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Abstract 27 

Press disturbances are stressors that are extended or ongoing relative to the generation times 28 
of community members, and, due to their longevity, have the potential to alter communities 29 
beyond the possibility of recovery. They also provide key opportunities to investigate ecological 30 
resilience and to probe biological limits in the face of prolonged stressors. The underground coal 31 
mine fire in Centralia, Pennsylvania has been burning since 1962 and severely alters the 32 
overlying surface soils by elevating temperatures and depositing coal combustion pollutants. As 33 
the fire burns along the coal seams to disturb new soils, previously disturbed soils return to 34 
ambient temperatures, resulting in a chronosequence of fire impact. We used 16S rRNA gene 35 
sequencing to examine bacterial and archaeal soil community responses along two active fire 36 
fronts in Centralia, and investigated the influences of assembly processes (selection, dispersal 37 
and drift) on community outcomes. The hottest soils harbored the most variable and divergent 38 
communities, despite their reduced diversity. Recovered soils converged toward similar 39 
community structures, demonstrating resilience within 10-20 years and exhibiting near-complete 40 
return to reference communities. Measured soil properties (selection), local dispersal, and 41 
neutral community assembly models could not explain the divergences of communities 42 
observed at temperature extremes. We hypothesize that transitions between the seed bank and 43 
the active community, which would manifest as drift processes, are key in explaining these 44 
divergences. These results suggest that soils generally have an intrinsic capacity for robustness 45 
to varied disturbances, even to press disturbances considered to be “extreme”, compounded, or 46 
incongruent with natural conditions.  47 

 48 

 49 

Introduction  50 

Human interactions with and alterations of environmental systems are important components of 51 
global change (Allen et al., 2014). Anthropogenic disturbances are outcomes of human activity, 52 
and include land-use and land-cover changes, pollution, dispersal of invasive species, and over-53 
harvesting of native animal or plant populations (Vitousek et al., 2008). Anthropogenic 54 
disturbances are typically classified as press disturbances, as they often impact multiple 55 
generations of organisms within their ecosystems (Bender et al., 1984). Because of their 56 
longevity, press disturbances have the capacity to alter ecosystems beyond the possibility of 57 
recovery (e.g., Thrush et al., 2009).  58 
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Within every ecosystem, microbial communities underpin biogeochemical processes, sustain 59 
the bases of food webs, and recycle carbon and nutrients. In some situations of anthropogenic 60 
disturbance, such as pollution, native microbial communities also can provide bioremediative 61 
functions to support ecosystem recovery (Ruberto et al., 2009; Desai et al., 2010; Ma et al., 62 
2016; Fuentes et al., 2015). Because of their foundational roles in driving important ecosystem 63 
processes, understanding how microbial communities respond to press disturbance can provide 64 
insights into the potential for ecosystems to recover. It may also help to uncover mechanisms by 65 
which environmental microbial communities may be managed to improve ecosystem outcomes. 66 
A better understanding of microbial responses to press disturbances, including examples of 67 
communities that have recovered or shifted to an alternative stable state, is necessary to move 68 
toward the goal of microbial community management (Shade and Peter et al., 2012).  69 

Recent work has highlighted the importance of understanding the relative contributions 70 
of community assembly processes to community changes (e.g., Vellend, 2010; Nemergut et al., 71 
2013; Dini-Andreote et al., 2015; Evans et al., 2016), and these processes can also be 72 
informative for understanding community changes after a disturbance (e.g., secondary 73 
succession; Dini-Andreote et al., 2015). According to Vellend, 2010, community assembly can 74 
be summarized by four major processes: dispersal, diversification, drift, and selection. Dispersal 75 
is the movement of individuals between localities, diversification is the generation of new 76 
genetic variation (which can lead to speciation), drift encompasses the stochastic processes 77 
resulting in fluctuations in member abundances (e.g. births and deaths), and selection refers to 78 
deterministic fitness differences among taxa driven by abiotic conditions or biotic interactions 79 
(as summarized by Nemergut et al., 2013). These processes complement and interact to drive 80 
community patterns, and together provide a foundation on which to build a predictive theoretical 81 
framework for microbial community ecology. 82 

We aimed to understand the responses of soil microbial communities to an 83 
anthropogenic press disturbance, and to apply the Vellend, 2010 and Nemergut et al., 2013 84 
conceptual framework of community assembly for interpretation of patterns. The town of 85 
Centralia, Pennsylvania is the site of an underground coal mine fire that has been burning since 86 
1962. It is one of thousands of coal mine fires burning in the world today (Melody and Johnston, 87 
2015), which are inconspicuously common anthropogenic disturbances. However, the Centralia 88 
fire is especially long-lived, and, after efforts to extinguish it failed, it was left to burn until it self-89 
extinguished (Nolter and Vice, 2004). The fire is expected to burn slowly until the coal reserves 90 
have been consumed. The fire currently underlies more than 150 acres and continues to spread 91 
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slowly (3-7 m/yr Elick, 2011) through underground coal seams. Depending on the depth of the 92 
coal bed, it burns at an estimated 46-69 m below the surface (Nolter and Vice, 2004; Elick, 93 
2011). Heat, steam and combustion products vent upward from the fire through the overlying 94 
soils. The surface soil temperatures can exceed 80°C, scarring the landscape with dead 95 
vegetation that reveals the fire's subsurface trajectory. As steam and gasses pass through the 96 
overlying rock and soil, soil temperatures increase while soil chemical composition is altered by 97 
both spontaneous and microbial-mediated chemical reactions (Janzen and Tobin-Janzen, 98 
2008).  As the fire expands into new areas, it also retreats from some affected sites, which then 99 
recover to ambient temperatures (Elick, 2011; Nolter and Vice, 2004). Thus, the “end” of the 100 
disturbance can be delineated by temperature recovery. In this way, a chronosequence of fire-101 
affected Centralia soils provides a space-for-time proxy of disturbance response and recovery.  102 

Our research objectives were to understand the diversity and spatio-temporal dynamics 103 
of the surface soil bacterial and archaeal communities that have been impacted historically or 104 
are currently influenced by the ongoing subterranean coal mine fire in Centralia. Previous work 105 
using terminal restriction fragment length polymorphism analysis showed that microbial diversity 106 
decreased at hotter sites, and that compositional changes were correlated with soil ammonium 107 
and nitrate concentrations (Tobin-Janzen et al., 2005). We move forward from this work to use 108 
high throughput sequencing of soil community 16S rRNA genes to quantify the community 109 
dynamics along a chronosequence of fire response and recovery. We specifically investigated 110 
the community assembly processes of selection, dispersal, and drift. 111 

 112 

Materials and Methods  113 

Study site, soil sampling, soil biogeochemistry and microbial community DNA extraction 114 
We undertook fieldwork in Centralia (GPS: 46°46”24’N, 122°50”36W) on 5-6 October 2014. We 115 
collected surface soils to capture the expected maximum changes along a chronosequence of 116 
fire recovery (Figure 1). We sampled two fire fronts along gradients of historical fire activity. 117 
Fronts are trajectories of fire spread from the 1962 ignition site outward along near-surface coal 118 
seams (Elick, 2011). These fronts include surface soils that were previously hot and have 119 
cooled, as well as soils that are currently warmed by the ongoing fire. We collected soil from two 120 
unaffected, proximate sites as references, seven recovered sites along the gradient, and nine 121 
fire-affected sites (18 total soils), and these collections were distributed across both fire fronts. 122 
Soil samples were collected from the top 20 cm of surface soil (core diameter 5.1 cm), and were 123 
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sieved through 4 mm stainless steel mesh. Collected soils were stored on ice up to 72 hr during 124 
transport to the laboratory, then stored at -80oC pending further processing. The physico-125 
chemical characteristics of each soil sample (percent moisture, organic matter 500, NO3

-, NH4
+, 126 

pH, SO4, K, Ca, Mg, P, As, and Fe) were assayed by the Michigan State Soil and Plant Nutrient 127 
Laboratory according to their standard protocols (East Lansing, MI, USA, 128 
http://www.spnl.msu.edu/). Gravimetric soil moisture was measured after drying the soil at 80oC 129 
for 2 days. Soil community DNA was extracted from 0.25 g of soil in three technical replicates 130 
using the MoBio Power Soil DNA Isolation Kit according to the manufacturer’s protocol (MoBio, 131 
Solana Beach, CA, USA). The concentration of the extracted DNA was measured using the 132 
Qubit® dsDNA BR Assay Kit (Life Technologies, NY, USA), and ranged from 1.3 to 129 ng/µL 133 
(average and standard deviation = 33.0 ± 29.9 ng/µL).  134 

 135 
Soil cell counts 136 

Direct bacterial and archaeal cell counts were conducted on frozen soil samples based 137 
on a protocol to separate cells from soil reported in (Portillo et al., 2013). To dissociate the 138 
microbial cells from soil particles, 10 g of soil was mixed with 100 mL of phosphate buffered 139 
saline containing 0.5% Tween-20 (PBST). Soil samples were homogenized in a Waring blender 140 
three times for 1 min each, followed by a 5 min incubation on ice. Slurries were centrifuged at 141 
1000 x g for 15 min to concentrate soil particulates. Supernatants were set aside and stored at 142 
4oC, and the remaining soil pellets were re-suspended in 100 mL of fresh PBST and blended for 143 
an additional 1 min. The soil slurry was then transferred to sterile 250 mL centrifuge bottles and 144 
the blender was washed with an additional 25 mL of sterile PBST and added to the slurry before 145 
centrifugation at 1000 x g for 15 min. All resulting supernatants for each site were combined, 146 
then centrifuged at 10,000 x g for 30 min to pellet cells. Supernatants were discarded, and cell 147 
pellets were re-suspended in 10 mL of sterile Milli-q water and 400 mL of 37% formaldehyde to 148 
fix cells. 1 mL of cell suspension was then carefully layered over 500 µL of sterile Nycodenz 149 
solution (0.8 g/mL in 0.85% NaCl), then centrifuged at 10,000 x g for 40 min. The upper layer 150 
was then collected and cells were pelleted by centrifugation at 20,000 x g for 15 min, then 151 
resuspended in 1 mL of sterile 0.85% NaCl. To dissociate remaining soil clumps, cell 152 
suspensions were sonicated for 10 s in a sonicating water bath.  153 

Cell suspensions were stained with DTAF ((5-(4,6-Dichlorotriazinyl) Aminofluorescein)) 154 
according to (Robertson et al., 1999). DTAF-stained smears were visualized on a Nikon Eclipse 155 
e800 microscope (Tokyo, Japan) equipped with a Photometrics Coolsnap Myo camera (Tuscon, 156 
AZ, USA), and images were collected using Micro-Manager software (Edelstein et al., 2014). Fiji 157 
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image analysis software was used to adjust background, thresholding, and to conduct particle 158 
counts from images (Schindelin et al., 2012). Briefly, background correction was completed 159 
using an automated rolling ball subtraction with a 35-pixel radius, followed by automatic local 160 
thresholding using the Bernsen method with a 12-pixel radius to convert greyscale images to 161 
binary. Watershed segmentation was conducted to separate touching nuclei, then particles were 162 
counted using the ImageJ “Analyze Particles” function, excluding anything smaller than 0.1 163 
micron (Schneider et al., 2012). 164 
 165 
Quantitative PCR 166 
 We performed quantitative PCR (qPCR) using bacterial and archaeal 16S rRNA gene 167 
universal primer sets (Supporting Table 1; Caporaso et al., 2012). The reaction mixtures 168 
consisted of 10 µL SYBR qPCR Master mix (Quanta Bioscience, Gaithersburg, MD, USA), 0.4 169 
µL each of the forward and the reverse primers (0.4 pM), 2 µL of template DNA, and sterilized 170 
deionized water to adjust the final volume of 20 µL. The thermal profile was as follows: initial 171 
denaturation at 95oC for 10 s, followed by 40 cycles of denaturation at 95oC for 10 s, annealing 172 
at 50oC for 15 s, and extension at 72oC for 40 s. A final dissociation protocol (58oC to 94.5oC, 173 
increment 0.5oC for 10 s) was performed to ensure the absence of nonspecific amplicons. The 174 
reactions were conducted using the Bio-Rad iQ5 real time detection system (Bio-Rad, Hercules, 175 
CA, USA). The detailed methods for the calculation of real fluorescent signal intensity and the 176 
creation of standard curves were described in previous studies (Kim and Cho, 2010; Lee et al., 177 
2013). 178 
 179 
16S rRNA amplicon sequencing 180 
For each of the 54 DNA samples (18 soils, each with three replicate DNA extractions) and mock 181 
community DNA, paired-end sequencing (150 base pair) was performed on the bacterial and 182 
archaeal 16S rRNA gene V4 hypervariable region using the Illumina MiSeq platform (Illumina, 183 
CA, USA; Supporting Table 1; Caporaso et al., 2012). All of the sequencing procedures, 184 
including the construction of Illumina sequencing library using the Illumina TruSeq Nano DNA 185 
Library Preparation Kit, emulsion PCR, and MiSeq sequencing were performed by the Michigan 186 
State University Genomics Core sequencing facility (East Lansing, MI, USA) following their 187 
standard protocols. The Genomics Core provided standard Illumina quality control, including 188 
base calling by Illumina Real Time Analysis v1.18.61, demultiplexing, adaptor and barcode 189 
removal, and RTA conversion to FastQ format by Illumina Bcl2Fastq v1.8.4. Raw sequences 190 
were submitted to the GenBank SRA Accession SRP082686. 191 
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To estimate sequencing error, mock community DNA was prepared from six different 192 
type strains (D. radiodurans ATCC13939, B. thailandensis E264, B. cereus UW85, P. syringae 193 
DC3000, F. johnsoniae UW101, E. coli MG1655). The genomic DNA from these type strains 194 
were extracted separately using the EZNA Bacterial DNA Kit (Omega Bio-tek, GA, USA) 195 
according to the manufacturer’s protocol, and then quantified using the Qubit® dsDNA BR 196 
Assay Kit (Life Technologies, NY, USA). Each isolates’ 16S rRNA sequence was amplified 197 
using universal 27F and 1492R primers. Amplification was performed with the GoTaq Green 198 
Master Mix (Promega) with the following reaction conditions: 0.4uM each primer, 20-200 ng 199 
template, 12.5ul 2X GoTaq Green Mastermix and nuclease free water to 25 uL final volume. 200 
The products were visualized on 1% agarose gels before being cleaned using the Promega 201 
Wizard SV Gel and PCR Cleanup System per manufacturer’s instructions. Cleaned 202 
amplification products were sequenced using the 27F and 1492R primers using the ABI Prism 203 
BigDye Terminator Version 3.1 Cycle kit at Michigan State’s Genomics Research Technology 204 
Support Facility (https://rtsf.natsci.msu.edu/genomics/). Forward and reverse reads were 205 
merged using the merger tool in the EMBOSS (V. 6.5.7) package (Rice et al., 2000). Based on 206 
the DNA concentration, size of genomic DNA, and 16S rRNA gene copy number, the final 207 
mixture contained 100,000 copies of 16S rRNA gene from each strain. The mock community 208 
was sequenced alongside the 54 soils’ metagenomic DNA. 209 

    210 
 211 
Sequence processing 212 
 Paired-end sequence merging, quality filtering, denoising, singleton-sequence removal, 213 
chimera checking, and open-reference Operational Taxonomic Unit (OTU) picking were 214 
conducted using a UPARSE workflow v8.1 (Edgar, 2013; Edgar and Flyvbjerg, 2014). Open-215 
reference OTU picking was modified for compatibility with the UPARSE pipeline but proceeded 216 
as described for open-reference workflows (Rideout et al., 2014). First, reference-based OTU 217 
clustering was conducted using usearch_global command to cluster sequences with 97% 218 
identity to the greengenes database (v 13.8, http://greengenes.lbl.gov). Second, de novo OTU 219 
picking was performed for any sequences that did not hit the greengenes reference; the uclust 220 
command was used to cluster sequences at 97% identity (this step includes chimera checking). 221 
The reference-based and de novo OTUs were combined together to create the final dataset. 222 
Finally, to reduce the potential effects of candidate contaminant sequences, any sequences in 223 
the final dataset that matched 100% to a database of extraneous sequences (found in the mock 224 
community) were removed.  225 
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Additional analyses were performed with QIIME v. 1.9.1 (Caporaso et al., 2010b), 226 
including alignment with PyNAST (Caporaso et al., 2010a), taxonomic assignment with the RDP 227 
Classifier (Wang et al., 2007), tree building with FastTree (Price et al., 2009), 228 
subsampling/rarefaction to an equal sequencing depth, and within and comparative diversity 229 
calculations (e.g., UniFrac ,Lozupone and Knight, 2005). Sequences identified as Chlorophyta, 230 
Streptophyta (i.e., Chloroplasts) and Mitochondria were removed before subsampling to an 231 
even sequencing depth. Our sequence analysis workflow and computing notes are available on 232 
GitHub 233 
(https://github.com/ShadeLab/PAPER_LeeSorensen_inprep/blob/master/Sequence_analysis/M234 
ockCommunityWorkflow.md). We used the UPARSE workflow (with the recommended 10% 235 
divergence filter) for error rate calculation using the mock community 236 
(http://drive5.com/usearch/manual/upp_tut_misop_qual.html).  237 
 238 
Ecological statistics 239 

We first assessed the reproducibility of evenly-sequenced technical replicates (DNA 240 
extraction and sequencing replicates), and found that replicates were similar to one another in 241 
measures of within-sample (alpha) and comparative diversity (beta diversity). The average and 242 
standard deviation of weighted (nonnormalized) UniFrac distances between replicates was 243 
0.319 ± 0.126 with a range from 0.105 to 1.29 (maximum distance between different samples 244 
was 4.49; Supporting Figure 1 and Supporting Table 2). Given the low technical variability, 245 
unrarefied technical replicates were collapsed into one combined set of sequences for each soil 246 
core to provide more exhaustive sequencing of each soil; these collapsed samples were 247 
subsampled to an even sequencing depth (321,000 sequences per soil), and singleton OTUs 248 
(observed only once in the dataset) were removed before proceeding with analysis. Within 249 
sample-diversity of species richness, Faith’s phylogenetic diversity (whole tree method), and 250 
comparative diversity of weighted and unweighted UniFrac distance (nonnormalized and 251 
normalized, Lozupone et al., 2011) were calculated within QIIME. The data were then moved 252 
into the R environment for statistical analyses. Briefly, we used vegan functions for multivariate 253 
hypothesis testing, fitting environmental vectors to ordinations (envfit), constrained ordination 254 
(capscale), and Mantel tests (mantel) and to calculate Pielou’s evenness (Oksanen et al., 2011); 255 
the cmdscale function (stats) for principal coordinates analysis; custom code of neutral models 256 
of community assembly (Sloan et al., 2007) as written and implemented by (Burns et al., 2015); 257 
and ggplot and ggplots2 for plotting (Wickham, 2009). Our R script is available on GitHub 258 
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(https://github.com/ShadeLab/PAPER_LeeSorensen_inprep/blob/master/R_analysis/Centralia2259 
014_AmpliconWorkflow.R) 260 
 261 

Results and discussion 262 

Soil physical-chemical characteristics and microbial population size 263 

We measured a suite of contextual data for each sampling site, and asked whether any 264 
of those data were correlated with surface soil temperature (Figure 2). Centralia soils generally 265 
represented a wide range of soil chemistry. We did not find strong correlations between 266 
measured contextual data and temperature, with the exception of correlations with ammonium 267 
and nitrate (Pearson’s R = 0.50 and 0.54, respectively; p < 0.05). This finding supports previous 268 
work in Centralia showing that ammonium and nitrate were elevated at active vents (Tobin-269 
Janzen et al., 2005). In addition, the pH of recovered sites was consistently lower than 270 
reference sites (mean pH = 4.4 and 5.9, respectively), and the hottest soils were more likely to 271 
have extreme or disparate values. Notably, in two previous reports, soil ammonium, nitrate, and 272 
sulfur concentrations were not necessarily correlated with absolute soil temperature values at 273 
Centralia, nor to proximity to an active vent; though extreme or disparate chemistry values were 274 
sometimes observed at hot sites, values comparable to unaffected sites were also routinely 275 
observed (Tobin-Janzen et al., 2005; Janzen and Tobin-Janzen, 2008). Thus, the authors 276 
suggested that duration of fire impact, whether the fire was advancing or receding from the site, 277 
and other complex environmental factors were likely contributing.   278 

All soils had the same order of magnitude of 16S rRNA copies per dry mass of soil 279 
(Supporting Figure 2A, Student’s t-test all pairwise p > 0.20), with fire-affected soils having the 280 
highest copy numbers and recovered soils having the lowest. Total number of cells per dry 281 
mass of all soil were within the same order of magnitude, ~107 cells per gram of dry soil 282 
(Supporting Figure 2B, Student’s t-test all pairwise p > 0.09). Together, these data indicate 283 
overall community size is stable across the fire gradient and that any changes in community 284 
structure along the fire gradient are due to changes in member abundances rather than to 285 
differences in the total number of individuals among soils.  286 

 287 

Sequencing summary 288 
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Sequencing efforts were exhaustive for these soils, as assessed by a clear asymptote achieved 289 
with rarefaction (Supporting Figure 3). After quality filtering, our 16S rRNA amplicon dataset 290 
produced 5,778,000 high-quality reads (5,776,626 sequences after omitting singletons OTUs) 291 
with a UPARSE-calculated error rate of 0.469%. In total, we observed 28,220 OTUs (26,846 292 
when omitting singleton OTUs) defined at 97% sequence identity; approximately one-third of 293 
OTUs were defined based on high-identity matches to the greengenes v13.8 reference 294 
database (8,967 OTUs; 8,794 when omitting singleton OTUs), while two-thirds were defined de 295 
novo after unsuccessful attempts to match the database (19,253 OTUs; 18,052 when omitting 296 
singleton OTUs).  297 

Coal mine fire ecosystems are sources of novel microbial functions, including reported 298 
aerobic nitrogen fixation (Ribbe et al., 1997) and novel antibiotics (Wang et al., 2014b, 2014a). 299 
Furthermore, thermophiles are of interest for bioprospecting for natural products such as 300 
thermally-stable enzymes (e.g., for biomass deconstruction from lignocellulosic crops (Blumer-301 
Schuette et al., 2014) and novel antibiotics (Garg et al., 2012). The large number of de novo 302 
OTUs in this soil dataset suggests that Centralia soils also harbor substantial undescribed 303 
microbial diversity and functions. We observed a broad range of 65 phyla in Centralia soils. 304 
Among the de novo lineages of interest were several archaeal taxa tentatively identified as 305 
Crenarcheaota and Parvarcheaota, and several minor bacterial lineages tentatively assigned as 306 
TM6, TM7, OD1, OP11, LD1, WPS-2, and WS-3. A 16S rRNA clone library and T-RFLP study 307 
of three soil microbial communities that were each proximate to active coal seam vents in China 308 
also reported a proportionally large number of Crenarcheaota among detected archaeal clones 309 
(Zhang et al., 2013), suggesting that these may be common inhabitants of soils impacted by 310 
long-term fires.  311 
 312 
Selection 313 
To understand the influence of selection (deterministic) processes on community responses, we 314 
used surface soil temperatures measured in 2014 to designate categorical groups of 315 
communities according to their fire classification. Soils classified as reference and recovered 316 
had temperatures between 12 and 15°C (ambient air temperature was 13.3°C at the time of soil 317 

collection), while soils classified as fire-affected had temperatures ranging from 21 to 58°C. We 318 
hypothesized that within-sample diversity would be lower in fire-affected soils because of the 319 
extreme environmental filter of high temperatures, which we expected to result in lower richness 320 
and less phylogenetic breadth. Faith’s phylogenetic diversity and OTU richness both were 321 
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lowest and most variable for fire-affected soils, and highest for reference sites (Figure 3; 322 
Student’s t-test all pairwise p < 0.001). Pielou’s evenness had a similar trend, with fire-affected 323 
soils having lower evenness than other soils, suggesting that there are a small number of highly 324 
dominant OTUs in the fire-affected soils (all pairwise p > 0.05, not significant). These results 325 
generally agree with studies investigating soil microbial diversity after coal mine reclamation in 326 
China and Brazil, respectively, where the most recovered/reconstructed soils (20 years post-327 
mining in Li et al., 2014) and 19 years of reconstruction in Quadros et al., 2016) had highest 328 
within-sample diversity and were most comparable to reference sites. Centralia soils are 329 
expected to share similar contamination from coal extraction with these mine reclamation soils, 330 
but also are distinct because of their thermal conditions and additional contamination by coal 331 
combustion products. 332 

 We used nonnormalized weighted UniFrac distance to assess comparative community 333 
diversity across the fire categories. Weighted UniFrac distance was chosen after considering 334 
multiple taxonomic and phylogenetic, and weighted and unweighted metrics. All ordinations 335 
revealed the same overarching patterns, demonstrating that these patterns were very robust. 336 
However, weighted UniFrac distance provided the highest explanatory value (Supporting Table 337 
3), suggesting that changes in both phylogenetic breadth and the relative abundances of taxa 338 
are important for interpreting community responses. As compared to recovered and reference 339 
sites, fire-affected soils were distinct (PERMANOVA pseudo F = 16.10, R2 = 0.50 and p = 0.001 340 
on 1000 permutations) and more variable in their community structure (difference in median 341 
dispersions = 0.53, p = 0.008; Figure 4).  Differences in surface soil temperature and fire history 342 
had most explanatory value on Axis 1 (77.1% variance explained), with nitrate and iron 343 
contributing; calcium and pH (and, to a lesser extent, soil moisture) explained variation on Axis 344 
2 (12.7% variance explained, Supporting Table 4). Notably, soil fire history was not correlated 345 
to community dynamics. 346 

Fire-affected soils were more variable in their community structure across soils, 347 
especially in soils at the most extreme temperatures observed (sites C13, C10 which were 348 
>50°C at the time of sampling and were at the opposite ends of PCoA2). In contrast, recovered 349 
soils were less variable, even though they spanned decades of difference in their years of peak 350 
fire activity (the earliest impacted soils that we sampled were last recorded to be hot in 1980; 351 
Elick, 2011). Also, recovered soils were very similar in community structure to reference soils. 352 
These patterns show that Centralia soils achieve divergent community structures over the 353 
transition from ambient to extreme conditions, but then generally converge towards a consistent 354 
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community structure after the fire subsides. These results also show high resilience of soil 355 
communities impacted by an extreme press disturbance, with recovery occurring within 10-20 356 
years after the stressor subsided. 357 

We observed a temperature “threshold” effect among fire-affected soils, and soils with 358 
temperatures between 21 and 24.5°C (sites C06, C11, and C16) separated cleanly from soils 359 

with temperatures greater than 30°C (Figure 4). To better understand the divergence in 360 
community structure among fire-affected soils, we performed a PCoA with these communities 361 
(Supporting Figure 4A, Supporting Table 5), and also a constrained analysis to ask what 362 
variability remained after removing the influence of temperature (Supporting Figure 4B, 363 
Supporting Table 6). Even after removing the influence of temperature, three discrete subsets 364 
of fire-affected communities separated from each other along both axes, with C13 remaining as 365 
an outlying point. C13 had very different calcium and pH than the other soils, and both of these 366 
factors had high value in discriminating C13 from the other fire-affected soils (p = 0.092 and 367 
0.014 respectively). There were no other measured abiotic factors that explained the divergence 368 
among the fire-affected soils. In addition, the constrained axes had high explanatory value 369 
(Supporting Figure 4B, combined axes 1 and 2 = 90.0% var. explained), suggesting that there 370 
are additional processes beyond selection that explain the differences in these subsets.  371 

We observed broad phylum-level changes in response to the fire (Figure 5A, 372 
Supporting Table 8). Not all OTUs affiliated with particular phyla had identical responses; 373 
however, our analysis of phylum-level responses points to some general trends. In particular, 374 
fire-affected soils were enriched for members of Chloroflexi, Crenarcheaota and many lineages 375 
of unidentified Bacteria. As compared to the fire-affected soils, recovered soils also were 376 
enriched for Parvarchaeota, Bacteroidetes, Elusimicrobia, Gemmatimonadetes, 377 
Planctomycetes, Spirochaetes, TM6, and Verrucomicrobia suggesting that members affiliated 378 
with this these phyla are able to persist after the fire subsides. Acidobacteria also had an 379 
increase in recovered soils (but less significant, p = 0.10), presumably because of the decrease 380 
in soil pH observed post-fire (Figure 2). Reference soils had higher representation of 381 
Proteobacteria and Verrucomicrobia, which suggests that members of these phyla may be 382 
sensitive to the fire.   383 

 384 

Dispersal and drift 385 
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To investigate the relative importance of local dispersal, we assessed the value of spatial 386 
distance for explaining differences in community structure. If local dispersal were important, we 387 
would expect that soils in close proximity would have more similar community structures than 388 
soils that are distant from one another. We found no relationship in the measured spatial 389 
distances between soil collection sites and their corresponding differences in community 390 
structure for all sites (Mantel p = 0.66 on 999 permutations), nor for recovered sites only (after 391 
removing the fire-affected sites from analysis; Mantel p = 0.135 on 999 permutations). The lack 392 
of evidence for spatial autocorrelation suggests that local dispersal is not a key factor shaping 393 
community structure in Centralia soils.  394 

To explore the relative importance of drift in fire-affected and recovered soils, we fitted a 395 
neutral model of community assembly. The model predicts taxon frequencies as a function of 396 
their metacommunity log abundances, which is one method to consider the influence of drift with 397 
the influence of dispersal (calculated as an immigration term, m, to the model). The neutral 398 
model fit better to the recovered sites than to fire-affected sites (R-squared = 0.53, 0.12 399 
respectively; Supporting Figure 5, Supporting Table 7). Furthermore, we found a lesser 400 
influence of dispersal (lower value of m) in the fire-affected sites regardless of whether the 401 
complete set of taxa from the regional metacommunity (taxa from all sites, including fire-402 
affected, recovered, and reference) was used as the regional sample pool or whether the taxa 403 
detected only in fire-affected sites were used as the regional sample pool (Supporting Table 404 
7). These differences in fit and generally minimal influence of dispersal suggest that neutral 405 
processes play a more minor role in the microbial community assembly of fire-affected sites 406 
than they do in the recovered sites.  407 

 408 

Understanding community divergences at temperature extremes 409 

To dig deeper into the differences in the three subsets of fire-affected soil that were not 410 
well explained by abiotic selection, local dispersal, or drift as assessed by the Sloan neutral 411 
model of community assembly (Supporting Figure 4), we asked if there were notable 412 
differences in their dominant memberships. Fire-affected soils generally had more variability and 413 
greater phylogenetic breadth in their dominant membership than recovered soils, and each fire-414 
affected subset harbored an exclusive membership among their most prevalent taxa, supporting 415 
an influence of drift on community outcomes. We examined the top 10 prevalent taxa from each 416 
of the nine fire-affected soils. Collectively, there were 68 unique top 10 OTUs in fire-affected 417 
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soils (out of a possible 90, if each of the nine fire-affected soil harbored mutually exclusive 418 
membership across their top 10). These prevalent fire-affected OTUs spanned fourteen phyla or 419 
Proteobacteria classes, included 30 de novo OTUs, and included seven taxa of unidentified 420 
Bacteria and two taxa of unidentified Proteobacteria. Acidobacteria OTUs were detected among 421 
the top 10 for all fire-affected soils, and eight of nine fire-affected soils included Chloroflexi 422 
among the top 10 OTUs. In comparison, recovered soils included ten phyla or Proteobacteria 423 
classes among their collective top 10, had no unidentified Bacteria or Proteobacteria, and 424 
included four de novo OTUs. Acidobacteria and Alphaproteobacteria OTUs were among the top 425 
10 for all recovered soils, and six of the seven recovered soils also included 426 
Deltaproteobacteria. Together, these results show that fire-affected soils were more divergent 427 
and diverse in their prevalent membership than recovered soils.  428 

An analysis of occurrence patterns of the OTUs detected among the top 10 also showed 429 
greater divergence among fire-affected soils than recovered, and further supported the 430 
distinction among the subsets of fire-affected soils revealed by the constrained ordination 431 
(Figure 6). Fire-affected soils had more OTUs within their collective most prevalent taxa, and 432 
were more heterogeneous as shown by the wider range represented by the color scale and the 433 
more divergent sample and OTU clustering. In fact, taxa that were among the top 10 in one fire-434 
affected soil were likely to be among the rare biosphere in another fire-affected soil, exhibiting 435 
stark contrast in their abundances within these soils. However, most of the top 10 prevalent 436 
OTUs were detected within every fire-affected soil, suggesting that changes in taxa relative 437 
abundances, rather than turnover in membership, were driving these patterns. 438 

This dominance analysis helps to explain the lower fit of the neutral model to fire-439 
affected soils. Outliers to the neutral model that were below detection (taxa that were present in 440 
fewer sites than predicted given their relative abundance in the metacommunity) included these 441 
many lineages that were prevalent in few soils. Taxa that fall below their neutral model 442 
prediction have been proposed to be “selected against” or particularly dispersal limited (Burns 443 
2015). However, in the Centralia extreme environment, these were taxa that were most 444 
successful locally given the thermal disturbance.  445 

 446 

Community assembly processes and the role of the seed bank in disturbance responses 447 

Centralia soil communities were sensitive to the coal mine fire, and changed substantially from 448 
reference conditions. Selection processes, specifically abiotic soil conditions, offered high 449 
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explanatory value for Centralia soil community dynamics. These communities first were 450 
constrained by environmental filters imposed by the press disturbance, such as high 451 
temperatures in fire-affected soils and low pH in recovered soils. The fire acts as a strong 452 
environmental filter, resulting in decreased diversity and a very different phylogenetic 453 
representation among the surviving lineages in fire-affected soils. However, even after removing 454 
the influence of temperature on fire-affected communities, they fell into three distinct subsets 455 
that could not be explained by the physico-chemical characteristics measured in this study. 456 
Furthermore, neutral model fits and lack of spatial autocorrelation suggests that these particular 457 
assessments for drift and dispersal processes offer minimal explanation for fire-affected sites. 458 
Given the low explanatory value of unweighted resemblances in describing patterns of 459 
comparative diversity (Supporting Table 3), and the observation that many of the prevalent 460 
taxa detected in some fire-affected soils were rare in other fire-affected soils (Figure 6A), we 461 
can also attribute these patterns to changes in the relative abundances of taxa, rather than to 462 
changes in taxa turnover (differing memberships). Thus, given that neither assessed selection, 463 
dispersal, nor drift processes, nor their combination can provide a complete explanation for the 464 
divergence of fire-affected communities, the question remains: why are fire-affected soils so 465 
divergent from each other, and yet eventually manage to recover to the same post-disturbance 466 
community structure? 467 

We hypothesize that the remaining variability in community structure of fire-affected sites 468 
may be attributed to fluctuations between the dormant seed bank and the active community. 469 
Given that proportion of dormant cells in soils is estimated to be near 80% (Lennon and Jones, 470 
2011), we posit that seed bank fluctuations contribute to drift processes that are not well-471 
quantified with current methods, but are nonetheless indirectly supported by the results of this 472 
study.   473 

The general importance of dormancy for microbial community assembly processes has 474 
been proposed previously by Nemergut et al., 2013, and the unique conditions of Centralia may 475 
offer opportunity to investigate dormancy processes in situ. There are two general aspects of 476 
seed banks that could help to explain Centralia community divergences at temperature 477 
extremes: membership and dynamics. If each soil harbored a different seed bank membership, 478 
different thermophilic taxa could become active and prevalent in each fire-affected soil. This 479 
scenario is not well-supported by our data because we detect the dominant members of each 480 
fire-affected soil in the other fire-affected soils, albeit in lower abundances. Alternatively, 481 
stochastic awakenings from the microbial seed bank (Buerger et al., 2012) could result in 482 
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“priority effects” at temperature extremes, in which the first microorganisms to wake after the 483 
fire’s local onset have important influence over the community’s ultimate trajectory (e.g., 484 
Fukami, 2015). In our chronosequence study, the outcome of priority effects would appear as 485 
divergent community structures at high temperatures, therefore manifesting as unexplained drift. 486 
Our data indirectly support this scenario, as the three separate clusters of fire-affected 487 
communities (Supporting Figure 4B) hint that consistent trajectories are possible. It could be 488 
that the most similar fire-affected communities started from the same waking pioneer taxon.  489 

Interactions between active and dormant memberships could be manifested in part as 490 
within-site membership fluctuations, as we observed in this study. Given that awakenings from 491 
the microbial seed bank may be either responsive to a cue or stochastic (e.g., Lennon and 492 
Jones, 2011; Buerger et al., 2012), newly active seed bank members may contribute either to 493 
selection or drift processes; yet, these contributions would be very difficult to partition and may 494 
remain unexplained because common statistical methods do not explicitly consider them (e.g. 495 
Sloan et al., 2007). Because of analysis challenges as well as challenges in observing 496 
environmental microbial seed banks, there is a knowledge gap in understanding the roles of 497 
seed bank members for community responses to disturbances (though, see Aanderud et al., 498 
2015 for a key example of responses of rare or dormant taxa to soil re-wetting events). 499 
Thermophiles are prime examples of seed bank members that often have been found in 500 
environments that are improbable to permit their growth (e.g., Hubert et al., 2009; McBee and 501 
McBee, 1956; Portillo et al., 2012). Thus, a greater understanding of thermophile contributions 502 
to temperate soil seed banks and their strategies for resuscitation may provide insights into the 503 
general implications of dormant and active members for microbial community robustness to 504 
stressors. 505 

Diversification is a fourth community assembly process discussed by Vellend, 2010 and 506 
Nemergut et al., 2013. We do not directly address diversification in this study, focusing instead 507 
on ecological processes. Aside from a consistent observation of Acidobacteria and Chloroflexi 508 
among the dominant taxa in fire-affected soils, there is no evidence that different but closely 509 
related lineages are most prevalent across all fire-affected soils, which may have hinted to 510 
distinct but parallel trajectories of diversification within a locality. However, at this time, we 511 
cannot reject the hypothesis that diversification processes also contribute to divergences in 512 
community structure at temperature extremes. 513 

 514 
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Conclusions 515 

 Regardless of the interim dynamics that resulted in community divergence to the 516 
stressor, Centralia soils eventually recovered to a community structure very similar to reference 517 
soils, and these community structures were explained by the ultimate post-fire soil environment. 518 
Thus, our results show that Centralia soil communities, though sensitive to this extreme, 519 
complex, and arguably unnatural stressor, had near-complete return to pre-disturbance 520 
conditions, and were resilient within ten to twenty years after the stressor subsides.  We have 521 
no reason to suspect that temperate soils in Centralia are exceptional as compared to other 522 
soils. Thus, these results suggest that soils may have an intrinsic capacity for robustness to 523 
varied disturbances, even to those disturbances considered to be “extreme”, compounded, or 524 
incongruent with natural conditions. Understanding the precise functional underpinnings of soil 525 
microbial community resilience, including the roles of seed banks in determining that resilience, 526 
is a next important step in predicting and, potentially, managing, microbial community responses 527 
to disturbances.  528 
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Figures  673 

Figure 1. Soil physical and chemical contextual data (x-axis) plotted against temperature (y-674 
axis). Color gradient shows the soil temperature, and symbols show soil fire classification in 675 
October 2014 as fire-affected, recovered, or reference. 676 

Figure 2. Soil sampling sites at Centralia mine fire. In total, 18 surface soil samples (5.08 cm x 677 
20 cm PVC core) were collected along two fire fronts in Centralia, on 15/16 October 2014. 678 
Sampling sites encompass a gradient of historical fire activity (red flags: Fire-affected in 2014 679 
(temperature > 21°C); yellow flags: recovered in temperature, post-fire; and green flags: 680 
reference soils).  681 

Figure 3.  Within-sample (alpha) diversity of fire-affected, recovered, and reference soils in 682 
Centralia for bacterial and archaeal community (A) Faith’s phylogenetic diversity; (B) richness 683 
(total no. observed OTUs clustered at 97% sequence identity); and (C) Pielou’s evenness.   684 

Figure 4.  Principal coordinate analysis (PCoA) based on weighted UniFrac distances of 685 
phylogenetic bacterial and archaeal community structure. Colors show the fire classification of 686 
the soil as fire-affected (red), recovered (yellow), or reference (green). The strength of 687 
statistically significant (p < 0.10) explanatory variables are shown with solid arrows. 688 

Figure 5.  Phylum-level responses to the Centralia coal mine fire. Mean relative abundance of 689 
phyla summarized within soil fire classifications (fire-affected, recovered, and reference).  690 

Figure 6. Relative abundances of the collection of the most prevalent “top 10” taxa (rows) 691 
observed in any (A) fire-affected or (B) recovered soil in Centralia. Warm colors show 692 
prevalence within a site (columns), and cool colors show rarity.  Note differences in color scale 693 
gradient between (A) and (B).  694 
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Tables 696 
 697 
Table 1.  Ten most abundant OTUs in fire-affected Centralia soils. 698 

OTU ID Cumulative % 
abundance (out 

of total No. 
sequences in 
fire-affected 

samples) 

% occurrence  
(out of 9 warm 
or venting fire-
affected soils) 

Taxonomic assignment 

111933 5.5% 100% k__Archaea; p__Crenarchaeota; c__MBGA; o__; 
f__; g__; s__                                                     
 

OTU_dn_1 2.5 100%  k__Bacteria; p__Chloroflexi; c__Ktedonobacteria; 
o__Thermogemmatisporales; 
f__Thermogemmatisporaceae; g__; s__ 

OTU_dn_2 2.2 100%  k__Bacteria; p__Chloroflexi; c__Ktedonobacteria; 
o__Thermogemmatisporales; 
f__Thermogemmatisporaceae; g__; s__  

242467 2.0 100% k__Bacteria; p__Acidobacteria; c__DA052; 
o__Ellin6513; f__; g__; s__                                           

174835 2.0 100%  k__Archaea; p__Crenarchaeota; 
c__Thermoprotei; o__YNPFFA; f__SK322; g__; 
s__                                    

61819 1.7 100%  k__Bacteria; p__Acidobacteria; c__TM1; o__; 
f__; g__; s__                                                       

OTU_dn_17 1.5 78%  k__Bacteria; p__Proteobacteria; 
c__Deltaproteobacteria                                                          

215700 1.4 100%  k__Bacteria; p__Acidobacteria; 
c__Acidobacteriia; o__Acidobacteriales; 
f__Koribacteraceae; g__; s__             

OTU_dn_8 1.3 100%  k__Bacteria                                                                                                    
OTU_dn_3 1.2 100%  k__Bacteria   
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Supporting Figures  700 

Supporting Figure 1. PCoA showing the variability among technical replicates. Three replicate 701 
DNA extractions, amplifications and sequencing reactions were performed per soil, and these 702 
sequences were subsequently pooled into one aggregate set of sequences to achieve deep 703 
coverage of the community within each soil. Error bars are standard deviation around the mean 704 
weighted UniFrac distance among technical replicates, each subsampled to an even 53,000 705 
sequences per replicate. 706 
 707 
Supporting Figure 2.  Quantification of (A) 16S rRNA copies and (B) cell counts in fire-708 
affected, recovered, and reference soils. 16S rRNA copies were assessed using quantitative 709 
PCR, and cell counts were assessed using cell separation from soil, staining and microscope 710 
imaging.  711 

Supporting Figure 3. Centralia 16S rRNA amplicon sequencing effort assessed by 712 
subsampling/rarefaction of (A) richness and (B) Faith’s phylogenetic diversity with increasing 713 
total number of sequences. 714 

Supporting Figure 4.  Divergences in fire-affected soils are not well explained by temperature. 715 
(A) Principal coordinate analysis (PCoA) based on weighted UniFrac distances of phylogenetic 716 
bacterial and archaeal community structure in fire-affected soils. The strength of statistically 717 
significant (p < 0.10) explanatory variables are shown with blue arrows. (B) Constrained 718 
analysis based on weighted UniFrac distances, where the explanatory value of temperature is 719 
removed from the analysis to understand the influence of the remaining explanatory variables. 720 

Supporting Figure 5. Neutral models of community assembly (abundance v. occurrence) for 721 
(A) the total community (“All”, n= 18), (B) fire-affected soils (“Fire_Affected”, n=9) and (C) 722 
recovered soils (“Recovered” n=7).  Red symbols show OTUs that had higher abundance than 723 
their prediction, and blue symbols show OTUs that had lower abundance than their prediction. 724 
The thick yellow line is the neutral model prediction, and the thin yellow lines show a 95% 725 
confidence interval around the prediction. 726 

 727 

Supporting Tables 728 

Supporting Table 1.  Primers used in this study.   729 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2446v1 | CC BY 4.0 Open Access | rec: 13 Sep 2016, publ: 13 Sep 2016



Lee and Sorensen et al: Stochastic extremes, convergent recovery 

	 26	

Supporting Table 2. Mean and standard deviation (“sd”) phylogenetic diversity and number of 730 
OTUs (“richness) across technical sequencing replicates for the un-collapsed dataset (rarefied 731 
to 53,000 sequences per sample). Three replicate DNA extractions, amplifications and 732 
sequencing reactions were performed per soil, and, after calculating the technical variability, 733 
these sequences were pooled into one aggregate set of sequences to achieve deep coverage 734 
of the community within each soil. 735 

Supporting Table 3.  Percent variation explained for PCoA axes 1 and 2 for nonnormalized 736 
weighted and unweighted UniFrac, normalized weighted UniGrac, Sorensen-dice, and Bray-737 
Curtis distances/dissimilarities. Nonnormalized weighted UniFrac was chosen because it was 738 
most informative in explaining the variance along the first two axes.   739 

Supporting Table 4.  Explanatory value of soil contextual data to changes in Centralia soil 740 
community structure along PCoA axes for the all soils.  Factors significant at p < 0.10 are in 741 
bold. 742 

Supporting Table 5.  Explanatory value of soil contextual data to changes in Centralia soil 743 
community structure along PCoA axes for the fire-affected soils.  Factors significant at p < 0.10 744 
are in bold. 745 

Supporting Table 6.  Explanatory value of soil contextual data to changes in Centralia soil 746 
community structure along the constrained PCoA axes for the fire-affected soils, after removing 747 
the influence of temperature.  Factors significant at p < 0.10 are in bold. 748 

Supporting Table 7.  Parameters and fits of neutral models, implemented as per Burns et al. 749 
2015. 750 

Supporting Table 8. Welch’s t-tests comparing the mean relative abundances of phyla across 751 
fire-affected and recovered soils.  Bold values are significant at p < 0.05. 752 

 753 

 754 
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