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Abstract 15	

Coral reefs are a valuable and vulnerable marine ecosystem. The structure of coral 16	

reefs influences their health and ability to fulfill ecosystem functions and services. 17	

However, monitoring reef corals largely relies on 1D or 2D estimates of coral cover 18	

and abundance that overlook change in ecologically significant aspects of the reefs 19	

because they do not incorporate vertical or volumetric information. This study 20	

explores the relationship between 2D and 3D metrics of coral size. We show that 21	

surface area and volume scale consistently with planar area, albeit with morphotype 22	

specific conversion parameters. We use a photogrammetric approach using open-23	

source software to estimate the ability of photogrammetry to provide measurement 24	

estimates of corals in 3D. Technological developments have made photogrammetry a 25	

valid and practical technique for studying coral reefs. We anticipate that these 26	

techniques for moving coral research from 2D into 3D will facilitate answering 27	

ecological questions by incorporating the 3rd dimension into monitoring. 28	

 29	

 30	

Introduction 31	

Coral reefs are one of the most diverse and more highly threatened ecosystems on the 32	

planet. Monitoring how corals respond to the vast array of threats and disturbances 33	

that they face (Hoegh-Guldberg 1999; Hughes et al. 2003) is a crucial part of 34	

management and conservation. The challenge is understanding how best to quantify 35	

change in the corals themselves, and the wide range of ecosystem goods, functions 36	

and services which they provide (Moberg & Folke 1999). Here, we develop a 37	

methodology to allow incorporating 3D metrics into coral reef monitoring. 38	

 39	

The proportion of live coral cover on a reef is one of the most widely used metrics of 40	

reef health (Leujak & Ormond 2007). It is used as a proxy for coral biomass and reef 41	

building ability, and virtually all of the techniques used to assess this involve linear or 42	

horizontal planar estimates (Hill & Wilkinson 2004; Leujak & Ormond 2007; Vroom 43	

2010). However, it is increasingly clear that 2D estimates of coral cover alone are not 44	

always the best indicator of reef health (Balmford et al. 2003), and that a reef’s 3D 45	

structure provides valuable information about reef health (Goatley & Bellwood 2011). 46	

3D surface area and volume can provide more proximate metrics of coral abundance, 47	
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and thus allow capturing changes to the reef more accurately. In this work, we 48	

quantify the relationship between 2D metrics of coral cover and 3D metrics, and how 49	

this varies for different colony morphotypes. We also outline a technique for 50	

generating 3D models of corals and for measuring colony surface area and volume 51	

using photogrammetry based on open-source software. Our goal is to improve how 52	

we quantify change in coral reefs. 53	

 54	

A variety of techniques are used for research and monitoring of coral reefs, most of 55	

which focus on 2D (planar) measurements of colony size or coral cover (Gardner et 56	

al. 2003; Sweatman et al. 2011; Bruno & Selig 2007). The ubiquity of 2D 57	

representations of coral reefs enables standardization between and within different 58	

monitoring programmes, allows them to be carried out on a range of spatial scales, 59	

and facilitates the fast collection of estimates of abundance and cover (Hill & 60	

Wilkinson 2004; Shuman & Ambrose 2003; Booth et al. 2008). Our study uses planar 61	

area as an example of this type of 2D metric. Throughout this paper, we use the term 62	

“planar total surface area”, abbreviated to "PL TSA”, to refer to the projected surface 63	

area of a single plane, bird’s-eye view of a coral specimen. Despite the widespread 64	

use of 2D methods, there is increasing recognition of the limitations of these 65	

approaches. For example, overlooking the vertical aspect of coral reefs results in an 66	

inability to fully assess their structural complexity and measure ecologically 67	

significant changes (Goatley & Bellwood 2011). Furthermore, there is growing 68	

evidence that the role of different morphotypes should be considered when assessing 69	

coral reef health and structure (Burns et al. 2015).  70	

 71	

Coral morphotypes differ in their demographic rates and play different roles in the 72	

ecosystem. For example, morphotypes differ in their response to disturbance (Madin 73	

& Connolly 2006) and in their mortality schedule (Madin et al. 2014). Moreover, 74	

changes in the relative abundance of different morphotypes of corals may influence 75	

the provision of ecosystem services and biodiversity (Alvarez-Filip et al. 2011; Burns 76	

et al. 2015). Using 3D approaches to better understand the structure and function of 77	

different coral morphotypes, as well as their vulnerability to disturbance, is an 78	

important step towards elucidating the goods and services that reefs provide. This 79	
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study will contribute to this effort by exploring whether 3D metrics can be inferred 80	

from 2D estimates and colony morphotype. 81	

 82	

Surface area and volume are two 3D metrics particularly relevant for estimating the 83	

ecosystem services and functions performed by corals. Specifically, these two 84	

variables are critical for corals’ reef building capability, which modulates many coral 85	

reef ecosystem services (Moberg & Folke 1999). For example, the size and structure 86	

of coral reefs provide effective coastal defenses (Ferrario et al. 2014) and support reef 87	

fish assemblages (Graham et al. 2006). As such, metrics such as biomass, growth rate 88	

and production of carbonate, which are all related to volume (Cocito et al. 2003), 89	

should be considered. Other ecologically significant metrics, such as filtering 90	

capability and biomass of tissue, are related to colony surface area (Cocito et al. 91	

2003). The importance of quantifying the reef in 3D also relates to the overall 92	

structure of the reef. The structural complexity of the reef influences the biodiversity 93	

of reef fish (Graham et al. 2006), and the loss of this complexity is a major 94	

consequence of disturbance that leads to the degradation of biogenic habitats (Airoldi 95	

et al. 2008). 96	

 97	

There is increasing recognition of the need to develop better techniques for measuring 98	

coral colonies and reefs in 3D (Burns et al. 2015; Burns et al. 2015; Goatley & 99	

Bellwood 2011; Courtney et al. 2007). However, establishing these methods has 100	

traditionally proved to be problematic. In comparison to 2D techniques, methods that 101	

collect 3D data are costly, time consuming and difficult to carry out (Goatley & 102	

Bellwood 2011; Laforsch et al. 2008; Naumann et al. 2009), in addition to often being 103	

invasive or imprecise (Naumann et al. 2009).  104	

 105	

Photogrammetry, the science of measuring objects by piecing multiple photographs of 106	

them together in order to create digital models, provides an efficient approach to 107	

estimating coral surface area and volume. It is not invasive, but had until recently 108	

proved to be prohibitively time-consuming, costly or inaccurate (Courtney et al. 2007; 109	

Kruszyński et al. 2007). However, there is increasing success with this method 110	

following recent technological developments (Burns et al. 2015). The main 111	

improvements are the advent of Structure-from-Motion (SfM) photogrammetric 112	
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techniques, which no longer require specification of known 3D locations prior to 113	

calculating camera positions (Westoby et al. 2012), and the ability to automatically 114	

match corresponding points across images. SfM approaches address many of the 115	

historical limits of photogrammetry, and are particularly useful for marine ecological 116	

research having been successfully applied underwater by divers (Burns et al. 2015; 117	

McCarthy & Benjamin 2014). An additional benefit of current SfM technology is the 118	

increasing availability of open-source software options for applying this technique 119	

(Falkingham 2012), even though this has not yet been employed for studying coral 120	

colonies. 121	

 122	

This paper addresses two aspects of moving from measuring corals in 2D to 3D. First, 123	

we ask whether we can predict 3D metrics of coral abundance from 2D metrics. We 124	

hypothesize that coral morphotypes differ in their scaling relationships between 2D 125	

and 3D metrics. The second aim of our study is to measure corals in 3D directly. We 126	

determine whether photogrammetry provides accurate estimates of the surface area 127	

and volume of coral skeletons, and ask whether there are biases in this technique 128	

associated to different morphotypes. 129	

 130	
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Methods 131	

In order to capture 2D and 3D data, we used three methods for measuring coral 132	

skeletons, as outlined in Figure 1. First, we measured PL TSA from birds-eye-view 133	

photographs of the colonies with a scale. Computed tomography (CT) scans and 134	

photogrammetry (PH) were used on the same specimens to produce information about 135	

3D metrics, namely colony total surface area and volume (hereafter abbreviated to CT 136	

TSA, CT Vol, PH TSA and PH Vol respectively). In order to explore the most 137	

biologically useful information, the surface area of the colony that had been covered 138	

in corallites was also measured. This “live” surface area was produced from the 139	

results of all three methods; planar photography (PL LSA), photogrammetry (PH 140	

LSA) and CT scanning (CT LSA). Due to its high resolution, accuracy and inherent 141	

3D nature, the data collected using CT scans was used as a baseline (Veal et al. 2010) 142	

with which to compare the other two methods. Using this suite of techniques enabled 143	

us to examine the relationship between 2D and 3D metrics, as well as address some of 144	

the difficulties with collecting 3D data. 145	

 146	

 147	

 148	
Figure 1: The complete process used to measure TSA, LSA and volume in 2D and 149	

3D for each specimen, including the measurement techniques and software used.    150	

 151	

 152	
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Specimen selection 153	

We selected coral skeletons from the collection at the Bell Pettigrew Museum, 154	

University of St Andrews with replicate specimens across different morphotypes and 155	

sizes. Each specimen was identified to species, and their morphotype was classified as 156	

branching, encrusting or massive. The resulting selection of coral skeletons includes 157	

22 specimens described in Table S2. 158	

 159	

Photography and planar surface measurement 160	

Coral specimens were photographed from above with a 10cm x 10cm chessboard-161	

style calibration pattern using a digital camera (Nikon D40, 18-55mm lens) as seen in 162	

Figure 2a. The specimens were positioned in such a way as to replicate their natural 163	

orientation on the reef as much as possible. Each coral skeleton was photographed 164	

three times to quantify and minimize the effect of measurement error. The three sets 165	

of photographs were not taken consecutively, and the specimens were repositioned for 166	

each set so as to minimize bias resulting from a particular position or camera angle.  167	

 168	

All of the photos were then processed using the image analysis software ImageJ 169	

(Rasband 2014). For each step the image was zoomed in as much as possible, whilst 170	

keeping the entire colony and scale completely in view. A graphics tablet (medium 171	

Intuos, Wacom) was used to draw the outline of the whole coral colony and the areas 172	

that consisted of corallites. These contours were saved as a series of XY coordinates. 173	

The corners of the calibration pattern were also marked and saved as coordinates, in 174	

order to convert the pixel measurements into length (cm). After the necessary 175	

information had been extracted from the images and converted into XY coordinates, 176	

R (R Core Team, 2013) was used to calculate PL TSA and PL LSA from the relevant 177	

outlines (in square centimetres), using methodology and code from Madin et al. 178	

(2014).  179	

  180	
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 181	

 182	

 183	

 184	

      . 185	

Figure 2: Example of a) planar photography of a coral colony having been outlined 186	

and scaled using ImageJ and R, b) the surface generated using CT scanning, and c) 187	

the equivalent surface generated using SfM photogrammetry.  188	

 189	

 190	

Photogrammetry 191	

Photographs were taken using the same digital camera and a static off-camera flash 192	

set-up as for the planar photography. The specimens were placed on a table with four 193	

10cm scale bars positioned in a square on the surface around them. Photographs were 194	

taken with the camera positioned at various locations on a virtual hemispherical dome 195	

above the specimen, as illustrated in Figure 3. This created a hemisphere-like spread 196	

of images of the specimen from various viewpoints. Significant overlap between 197	

images is needed in order to automatically identify shared points that can then be 198	

reconstructed as 3D coordinates. The number of views varied from 39 to 164 based on 199	

the size and complexity of the specimen. Specimens with occluding structures require 200	

the highest number of photographs in order to produce the necessary coverage. 201	

a 

b 

c 
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 202	

 

 

Figure 3: Schematic of camera positions used to produce images 

for photogrammetry. In order to create a hemispherical spread of 

images, three rings of photographs at different heights (A) were 

constructed using overlapping images (B). 

 203	

 204	

The open-source software package Visual SFM (Wu, 2011; Wu et al 2011, Wu 2007) 205	

was used to create a point mesh from the overlapping images by determining camera 206	

positions and generating a sparse point cloud. This was then followed by dense 207	

reconstruction using an additional package for Clustering views for Multi-View 208	

A 

B 
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Stereo (CMVS) and Patch-based Multi-View Stereo (PMVS v2) (Furukawa & 209	

Curless 2010; Furukawa & Ponce 2010).  210	

 211	

The dense point cloud was then imported into MeshLab (Cignoni et al. 2008) and 212	

spurious points were removed. A surface layer was created from the point mesh using 213	

Poisson Surface Reconstruction. The scale bars were used to determine the coefficient 214	

needed to convert the mesh from pixels to absolute units, in this case millimetres. The 215	

model was then trimmed to remove the table and non-coral objects, as shown in 216	

Figure 2c. The volume and surface area for these meshes were calculated using 217	

Blender (www.blender.org) with the NeuroMorph plug-in (Jorstad et al, 2014), thus 218	

producing PH TSA and PH Vol. Since the specimens had sections of their surface that 219	

had not been the site of living corallites, Meshlab was used to remove these areas 220	

from the models. The PH LSAs were then calculated because this variable is more 221	

ecologically meaningful than the specimen’s entire surface area. To reduce the 222	

influence of any measurement errors, three models were produced for each specimen 223	

using different sets of images. 224	

 225	

Computed tomography and 3D surface measurement 226	

The coral specimens were scanned in air using a medical CT scanner, Siemens 227	

Biograph mCT-128. The protocol was based upon that of Naumann et al (2009). The 228	

images were acquired at 0.6mm slice width, 0.6mm increments and 0.5 pitch. Xray 229	

tube voltage was 120kV with effective mAs of 341 (automatically varied) and a field 230	

of view that was adapted to the size of each specimen. Three back-projection 231	

reconstructions were then produced for each colony from the spiral mode acquisition 232	

dataset, with sharp, medium and smooth kernel filters (H30, H40 & H50). Of these, 233	

the H40 reconstruction was selected for subsequent calculations because it gave the 234	

best compromise between high spatial resolution and low image noise. Using the 235	

corresponding 3D reconstructions of the coral colonies (example shown in Figure 2b), 236	

measurements of CT TSA and CT Vol were generated in square and cubic 237	

millimeters, respectively. As with the meshes produced through photogrammetry, 238	

Meshlab was used to trim away areas without corallites, and the CT LSA was then 239	

measured in Blender through the NeuroMorph toolset. Examples of CT and PH 240	

models are included in Figures 2 and S1. 241	

 242	

Statistical analysis 243	
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We used CT scan metrics of size as our benchmark (i.e. the response variables in our 244	

models), as these are recognised as the most accurate way of measuring corals in 3D 245	

(Veal et al. 2010). To address the first aim of testing whether 3D metrics can be 246	

inferred from 2D metrics of size, we fitted Ordinary Least Squares linear models 247	

predicting CT TSA, CT LSA, and CT Vol from PL TSA or PL LSA and morphotype. 248	

Models with and without morphotype were compared using the Akaike Information 249	

Criterion (AIC) to assess whether differences in scaling among morphotypes affect 250	

the compromise between goodness of fit and model complexity. In addition, Adjusted 251	

R2’s were used to assess the predictive ability of the different models.  252	

 253	

Our second aim was to assess the ability of photogrammetry to estimate 3D metrics of 254	

coral size. As per the previous aim, we fitted Ordinary Least Squares linear models 255	

predicting CT TSA, CT LSA, and CT Vol from PH TSA, PH LSA, or PH Vol and 256	

morphotype. We performed model selection as above to investigate morphotype 257	

associated bias in the estimates. Finally, we compared Adjusted R2’s of these models 258	

with those of a model with slope 1 and intercept 0. 259	

 260	

These models used single measurements for CT TSA and CT Vol, but mean values 261	

were used for each specimen’s PL TSA/LSA, PH TSA/LSA and PH Vol. All 262	

variables were log transformed to improve symmetry in the distribution of the 263	

residuals and to linearize the relationship between area (mm2) and volume (mm3). 264	

Statistical analysis was carried out in R (R Core Team, 2013). 265	

 266	

Results 267	

PL TSA and PL LSA can be used to infer accurate estimates of CT TSA, CT LSA and 268	

CT Vol. As predicted, 3D surface area is higher than 2D area, however the former 269	

scales tightly with the latter (Figure 4 A, B). Also, 3D volume is lower than the 270	

volume of a cube with a similar area, but again the scaling relationship is remarkably 271	

tight (Figure 4 C). The proportion of variance explained by the best model for each of 272	

these variables range between 0.81 and 0.90 (Table 1). Model selection suggests that 273	

morphotypes differ in their scaling relationship only for CT LSA (Figure 4, B, Table 274	

2). For both CT TSA and CT Vol the slope in the best model is constant across 275	

morphotypes, although for CT Vol morphotypes differ in their intercept (Figure 4, 276	

Table 2).  277	
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 278	
Figure 4. 3D metrics of size as a function of 2D metrics. Red circles represent 279	

branching colonies, blue encrusting and green massive. The solid lines represent a 280	

model where 3D metric is equal to the 2D metric (A,B) or the relationship predict for 281	

a cube (C). Dashed lines represent predictions for the best model, with different 282	

colours for different morphotypes as per the symbols when morphotypes differ in 283	

parameter estimates. 284	
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 286	

Table 1: Predictive accuracy of planar total or live surface area (PL TSA/LSA) when 287	

used alone and with morphotype to estimate CT TSA, CT LSA, CT Vol, respectively. 288	

Adjusted R2, p-value and Akaike’s Information Criterion (AIC) are given to 2 289	

significant figures. 290	

Response Predictor(s) Adjusted R2 p AIC 

CT TSA 

PL TSA 0.88 5.40x10-11 15.03 

PL TSA + 

morphotype 
0.88 2.55x10-8 16.01 

PL TSA * 

morphotype 
0.88 7.22x10-8 18.07 

CT LSA 

PL LSA 0.70 3.65x10-7 39.67 

PL LSA + 

morphotype 
0.745 3.55x10-06 37.86 

PL LSA * 

morphotype 
0.81 3.31x10-06 32.88 

CT Vol 

PL TSA 0.73 2.42x10-07 42.85 

PL TSA + 

morphotype 
0.90 9.76x10-10 23.14 

PL TSA * 

morphotype 
0.90 1.79x10-8 23.67 

 291	

  292	
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 293	

Table 2: Parameter estimates for best models to predict CT TSA, CT LSA and CT 294	

Vol from PL TSA or LSA to for coral colonies of a range of morphotypes. All 295	

variables in the regression models were log transformed hence a general predictive 296	

function is 𝐶 =  𝑒!! !!" (!), where C is CT TSA, CT LSA or CT Vol and P is PL 297	

TSA, or PL LSA as per Figure 1.  298	

 299	

Response morphotype α (CI) Β (CI) 

CT TSA all 1.528 (0.692 to 2.365) 1.016 (0.849 to 1.184) 

CT LSA 

branching 1.024 (-0.749 to 2.797) 1.118 (0.768 to 1.468) 

encrusting -4.387 (-10.597 to -0.225) 1.987 (-0.093 to 1.830) 

massive 2.796 (-0.812 to 4.355) 0.696 (-0.975 to 0.132) 

CT Vol 

branching -1.570 (-2.671 to -0.469) 

1.375 (1.160 to 1.589) encrusting -1.638 (-0.501 to 0.364) 

massive -0.579 (0.610 to 1.373) 

 300	

  301	
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 302	

Photogrammetry provides fairly accurate estimates of the surface area and volume of 303	

coral skeletons: R2 of best fit models range between 0.70 and 0.97 (Table 3). 304	

However, paired t-tests showed that the techniques for measuring 3D information, CT 305	

scanning and photogrammetry, produced signficantly different measurements from 306	

each other for specimen volume (p=0.0186), TSA (p=0.00837) and LSA (p=0.00205). 307	

Photogrammetry generally underestimated TSA and overestimated volume (Figure 5). 308	

Both photogrammetry and planar photography were less accurate at predicting CT 309	

LSA than CT TSA. Model selection does not reveal bias associated to morphotype for 310	

TSA and LSA, as the best model has constant scaling across morphotypes (Figure 5 311	

A, B, Table 3). In contrast, the best model for Vol does include different slopes and 312	

intercepts for different morphotypes, as for massive colonies PH Vol is virtually 313	

identical to CT Vol, but for both encrusting and branching colonies the PH Vol 314	

increasingly overestimates CT Vol as colony sizes increase (Figure 5 C).  315	

 316	
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 317	
Figure 5. Relationship between CT and PH estimates of colony size. Red circles 318	

represent branching colonies, blue encrusting and green massive. The solid lines 319	

represent a model where the two metrics are identical. Dashed lines represent 320	

predictions for the best model, with different colours for different morphotypes as per 321	

the symbols when morphotypes differ in parameter estimates. 322	
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 324	

Table 3: Predictive accuracy of Photogrammetry total and live surface area, and 325	

volume (PH TSA, PH LSA, PH Vol, respectively) when used alone and with 326	

morphotype to estimate total and live surface area and volume according to CT 327	

scanning (CT TSA, CT LSA, CT Vol, respectively). Adjusted R2, p value and 328	

Akaike’s Information Criterion (AIC) are given to 3 significant figures. 329	

Response Predictor(s) Adjusted R2 p AIC 

CT TSA 

PH TSA 0.876 9.75x10-11 16.319 

PH TSA + 

morphotype 
0.875 5.92x10-9 18.074 

PH TSA * 

morphotype 
0.868 1.84x10-7 20.686 

CT LSA 

PH LSA 0.702 3.64x10-7 39.601 

PH LSA + 

morphotype 
0.692 3.55x10-06 41.983 

PH LSA * 

morphotype 
0.690 3.31x10-06 43.560 

CT Vol 

PH Vol 0.955 1.02x10-06 3.271 

PH Vol + 

morphotype 
0.973 2.52x10-10 -6.432 

PH Vol * 

morphotype 
0.976 6.45x10-9 -7.847 

 330	
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Discussion 331	

We have improved our understanding of the relationship between 2D and 3D metrics 332	

of coral colonies size and outlined an approach for converting between the two. Our 333	

results support the hypothesis that 3D metrics of size scale consistently with 2D 334	

metrics. Moreover, we demonstrated the potential for photogrammetry to predict CT 335	

TSA/LSA and CT Vol. Together, our results suggest that 2D data can be converted 336	

into more ecologically meaningful 3D metrics, such as colony surface area and 337	

volume, when combined with information about colony morphotypes. Measuring 338	

corals in 3D on a large scale is thus becoming feasible. 339	

 340	

The measurements collected using photogrammetry were found to be significantly 341	

different from the results of the CT scans, but were nevertheless excellent predictors 342	

when combined with information about the morphotype of the colony. The 343	

differences observed are linked to the different resolutions of the two methods (much 344	

higher for CT scans, see appendix 2). Lower resolution 3D photogrammetry models 345	

cause both the underestimation in surface area and the overestimation in volume. Our 346	

study adds to growing evidence that the previously prohibitive aspects of 347	

photogrammetry are being overcome by technological improvements (Burns et al. 348	

2015; Falkingham 2012). The possibility of applying this technique using open-source 349	

software opens it up to a wider audience. The application of photogrammetry to 350	

measuring reef topography (Burns et al. 2015) combined with our detailed modeling 351	

of individual coral colonies illustrates the wide range of potential applications this 352	

technique can have in monitoring and studying coral reefs and their ecology.  353	

 354	

There are costs in time associated to quantifying cover in 3D rather than 2D. We 355	

found that photogrammetry was easier to carry out when dealing with less 356	

complicated morphotypes, which required less processing time and fewer 357	

photographs. Photogrammetry is particularly effective for colonies with simpler 358	

structures and few occlusions, and it has been suggested that it could be a valuable 359	

technique in areas with a high prevalence of hemispherical colonies, such as the 360	

Caribbean (Courtney et al. 2007). In contrast, calculating PL TSA/LSA took less time 361	

because it required fewer photographs and less image processing. Although more 362	

complicated morphotypes still required more processing than simple colony shapes, 363	
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the difference in time and effort was negligible compared to when using 364	

photogrammetry. The labour-intensive nature of measuring corals in 3D, despite 365	

recent technological developments, does suggest that the option of converting 2D 366	

measurements into 3D metrics may provide a useful alternative in cases where 367	

conducting monitoring in 3D is not feasible due to the time or costs involved, but 2D 368	

measurements alone are not sufficient. There is still scope for further improvements to 369	

photogrammetry, as well as other 3D techniques, through technological advances that 370	

will lead to their much broader application in situ. Future work could focus on 371	

optimizing the imaging stage to improve the quality of the reconstructions whilst 372	

streamlining the time and effort needed to collect images. For example, determining 373	

the best camera position, field of view, number of images and how these might 374	

change when applied in situ would provide valuable insight. Furthermore, other 375	

techniques for measuring in 3D, such as laser scanners or stereo cameras could be 376	

considered as they continue to improve alongside the methods used here.  377	

 378	

In addition to the consideration of costs, there are data from the past for which we 379	

cannot measure surface area and volume in 3D. However, we may still be able to 380	

recover an estimate of this information retrospectively by converting historical 2D 381	

data into 3D metrics. We have produced empirical formulae that combine PL 382	

TSA/LSA and morphotype categories to predict colony TSA/LSA or volume. 383	

Importantly, the predictive power of these conversion models is similar to the 384	

estimates obtained through photogrammetry. Our results indicate the importance of 385	

recording the morphotype of a colony when conducting monitoring, as this trait 386	

determines the relationship between some of the 2D and 3D metrics. Increasing the 387	

number of specimens for each morphotype and widening the size spectra would 388	

further improve these formulae, and it would be valuable also to expand them to 389	

additional morphotypes in the future.  390	

 391	

Morphotype categories are not always clear-cut and the variability within groups 392	

supports the need to move from discrete classifications of morphotypes towards 393	

individual level continuous traits that measure colony shape. Moreover, our work 394	

suggests that surface area and volume, as well as the ratios between these variables 395	

and PL TSA, are potential candidates as useful traits. This shift in focus would also 396	
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address the fact that corals can exhibit a high degree of morphological plasticity 397	

within species (Todd 2008), with colonies of the same species fulfilling different 398	

categories of morphotype. This level of plasticity suggests that when our equations 399	

are used in the future they should be applied based on the morphotype observed in the 400	

field, rather than one that is based on species identification. This is particularly true 401	

because species level identification of corals is difficult.  402	

 403	

Improved understanding of the relationship between 2D and 3D parameters for 404	

different morphotypes should contribute towards our grasp of the ecological role of 405	

different coral morphotypes. We already know that morphotypes respond differently 406	

to disturbance (Madin & Connolly 2006) and play different ecological roles (Alvarez-407	

Filip et al. 2011). It has also been suggested that examining the ratio of different coral 408	

morphotypes on reefs can give insight into reef health (Edinger & Risk 2000). 409	

However, many coral survey techniques entail intrinsic bias and require very large 410	

sample sizes to measure changes in the abundance of individual morphotypes (Leujak 411	

& Ormond 2007). Our approach can provide a transition between traditional methods 412	

and accurate 3D modeling, which will improve our understanding of the contribution 413	

of different morphotypes to the services and functions provided by coral reefs. In 414	

addition to applying our findings to future research, a significant benefit of using the 415	

equations developed herein is that they can be applied to archived images and 416	

historical data sets. This will enable data comparisons over as long a timescale as 417	

possible, minimising the “shifting baseline” effect (Knowlton & Jackson 2008). 418	

 419	

Conclusions 420	

In conclusion, coral colony surface area and volume can be predicted effectively from 421	

both PL TSA and morphotype. This development provides a stepping-stone by which 422	

we can shift to a more 3D orientated approach to measuring corals and may enable 423	

better understanding and exploitation of historical data. Furthermore, photogrammetry 424	

clearly contributes towards addressing the question of how best to measure corals 425	

because it is a widely accessible, non-invasive and cost effective method for making 426	

3D measurements in-situ. This paper illustrates two specific areas for studying corals 427	

in ways that better capture changes amongst corals and the ecological processes 428	
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associated with them. We hope that these approaches will eventually enable more 429	

accurate coral reef monitoring and conservation. 430	
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