxicity in  mice,  which  may be  associated  with  pro-oxidant 

effects of diphenyl ditelluride. These results indicated that exposure to ditelluride can be genotoxic to mice 

and the use of this compound and possibly other related tellurides must be carefully controlled.

Keywords:  Organotellurium, Organoselenium, Genotoxicity and Mutagenicity.
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Introduction

Selenium (Se)  and Tellurium (Te)  belongs to  the chalcogen family,  sharing similar  electronic 

configuration and some chemical properties with sulfur (S) (Comasseto et al., 1997; Comasseto, 2010). Se 

has  a  fundamental  role  in  several  living  organisms  as  component  of  several  antioxidant  enzymes,  

including glutathione peroxidase and thioredoxin reductase  (Arner  et  al.,  2000;  Nogueira  & Rocha., 

2011). Despite its biological role, the excess of selenium can be toxic due its ability to generate free 

radicals and catalyze thiol oxidation (Barbosa et al., 1998; Nogueira, Zeni & Rocha, 2004; Rocha et al., 

2012;  Hassan  & Rocha,  2012;  Kade  et  al.  2013).  The  excess  of  free  radical  formation  can  damage 

mammalian tissues including thiol containing enzymes that are sensitive to pro-oxidant situations (Rocha 

et al., 2012 ; Rosa  et al., 2007; Maciel  et al., 2000). Diphenyl diselenide (PhSe)2, (Fig. 1) is a simple and 

stable organoselenium compound widely used in organic synthesis and it  has been proposed as good 

candidate for pharmacological and therapeutic  purposes (Nogueira, Zeni & Rocha, 2004; Rosa et  al.  

2007; Nogueira & Rocha, 2011). (PhSe)2 exhibits thiol peroxidase-like activity superior to that of ebselen, 

an organoselenium compound that has been used in clinical trial as antioxidant and mimetic of native 

glutathione peroxidase enzymes (Nogueira & Rocha.,  2011; Kade & Rocha,  2013; Kade et al.  2013). 

However, exposure to high doses of (PhSe)2 can deplete thiols in different tissues and can be neurotoxic to 

rodents (Maciel  et  al.,  2000).  The LD50 of diphenyl  diselenide is   210 µmol/kg (intraperitoneal)  or 

greater than 500 µmol/kg (subcutaneous) in adult mice (Nogueira et al. 2003).

There are reports that trace amounts of Te are present in body fluids such as blood and urine (Chasteen et 

al., 2009). Te has also been found in the form of tellurocysteine and telluromethionine in several proteins 

in bacteria, yeast and fungi but telluroproteins have not been identified in animal cells (Bienert et al.,  

2008).  Thus,  in  contrast  to  selenium,  tellurium does not  have physiological  functions  (Taylor,  1996). 

Literature  has  demonstrated  immunomodulatory,  antioxidant  and  anticancer  properties  of  various 

organotellurides  (Nogueira, Zeni & Rocha, 2004; Avila et al., 2012), semisynthetic tellurosubtilisin (Mao 

et  al.,  2005)  and dendrimeric  organotellurides  (Francavilla  et  al.,  2001).  More  sophisticated  telluride 

molecules  were  synthesized  from  polystyrene  nanoparticle  via  microemulsion  polymerization.  The 

nanoenzyme  showed  higher  efficiency  and  provided  a  platform  for  the  synthesis  and  designing  of 

polymeric nanoparticles as  excellent  model  of  enzyme mimics (Huang et  al.,  2008).  Organotellurium 

compounds can also mimic glutathione peroxidase activity (Engman et al., 1995) and, consequently, these 

compounds can be potential  antioxidants,  effective against  hydrogen peroxide, peroxynitrite,  hydroxyl  

radicals and superoxide anions (Anderssonet al., 1994; Kanski et al., 2001; Jacob et al., 2000). 

Recently, our research group demonstrated that organoselenium and organotellurium present hemolytic 

and genotoxic effects in human blood cells (Santos et al., 2009; Carean Bueno et al. 2013), which is in  

accordance  with  results  published  by  other  laboratories  in  experimental  bacteria  and  rodent  models 

(Degrandi  et al., 2010). Similarly,organoselenides and tellurides can be toxic  in different in vivo and in 
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vitro models of animal pathologies (Maciel  et al., 2000;  Taylor, 1996; Stangherlin et al., 2009; Moretto et 

al., 2007; Heimfarth et al., 2011; Heimfarth et al., 2012 a; Heimfarth et al., 2012 b; Comparsi et al., 2012). 

In effect, diphenyl ditelluride (PhTe)2 was found to be extremely toxic to mice and rats after acute or 

chronic exposure (Maciel  et al., 2000;  Heimfarth et al., 2012 b ; Comparsi et al., 2012).  The toxicity of 

tellurides can be associated with their pro-oxidant activity, particularly, the oxidation of thiol- and selenol-

groups of proteins (Nogueira, Zeni & Rocha, 2004; Comparsi et al. 2012; Hassan & Rocha 2012).

Following our interest to determine the boundary between the potential protective and toxic properties of  

organochalcogens, the present study was designed to evaluate the toxic potential of (PhSe)2 and (PhTe)2 in 

in  mice.  We  have  determined  the  genotoxicity  and  mutagenicity  of  these  compounds  after  acute 

administration  to  Swiss  male  mice,  using  DNA damage  and  micronuclei  frequency as  end-points  of 

toxicity. 
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Material and Methods

Chemicals

The chemical structure of organochalcogens tested in this study is shown in (Figure I) diphenyl diselenide 

and (II) diphenyl ditelluride. The compounds were dissolved in canola oil immediately before use. (PhSe)2 

and (PhTe)2 were obtained from Sigma-Aldrich. All other chemicals were of analytical grade and obtained 

from standard commercial suppliers.

Animals 

Male Swiss adult mice weighing 30-40 g were obtained from our own breeding colony (Animal house-

holding, UFSM- Brazil). Animals were kept in separate animal cages, on a 12-h light/dark cycle, at a room 

temperature of (23ºC ± 3) and with free access to food and water. The animals were used according to the 

guidelines of the committee on care and use of experimental animal resources of the Federal University Of  

Santa Maria, Brazil (23081.002435/2007-16).

Mice were divided in six groups (n=5) and received one subcutaneous injection of (1) canola oil (Control  

group 48h, mice were euthanized 48 hours after the oil injection); (2) diphenyl ditelluride (500 μmol/kg in 

canola oil,  euthanized 48 hours after  injection) ;  (3)  diphenyl  diselenide (500  μmol/kg in  canola  oil, 

euthanized 48 hours after injection); (4) canola oil (Control group 96h, mice were euthanized  96 hours  

after injection); (5) diphenyl ditelluride (500 μmol/kg in canola oil, euthanized 96 hours after injection) 

and (6) diphenyl diselenide (500 μmol/kg in canola oil, euthanized 96 hours after injection). The doses 

were based in a previous acute toxicological study by Maciel et al. 2000.

Sample preparation for Comet Assay

Mice were anesthesized with ketamine and 2.5 ml blood samples were collected by heart puncture and  

immediately euthanized by decaptation.  Mice blood leukocytes were isolated and used in the comet test  

but no pre-incubation was carried out (Santos et al. 2009(a); (b); Meinerz et al. 2011). 

Micronucleus test

In micronucleus test (MN), two samples of blood from each animal were placed in a microscope slides 

and air dried at room temperature. Slides were stained with 5% May-Grunwald-Giemsa for 5 min.  The  

criteria used for the identification of MN were a size smaller  than one-third of the main nucleus, no 

attachment to the main nucleus, and identical color and intensity as in the main nucleus. MN were counted 

in  2000 cells  with well-preserved cytoplasm and calculated as:  % MN = number  of  cells  containing 

micronucleus  X 100 /  total  number  of  cells  counted.  Micronuclei  presence was determined by three 

investigators that were blind to the animal treatments.  

Comet assay

Comet assay is a rapid, simple and sensitive technique for measuring DNA breaks in single cells. This test  

has been used to investigate the effect of many toxic agents on DNA (Collins et al., 2002; Blasiak  et al.,  

2004). The comet assay was performed under alkaline conditions according to the procedures described by 
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Santos et al. 2009 (a) and Santos et al., 2009 (b). The slides obtained from white cells of treated mice were 

analyzed under blind conditions by at least two individuals. DNA damage is presented as DNA damage  

index  (DI).  The  DNA damage  was  calculated  from  cells  in  different  damage  classes  (completely 

undamaged: 100 cells × 0 to maximum damaged − 100 cells × 4).  Damage index is illustrated in Figure 2 

and classes were determined considering the DNA tail and DNA migration length.

Statistical analysis

Data are expressed as mean ± SD from 5 independent experiments performed in duplicate or triplicate. 

Statistical  analysis  was  performed  using  Kruskawallis  test  followed  by  Dun´s  test.  Results  were 

considered statistically significant when p<0.05. 
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Results

No animal died during the experimental period. After 48 hours of diselenide or ditelluride treatment, mice  

did not show symptoms of toxicity such as stereotypical behavior, ataxia, diarrhea, increased dieresis or  

abdominal writings. However, after 96 hours, the group treated with (PhTe)2 presented diarrhea,  low level 

of motor activity and a decrease in body weight (data not shown); which is in accordance with previous 

finding from our laboratory (Maciel et al. 2000).  

Comet assay

After in vivo administration, diphenyl diselenide caused a significant decrease in DNA damage index (DI) 

both after 48 and 96 hours. In contrast, diphenyl ditelluride caused a significant increase in DNA damage  

index (DI). After 48 hours, the damage caused by ditelluride was about 25 and 100% higher than control 

and  diphenyl  diselenide  groups,  respectively  (Table  1).  After  96  hours,  the  DI  caused  by  diphenyl  

ditelluride was about 30 and 90% higher than control and diselenide treated mice, respectively (Table 1).  

Micronucleus test

After 48 or 96 hours of a single dose of diphenyl ditelluride, there was a significant increase in the number 

of micronuclei in mice when compared with control and diphenyl diselenide group (Figure 3). Diphenyl  

diselenide did not modify the number of micronuclei when compared to control group (Figure 3).
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Discussion

The selected dose of both chalcogens was based on our previous report (Maciel et al., 2000), where we  

tested  different  doses  for  acute  and  chronic  exposure.  Similarly,  in  the  same  dose  range,   diphenyl 

diselenide has been reported to have interesting pharmacological effects, such as antinoception and anti-

inflammatory effects, among others, (see, for instance : Savegnago et al., 2008;  Savegnago et al., 2007a; 

Savegnago  et al.,2007b and Savegnago  et al.,2006). However, it must be emphasized here that in this  

range of doses, it causes also toxicity in mice and rats (Nogueira et al. 2003; Nogueira and Rocha, 2011). 

Consequently, the acute use of diphenyl diselenide may be possible, but its chronic or repeated use is  

unfeasible. 

The results presented here indicate clear toxic effects of (PhTe)2  when compared with (PhSe)2. Tellurium 

(Te) has the potential of redox cycling which leads to formation of reactive oxygen species (ROS)  which 

can damage  biomolecules  (Maciel  et  al.,2000;  Nogueira,  Zeni  & Rocha,  2004; Santos et  al.,   2009; 

Degrandi et al., 2010; Sailer et al., 2004; Caeran Bueno et al. 2013). Organotellurium-induced intracellular 

ROS accumulation has been reported to be the cause of cell death in HL-60 and different types of cancer  

cells (McNaughton  et al., 2004; Juan  et al., 2010; Ding et al.,2002; Rigobello et al., 2009). In contrast,  

exposure of mice to (PhSe)2   caused a significant decrease in the DNA damage index (DI) both after 48 

and 96 hours of drug administration as shown in Table 1. The protective effect can be attributed to its anti-

oxidant or GPx like activity (Nogueira & Rocha, 2011). 

As observed in DNA damage test, the toxic behavior of (PhTe)2  was completely different than (PhSe)2  in 

micronucleus  assay.  The  frequency  of  mutations,  showed  by  an  increase  of  micronuclei  frequency,  

reinforce the  toxicity of  (PhTe)2.  It  is  important  to  note  that  (PhSe)2   did  not  modify the  number  of 

micronuclei,  when  compared  to  control  group  (Figure  3).   Previous  studies  have  also  demonstrated 

mutagenicicity of (PhTe)2  at higher concentrations in V79 cells (Rosa et al., 2007). We have also reported 

the  mutagenicity  of  another  Te-containing  organic  compound,  (S)-dimethyl  2-(3-(phenyltellanyl) 

propanamido) succinate in mice leucocytes (Meinerz et al., 2011 

In conclusion, the results presented here indicate that diphenyl ditelluride is toxic to mice, whereas at the 

same dose diphenyl  diselenide had protective effects.  These effects may be linked to the pro-oxidant 

activity exhibited by organotellurium compounds.  This data supports studies that have been published 

about the toxicological and pharmacological effects of organochalcogens in different pathological models. 

In  effect,  our  data  indicated  that  diphenyl  diselenide  can  have  protective  effects  after  in  vivo 

administration to mice, which can be related to its antioxidant properties, whereas diphenyl ditelluride is  

much more toxic than diphenyl diselenide. Furthermore, in view of the genotoxic effect of (PhTe) 2,  the 

indication  in  the  literature  that  organotellurides  could  be  therapeutically  active  compounds  must  be 

revisited taking into consideration the potential toxicity of this element.  Accordingly, additional studies  
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will be needed to elucidate the mechanism(s) by which (PhTe)2  mediates its toxicity and whether or not 

distinct chemical forms of organotellurides can have similar toxic effect in animal models.
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Figure 1

Structure of Diphenyl Diselenide and Diphenyl Ditelluride

Fig. 1 Structure of diphenyl diselenide and diphenyl ditelluride.

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.245v1 | CC-BY 3.0 Open Access | received: 13 Feb 2014, published: 13 Feb 2014

P
re
P
ri
n
ts



Figure 2

DNA damage quantification

Classifications of DNA damage in human leukocytes. DNA damage index was calculated 

from cells in different damage levels, which were classified in the visual score by the 

measurement of DNA migration length and in the amount of DNA in the tail. The level 5 was 

excluded of our evaluation. pared.
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Figure 3

Micronuclei Frequency after Treatment with Diselenide and Ditelluride

Figure 3. Frequency of Micronuclei (MN) cells in mice exposed to (PhTe)2 or (PhSe)2. Mice 

were exposed to a sigle dose of diselenide or ditelluride (500 µmol/kg, s.c.). Forty eight and 

96 hours after the injection, blood cells were examined for the presence of micronuclei. Data 

are expressed as mean±SD for 5 mice per group. * Denoted p > 0.01 as compared to control 

group; # Denoted p > 0.01 as compared to diphenyl diselenide.
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Table 1(on next page)

DNA Damage Levels in Leucocytes from Mice Treated with Diselenide or Ditelluride

Table 1. Distribution of damage levels in mice leukocytes exposed to diphenyl diselenide and 

diphenyl ditelluride (500 µmol/kg, s.c.) DNA damage is presented as DNA damage index (DI). 

Data are expressed as means for five independent experiments. Statistical analysis by 

Kruskawalis test followed by Dun´s test.
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Compound

Hours of

Exposition

                  Damage levels of DNA DI

   0 1 2 3 4  

Control 48h 61.0±0.5 19.6±2.0 13.4±1.4 4.5±0.8 1.0±0.5 63.0±2.5ª

(PhSe)2 48h 77.2±3.6 11.8±1.6 6.6±1.3 3.8±1.1 0.6±0.2 40.8±7.8b 

(PhTe)2 48h 48.0±9.7 32.3±9.6 13.0±3.2 5.0±1.0 1.6±0.6 80.0±9.3c 

Control 96h 63.5±0.5 20.7±6.5 12.5±5.5 3.7±0.5 0.0±0.0 58.0±4.6ª 

(PhSe)2 96h 80.0±2.0 10.0±2.0 5.0±3.0 3.0±0.6 2.0±2.0 40.0±1.1b 

(PhTe)2 96h 59.5±3.5 19.0±7.0 12.0±3.0 9.2±0.8 1.6±0.5 76.0±1.2c 

Table 1.  Distribution of damage levels in mice leukocytes exposed to diphenyl diselenide and diphenyl

ditelluride  (500 µmol/kg, s.c.)

.

DNA damage is presented as DNA damage index (DI). Data are expressed as means for five independent

experiments. Statistical analysis by Kruskawalis test followed by Dun´s test.
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Abstract

Organoselenium  compounds  have  been  pointed  out  as  therapeutic  agents.  In  contrast,  the 

potential therapeutic aspects of tellurides have not yet been demonstrated. The present study evaluated the 

comparative toxicological effects of diphenyl diselenide (PhSe)2 and diphenyl ditelluride (PhTe)2 in mice 

after in vivo administration. Genotoxicity (as determined by comet assay) and mutagenicicity were used  

as end-points of toxicity.  Subcutaneous administration of high doses of (PhSe)2 or (PhTe)2 (500 μmol/Kg) 

caused distinct genotoxicity in mice. (PhSe)2 significantly decreased the DNA damage index after 48 and 

96 hours of its  injection (p<0.05).  In contrast,  (PhTe)  caused a significant  increase in  DNA damage 

(p<0.05) after 48 and 96 hours of intoxication. (PhSe)2 did not cause mutagenicity but (PhTe)2 increased 

the micronuclei frequency, indicating its mutagenic potential. The present study demonstrated that acute 

in vivo exposure to ditelluride caused genotoxicity in mice, which may be associated with pro-oxidant  

effects of diphenyl ditelluride. These results indicated that exposure to ditelluride can be genotoxic to 

mice and the use of this compound and possibly other related tellurides must be carefully controlled.

Keywords:  Organotellurium, Organoselenium, Genotoxicity and Mutagenicity.
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Introduction

Selenium (Se) and Tellurium (Te) belongs to the chalcogen family,  sharing similar  electronic 

configuration and some chemical properties with sulfur (S) (Comasseto et al., 1997; Comasseto, 2010). 

Se has a fundamental role in several living organisms as component of several antioxidant enzymes, 

including glutathione peroxidase and thioredoxin reductase  (Arner et  al.,  2000; Nogueira & Rocha.,  

2011). Despite its biological role, the excess of selenium can be toxic due its ability to generate free  

radicals and catalyze thiol oxidation (Barbosa et al., 1998; Nogueira, Zeni & Rocha, 2004; Rocha et al.,  

2012;  Hassan & Rocha,  2012;  Kade  et  al.  2013).  The excess  of  free  radical  formation  can damage 

mammalian tissues including thiol containing enzymes that are sensitive to pro-oxidant situations (Rocha 

et al., 2012 ; Rosa  et al., 2007; Maciel  et al., 2000). Diphenyl diselenide (PhSe)2, (Fig. 1) is a simple and 

stable organoselenium compound widely used in organic synthesis and it  has been proposed as good 

candidate for pharmacological and therapeutic  purposes (Nogueira, Zeni & Rocha, 2004; Rosa et al.  

2007; Nogueira & Rocha, 2011). (PhSe)2 exhibits thiol peroxidase-like activity superior to that of ebselen, 

an organoselenium compound that  has been used in clinical trial as antioxidant and mimetic of native 

glutathione peroxidase enzymes (Nogueira & Rocha.,  2011; Kade & Rocha, 2013; Kade et al.  2013). 

However, exposure to high doses of (PhSe)2 can deplete thiols in different tissues and can be neurotoxic to 

rodents (Maciel  et  al.,  2000).  The LD50 of diphenyl diselenide is   210 µmol/kg (intraperitoneal)  or 

greater than 500 µmol/kg (subcutaneous) in adult mice (Nogueira et al. 2003).

There are reports that trace amounts of Te are present in body fluids such as blood and urine (Chasteen et  

al., 2009). Te has also been found in the form of tellurocysteine and telluromethionine in several proteins  

in bacteria, yeast and fungi but telluroproteins have  not been identified in animal cells (Bienert et al., 

2008).  Thus,  in contrast  to selenium,  tellurium does not  have physiological functions (Taylor,  1996). 

Literature  has  demonstrated  immunomodulatory,  antioxidant  and  anticancer  properties  of  various 

organotellurides  (Nogueira, Zeni & Rocha, 2004; Avila et al., 2012), semisynthetic tellurosubtilisin (Mao 

et  al.,  2005)  and dendrimeric  organotellurides  (Francavilla  et  al.,  2001).  More sophisticated telluride 

molecules  were  synthesized  from  polystyrene  nanoparticle  via  microemulsion  polymerization.  The 

nanoenzyme  showed  higher  efficiency  and  provided  a  platform for  the  synthesis  and  designing  of  

polymeric nanoparticles as excellent model of  enzyme mimics (Huang et al.,  2008).  Organotellurium 

compounds can also mimic glutathione peroxidase activity (Engman et al., 1995) and, consequently, these 

compounds can be potential antioxidants,  effective against hydrogen peroxide, peroxynitrite,  hydroxyl 

radicals and superoxide anions (Anderssonet al., 1994; Kanski et al., 2001; Jacob et al., 2000). 

Recently, our research group demonstrated that organoselenium and organotellurium present hemolytic 

and genotoxic effects in human blood cells (Santos et al., 2009; Carean Bueno et al. 2013), which is in 

3

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.245v1 | CC-BY 3.0 Open Access | received: 13 Feb 2014, published: 13 Feb 2014

P
re
P
ri
n
ts



accordance  with  results  published  by other  laboratories  in  experimental  bacteria  and  rodent  models 

(Degrandi  et al., 2010). Similarly,organoselenides and tellurides can be toxic  in different in vivo and in  

vitro models of animal pathologies (Maciel  et al., 2000;  Taylor, 1996; Stangherlin et al., 2009; Moretto 

et al., 2007; Heimfarth et al., 2011; Heimfarth et al., 2012 a; Heimfarth et al., 2012 b; Comparsi et al.,  

2012). In effect, diphenyl ditelluride (PhTe)2 was found to be extremely toxic to mice and rats after acute 

or chronic exposure (Maciel  et al., 2000;  Heimfarth et al., 2012 b ; Comparsi et al., 2012).  The toxicity 

of tellurides can be associated with their pro-oxidant activity,  particularly,  the oxidation of thiol- and  

selenol-groups of proteins (Nogueira, Zeni & Rocha, 2004; Comparsi et al. 2012; Hassan & Rocha 2012).

Following our interest to determine the boundary between the potential protective and toxic properties of  

organochalcogens, the present study was designed to evaluate the toxic potential of (PhSe)2 and (PhTe)2 in 

in  mice.  We  have  determined  the  genotoxicity  and  mutagenicity  of  these  compounds  after  acute 

administration to  Swiss male  mice,  using DNA damage and micronuclei  frequency as  end-points  of 

toxicity. 
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Material and Methods

Chemicals

The chemical structure of organochalcogens tested in this study is shown in (Figure I) diphenyl diselenide 

and  (II)  diphenyl  ditelluride.  The  compounds  were  dissolved  in  canola  oil  immediately  before  use. 

(PhSe)2 and (PhTe)2 were obtained from Sigma-Aldrich. All other chemicals were of analytical grade and 

obtained from standard commercial suppliers.

Animals 

Male Swiss adult mice weighing 30-40 g were obtained from our own breeding colony (Animal house-

holding, UFSM- Brazil). Animals were kept in separate animal cages, on a 12-h light/dark cycle, at a  

room temperature of (23ºC ± 3) and with free access to food and water. The animals were used according  

to the guidelines of the committee  on care and use of  experimental  animal resources of  the Federal  

University Of Santa Maria, Brazil (23081.002435/2007-16).

Mice were divided in six groups (n=5) and received one subcutaneous injection of (1) canola oil (Control 

group 48h, mice were euthanized 48 hours after the oil injection); (2) diphenyl ditelluride (500 μmol/kg in 

canola oil,  euthanized 48 hours after  injection) ;  (3)  diphenyl  diselenide (500  μmol/kg in canola oil, 

euthanized 48 hours after injection); (4) canola oil (Control group 96h, mice were euthanized  96 hours  

after injection); (5) diphenyl ditelluride (500 μmol/kg in canola oil, euthanized 96 hours after injection) 

and (6) diphenyl diselenide (500 μmol/kg in canola oil, euthanized 96 hours after injection). The doses 

were based in a previous acute toxicological study by Maciel et al. 2000.

Sample preparation for Comet Assay

Mice were anesthesized with ketamine and 2.5 ml blood samples were collected by heart puncture and  

immediately euthanized by decaptation.  Mice blood leukocytes were isolated and used in the comet test  

but no pre-incubation was carried out (Santos et al. 2009(a); (b); Meinerz et al. 2011). 

Micronucleus test

In micronucleus test (MN), two samples of blood from each animal were placed in a microscope slides  

and air dried at room temperature. Slides were stained with 5% May-Grunwald-Giemsa for 5 min.  The 

criteria used for the identification of MN were a size smaller than one-third of the main nucleus, no  

attachment  to  the main  nucleus,  and identical  color  and intensity as  in  the main  nucleus.  MN were  

counted  in  2000  cells  with  well-preserved  cytoplasm and  calculated  as:  %  MN =  number  of  cells  

containing micronucleus X 100 / total number of cells counted. Micronuclei presence was determined by 

three investigators that were blind to the animal treatments.  

Comet assay

Comet assay is a rapid, simple and sensitive technique for measuring DNA breaks in single cells. This test 

has been used to investigate the effect of many toxic agents on DNA (Collins et al., 2002; Blasiak  et al.,  
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2004). The comet assay was performed under alkaline conditions according to the procedures described 

by Santos et al. 2009 (a) and Santos et al., 2009 (b). The slides obtained from white cells of treated mice 

were analyzed under blind conditions by at least two individuals.  DNA damage is presented as DNA 

damage index (DI). The DNA damage was calculated from cells in different damage classes (completely 

undamaged: 100 cells × 0 to maximum damaged − 100 cells × 4).  Damage index is illustrated in Figure 2 

and classes were determined considering the DNA tail and DNA migration length.

Statistical analysis

Data are expressed as mean ± SD from 5 independent experiments performed in duplicate or triplicate. 

Statistical  analysis  was  performed  using  Kruskawallis  test  followed  by  Dun´s  test.  Results  were  

considered statistically significant when p<0.05. 
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Results

No animal died during the experimental period. After 48 hours of diselenide or ditelluride treatment, mice  

did not show symptoms of toxicity such as stereotypical behavior, ataxia, diarrhea, increased dieresis or  

abdominal writings. However, after 96 hours, the group treated with (PhTe)2 presented diarrhea,  low level 

of motor activity and a decrease in body weight (data not shown); which is in accordance with previous  

finding from our laboratory (Maciel et al. 2000).  

Comet assay

After in vivo administration, diphenyl diselenide caused a significant decrease in DNA damage index (DI) 

both after 48 and 96 hours. In contrast, diphenyl ditelluride caused a significant increase in DNA damage  

index (DI). After 48 hours, the damage caused by ditelluride was about 25 and 100% higher than control  

and  diphenyl  diselenide  groups,  respectively  (Table  1).  After  96  hours,  the  DI  caused  by  diphenyl 

ditelluride was about 30 and 90% higher than control and diselenide treated mice, respectively (Table 1).  

Micronucleus test

After 48 or 96 hours of a single dose of diphenyl ditelluride,  there was a significant increase in the 

number of micronuclei in mice when compared with control and diphenyl diselenide group (Figure 3).  

Diphenyl diselenide did not modify the number of micronuclei when compared to control group (Figure  

3).
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Discussion

The selected dose of both chalcogens was based on our previous report (Maciel et al., 2000), where we 

tested  different  doses  for  acute  and  chronic  exposure.  Similarly,  in  the  same  dose  range,   diphenyl 

diselenide has been reported to have interesting pharmacological effects, such as antinoception and anti-

inflammatory effects, among others, (see, for instance : Savegnago et al., 2008;  Savegnago et al., 2007a; 

Savegnago  et al.,2007b and Savegnago  et al.,2006). However, it must be emphasized here that in this 

range of doses, it causes also toxicity in mice and rats (Nogueira et al. 2003; Nogueira and Rocha, 2011).  

Consequently, the acute use of diphenyl diselenide may be possible, but its chronic or repeated use is  

unfeasible. 

The results presented here indicate clear toxic effects of (PhTe)2  when compared with (PhSe)2. Tellurium 

(Te) has the potential of redox cycling which leads to formation of reactive oxygen species (ROS)  which 

can damage  biomolecules  (Maciel  et  al.,2000;  Nogueira,  Zeni  & Rocha,  2004; Santos et  al.,   2009; 

Degrandi  et  al.,  2010;  Sailer  et  al.,  2004;  Caeran  Bueno  et  al.  2013).  Organotellurium-induced 

intracellular ROS accumulation has been reported to be the cause of cell death in HL-60 and different  

types of cancer cells (McNaughton  et al., 2004; Juan  et al., 2010; Ding et al.,2002; Rigobello et al.,  

2009). In contrast, exposure of mice to (PhSe)2  caused a significant decrease in the DNA damage index 

(DI) both after 48 and 96 hours of drug administration as shown in Table 1. The protective effect can be 

attributed to its anti-oxidant or GPx like activity (Nogueira & Rocha, 2011). 

As observed in DNA damage test, the toxic behavior of (PhTe)2  was completely different than (PhSe)2  in 

micronucleus  assay.  The  frequency  of  mutations,  showed  by  an  increase  of  micronuclei  frequency, 

reinforce the toxicity of  (PhTe)2.  It  is  important  to  note  that  (PhSe)2   did not  modify the number  of 

micronuclei,  when  compared  to  control  group  (Figure  3).   Previous  studies  have  also  demonstrated 

mutagenicicity of (PhTe)2  at higher concentrations in V79 cells (Rosa et al., 2007). We have also reported 

the  mutagenicity  of  another  Te-containing  organic  compound,  (S)-dimethyl  2-(3-(phenyltellanyl) 

propanamido) succinate in mice leucocytes (Meinerz et al., 2011 

In conclusion, the results presented here indicate that diphenyl ditelluride is toxic to mice, whereas at the 

same dose diphenyl diselenide had protective effects.  These effects may be linked to the pro-oxidant  

activity exhibited by organotellurium compounds.  This data supports studies that have been published  

about the toxicological and pharmacological effects of organochalcogens in different pathological models. 

In  effect,  our  data  indicated  that  diphenyl  diselenide  can  have  protective  effects  after  in  vivo 

administration to mice, which can be related to its antioxidant properties, whereas diphenyl ditelluride is 

much more toxic than diphenyl diselenide. Furthermore, in view of the genotoxic effect of (PhTe) 2,  the 

indication  in  the  literature  that  organotellurides  could  be  therapeutically  active  compounds  must  be 

revisited taking into consideration the potential toxicity of this element.  Accordingly, additional studies 
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will be needed to elucidate the mechanism(s) by which (PhTe)2  mediates its toxicity and whether or not 

distinct chemical forms of organotellurides can have similar toxic effect in animal models.
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