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Functional traits are the primary biotic component driving organism influence on

ecosystem functions; in consequence, traits are widely used in ecological research.

However, most animal trait-based studies use easy-to-measure characteristics of species

that are at best only weakly associated with functions. Animal-mediated pollination is a

key ecosystem function and is likely to be influenced by pollinator traits, but to date no

one has identified functional traits that are simple to measure and have good predictive

power. Here, we show that a simple, easy to measure trait (hairiness) can predict

pollinator effectiveness with high accuracy. We used a novel image analysis method to

calculate entropy values for insect body surfaces as a measure of hairiness. We evaluated

the power of our method for predicting pollinator effectiveness by regressing pollinator

hairiness (entropy) against single visit pollen deposition (SVD) and pollen loads on insects.

We used linear models and AICC model selection to determine which body regions were the

best predictors of SVD and pollen load. We found that hairiness can be used as a robust

proxy of SVD. The best models for predicting SVD for the flower species Brassica rapa and

Actinidia deliciosa were hairiness on the face and thorax as predictors (R2 = 0.98 and 0.91

respectively). The best model for predicting pollen load for B. rapa was hairiness on the

face (R2 = 0.81). Accordingly, we suggest that the match between pollinator body region

hairiness and plant reproductive structure morphology is a powerful predictor of pollinator

effectiveness. We show that pollinator hairiness is strongly linked to pollination � an

important ecosystem function, and provide a rigorous and time-efficient method for

measuring hairiness. Identifying and accurately measuring key traits that drive ecosystem

processes is critical as global change increasingly alters ecological communities, and

subsequently, ecosystem functions worldwide.
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19 Abstract

20 Functional traits are the primary biotic component driving organism influence on ecosystem 

21 functions; in consequence traits are widely used in ecological research. However, most animal 

22 trait-based studies use easy-to-measure characteristics of species that are at best only weakly 

23 associated with functions. Animal-mediated pollination is a key ecosystem function and is likely 

24 to be influenced by pollinator traits, but to date no one has identified functional traits that are 

25 simple to measure and have good predictive power. Here, we show that a simple, easy to 

26 measure trait (hairiness) can predict pollinator effectiveness with high accuracy. We used a novel 

27 image analysis method to calculate entropy values for insect body surfaces as a measure of 

28 hairiness. We evaluated the power of our method for predicting pollinator effectiveness by 

29 regressing pollinator hairiness (entropy) against single visit pollen deposition (SVD) and pollen 

30 loads on insects. We used linear models and AICC model selection to determine which body 

31 regions were the best predictors of SVD and pollen load. We found that hairiness can be used as 

32 a robust proxy of SVD. The best models for predicting SVD for the flower species Brassica rapa 

33 and Actinidia deliciosa were hairiness on the face and thorax as predictors (R2 = 0.98 and 0.91 

34 respectively). The best model for predicting pollen load for B. rapa was hairiness on the face (R2 

35 = 0.81). Accordingly, we suggest that the match between pollinator body region hairiness and 

36 plant reproductive structure morphology is a powerful predictor of pollinator effectiveness. We 

37 show that pollinator hairiness is strongly linked to pollination � an important ecosystem function, 

38 and provide a rigorous and time-efficient method for measuring hairiness. Identifying and 

39 accurately measuring key traits that drive ecosystem processes is critical as global change 

40 increasingly alters ecological communities, and subsequently, ecosystem functions worldwide.

41
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42 Introduction

43 Trait-based approaches are now widely used in functional ecology, from the level of individual 

44 organisms to ecosystems (Cadotte et al. 2011). Functional traits are defined as the characteristics 

45 of an organism�s phenotype that determine its effect on ecosystem level processes (Naeem & 

46 Wright 2003; Petchey & Gaston 2006). Accordingly, functional traits are recognised as the 

47 primary biotic component by which organisms influence ecosystem functions (Gagic et al. 2015; 

48 Hillebrand & Matthiessen 2009). Trait-based research is dominated by studies on plants and 

49 primary productivity, and little is known about key traits for animal-mediated and multi-trophic 

50 functions, particularly for terrestrial invertebrates (Didham et al. 2016; Gagic et al. 2015; Lavorel 

51 et al. 2013).

52

53 Most animal trait-based studies simply quantify easy-to-measure morphological characteristics, 

54 without a mechanistic underpinning to demonstrate these �traits� have any influence on the 

55 ecosystem function of interest (Didham et al. 2016). This results in low predictive power, 

56 particularly where trait selection lacks strong justification through explicit ecological questions 

57 (Gagic et al. 2015; Petchey & Gaston 2006). If the ultimate goal of trait-based ecology is to 

58 identify the mechanisms that drive biodiversity impacts on ecosystem function, then traits must 

59 be quantifiable at the level of the individual organism, and be inherently linked to an ecosystem 

60 function (Bolnick et al. 2011; Pasari et al. 2013; Violle et al. 2007).

61

62 Methodology that allows collection of trait data in a rigorous yet time-efficient manner and with 

63 direct functional interpretation will greatly enhance the power of trait-based studies. Instead of 

64 subjectively selecting a large number of traits with unspecified links to ecosystem functions, it 
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65 would be better to identify fewer, uncorrelated traits, that have a strong bearing on the function 

66 of interest (Carmona et al. 2016). Selecting traits that are measurable on a continuous scale, 

67 would also improve predictive power of studies (McGill et al. 2006; Violle et al. 2012). 

68 However, far greater time and effort is required to measure such traits, exacerbating the already 

69 demanding nature of trait-based community ecology (Petchey & Gaston 2006).

70

71 Animal-mediated pollination is a multi-trophic function, driven by the interaction between 

72 animal pollinators and plants (Kremen et al. 2007). A majority of the world�s wild plant species 

73 are pollinated by animals (Ollerton et al. 2011), and over a third of global crops are dependent on 

74 animal pollination (Klein et al. 2007). Understanding which pollinator traits determine the 

75 effectiveness of different pollinators is critical to understanding the mechanisms of pollination 

76 processes. However, current traits used in pollination studies often have weak associations with 

77 pollination function and/or have low predictive power. For example Larsen, Williams & Kremen 

78 (2005) used body mass to explain pollen deposition by solitary bees even when the relationship 

79 was weak and non-significant. Many trait-based pollination studies have subsequently used body 

80 mass or similar size measures, despite their low predictive power. Similarly, Hoehn et al (2008) 

81 used spatial and temporal visitation preferences of bees to explain differences in plants 

82 reproductive output. They found significant relationships (i.e. low P values) between spatial and 

83 temporal visitation preferences and seed set, but with small R2 values, suggesting these traits 

84 have weak predictive power. To advance trait-based pollination research we require traits that are 

85 good predictors of pollination success.

86
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87 Observational studies suggest that insect body hairs are important for collecting pollen that is 

88 used by insects for food and larval provisioning (Holloway 1976; Thorp 2000). Hairs facilitate 

89 active pollen collection e.g. many bees have specialised hair structures called scopae that are 

90 used to transport pollen to the nest for larval provisioning (Thorp 2000). Additionally, both bees 

91 and flies have hairs distributed across their body surfaces which act to passively collect pollen 

92 for adult feeding (Holloway 1976). Differences in the density and distribution of hairs on pollen 

93 feeding insects likely reflects their feeding behaviour, the types of flowers they visit, and 

94 whether they use pollen for adult feeding and/or larval provisioning (Thorp 2000). However, 

95 despite anecdotal evidence that insect body hairs are important for pollen collection and 

96 pollination, there is no proven method for measuring hairiness, nor is there evidence that hairier 

97 insects are more effective pollinators.

98

99 Here, we present a novel method based on image entropy analysis for quantifying pollinator 

100 hairiness. We define pollination effectiveness as single visit pollen deposition (SVD): the 

101 number of conspecific pollen grains deposited on a virgin stigma in a single visit (King et al. 

102 2013; Ne'eman et al. 2010). SVD is a measure of an insects� ability to acquire free pollen grains 

103 on the body surface and accurately deposit them on a conspecific stigma. We predict that 

104 hairiness, specifically on the body parts that contact the stigma, will have a strong association 

105 with SVD. We show that the best model for predicting pollinator SVD for pak choi (Brassica 

106 rapa) is highly predictive and includes hairiness of the face and thorax dorsal regions as 

107 predictors, and the face region alone explains more than 90% of the variation. Our novel method 

108 for measuring hairiness is rigorous, time efficient and inherently linked to pollination function. 
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109 Accordingly, this method could be applied in diverse trait-based pollination studies to progress 

110 understanding of the mechanisms that drive pollination processes.

111

112 Materials and Methods

113 Imaging for hairiness analysis 

114 We photographed pinned insect specimens using the Visionary Digital Passport portable imaging 

115 system (Figure 1). Images were taken with a Canon EOS 5D Mark II digital camera (5616 x 

116 3744 pix). The camera colour profile was sRGB IEC61966-2.1, focal length was 65mm and F-

117 number was 4.5. We used ventral, dorsal and frontal shots with clear illumination to minimise 

118 reflection from shinny insect body surfaces. All photographs were taken on a plain white 

119 background. Raw images were exported to Helicon Focus 6 where they were stacked and stored 

120 in .jpg file format.

121

122 Image processing and analysis

123 We produced code to quantify insect pollinator hairiness using MATLAB (MathWorks, Natick, 

124 MA, USA), and functions from the MATLAB Image Processing ToolBox. We quantified 

125 relative hairiness by creating an entropy image for each insect photograph, and computed the 

126 average entropy within user-defined regions (Gonzales et al. 2004). To calculate entropy values 

127 for each image we designed three main functions. The first function allows the user to define up 

128 to four regions of interest (RoIs) within each image. The user can define regions by drawing 

129 contours as closed polygonal lines of any arbitrary number of vertexes. All information about 

130 regions (location, area and input image file name) is stored as a structure in a .mat file.

131
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132 The second function executes image pre-processing. We found that some insects had pollen 

133 grains or other artefacts attached to their bodies, which would alter the entropy results. Our pre-

134 processing function eliminates these objects from the image by running two filtering processes. 

135 First, the function eliminates small objects with an area less than the user definable threshold (8 

136 pixels by default). For the first task, each marked region is segmented using an optimized 

137 threshold obtained by applying a spatially dependant thresholding technique. Once each region 

138 has been segmented, a labelling process is executed for all resulting objects and those with an 

139 area smaller than the minimum value defined by the user are removed. Secondly, as pollen grains 

140 are often round in shape, the function eliminates near-circular objects. The perimeter of each 

141 object is calculated and its similarity to a circle (S) id defined as:

142 �= 4� ∙ �������������2
143 Objects with a similarity coefficient not within the bounds defined by the user (5% by default) 

144 are also removed from the image. Perimeter calculation is carried out by finding the object�s 

145 boundary, and computing the accumulated distance from pixel centre to pixel centre across the 

146 border, rather than simply counting the number of pixels in the border. The entropy filter will not 

147 process objects that have been marked as �deleted� by the pre-processing function. This initial 

148 pre-processing provides flexibility by allowing users to define the minimum area threshold and 

149 the degree of similarity of objects to a circle. Users can also disable the image pre-processing by 

150 toggling a flag when running the entropy filter.

151

152 Once pre-processing is complete, each image is passed to the third function, which is the entropy 

153 filter calculation stage. The entropy filter produces an overall measure of randomness within 

154 each of the user defined regions on the image. In information theory, entropy (also expressed as 
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155 Shannon Entropy) is an indicator of the average amount of information contained in a message 

156 (Shannon 1948). Therefore, Shannon Entropy, H, of a discrete random variable  that can take n �
157 possible values , with a probability mass function  is given by:{�1,�2,...,��} �(�)
158 �(�)=‒ �∑�= 1�(��) ∙ ���2(�(��))
159 When this definition is used in image processing, local entropy defines the degree of complexity 

160 (variability) within a given neighbourhood around a pixel. In our case, this neighbourhood (often 

161 referred to as the structuring element) is a disk with radius  (we call the radius of influence) that �
162 can be defined by the user (7 pixels by default). Thus for a given pixel in position (i,j) in the input 

163 image, the entropy filter computes the histogram  (using 256 bins) of all pixels within its radius ���
164 of influence, and returns its entropy value  as:���
165 ���=‒ ��� ∙ ���2(���)
166 where  is a vector containing the histogram results for pixel (i,j) and ( ) is the dot product ��� ∙
167 operator. Using default parameters, our entropy filter employs a 7 pixel (13 x 13 neighbourhood) 

168 radius of influence, and a disk-shaped structuring element, which we determined based on the 

169 size of hairs. Therefore, in the entropy image, each pixel takes a value of entropy when 

170 considering 160 pixels around it (by default). However, the definition of the optimum radius of 

171 influence depends on the size of the morphological responsible for the complexity in the RoI. 

172 This is defined not only by the physical size of these features but also by the pixel-to-millimetre 

173 scaling factor (i.e. number of pixels in the sensor plane per mm in the scene plane). Thus, 

174 although 7 pixels is the optimum in our case to detect hairs, the entropy filter function takes this 

175 radius as an external parameter which can be adjusted by the user to meet their needs.

176
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177 The entropy filter function is a process that runs over three different entropy layers (ER, EG, EB), 

178 one for each of the camera�s colour channels (Red, Green, and Blue), for each input image. 

179 These three images are combined into a final combined entropy image ES, where each pixel in 

180 position (i,j) takes the value ES(i,j):

181 ��(�,�)= ��(�,�) ∙ ��(�,�) ∙ ��(�,�)
182 Once entropy calculations are complete, our function computes averages and standard deviations 

183 of ES within each of the regions previously defined by the user, and writes the results into a .csv 

184 file (one row per image). Entropy values produced by this function are consistent for different 

185 photos of the same region on the same specimen (Supporting Information 6; Table S2). The 

186 scripts for the image pre-processing, region marking and entropy analysis functions are provided, 

187 along with a MATLAB tutorial (Supporting Information 1-4).

188

189 Case study: Hairiness as a predictor of SVD and pollen load

190

191 Model flower floral biology

192 We used Brassica rapa var. chinensis (Brassicaceae) or pak choi as our model flower to 

193 determine if our measurement of insect hairiness is a good predictor of pollinator effectiveness. 

194 B. rapa is a mass flowering global food crop (Rader et al. 2009). It has an actinomorphic open 

195 pollinated yellow flower with four sepals, four petals, and six stamens (four long and two short) 

196 (Walker et al. 1999). The nectaries are located in the centre of the flower, between the stamens 

197 and the petals, forcing pollinators to introduce their head between the petals. B. rapa shows 

198 increased seed set in the presence of insect pollinators and the flowers are visited by a diverse 

199 assemblage of insects that differ in their ability to transfer pollen (Rader et al. 2013).
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200

201 Insect pollinator collection for entropy analysis

202 We collected pollinating insects from B. rapa crops for image analysis during the summer of 

203 December 2014 � January 2015. Insects were chilled immediately and then killed by freezing 

204 within 1 day and stored at -18°C in individual vials. All insects were identified to species level 

205 with assistance from expert taxonomists.

206

207 Image processing

208 We measured the hairiness of 10 insect pollinator species (n=8�10 individuals per species), 

209 across five families and two orders. This included social, semi-social and solitary bees and 

210 pollinating flies. Regions marked included: 1) face; 2) head dorsal; 3) head ventral; 4) front leg; 

211 5) thorax dorsal; 6) thorax ventral; 7) abdomen dorsal and 8) abdomen ventral. All entropy 

212 analysis was carried out using our image processing method outlined above.

213

214 Single visit pollen deposition (SVD) and pollen load

215 We used SVD data for insect pollinators presented in Rader et al. (2009) and Howlett et al. 

216 (2011); a brief description of their methods follows.

217

218 Pollen deposition on stigmatic surfaces (SVD) was estimated using manipulation experiments. 

219 Virgin B. rapa inflorescences were bagged to exclude all pollinators. Once flowers had opened, 

220 the bag was removed, and flowers were observed until an insect visited and contacted the stigma 

221 in a single visit. The stigma was then removed and stored in gelatine-fuchsin and the insect was 
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222 captured for later identification. SVD was quantified by counting all B. rapa pollen grains on the 

223 stigma. Mean values of SVD for each species are used in our regression models.

224

225 To quantify the number of pollen grains carried (pollen load) Howlett et al. (2011) collected 

226 insects while foraging on B. rapa flowers. Insects were captured using plastic vials containing a 

227 rapid killing agent (ethyl acetate). Once dead, a cube of gelatine-fuchsin was used to remove all 

228 pollen from the insect�s body surface. Pollen collecting structures (e.g. corbiculae, scopae) were 

229 not included in analyses because pollen from these structures is not available for pollination. 

230 Slides were prepared in the field by melting the gelatine-fuchsin cubes containing pollen samples 

231 onto microscope slides. B. rapa pollen grains from each sample were then quantified by counting 

232 pollen grains in an equal-area subset from the sample and multiplying this by the number of 

233 equivalent sized subset areas within the total sample.

234

235 Statistical analyses

236 We used linear regression models and AICC (small sample corrected Akaike information criteria) 

237 model selection to determine if our measure of pollinator hairiness is a good predictor of SVD 

238 and pollen load. We constructed global models with SVD or pollen load as the response variable, 

239 body region as predictors and body length as an interaction i.e. SVD or pollen load ~ body length 

240 * entropy face + entropy head dorsal + entropy head ventral + front leg + entropy thorax dorsal + 

241 entropy thorax ventral + entropy abdomen dorsal + entropy abdomen ventral. Global linear 

242 models were constructed using the lm(stats) function. We excluded other body size 

243 measurements from models as they had high correlation coefficients (Pearson�s r > 0.7) with 

244 body length. AICC model selection was carried out on the global models using the function 
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245 glmulti() with fitfunction = �lm� in the package glmulti. We examined heteroscedasticity and 

246 normality of errors of models by visually inspecting diagnostic plots using the glmulti package 

247 (Crawley 2002). Variance inflation factors (VIF) of predictor variables were checked for the best 

248 models using the vif() function in the car package. All analyses were done in R version 3.2.4 (R 

249 Development Core Team 2014).

250

251 Results

252 Body hairiness as a predictor of SVD

253 For SVD, the face and thorax dorsal regions were retained in the best model selected by AICC, 

254 which had an adjusted R2 value of 0.98. The subsequent top models within 10 AICC points all 

255 retained the face and thorax dorsal regions and additionally included the abdomen ventral 

256 (adjusted R2 = 0.98), head dorsal (adjusted R2 = 0.98), and thorax ventral (adjusted R2 = 0.97) 

257 and front leg (adjusted R2 = 0.97) regions respectively (Table 1). The model with the face region 

258 included as a single predictor had an adjusted R2 value of 0.88, indicating that this region alone 

259 explained a majority of the variation in the top SVD models (Figure 2).

260

261 Body hairiness as a predictor of pollen load

262 The best model for pollen load retained the face region only and had an adjusted R2 value of 0.81 

263 (Figure 3; Table 1). The subsequent best models retained the abdomen dorsal (adjusted R2 value 

264 of 0.73), the face and head dorsal (adjusted R2 = 0.83), the face and abdomen dorsal (adjusted R2 

265 = 0.82) and the abdomen dorsal and front leg (adjusted R2 = 0.8) regions respectively.

266

267 Discussion
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268 Here we present a rigorous and time-efficient method for quantifying hairiness, and demonstrate 

269 that this measure is an important pollinator functional trait. We show that insect pollinator 

270 hairiness is a strong predictor of SVD for the open-pollinated flower Brassica rapa. Linear 

271 models that included multiple body regions as predictors had the highest predictive power; the 

272 top model for SVD retained the face and thorax dorsal regions. However, the face region was 

273 retained in all of the top models, and when included as a single predictor, had a very strong 

274 positive association with SVD. In addition, we show that hairiness, particularly on the face and 

275 ventral regions, is a good predictor of SVD for a plant with a different floral morphology, 

276 kiwifruit (Actinidia deliciosa) (Supporting Information 5; Figure S1; Table S1), indicating our 

277 method is likely to be suitable for a range of flower types. Hairiness was also a good predictor 

278 for pollen load, and the face region was again retained in the top model for B. rapa. The 

279 abdomen dorsal, head dorsal and front leg regions were also good predictors of pollen load and 

280 were retained in the subsequent top models. Our results validate the importance of insect body 

281 hairs for transporting and depositing pollen. Surprisingly, we did not find strong associations 

282 between SVD and body size, and top models did not contain the body length interaction. 

283 Similarly, body length was not retained in the top models for pollen load. This indicates that our 

284 measure of hairiness has far greater predictive power than body size for both SVD and pollen 

285 load.

286

287 When deciding on which body regions to measure hairiness, researchers may first need to assess 

288 additional pollinator traits, such as flower visiting behaviour. This is because the way in which 

289 insects interact with flowers influences what body parts most frequently contact the floral 

290 reproductive structures (Roubik 2000). For some open pollinated flowers, such as B. rapa, facial 
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291 hairs are probably the most important for pollen deposition because the face is the most likely 

292 region to contact the anthers and stigma. However, for flowers with different floral 

293 morphologies, facial hairs may not be as important because the floral reproductive structures 

294 have different positions relative to the insect�s body structures. For example, disc-shaped flowers 

295 tend to deposit their pollen on the ventral regions of pollinators, while labiate flowers deposit 

296 their pollen on the dorsal regions (Bartomeus et al. 2008). We found that hairiness on the face 

297 and ventral regions of pollinators was most important for pollen deposition on A. deliciosa 

298 flowers. The reproductive parts of A. deliciosa form a brush shaped structure and therefore are 

299 most likely to contact the face and ventral surfaces of pollinators. Accordingly, where studies 

300 focus on a single plant species i.e. crop based studies, it is important to consider trait matching 

301 when selecting pollinator body region(s) to analyse (Butterfield & Suding 2013; Garibaldi et al. 

302 2015). It is also important to consider that pollinator performance is a function of both SVD and 

303 visitation frequency, and these two components operate independently (Kremen et al. 2002; 

304 Mayfield et al. 2001). Pollinator performance can also be influenced by pollinator activity 

305 patterns relative to the timing of stigma receptivity (Potts et al. 2001) and pollinator foraging 

306 behaviour (Herrera 1987; Rathcke 1983). Therefore, SVD should not be taken as the only 

307 measure of pollinator performance.

308

309 For community-level studies that use functional diversity approaches, our method could be used 

310 to quantify hairiness for several body regions and weighted to give better representation of trait 

311 diversity within the pollinator community. This is necessary where plant communities contain 

312 diverse floral traits i.e. open-pollinated vs. closed-tubular flowers (Fontaine et al. 2006). Hairs on 

313 different areas of the insect body are likely to vary in relative importance for pollen deposition 
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314 depending on trait matching (Bartomeus et al. 2016). Our method requires hairiness to be 

315 measured at the individual-level (Figure S2), which makes it an ideal trait to use in new 

316 functional diversity frameworks that use trait probabilistic densities rather than trait averages 

317 (Carmona et al. 2016; Fontana et al. 2016). Combining predictive traits, such as pollinator 

318 hairiness, with new methods that amalgamate intraspecific trait variation with multidimensional 

319 functional diversity, will greatly improve the explanatory power of trait-based pollination 

320 studies.

321

322 One of the greatest constraints to advancing trait-based ecology is the time-demanding nature of 

323 collecting trait data. This is because ecological communities typically contain many species, 

324 which have multiple traits that need to be measured and replicated (Petchey & Gaston 2006). To 

325 improve the predictive power of trait-based ecology and streamline the data collection process 

326 we must firstly identify traits that are strongly linked to ecosystem functions and secondly, 

327 develop rigorous and time-efficient methodologies to measure traits at the individual level. We 

328 achieve this by providing a method for quantifying a highly predictive trait at the individual-

329 level, in a time-efficient manner. Our method also complements other recently developed 

330 predictive methods for estimating difficult-to-measure traits that are important for pollination 

331 processes i.e. bee tongue length; Cariveau et al. (2016).

332

333 Predicating the functional importance of organisms is critical in a rapidly changing environment 

334 where accelerating biodiversity loss threatens ecosystem functions (McGill et al. 2015). Our 

335 novel method for measuring pollinator hairiness could be used in any studies that require 

336 quantification of hairiness, such as understanding adhesion in insects (Bullock et al. 2008; 
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337 Clemente et al. 2010) or epizoochory (Albert et al. 2015; Sorensen 1986). It is also a much 

338 needed addition to the pollination biologist�s toolbox, and will progress the endeavour to 

339 standardise trait-based approaches in pollination research. This is a crucial step towards 

340 developing a strong mechanistic underpinning for trait-based pollination research.

341
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498 Tables 

499 Table 1

500 Top regression models examining the effect of insect body region entropy on single visit pollen 

501 deposition (SVD) and pollen load for Brassica rapa. Models are presented in ascending order 

502 based on AICC values. Δi is the difference in the AICC value of each model compared with the 

503 AICC value for the top model. wi is the Akaike weight for each model and acc wi is the 

504 cumulative Akaike weight. Top models for each response variable are highlighted in bold.

505

Response 

variable
Model Adj R2 AICc Δi wi acc wi

Face + Thorax dorsal 0.98 88.29 0.00 0.82 0.82

Face + Thorax dorsal + 

Abdomen ventral

0.98 93.09 4.80 0.07 0.89

Face + Head dorsal + Thorax 

dorsal  

0.98 93.81 5.52 0.05 0.94

Face + Thorax ventral + 

Thorax dorsal  

0.97 96.59 8.29 0.01 0.96

SVD

Face + Thorax dorsal + Front 

leg  

0.97 97.02 8.72 0.01 0.97

Face 0.81 168.47 0.00 0.64 0.64

Abdomen dorsal 0.73 171.59 3.12 0.13 0.78

Face + Head dorsal 0.83 173.59 5.12 0.05 0.83

Face + Abdomen dorsal 0.82 173.76 5.29 0.05 0.87

Pollen load

Abdomen dorsal + Front leg 0.80 174.86 6.39 0.03 0.90
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Figure 1

Entropy image of the face of a native New Zealand solitary bee Leioproctus paahaumaa.

Image of the face of a native New Zealand solitary bee Leioproctus paahaumaa (a) and the

corresponding entropy image (b). Warmer colours on the entropy image represent higher

entropy values (shown by the scale bar on the right). Black dots on the entropy image are

near-round and small objects that have been removed from the analysis by the pre-

processing function.
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Figure 2

Relationships between mean entropy for each body region and mean single visit pollen

deposition on Brassica rapa

Relationships between mean entropy for each body region and mean single visit pollen

deposition (SVD) on Brassica rapa for 10 different insect pollinator species. Black lines are

regressions for simple linear models.
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Figure 3

Relationships between mean entropy for each body region and the mean number of

Brassica rapa pollen grains

Relationships between mean entropy for each body region and the mean number of Brassica

rapa pollen grains carried by 9 different insect pollinator species. Black lines are regressions

for simple linear models.
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