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ABSTRACT9

Effects of differential extinction rates remain being an issue in biogeographic and evolutionary studies.
Here, I use empirical examples and simulated datasets to asses how the specification of different
extinction rates influences ancestral range estimation in historical biogeography. The results showed
that variations in scale and asymmetry of extinction rates may have notorious effects in the accuracy of
biogeographic inferences, specially when the rates of extinction are high. Further work may explore the
behavior of current statistical methods of biogeographic inference with different estimates of extinction
based on novel developments in this field.
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INTRODUCTION17

Statistical methods to ancestral range reconstructions are mainly focused in the estimation of two types18

of parameters: dispersal and extinction rates. Estimation of extinction rates is difficult, most of the19

current approaches relie on information about the timing of splits and branching patterns of molecular20

phylogenies (Sanmartı́n and Meseguer, 2016).A common assumption since the initial formulation of21

the Dispersal-Extinction-Cladogenesis by Ree et al. (2005) is that extinction rates are constant through22

lineages and areas (Ronquist and Sanmartı́n, 2011). More realistic scenarios may include different rates23

of speciation and extinction per region as implemented in the GeoSSE model (Goldberg et al., 2011) or24

the ideas of Webb and Ree (2012) inspired in the theory of island biogeography (MacArthur and Wilson,25

1967). However, these scenarios are not currently implemented in the most widely used packages for26

biogeographic inference.27

While attempts to elucidate how uncertainty in dispersal routes and phylogenetic inference may alter28

reconstruction of biogeographic histories have been made (Nylander et al., 2008) (Chacón and Renner,29

2014), effects of the use of different extinction rates to this kind of data are limited. Due to these reasons,30

I test the accuracy of statistical methods ton infer biogeographic reconstructions to varying extinction31

rates.32

METHODS33

I explore how using differential extinction rates may influence the ability of current methods to infer the34

ancestral area of lineages. This was done by two ways: empirical and simulated datasets.35

Following a basic premise of island biogeography and former implemented in the software SHIBA36

(Webb and Ree, 2012), I use area size as a proxy for extinction rates. Althought the use of geographical37

size may be inadequate , I use it for illustrative purposes.38

As empirical example, I used the Indian Ocean Primulaceae dataset of Strijk et al. (2014), particularly39

the subclade inhabiting Madagascar and the Mascarene islands of Mauritius, Reunion and Rodrigues. This40

example was chosen due its particularity: each of these species is single-island endemic, and differences41

in island size are notorious.42
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Simulated data were generated in the R package diversitree (FitzJohn, 2012) as follow. First, I fitted43

the parameters of extinction, anagenetic change and extinction for the Primulaceae data to the MuSSE44

model (FitzJohn, 2012). The use of MuSSE rather than GeoSSE was prefered due the especial conditions45

mentioned above to match the number of possible states (4 in the empirical example). The root of each46

simulated scenario was assigned to state = 1, and 10 simulated datasets were generated with a limit of 3047

extant taxa to the present.48

Ancestral range reconstruction analyses were carried in the Dispersal-Extinction-Cladogenesis model49

in a bayesian framework as implemented in Revbayes 1.0.1 (Höhna et al., 2016) in four different scenarios50

(See below). Maximum range size at the root of the trees was set to two in both empirical and simulated51

data.For simplicity reasons, I don’t take into account temporal constraints of dispersal between regions,52

unlike the original study of Strijk et al. (2014).53

Reconstructions Scenarios. First, extinction rates were held constant along the areas with a extinction54

rate of 1 (equalratesHigh); second, each area with its own extinction rate inversely proportional to the55

logarithm of the size of each island (diffratesHigh). More moderate scenarios were modeled scaling the56

previous two scenarios by a factor of 0.1, equalratesLow and diffratesLow, respectively.57

Finally, I evaluated the behavior of the biogeographic reconstructions measuring the relative likelihood58

of the true state at the root of the empirical data and each of the simulated histories.59

Figures were drawn with the R packages in ggplot2 (Wickham, 2009)60

RESULTS AND DISCUSSION61

Indian Ocean Primulaceae biogeography62

Frequencies at the root of the tree in the case of family Primulaceae for each scenario were above 0.9 (See63

Table 1). Like the study of Strijk et al. (2014), most likely ancestral state was Madagascar. Likelihood64

values of the most frequent state at the root of the tree show a moderate decrease with augments in both65

asymmetry and higher extinction rates.66

Simulated datasets67

Results of simulated datasets yielded similar outcomes to the empirical examples, but severely marked.68

Figure 1 shows the effects of the use of differential extinction rates in biogeographic reconstruction. It’s69

worth noting that relative likelihood of true state is high in both scenarios with low rates of extinction. A70

great variation is found in the inferred ancestral state when higher extinction rates are used.71

Effects of varying dispersal rates shown that sensitivity of reconstruction of DEC is high. In a study72

with the plant family Hydatellaceae, Iles et al. (2014) conclude that the higher the extinction rates, the73

less accurate are the reconstructions in terms of the likelihood of the ancestral state, this is seen not only74

at the root, but also and each of the nodes of the tree. Similarities of their results to those here obtained,75

support the idea that confidence of statistical methods to reconstruct biogeographic histories are prone to76

varying extinction rates, even when extinction rates are high but not necessarily asymmetric.77

Methodological issues, including the logic for the use of size as an initial estimate of extinction rates78

may be bias the results (See (Webb and Ree, 2012) for reasons). However, it seems more or less clear that79

a common pattern is found in this and other studies. The limited size of the simulated datasets doesn’t80

allow to formulate proper conclusions, but it can be seen as an attempt to elucidate how ancestral range81

reconstruction are prone to the use of asymmetric and high spatial extinction rates.82

CONCLUSIONS83

Here, I have shown through empirical and simulated data how the use of different spatial extinction rates84

may influence the results of ancestral range reconstruction yielding to lower accuracy.Further work may85

explore more propitious estimates of extinction rates, including these from recent advances that take into86

account the fossil record and allow variation of rates through time.87

SUPPLEMENTAL DATA88

Supplementary results, data and scripts used to generate simulations are available at http://github.com/jessop/Extinction-89

rates.90
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Scenario Frequency of state
equalratesLow 0.9994
equalratesHigh 0.9805
diffratesLow 0.9774
diffratesHigh 0.9388

Table 1. Frequency of the most likely state at the root of the tree for the Indian Ocean Primulaceae data.

Figure 1. Effects of the use of differential extinction rates on ancestral range reconstruction for ten
simulated datasets.Boxes represent the relative likelihood of the true state at the root of the tree under
each scenario as inferred in revbayes.
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