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ABSTRACT9

Machine learning is a popular method of learning functions from data to represent and to classify sensor
inputs, multimedia, emails, and calendar events. Smartphone applications have been integrating more
and more intelligence in the form of machine learning. Machine learning functionality now appears
on most smartphones as voice recognition, spell checking, word disambiguation, face recognition,
translation, spatial reasoning, and even natural language summarization. Excited app developers who
want to use machine learning on mobile devices face one serious constraint that they did not face on
desktop computers or cloud virtual machines: the end-user’s mobile device has limited battery life, thus
computationally intensive tasks can harm end-user’s phone availability by draining batteries of their
stored energy. How can developers use machine learning and respect the limited battery life of mobile
devices? Currently there are few guidelines for developers who want to employ machine learning on
mobile devices yet are concerned about software energy consumption of their applications. In this paper
we combine empirical measurements of many different machine learning algorithms with complexity
theory to provide concrete and theoretically grounded recommendations to developers who want to
employ machine learning on smartphones.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

1 INTRODUCTION24

Imagine we are in a hot new start-up and your app, which will be deployed to millions of phones, needs25

to take advantage of machine learning. Which machine learning algorithms should we employ to avoid26

sapping the energy of your customers’ phones? Should we use neural networks since they are so popular,27

or should we stick to simpler models to save energy? In this work we address the questions of “how28

energy efficient are these machine learning algorithms?” and “which algorithms should we use on a29

mobile device?”30

Machine learning is growing in popularity. Google in particular has made the results of machine31

learning available to the general public in terms of speech recognition (1), translation (2), computer vision,32

and search. Many machine learning implementations have been deployed to servers in the cloud, or data33

centers. But the popularity of mobile devices such as smartphones and tablets are causing a push toward34

mobile-apps that employ machine learning. One of the issues that mobile platforms face that servers35

and desktop computers do not, is that mobile platforms tend to rely on batteries for power and when the36

batteries are out of energy the mobile device is no longer available for use. This is different from data-37

centres that have machines on racks that face power limits and need constant cooling. Machine learning38

on mobile platforms is often out-sourced to the cloud, but the bandwidth to the cloud is quite limited so a39

lot of machine learning is pushed back to the mobile device itself. Some apps engage in computer vision,40

others learn from the textual and event based data on the phone to schedule appointments (3), and others41

link and organize documents (4).42

If machine learning is pushed to mobile devices what should practitioners do about the software43

energy consumption of machine learning on their mobile devices? Surveys of developers and users have44

found that poor software energy consumption performance can lead to negative app-store reviews and45

poor user satisfaction (5; 6; 7). In this work we will empirically test, measure, and detail the costs and46
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trade-offs between machine learning performance and software energy consumption. We will show that47

there is no best algorithm but there are a wide range of trade-offs that one can make depending on the48

context that one is operating within. Furthermore not all energy consumption is CPU bound as some49

algorithms cost more in terms of memory-use than others that in a memory constrained environment can50

induce more energy consumption.51

The contributions of this paper are:52

• an empirical evaluation of the tradeoffs that machine learning algorithms make between accuracy53

and software energy consumption;54

• concrete recommendations for choosing machine learning algorithms for use on mobile platforms;55

• empirical testing and measurement of multiple machine learning contexts that demonstrate “one56

size does not fit all”.57

2 PRIOR WORK58

Prior work relevant to this paper include machine learning, mobile devices, and software energy consump-59

tion research.60

2.1 Software Energy Measurement61

Software energy consumption is an up and coming field in software engineering and computer engineering.62

With the popularity of mobile devices and apps, more and more software engineering research is targeted63

to energy constrained platforms.64

Energy consumption recommendations and guidelines for developers are popular avenues of research.65

Hasan et al. (8) and Pereira et al. (9) investigated the energy profiles of Java collections to help developers66

manually choose the right collection. Linares-Vásquez et al. (10) produced a methodology of finding67

energy consuming libraries and APIs in Android applications. Li et al. (11) discussed causes of energy68

consumption on Android.69

Many researchers have investigated what developers know about software energy, which motivates this70

paper because most of the works conclude that developers are woefully ill-equipped to address software71

energy consumption concerns. Pinto et al. (12) and Malik et al. (13) sought questions developers were72

already asking. Pang et al. (5) surveyed developers to see what they understood about software energy73

consumption. Manotas et al. (14) went further and surveyed numerous industrial developers.74

Recommenders quickly turn into optimizers that apply search techniques and find solutions to software75

energy consumption concerns. SEEDS from Manotas et al. (15) attempts to find the most energy efficient76

Java collections to use in a program for a particular context. GUI optimizations have also been approached77

using a search-based approach by Linares-Vásquez et al. (16). Bruce et al. (17) explicitly applied78

search-based software engineering techniques to mutate existing source code. Saborido et al. (18) use79

multi-objective heuristics to find optimal apps where energy is one dimension.80

Measuring software energy consumption is another avenue of research. We used the GreenMiner (19)81

in this paper to measure software energy, but other researchers such as Banerjee et al. (20) have made82

their own measurement frameworks.83

Numerous empirical studies exist about different aspects of software development juxtaposed against84

software energy consumption. Researchers such as Rasmussen et al. (21) and Gui et al. (22) have85

investigated the cost of advertisement on energy consumption. Chowdhury et al. (23) and Li et al. (24)86

benchmarked HTTP related energy concerns. Many researchers have suggested ranking and measuring87

apps by energy consumption (25; 26; 18).88

A very popular area of research is the modelling of software energy consumption. Pathak et al. (27; 28)89

and Aggarwal et al. (29) used system-call based models. Chowdhury et al. (30) used count based models.90

Some tools attempt to diagnose the actual cause of software energy consumption in terms of the code (31).91

2.2 Machine Learning on Mobile Platforms92

Multiple frameworks exist that enable machine learning within mobile applications. As Android uses93

Java, any Java-based machine learning framework can easily be integrated into an Android application.94

For our tests, we used the Weka (32) and Neuroph (33) frameworks. Google Brain’s TensorFlow machine95

learning library (1) is also intended to be portable to mobile and embedded devices.96
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As a demo for an Android application, TensorFlow provides example code for an application that can97

classify what is being viewed in the phone’s camera frame in real time. Similarly, the Google Translate98

mobile application can translate words being viewed through a phone’s camera offline and in real-time99

using a trained convolutional neural net (2).100

There are numerous cases of machine learning being used in apps. “Smart calendar” apps use machine101

learning to enhance calendar applications. Google Calendar Goals automatically schedules time for102

user-set personal goals, such as exercising three times a week, re-schedules these goals if a conflicting103

appointment is added, and learns the best times to schedule goals based on when the user completes or104

defers a goal (3). The Tempo app could pull and bundle data related to calendar events from the user’s105

accounts — such as participant contact information, directions to the location, associated documents —106

and present them together in one organized entry (4).107

Triposo is an app that provides travel recommendations and booking options to users. It uses machine108

learning to process websites and reviews, and combines the results with user preferences to make109

personalized recommendations (34). Weotta is an app that uses machine learning and natural language110

processing to provide event and activity recommendations to user queries (35).111

2.3 Algorithms Used112

We tested eight machine learning algorithms: Naïve Bayes (NB), J48 (Weka’s implementation of C4.5),113

Sequential Minimal Optimization (SMO) which is a support vector machine, Logistic Regression (LogReg),114

Random Forest (RF), k-Nearest Neighbour (IBk), ZeroR, and MultiLayer Perceptron (MLP) which is a115

neural network. All algorithm implementations except for MLP were from the Weka Java codebase. The116

MLP implementation, a neural network, is from the Neuroph framework.117

ZeroR is a very simple classifier, that disregards any attribute information and always predicts the118

majority class of the training set. As such, ZeroR can provide the baseline accuracy for a dataset (36). For119

a dataset with n training instances, ZeroR will take O(n) time to build a classifier as it needs to check the120

class value of each instance in order to find the most frequent class. However, it takes virtually no time,121

constant time O(1), to classify.122

Naïve Bayes is a type of Bayesian network that uses the simplifying assumptions that the predictive123

attributes are conditionally independent, and that there are no hidden attributes that influence predictions.124

With these simplifying assumptions, given a dataset with d attributes, n testing instances and m training125

instances, the Naïve Bayes classifier can perform training and testing in O(dn) and O(dm) time respec-126

tively (37). The Weka Naïve Bayes algorithm used for these tests is not updateable, although Weka also127

has an updateable implementation of Naïve Bayes.128

J48 is Weka’s implementation of the C4.5 decision tree algorithm (38). For a dataset with d attributes129

and n testing instances, C4.5 training has an algorithmic time complexity of O(nd2) (39).130

SMO is an algorithm for training a Support Vector Machine (SVM) classifier, that breaks down the131

SVM quadratic programming optimization to simplify implementation, speed up computation, and save132

memory (40) (41). Platt found empirically that the training time of SMO ranges from O(n) up to O(n2.2)133

for n training instances (40). In Weka’s implementation, datasets are automatically processed to replace134

missing values, normalize all attributes, and convert nominal attributes to binary ones.135

Logistic Regression is a statistical machine learning algorithm. Using logistic regression with the136

Quasi-Newton method, a dataset with d attributes and n instances takes O(d2n+nd) time per iteration (42).137

For our tests logistic regression was set to iterate until convergence. Weka’s implementation of the138

algorithm is slightly modified from the original Logistic Regression to handle instance weights.139

Random Forest is an advanced tree classifier that grows multiple trees and allows them to vote for140

the best class (43). For a forest with L tress, n instances, and d attributes, theoretically the random141

forest will be constructed in O(Ln2d · log(n)) time, although practically the complexity is often closer to142

O(Lnd · log(n)) (44).143

IBk is an instance-based learner algorithm, that is similar to the k-nearest neighbour algorithm (45).144

For our tests, we classified instances based on the nearest three neighbours (k = 3). IBk is lazy when145

training, taking almost no time to create a model (46). However, for a dataset with d attributes and n146

instances, it takes O(nd) to classify an instance (45).147

MLP is a neural network implementation. For our tests, MLP used back-propagation learning and148

had only one hidden layer of neurons. The number of hidden neurons was fixed at 15 and the number of149

training epochs was fixed at 100. In general, for a dataset with n instances and a neural network with a150
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Table 1. Size and type of datasets used in energy tests

Dataset Description Number of Number of Number of
Attributes Instances Classes

MNIST Image classifier – Integer attributes 785 5000 10
PGSQL Text classification – Binary categorical attributes 2000 400 2

Mushroom Classification – Categorical attributes 23 8124 2
Adult Classification – Categorical, integer attributes 15 32561 2

Spambase Text classification – Integer, real attributes 58 4601 2
Waveform Numeric classification – Real attributes 22 5000 3
Pendigits Image classifier – Integer attributes 17 10992 10

input neurons, b hidden neurons, and c output neurons, the network will take O(nabc) time to train per151

epoch (47).152

2.4 Datasets Used153

We used seven existing datasets to test the machine-learning algorithms. The datasets chosen were154

of different sizes and datatypes, and represented different classification problems. We used our own155

text classification dataset (PGSQL) from our prior work (48; 49), the MNIST number classification156

dataset (50), and five datasets from the UCI archive (51) (Mushroom, Adult, Waveform, Spambase, and157

Pendigits). MNIST and Pendigits are image classification problems; PGSQL and Spambase are text158

classification problems; Adult and Waveform are numeric classification problems; and Mushroom is159

categorical classification.160

Weka is designed to work with the ARFF file format. A version of the MNIST dataset already161

converted to the ARFF format was obtained (52) and used for the tests. The other datasets were converted162

to ARFF files using the Weka Explorer’s conversion capabilities. For our tests, the size of the MNIST163

dataset was reduced to 5000 randomly selected instances. The size of the PGSQL dataset was also reduced164

from 640 instances with 23008 attributes to 400 instances with 2000 attributes, one of which was the class.165

The datasets are summarized in Table 1.166

The MLP implementation we used from the Neuroph framework required datasets in CSV format.167

It also requires that numeric attributes be normalized to values between 0 and 1, nominal attributes and168

classes be represented as one-hot binary inputs, and instances with missing attribute or class values be169

removed beforehand. This processing and conversion to CSV was done using the Weka Explorer. As a170

result of converting categorical attributes to one-hot binary attributes, the number of input neurons for the171

Mushroom dataset became 111, and 104 for the Adult dataset.172

A mirror of our datasets can be found at this url: https://archive.org/details/mnist_173

test_reduced_5k.174

3 METHODOLOGY AND MEASUREMENTS175

In this section we describe how we setup benchmarks for the machine learning algorithms and datasets.176

We also describe how we measured the energy consumption of the machine learning benchmarks.177

3.1 Energy Measurement with GreenMiner178

Energy and power measurements were collected using the GreenMiner energy-measurement framework.179

This framework uses hardware-instrumented Android smartphones to physically measure the energy180

consumption and power use of apps running on the phones (19). It automatically runs submitted tests181

and uploads the results to a central webservice. Before each test is run, the application APK (Android182

package) is installed on the phone, required data is uploaded onto the SD card, and phone settings such as183

screen brightness, and screen timeout are set as required. After each test the application is uninstalled,184

the data is deleted from the SD card, settings are restored to previous values, and data generated during185

the tests such as log-files are pulled from the phones to be uploaded to the web service and then deleted186

from the phone, so that the next test can begin with a clean environment. Tests run for a set duration, and187

testers can split the test’s energy measurements into partitions of varying duration to capture the energy188

and power use of different phases of app execution. Such a phase could be reading the data or training the189
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model. The GreenMiner measures and reports information about the test run including energy use, power190

use, and runtimes for both the entire test duration and over each tester-specified partition. An example191

of an energy profile for a cross-validated Naïve Bayes test displayed on GreenMiner’s web interface is192

shown in Figure 1.193

3.2 Measurement Process194

To test machine learning algorithms on the GreenMiner phones, two Android apps were created. An app195

was created to run Weka machine learning algorithms, based on an existing modification of the Weka196

codebase that can run on Android.1A second app was created to test a MultiLayer Perceptron neural net197

algorithm, using the Neuroph framework. Both apps ran the same datasets.198

Tests of the different algorithms and datasets were written as Android InstrumentationTestCases,199

with the phases of evaluating an algorithm (reading data, training the model, validating the model) written200

as separate tests. The different tests were initiated by pressing buttons, and data was transferred between201

different test methods via a singleton object. To keep the screen energy consumption of the apps constant,202

the screens were almost completely black, with some small grey text on the buttons for debugging203

purposes. Both the Weka and the Neuroph apps had exactly the same user interface.204

Tests were created for eight different machine learning algorithms to evaluate seven different datasets.205

Separate tests methods were written to perform two different types of evaluation. For each algorithm two206

tests were written to train on 50% of the data and then test on the other 50%. Two more tests were written207

to train and test on the whole dataset using 10-fold cross validation. Each train/test evaluation pair was208

run separately on the GreenMiner.209

Each test method was invoked in turn by pressing a button on the app’s interface once the previous210

method had completed. The GreenMiner framework cannot automatically detect when a test method has211

completed, because it runs uninstrumented, so in order to invoke the next method initial timing test runs212

were performed to determine appropriate delays to add to the GreenMiner scripts. Each algorithm-dataset-213

validation combination was run at least 10 times on the GreenMiner so that their results could be averaged214

and to allow for enough statistical power to determine an effect. Some combinations, such as random215

forest on the MNIST dataset with cross validation, ran out of memory when evaluating on the phones, and216

so are not included in our results.217

The GreenMiner collects the energy consumption measurements and power measurements of each test218

method. The results of all successful test runs were compiled and compared. For comparisons, the training219

and testing phases of 50% split evaluation are combined, and are compared against the energy for cross-220

validating with 10-folds, that includes training and testing each fold. Energy consumption measurements221

are compared to determine which algorithms will require the most or least energy to evaluate on each222

dataset. Power usages are compared to determine if some algorithms are more energy-hungry, independent223

of how long it takes them to evaluate.224

The correctness of the Weka algorithms was gathered from the Weka 3.8 desktop application, based on225

performing 10-fold cross validation. The total root-mean-squared errors (RMSE) of the MLP algorithm226

were gathered from NeurophStudio. The average accuracies of an algorithm over all datasets were227

compared to determine which algorithms were generally the most or least accurate. The accuracy for228

Logistic Regression could not be calculated for the Adult dataset because the desktop Weka application229

ran out of memory.230

Statistical significance testing was executed using a Student’s t-test as energy measurement data231

typically is normally distributed. Anders-Darling tests confirmed normality in most cases. We addressed232

multiple hypotheses and comparisons by applying Bonferroni correction with an initial alpha (α) of 0.05.233

4 ENERGY PROFILING RESULTS234

We profiled the energy and power use of eight machine learning algorithms, and compared how they235

varied with datasets of different sizes. We compared how eight machine-learning algorithms used power236

and energy when applied to datasets of different sizes. We asked four research questions:237

RQ1: Can we identify the best performing algorithm in terms of energy?238

RQ2: Can we identify the best performing algorithm in terms of power?239

RQ3: Can we identify the best performing algorithm in terms of accuracy?240

RQ4: Can we identify the best performing algorithm for training/testing in terms of energy?241

1Weka for Android https://github.com/rjmarsan/Weka-for-Android
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Table 2. Average ranking of each algorithm from lowest to highest energy consumption

Sorted Algorithm Rank – 50% Sorted Algorithm Rank – 10-CV

ZeroR 1 ZeroR 1
NB 2.57 NB 2
J48 3.57 J48 3.86

SMO 3.86 SMO 4.43
LogReg 5.43 LogReg 5

MLP 6.29 IBk 5.29
IBk 6.57 RF 7.14
RF 6.71 MLP 7.29

4.1 RQ1: Can we identify the best performing algorithm in terms of energy?242

Which algorithms are more energy efficient? Figure 2 shows the energy used to train and test the243

algorithms on a 50% split of each dataset. Figure 3 shows the energy used to perform 10-fold cross244

validation on the algorithms for each dataset. Note that some algorithms could not be evaluated on some245

datasets, and so not all algorithm-dataset combinations are shown in the figures.246

Generally, energy consumption increases with increasing dataset size, however these increases247

typically do not strictly follow a clear trend. One reason for deviations could be related to memory248

cache; spikes in energy consumption could be due to the memory cache exhaustion for that particular249

dataset.250

Figure 2 shows that other than ZeroR, Naïve Bayes and J48 tend to have the lowest energy consumption251

for 50%-split. SMO also has good energy performance for most datasets except for the Adult dataset.252

Figure 3 shows that Naïve Bayes is consistently consumes the nearly the least energy for cross validation,253

and J48 is one of the highest energy users for smaller dataset sizes, but one of the lower energy consumers254

for larger datasets.255

The overall rankings of the algorithms’ energy use were determined by assigning a rank value to each256

algorithm for each dataset, with 1 using the least energy and 8 using the most. The rankings for each257

dataset were then summed, and divided by the number of datasets. Table 2 shows that ZeroR always uses258

the least amount of energy, followed by Naïve Bayes and J48. There were some deviations in the rankings259

of each algorithm on a dataset between cross-validation and 50% split. The order of average rankings for260

each evaluation method had high correlation of 0.93.261

The energy use of the algorithms were compared using a pairwise t-test to determine if the energy262

differences are statiscally significant for an alpha of 0.05. For the combined training and testing energies263

of 50% split, all algorithms had signifcantly different energy consumptions except for NB vs J48, J48 vs264

LogReg, J48 vs RF, SMO vs IBk, SMO vs MLP, and IBk vs MLP. For cross validation, all algorithms265

had significantly different energy consumptions except for J48 vs LogReg, J48 vs IBk, LogReg vs IBk,266

LogReg vs RF, IBk vs RF, and MLP vs RF.267

4.2 RQ2: Can we identify the best performing algorithm in terms of power?268

Figure 4 shows the average power use to train and test the algorithms on a 50% split of each dataset.269

Figure 5 shows the average power use of each algorithm to perform 10-fold cross validation. Note that270

some algorithms could not be evaluated on some datasets, and so not all algorithm-dataset combinations271

are shown in the figures.272

Figures 4 and 5 show that the power use of all algorithms are similar. Table 3 shows the average273

rankings for the algorithms are less evenly-spread between 1 and 8, indicating that the rank of an274

algorithm’s power use varies more from dataset to dataset. Additionally, the rankings of algorithms275

between 50% split and cross validation are not as well-correlated as the energy rankings, with a Spearman’s276

rank correlation rho value of 0.62. However, overall the algorithms’ power rankings are similar to the277

energy rankings, with ZeroR and Naïve Bayes consistently having the lowest power consumption.278

The power use of the algorithms were compared using a pairwise t-test to determine if the power use279

differences are statiscally significant for an alpha of 0.05. For the combined training and testing energies280

of 50% split, all algorithms had signifcantly different power consumptions except for J48 vs MLP, SMO281

vs LogReg, SMO vs RF, SMO vs IBk, LogReg vs IBk, and RF vs IBk. For cross validation, all algorithms282
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Table 3. Average ranking of each algorithm from lowest to highest power use

Sorted Algorithm Rank – 50% Sorted Algorithm Rank – 10-CV

ZeroR 1.43 ZeroR 1.14
NB 3.14 NB 2.86

MLP 3.57 LogReg 3.71
J48 4.43 J48 4.29

SMO 4.71 MLP 5
IBk 5.86 IBk 5.71
RF 6.14 SMO 6.29

LogReg 6.71 RF 7

Table 4. Average algorithmic accuracies ordered based on percentage of correctly classified instances,
kappa statistic, and Root Mean Squared Error

Accuracy Algorithm % Correct Algorithm Kappa Algorithm RMSE

Most MLP 95.66% MLP 0.9293 MLP 0.08
Random Forest 90.32% SMO 0.7488 Random Forest 0.21

SMO 90.13% Random Forest 0.7211 IBk 0.21
IBk 88.32% IBk 0.7194 LogReg 0.25

LogReg 87.08% LogReg 0.7087 J48 0.25
J48 85.73% J48 0.6911 SMO 0.29

Naïve Bayes 81.97% Naïve Bayes 0.6332 Naïve Bayes 0.32
Least ZeroR 46.36% ZeroR 0.0000 ZeroR 0.41

had significantly different power consumptions except for NB vs LogReg, NB vs MLP, NB vs RF, J48 vs283

IBk, SMO vs IBk, LogReg vs MLP, LogReg vs RF, and MLP vs RF.284

4.3 RQ3: Can we identify the best performing algorithm in terms of accuracy?285

Algorithmic accuracy is determined based on the percentage of correctly classified instances and on286

the kappa statistic. Kappa measures agreement between the predicted and the true class. As different287

algorithms sometimes had the same accuracy for a dataset, rather than ranking algorithmic accuracy for288

each dataset — which would result in ties — the average accuracy of each dataset was calculated. As the289

accuracy for Logistic Regression could not be calculated for the Adult dataset, the average for Logistic290

Regression was taken over only 6 values, while the other algorithms were calculated over 7. Table 4291

shows the algorithms ordered in terms of both measures of accuracy.292

Weka outputs predicted classes, and also provided a calculation of the root mean squared error (RMSE)293

of the predictions. Neuroph outputs the probabilities of each class. The outputs of the five datasets that294

could run on GreenMiner with cross validation (PGSQL, Mushroom, Waveform, Spam, and Pen) were295

normailzed using softmax, and the highest normalized probability was taken as the predicted class. From296

this, the accuracies and kappa statics for MLP on each dataset were computed in R. The total RMSE of297

MLP on each dataset was obtained from NeurophStudio. The average RMSE of each algorithm over all298

datasets is included in Table 4.299

Table 4 shows the most accurate Weka algorithms are Random Forest and SMO; their percentage of300

correctly classified instances are very close, with Random Forest being about 0.2% higher. Yet SMO had301

a slightly better kappa statistic implying its classifications are more balanced. Overall, MLP is clearly the302

most accurate algorithm. It has significantly higher average classification accuracy and kappa statistic303

than the next-best algorithms, and the lowest RMSE.304

4.4 RQ4: Can we identify the best performing algorithm for training/testing in terms of305

energy?306

Figure 6 compares the average energy to train and test each algorithm over all datasets with 50%307

split. Lazy algorithms such as IBk were the most efficient for training, followed by Naïve Bayes. For308
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Table 5. Spearman rank correlation rho value for 50% split energy use and CPU use between algorithms
classifying a dataset

Dataset
User
Time

System
Time

Idle
Time

IO Wait
Time

Number of
Interrupts

Context
Switches Processes

Adult 1.00 0.57 1.00 0.07 0.96 0.79 0.85
MNIST 1.00 0.61 1.00 0.04 0.96 0.82 0.93

Mushroom 1.00 0.76 0.90 0.52 0.95 0.86 0.64
Pendigits 0.98 0.36 1.00 0.57 0.95 0.74 0.83
PGSQL 1.00 0.19 0.98 0.17 0.76 0.12 0.81

Spambase 1.00 0.00 0.98 0.45 0.79 0.07 0.50
Waveform 1.00 0.14 0.93 0.19 0.67 0.33 0.95

Table 6. Spearman rank correlation rho value for CV energy use and CPU use between algorithms
classifying a dataset

Dataset
User
Time

System
Time

Idle
Time

IO Wait
Time

Number of
Interrupts

Number of
Context Switches

Number of
Processes

Adult 1.00 0.90 1.00 0.30 1.00 0.90 1.00
MNIST 1.00 1.00 1.00 0.50 1.00 1.00 1.00

Mushroom 1.00 0.88 1.00 0.71 0.95 0.83 0.93
Pendigits 1.00 0.76 1.00 0.33 0.98 0.81 0.98
PGSQL 1.00 0.57 1.00 0.21 0.96 0.75 0.93

Spambase 1.00 0.21 1.00 0.25 0.86 0.57 0.93
Waveform 1.00 0.36 1.00 0.18 0.86 0.57 0.96

evaluation/classification other than ZeroR, J48 was quite efficient to classify data in terms of energy. For309

both training and test combined Naïve Bayes performed well.310

5 CAUSES OF ENERGY DIFFERENCES311

5.1 Is energy use related to the CPU usage of an algorithm?312

Before and after running a test, the phone’s /proc/stat file is collected to gather information about313

the phone’s CPU time and processes. The difference between the two measurements is used to determine314

the CPU time and resource usage of a test. These results are compared to determine how an algorithm’s315

CPU usage is related to its energy usage.316

When comparing the results from 50%-split tests, energy use was strongly correlated to user time and317

idle time for all datasets. Table 5 shows that energy consumption was not strongly correlated to system318

time usage or IO wait time for most datasets. Energy was strongly correlated to the number of interrupts319

for most datasets, except for PGSQL and Waveform, where it was only moderately correlated. For other320

CPU use measurements, the strength of correlation to energy usage varied widely between datasets. The321

results were similar for cross-validation.322

In general, the correlations between energy use and CPU use were stronger for cross validation. It323

should be noted that the Adult and MNIST could not be evaluated by many algorithms on the phones324

because they ran out of memory. Thus, there are fewer energy results to compare for these datasets.325

For the 10-fold results, energy use was strongly correlated to user time, idle time, and number of326

processes. The number of interrupts was also well-correlated to energy use for all datasets. IO wait time327

was not strongly correlated to energy use, and, excluding the Adult and MNIST values, system time was328

generally not strongly correlated to energy use for any dataset.329

The number of processes did not significantly increase between 50% split evaluation compared to330

cross validation. On average, over all datasets and algorithms, only 1.2 times as many processes were331

created for cross validation as compared to 50% split. In contrast, on average, 10-fold evaluation used 7.0332

times more idle time, and 10.5 times as much user time.333
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Table 7. Average memory usage of each algorithm over all datasets

Algorithm
Number of

Concurrent GC
GC Concurrent

Time (ms)
Number of

GC for Alloc
GC for Alloc

Time (ms)
Times
Grown

Used
(Bytes)

Allocated
(Bytes)

IBk 148 4853 79 3449 34 12647 21148
J48 332 22650 27 1268 9 13853 18139

LogReg 942 69496 1592 86693 121 31019 35258
MLP 698 24260 286 16671 1 6966 12022
NB 668 32272 16 573 4 9818 12914
RF 957 122458 244 18323 74 28504 50757

SMO 328 13448 381 15336 226 28189 37138
ZeroR 135 3674 6 189 1 8989 11348

5.2 Is energy use related to the memory use of an algorithm?334

Android’s Dalvik VM automatically logs information about heap use and garbage collection (GC). These335

logs were collected for the algorithms and datasets using Android’s logcat tool. These logs have the336

number of kilobytes allocated for and used on the heap, the number of times the app’s heap size was337

grown, the number of concurrent GCs performed when the heap grows too large, the number of GCs338

performed when the heap is too full to allocate required memory, and the total time taken to perform these339

GCs, could be parsed and compared. The average results for each algorithm performing 10-fold cross340

validation over all datasets are shown in Table 7.341

Logistic Regression and Random Forest used the most memory on the heap and performed the most342

concurrent garbage collections. Overall, they are the most inefficient in terms of memory use. It should343

also be noted that Random Forest’s performance was most affected by memory, as five datasets could344

not be evaluated with 10-fold cross validation on the phones as they ran out of memory or had a stack345

overflow occur. Excluding both MLP and ZeroR, Naïve Bayes, J48, and IBk performed the fewest garbage346

collections to make space for allocations, grew their heap the fewest number of times, and used the least347

amount of heap space. Random Forest and Logistic Regression were both large energy users, while Naïve348

Bayes and J48 were the lowest energy users, so for these algorithms their memory use seems related to349

their energy use. However, IBk was one of the most memory-efficient, but the second-highest energy350

consumer, so memory use alone cannot account for memory efficiency. Additionally, MLP, which was351

implemented with the Neuroph framework rather than Weka, was very memory efficient despite being the352

highest energy user with cross validation. Excluding ZeroR, MLP used and allocated the least amount of353

heap space, and grew its heap the fewest number of times. However, it performed the third-most GCs, so354

it is may be reducing its memory requirements by performing more frequent memory clean-ups.355

The memory use of the Weka-implemented algorithms, not MLP, was compared to energy use, and356

the Spearman’s correlation rho estimates are shown in Table 8. Table 8 shows that energy use is not357

consistently well-correlated to memory use. Generally energy use was most strongly correlated to the358

maximum heap space used in a test and the maximum heap space allocated in a test. Spambase and359

Waveform datasets generally showed weak correlations between their energy and memory use.360

When the MLP memory usage data is added to the comparison most of the correlations were unchanged361

or became weaker as, exhibited by Table 9, although some correlations — particularly for the Waveform362

dataset — became stronger.363

5.3 Is energy use related to the methods called by an algorithm?364

Method traces for algorithms with different datasets were generated using Android’s Dalvik Debug365

Monitor Server (DDMS) and dmtracedump tools. The method traces were generated by sampling every366

millisecond. The methods called by each algorithm are compared, and the total number of CPU cycles367

and total number of method calls made are correlated to energy use.368

The total number of method calls is strongly correlated to the energy use of each algorithm on a369

dataset, with algorithms making more method calls using more energy. All datasets had rho estimates of370

0.9 or better. Similarly, the number of CPU cycles elapsed during execution also had a rho estimate of 0.9371

or better for all datasets when correlated to energy use.372

Additionally, algorithms that used more energy, such as MLP or Random Forest, called costly methods373
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Table 8. Spearman’s rank correlation rho value for 10-fold energy use and memory use between
Weka-implemented algorithms classifying a dataset

Dataset
GC

Concurrent
GC

Concurrent (ms)
GC for
Alloc

GC for
Alloc (ms) Grow Used Allocated

Adult 0.40 0.70 0.90 0.90 0.87 0.70 0.90
MNIST 0.50 0.50 1.00 1.00 1.00 1.00 1.00
Mush 0.75 0.75 0.64 0.64 0.26 0.96 0.96
Pen 0.68 0.68 0.79 0.82 0.71 0.86 0.86

PGSQL 0.71 0.71 0.77 0.83 0.06 0.66 0.66
Spam 0.49 0.49 0.49 0.60 0.60 0.60 0.60
Wave 0.14 0.31 0.60 0.60 0.60 0.60 0.66

Table 9. Spearman’s rank correlation rho value for CV energy use and memory use between all
algorithms classifying a dataset

Dataset
GC

Concurrent
GC

Concurrent (ms)
GC for
Alloc

GC for
Alloc (ms) Grow Used Allocated

Adult 0.4 0.7 0.9 0.9 0.87 0.7 0.9
MNIST 0.5 0.5 1 1 1 1 1
Mush 0.69 0.69 0.42 0.42 0.19 0.74 0.74
Pen 0.79 0.76 0.69 0.74 0.34 0.67 0.67

PGSQL 0.36 0.57 0.86 0.86 -0.19 0.5 0.5
Spam 0.65 0.65 0.47 0.47 0.44 0.76 0.68
Wave 0.54 0.65 0.68 0.68 0.72 0.68 0.94

many times. For the applicable datasets Random Forest was able to perform cross validation to completion374

on, the method invoked the most number of times by the algorithm was Weka’s QuickSort. Naïve375

Bayes and J48 also invoked QuickSort, but significantly fewer times per dataset: Random Forest called376

QuickSort 9 to 41 times as often as often as J48 did, and 69 to 83 times as often as Naïve Bayes. QuickSort377

was never used on the Mushroom dataset with any algorithm as it only has categorical attributes. MLP378

called methods to update weights with backpropagation calculations the most. Logistic regression,379

another high energy-user, frequently calls methods to evaluate the model’s gradient vector and to perform380

exponentiation.381

5.4 Is energy use related to algorithmic complexity?382

To determine the correlation between algorithmic complexity and energy usage, the relevant statistics of383

each dataset, including number of attributes, and number of instances, were substituted into the algorithmic384

time complexity formulas for training each learner. For IBk, which has a constant time complexity, the385

cost was set to the constant 100000 for each dataset. For SMO, which was empirically determined to have386

a time complexity between O(n) up to O(n2.2) for n training instances (40), a time complexity of O(n2)387

was used. The rho values for the Spearman correlations between these computed numeric complexities388

and the energy required to train each algorithm on a dataset are shown in Table 10.389

The curves of these complexity functions were then tuned by a single coefficient for a better fit. J48390

was multiplied by a factor of 5, Logistic Regression by 75, Random Forest by 10, and MLP by 100. The391

new rho estimates from these tuned curves are shown in Table 11.392

Table 10. Spearman correlation rho estimates between algorithmic complexity and energy consumption
when training model

PGSQL MNIST Mush Adult Wave Spam Pen
50% 0.81 0.82 0.83 1.00 0.81 0.76 0.90

10-CV 0.86 1.00 0.83 1.00 0.75 0.64 0.93
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Table 11. Spearman correlation rho estimates between algorithmic complexity tuned with constant
factors and energy consumption when training model

PGSQL MNIST Mush Adult Wave Spam Pen
50% 0.81 0.96 0.83 0.96 0.90 0.93 0.93

10-CV 0.86 1.00 0.83 1.00 0.89 0.89 0.98

5.5 Analysis393

Hasan et al. (8) found that the power use of different collection classes was similar, and that energy394

consumption seemed to increase at the same rate as program runtimes, indicating that programs that use395

more energy do so because they do more work in the extra time it takes them to run. Our results agree396

with this.397

While the energy consumptions of different algorithms could differ significantly, the algorithms tended398

to have similar power use. This is likely because the processes are primarily CPU bound. We found that399

energy use was positively correlated to both runtime complexity, and the user and idle CPU time taken400

by an algorithm. Further, energy use was positively correlated to the number of methods called by an401

algorithm during execution, indicating that algorithms that use more energy to evaluate a dataset both402

take longer and call more methods, thus doing more work. Algorithms and datasets that invoked garbage403

collection more typically took longer and consumed more energy.404

6 EVALUATING MACHINE LEARNING CHOICES ON MOBILE DEVICES405

In this section we provide guidance to app developers who seek to use machine learning within their406

mobile-apps. Developers should decide if they need to train machine learners or if they can simply407

share a trained model with their mobile-app. Developers should also consider the effect that the number408

of attributes have on energy consumption. Furthermore developers should consider how much energy409

consumption they are willing to allow for versus the accuracy or agreement they want to achieve.410

6.1 What are the best algorithms to use for models that do not need updating?411

The Google Translate application uses a convolutional neural net that was trained on a carefully selected412

dataset, and then deployed in the application (2).413

J48, SMO, Logistic Regression, and MLP all have significantly higher training costs than classifying414

costs. Thus, these algorithms would be ideal for implementations where the model could be trained ahead415

of time, and not updated after release for classification in the application. J48, Logistic Regression and416

SMO are Pareto optimal choices based on our limited evaluation, depicted in Figure 7.417

6.2 What are the best algorithms to use for models that need updating?418

If the model must be trained or re-trained on the phone, Naïve Bayes is the best algorithm to use to limit419

energy use, as it has the lowest energy use overall and has the same time complexity for training as for420

classifying [8]. The IBk classifier is trivial to update, making updating fast and low-energy, but it is slow421

and energy-intensive to classify and it is one of the worst energy consumers for classification.422

6.3 What are the best algorithms to use to minimize energy consumption?423

Excluding ZeroR, Naïve Bayes used the least amount of energy on average for training and testing. J48424

was also energy efficient, being the next-lowest energy user on average, after Naïve Bayes. Thus, Naïve425

Bayes and J48 are the best algorithms to use for applications trying to reduce energy use. For 50% split426

training and testing Naïve Bayes was the lowest energy consumer on average, but was the second-lowest427

energy consumer for some datasets. For cross-validation, Naïve Bayes was the lowest energy consumer428

across all datasets. This suggests that Naïve Bayes’ energy performance will scale well over time.429

Naïve Bayes is recommended over J48 in terms of energy use if the model must be trained as well430

as evaluated by the app. If the model can be pre-trained, J48 will likely use less energy and be faster to431

validate than Naïve Bayes, but Naïve Bayes can train models faster and with less energy than J48.432

6.4 What are the best algorithms to use to maximize accuracy?433

Of the Weka algorithms, Random Forest and SMO were the best classifiers overall, with Random Forest434

having the highest average accuracy and SMO having the highest average kappa statistic, making these435
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the best algorithms to use to obtain correct results. Random Forest was also the highest average energy436

user on 50% split datasets, and the second highest for 10-fold evaluation. SMO was less energy-hungry437

overall and dominated RF.438

MLP had the highest average accuracy overall, with an average classification accuracy of over 95%439

and an average kappa of over 0.92. On some datasets it was able to achieve RMSEs smaller than 0.0001,440

suggesting potential overfitting. MLP could likely achieve even higher accuracies if optimized. To441

standardize the tests, all our MLP networks had the same number of hidden neurons (15), learning rate442

(0.2), and fixed number of training epochs (100) regardless of input size or type. Tuning these parameters443

for each dataset could likely improve prediction accuracies. For example, the Spambase dataset had the444

highest error, with a classification total mean square error of 0.37 with the test parameters, but using445

a learning rate of 0.1 and 1000 training epochs, the total mean square error could be reduced to 0.31.446

However, tuning these parameters would likely also affect energy consumption of the network.447

6.5 What are the best algorithms for datasets with many attributes?448

Energy consumption is strongly-correlated to algorithmic time complexity. Thus, it is not surprising that449

the algorithms with the lowest energy use on datasets with large numbers of attributes (PGSQL, MNIST,450

Spambase) also have algorithmic complexities that have a low dependence on the number of attributes.451

SMO had low energy use on the PGSQL and Spambase datasets, especially with 50% split evaluation.452

Naïve Bayes, which has a linear dependence on the number of attributes, also performs well on these453

datasets.454

6.6 What algorithms dominate in terms of energy versus accuracy?455

Figure 7 shows a clear dominating Pareto front of machine learners that are “optimal” for energy456

consumption or accuracy measured in Kappa score. Clear dominators in order of Kappa score versus457

energy are ZeroR, J48, Logistic Regression and support vector machines (SMO). These candidates make458

sense because they are effectively small functions (logistic regression and SMO) or conditions (J48) that459

are quick to evaluate. For training, ZeroR, IBk and SMO dominate as IBk’s lazy training beats Naïve460

Bayes. Ignoring IBk, the training dominators are in order of Kappa are: ZeroR, Naïve Bayes, J48, logistic461

regression, RF, and SMO.462

7 THREATS TO VALIDITY463

Construct validity is threatened by our choice of experiments, machine learning algorithms, and data sets.464

We tried to control for attribution errors by having a constrained environment that was very similar for465

every run.466

Internal validity is threatened by selection bias of datasets and algorithms, as well the use of two467

machine learning frameworks. The consistency of the measuring framework could affect internal validity.468

External validity is threatened by the limited number of machine learning algorithms evaluated. We469

could apply more and furthermore we are limiting ourselves to only two machine learning frameworks.470

Some frameworks could have better energy efficiency or run-times. We hope that a lot of the external471

validity can be addressed with the theoretical run-time estimates provided by complexity estimates.472

8 CONCLUSIONS473

We conclude that machine learning can be used in an energy effecient manner on mobile devices such474

as smartphones. Currently we would not recommend training neural nets on mobile devices, however475

evaluation with neural networks on mobile devices is quite successful (1; 2).476

We observed that many machine learning algorithms cost more to train them to evaluate. Many of the477

issues with applying these machine-learning algorithms can be addressed by offloading the training to the478

cloud — which we recommend for logistic regression, support vector machines, and neural networks.479

Depending on the context and the need for updates, a lazy trainer, such as nearest neighbours, with480

expensive evaluation could make more sense than an algorithm with relatively good performance balance481

between training and evaluation. One needs to balance how much evaluation versus how much training482

one needs to do. Constant evaluation implies one needs a cheap evaluator whereas constant updates and483

changing signals implies one need an algorithm that is cheap to train, such as Naïve Bayes or nearest484

neighbours.485
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Dominating algorithms for only evaluation include Support Vector Machine, Logistic Regression486

and J48. Support Vector Machines, Random Forest, and Neural Nets (MLP) performed the best in terms487

of accuracy but with poor energy efficiency for training. Naïve Bayes was balanced and offered good488

accuracy compared with its training energy efficiency but suffers from high evaluation energy costs. Some489

algorithms did not fare very well for training such as logistic regression that requires lots of memory and490

CPU and had middle-ground accuracy without the ability to update easily.491

Thus mobile app developers need to be aware of the trade-offs between different machine learning492

algorithms. We conclude that neural networks have good performance but suffer from poor energy493

efficiency in terms of both training and evaluation. Perhaps fixed-point or binarized neural networks as494

suggested by Courbariaux et al. (53) will enable the training of neural networks and deep learning on495

mobile devices.496

Future work would be to integrate smart search techniques to emulate the SEEDS approach (15) of497

choosing machine learning algorithms given domain context and constraints. Thus, recommender systems498

could be built that could analyze the problem and make the best suggestion based upon empirical and499

theoretical constraints and measurements. Future work can also include accounting for more neural-net500

architectures, more learners, and more data-sets.501
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Figure 1. Example of a GreenMiner profile for a test run of 10-fold cross validation on Naïve Bayes
with the Spambase dataset
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Figure 4. Power consumptionto train and test with 50% split
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Figure 5. Power consumption to perform 10-fold cross validation

21/23

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2431v1 | CC BY 4.0 Open Access | rec: 8 Sep 2016, publ: 8 Sep 2016



1000

2000

3000

4000

IBk J48 LogReg MLP NB RF SMO ZeroR
Algorithm

E
ne

rg
y 

(J
) Phase

Train

Test

Average Training vs. Testing Energy for Algorithms with 50%−Split

Figure 6. Comparison of average energy use training and testing algorithms with 50% split

22/23

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2431v1 | CC BY 4.0 Open Access | rec: 8 Sep 2016, publ: 8 Sep 2016



NB

J48

SMO

LogReg

ZeroR

IBk

MLP
RF

●

●

●

●

●

●

●

●10

1000

0.00 0.25 0.50 0.75
Kappa

E
ne

rg
y 

(J
)

Kappa Accuracy And Testing Energy Use of Algorithms with 50%−Split

Figure 7. Scatterplot of energy consumption during classification (not training) versus Kappa.

23/23

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2431v1 | CC BY 4.0 Open Access | rec: 8 Sep 2016, publ: 8 Sep 2016


	Introduction
	Prior Work
	Software Energy Measurement
	Machine Learning on Mobile Platforms
	Algorithms Used
	Datasets Used

	Methodology and Measurements
	Energy Measurement with GreenMiner
	Measurement Process

	Energy Profiling Results
	RQ1: Can we identify the best performing algorithm in terms of energy?
	RQ2: Can we identify the best performing algorithm in terms of power?
	RQ3: Can we identify the best performing algorithm in terms of accuracy?
	RQ4: Can we identify the best performing algorithm for training/testing in terms of energy?

	Causes of Energy Differences
	Is energy use related to the CPU usage of an algorithm?
	Is energy use related to the memory use of an algorithm?
	Is energy use related to the methods called by an algorithm?
	Is energy use related to algorithmic complexity?
	Analysis

	Evaluating Machine Learning Choices on Mobile Devices
	What are the best algorithms to use for models that do not need updating?
	What are the best algorithms to use for models that need updating?
	What are the best algorithms to use to minimize energy consumption?
	What are the best algorithms to use to maximize accuracy?
	What are the best algorithms for datasets with many attributes?
	What algorithms dominate in terms of energy versus accuracy?

	Threats to Validity
	Conclusions
	References

