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ABSTRACT

Software energy consumption is a performance related non-functional requirement that complicates
building software on mobile devices today. Energy hogging applications are a liability to both the end-user
and software developer. Measuring software energy consumption is non-trivial, requiring both equipment
and expertise, yet many researchers have found that software energy consumption can be modelled. Prior
works have hinted that with more energy measurement data one can make more accurate energy models
but this data was expensive to extract because it required energy measurement of running test cases
(rare) or time consuming manually written tests. We address these concerns by automatically generating
test cases to drive applications undergoing energy measurement. Automatic test generation allows a
model to be continuously improved in a model building process whereby applications are extracted, tests
are generated, energy is measured and combined with instrumentation to train a grander big-data model
of software energy consumption. This continuous process has allowed the authors to generate and
extract measurements from hundreds of applications in order to build accurate energy models capable of
predicting the energy consumption of applications without end-user energy measurement. We clearly
show that models built from more applications reduce energy modelling error.
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1 INTRODUCTION

How can we help software developers address the limited battery life of smart-phones and mobile devices?
Perhaps energy modelling tools can help. Are these energy models good enough? Can we improve existing
software energy measurement models by measuring the energy consumption of more applications? These
questions are motivated by the short battery life of mobile devices, such as smart-phones and tablets.

Does software energy consumption matter? The answer is yes. Mobile device users prioritize longer
battery life when investing in their next purchase [42, 24, 55]. Similarly, developers are trying to write
more energy efficient code to meet the need of consumers [36, 48, 12]. Very recently, extremely short
battery life was reported by the users of Microsoft Surface Pro 3. Microsoft acknowledged that as a
software bug, “Based on our investigations we can confirm that it is not an issue with the battery cells, and
we believe this is something that can be addressed via software” [29]. Research has shown that energy
efficiency can be improved significantly with minor code optimization [44, 22, 30, 44, 13, 47].

To develop energy efficient software, developers need feedback about the energy consumption of their
software. Developers need energy measurement tools to understand the energy consumption impacts of
their source code changes, including new features and refactoring. Yet, developers are not sure how to
measure their code changes in terms of energy [42]. In fact, measurement related StackOverflow questions
are more complicated than others and receive the least accepted answers [48]. In recent surveys, software
developers acknowledged the importance of having energy related models that would help to learn and
develop energy efficient systems [42, 37]. Unfortunately, the insignificant number of easy to use energy
models is noticeable [42, 4, 37].

We seek to help Android developers accurately estimate energy consumption of their software without
the need for hardware instrumentation and without physically measuring their own software’s energy
consumption. Instead measurements from 3rd party applications are used to build a robust model that can
accurately estimate their own software’s energy consumption. Measurements of 3rd party applications are
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hard to find as one needs a repeatable test case and corresponding energy measurements. These test cases
are costly to build manually and are the main limitation of empirically derived models [13]. We address
this limitation by demonstrating the effectiveness of automatic test generation to collect measurements for
energy models.

We propose GreenScaler, an easy to interpret energy model for Android applications. GreenScaler
leverages a continuous process of test generation to build an ever more robust corpus of energy measure-
ments. Android developers can use GreenScaler to diagnose if a code change impacts an application’s
software energy consumption. As of writing, GreenScaler learns from a wide variety of 472 real world
Android applications, which was made possible through automatic test generation. GreenScaler is count
based and relies on counts of system calls, CPU time, and other OS-level statistics. Modelling energy from
such a large set of applications improves model robustness and exposes causes of energy consumption.
The advantage of learning from such a wide variety of applications is evident with the reduced error
bound of GreenScaler, as we show later, compared to its predecessor GreenOracle [13]—a model trained
only on 24 Android applications with manually created tests.

The main contributions of this paper are:

1) We propose a process of continuously building and training an ever more accurate software energy
consumption prediction model using automatic test generation.

2) We propose the GreenScaler model that can accurately estimate software energy consumption of
applications without hardware instrumentation.

3) We demonstrate the lack of a definitive relationship between code coverage of tests and software
power use which enables test generation without source code access.

2 BACKGROUND

We dedicate this section to explain terms that are frequently used in this paper. Our data collection tool
GreenMiner [26], along with the importance of generating automatic test cases, is also explained. Finally,
a previous energy model GreenOracle [13] that set the pathway of this work is described.

2.1 Power is not Energy

Power (P) is defined as the rate of work completion and measured in watts whereas energy (E) is the
total amount of work done for a given time and expressed in joules [5, 10, 11]. The difference between
power and energy, E = P - T, is one of the first requirement to understand in order to develop energy
efficient system. A misconception exists among developers: improving execution time automatically
improves energy efficiency [37]. For example, in developers understanding on energy optimization: “no
specific goals for energy usage, just ‘don’t be bad”. Improving execution time reduces T in the equation.
However, there is a chance that with the reduced execution time the CPU workload is also increased,
so much so that instead of operating in the lowest power consuming state, the CPU switches to the
highest power consuming state. This might have an adverse impact on the overall energy consumption.
In addition, previous research observed significant improvement in energy efficiency with small source
code modification that minimizes the number of tail energy components, instead of focusing on execution
time [44].

2.2 Energy Bugs

An energy bug—in contrast to the traditional programming bugs producing incorrect/unwanted results—
specifically leads to reduced battery life of battery-driven devices [56]. The sources of energy bugs can be
of different types: no sleep bug—result of waking up the CPU, but not putting back to sleep mode [35];
loop bug—waiting for an event to happen, and thus periodically inspecting changes in a variable [43]; and
tail energy leak—observed with some hardware components that do not stop drawing power immediately
after job completion [11, 44].

2.3 System Call, CPU Time

System calls act as the bridge between an application and the operating system. For example, socket is
a system call responsible for creating communication endpoints, whereas read takes the responsibility to
read from a file. Counting the number of system calls of different types can thus provide us an estimation
of the amount of different resource usage by an application [45, 4, 13].
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In order to represent the CPU time expended by a process, we used the number of CPU jiffies
provided by the Linux kernel. A CPU jiffy is a period of time assigned for a process to run without
any intervention [28]. Counting the number of CPU jiffies is thus an indication of CPU usage by a
specific process. One of the energy modeling complications is that a CPU can operate in different power
consuming states, resulting in differing energy consumption for the same period of time [37]. As a CPU
jiffy can be of different time intervals based on the CPU states, we expect that counting the number of
CPU jiffies as the CPU usage measurements would mitigate the intricacy involved in software energy
modeling.

2.4 Physically Measuring Energy Consumption with GreenMiner
For our data collection—measuring energy consumption and resource usage—we used GreenMiner [26].
GreenMiner is able to provide accurate energy measurements for Android applications and is widely
accepted in the software energy research community [22, 13, 49, 25, 5, 4]. The main two components
of this testbed—in addition to some other supporting hardware components like arduino uno, INA 219
breakout board—are four Android Galaxy Nexus phones and four raspberry PIs. Each PI is connected
to a particular Galaxy Nexus, which is responsible for pushing and running test as well as collecting
measurements afterwards. The responsible PI then uploads the measurements to a central server.

Some variation in energy consumption is observed in different measurements for the same test [22,
13, 5]. This is why all the GreenMiner based previous work measured energy consumption multiple times
for a particular test and took the average. In this work, all of our tests for measuring energy and resource
usage for a particular application were run 10 times and the mean value was used.

2.5 Manual Test Cases for Energy Measurements

In order to run an application on GreenMiner, a test script is required that can play the sequence of
operations each time the application is uploaded to a phone. We used Android shell and busybox to make
all our test cases. In general, a test script should emulate a normal user behavior with an application.
For example, our manual Firefox script [13] opens Firefox, loads Wikipedia page for American Idol
and scrolls over the page for five minutes—as if a user is reading the page. To develop such a script,
we selected the pointer locations of interest and then converted to the appropriate adb command. One
such example is adb shell input tap 200 300, which taps on an open application at pointer
location 200 300.

Unfortunately, it is very time consuming to manually create test cases for individual applications.
Furthermore, in our previous energy model, GreenOracle [13], we used only 24 Android applications and
concluded that adding new applications in training data improves the model significantly. This provides
motivation for our automated Android test generation tool, AutoTestGen, discussed in Section 3.2.

2.6 GreenOracle
GreenOracle followed the philosophy of modeling software energy consumption based on the counts of
different resource usages, similar to GreenScaler. The former, however, has some serious limitations.
First of all, this model was built only using 24 Android applications. Although the size of the training
data was enlarged by adding different versions from those applications, this did not improve the model
significantly. This is not surprising as we developed only one test case for each application—one use case
scenario. As a result, different versions of the same application might execute the exact same source code
for the same test case. In fact, for most of our applications we observed extremely small differences in
energy consumption over its different versions. In this paper we show that a model based on such small
dataset suffers from massive overfitting, and thus produces inaccurate feature set.

GreenOracle, however, advised the importance of adding more unique applications for a robust energy
model, and thus showed the direction for GreenScaler.

3 METHODOLOGY

This section describes how to build and evaluate the GreenScaler model. The process of producing a
big-data energy model, such as GreenScaler, is to: 1) collect Android applications (Section 3.1); 2)
generate tests for the collected applications (Section 3.2); 3) collect energy consumption measurements,
system calls measurements, and other process counters while running an application’s test (Section 3.3);
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4) add measurements to the training corpus; 5) and finally train our model. Figure 1 summarizes the
process of developing GreenScaler. Of course we have to prove the effectiveness of this process, so model
selection (Section 3.4), feature engineering (Section 3.5), and validation (Section 3.6) are also described
in this section.

s led APK APK-Test
ample S airs created ;
P Green Miner
I Energy+Feature
—— App
Measurements

mm) | AutoTestGen Green Scalar

Training
: !

AndroZoo 1
APK Collection ®

Rejected Apks GreenScalar

Figure 1. The process of developing GreenScaler. The model learns continuously with new applications
using tests through AutoTestGen.

3.1 Collecting Android Applications

Manually collecting hundreds of Android applications from source like F-Droid [1] is a daunting task, and
the types of selected applications may have bias due to the researcher’s choice. Fortunately, Androzoo [7]
offers millions of free to download Android applications with an objective to aid Android research.
Androzoo collected applications mainly from 3 different app stores: Google Play, Anzhi, and AppChina.
We sample applications randomly using the application database provided by Androzoo. This huge
collection of applications, however, has its own drawback: there are a significant number of applications
that do not install or run properly. We excluded those applications from our dataset. Finally, we collected
472 Androzoo applications to develop the proposed GreenScaler energy model.

3.2 Automatic Test Generation

Unlike manual test creation, automatic test generation does not require developer’s effort. In contrast
to other test generation techniques, like SimCoTest [39] which aims to generate tests with high fault
revealing ability, AutoTestGen is our own GUI test generator that focuses on tests with high CPU usage.
The reason to use CPU usage as the test fitness function instead of more intuitive and traditional code
coverage approach is discussed in detail in Section 6. AutoTestGen is based on the approach presented in
Algorithm 1.

A pool of adb events, suchas input tap x y,input swipe x1 yl x2 y2,input text
string/number, input keyevent ENTER, was created where the values of pointer locations
and strings/numbers are selected randomly in line 1 of the Algorithm. When an application is selected,
AutoTestGen first checks if the application installs and runs properly (line 2). In case of a success, the
application is then run to find the best test case—test with the highest CPU usage. When AutoTestGen
starts generating test scripts for an application, it selects the number of events randomly—from 10 to 40
events so that a test is neither too short nor too long (line 5). A test script that is too short might not do
anything useful, whereas having too many long test scripts would prolong our data collection period. If all
the test scripts are of similar duration, any machine learning model would ignore duration as an important
feature, which would be devastating for predicting unknown application’s energy with a very different test
duration. Each application is then run for a fixed 30 minutes before selecting the best test case (line 8).

Different events have different impacts on generating useful test cases. Many of our applications
do not accept textual input. We did manual observations on 30 randomly chosen applications. Not
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surprisingly, input tap x y was found as the most contributing event toward generating useful test
cases. Events like input swipe, input text, and input keyevents were assigned similar
priority, followed by tapmenu. So instead of selecting events totally randomly, AutoTestGen is biased
so that a test script contains more number of input tap than any other events, whereas the event
tapmenu occurs the least (line 9). A test script is thus a set of different events—separated by a 2 second
sleep time—with possible repetitions, and the number of events in a test case might differ among the
applications. After running the test script and measuring the CPU time (line 11), AutoTestGen checks if
the assigned 30 minutes is over. If not, it again creates another test case with the previously fixed number
of events and run it to compare if the CPU usage increased, in which case it updates the best test case
as the most recent one. The best test case is selected as the one with the most CPU time in jiffies (line
14 —17).

After spending 30 minutes to generate the best performing test case, AutoTestGen replays the best test
case in order to capture the screenshots using screencap program and save the images (line 20). This
allows us to manually investigate each application’s behavior before running them on the GreenMiner.
This is important as we found some malicious applications that can damage GreenMiner functionality, or
modify GreenMiner settings which leads to inconsistent energy measurements.

input :An Androzoo application
output : Test case for the application

EVENTS_POOL={adb shell events};
if CrashCheck (App)==True then
| Exit();
end
no_of_events <— Random(10, 40);
play_time + 0;
cpu < 0;
while play_time<30 mins do
test_script <— SequenceOfEvents(no_of_events, EVENTS_POOL);
start_time <— GetCurrentTime();
cpu_time < Execute(App, test_script);
end_time <— GetCurrentTime();
execution_time < end_time-start_time;
if cpu_time>cpu then
cpu < cpu_time;
best_test <— test_script;
end
play_time <— play_time + execution_time;
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end
ScreenCap(App, best_test);

[ S
S e

Algorithm 1: AutoTestGen

3.3 Collecting Energy Consumption and Resource Usage
All of our measurements, for energy and resource usage, were separate from each other so that the actual
energy measurements are not effected by the programs capturing resource usage.

We used the strace program for tracing the summary counts of all the different system calls invoked
by an application. As we observed little variation among different runs, mean counts of 10 runs were
considered. In order to capture CPU usage, we used the GNU/Linux proc file system: /proc/stat
for capturing global information and /proc/pid/stat for capturing information local to a particular
process [13]. Global information is necessary because of the possibility of generating background
processes by an application that can contribute highly to the total energy consumption. These two files
provide the CPU time in jiffies both locally and globally, in addition to other pertinent information such
as number of context switches, and number of page faults. For capturing global information, we take the
difference of counts between after and before running a test. Similar to energy measurement and system
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calls tracing, mean of CPU time, number of context switches, and number of page faults were taken from
10 different runs.

One more important feature that was totally ignored in GreenOracle is an application’s interface
color. In case of OLED screen, up to 40% reduction in screen-based energy consumption is achievable by
switching interface with light background to dark background [33]. With such dependency on color, an
energy model would be inaccurate if it does not consider screen color information. All the four phones
connected to GreenMiner have OLED screens. The number of captured images from screencap unfor-
tunately varies among different runs for the same test. We resolved this issue by running the screencap
program five times and considering the one with the highest number of screenshots. Motivated by Dong
et al. [14], we calculated the red, green, and blue values (RGB) for all the pixels in a screen and took the
average. The average of these average values—one average from each screen—was then reported as the
final RGB values. Each of these three averages (R, G, and B) is then multiplied with the test duration—as
we aim to model total energy consumption instead of power.

3.4 Algorithms for Energy Models

We used three machine learning algorithms to select the best one as our GreenScaler: Ridge regression,
Lasso, and Support vector regression (SVR). Ridge regression and Lasso are the simplest of the available
regression algorithms and are very similar except their penalty terms. To avoid overfitting training data,
Ridge uses I, penalty in contrast to /1 penalty by Lasso [23]. The biggest advantage with these algorithms
are that they are very simple to interpret. This helps developers to know which features and thus which
segment of code are responsible for most of the energy consumption.

SVR, on the other hand, is much more complicated and can exhibit better performance than simple
linear regressions in many cases [52]. The interpretation of such a model, however, is difficult and can be
complicated for many software developers to find which features are contributing more toward energy
consumption. For that matter, we only used the linear kernel instead of the more complicated sigmoid,
radial basis function (RBF), and polynomial kernels. Ridge and Lasso were implemented in Octave.
SVM/& implementation was used for SVR that is based on &-SV regression [52] with the objective to
find a function f(x) that does not deviate more than € from the ground truth.

3.5 Feature Engineering

3.5.1 Grouping System Calls

We observed some of the system calls, in spite of their very similar functionality, have different names. For
example, according to the man page [2], both £sync and fdatasync do the same work—*‘synchronize
a file’s in-core state with storage device”. If we treat these system calls the same, then applications that
use either can benefit from training. We found many system calls with this property. Instead of treating
them separately, similar system calls are grouped together. A detailed description of all the grouped
system calls were reported in [13]. In general, if an application invokes 10 £sync and 10 fdatasync,
a new feature Fsync (group name) was used with 20 counts in our model.

3.5.2 Feature Selection and Scaling

Compared to the number of training examples, the number of features in our dataset is quite large—22
from CPU and pertinent information, 4 for R, G, B and duration, and 99 groups from system calls.
Moreover, some of the system calls are found only in a few applications’ data. This large number of
features with missing data leads to massive overfitting. Most importantly, a model with so many features
is not helpful for the developers to understand the impact of code change on energy consumption. Among
the three algorithms we used in this paper, SVR is hard to interpret and does not help us to find the best
set of features. Between Ridge and Lasso, Lasso with /1 penalty term yields a more sparse coefficient
vector (i.e., many features with coefficient 0) than Ridge and thus makes it more suitable for feature
selection. However, because of high correlation among the features, Lasso selects many features with
negative coefficient—a phenomenon that made the previous GreenOracle [13] less interpretable with
reduced accuracy.

We addressed this issue by using a recursive feature elimination method with Lasso. After the first
iteration, we manually removed the set of features with very low coefficients. We followed this procedure
until we got a set of features with reasonably high coefficients. This procedure subsequently deleted
highly correlated features. We also found that using lots of versions of a single application is harmful
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Table 1. Selected features to model energy consumption for Android applications. The weight of each
feature is explained in Section 4.1.

Features Description Weights
User Number of CPU jiffies for normal processes executing in user mode 1.034e-2
Nice Number of CPU jiffies for niced processes executing in user mode 8.660e-3

CTXT Total number of context switches 8.000e-5
Major Faults | Number of major page faults for a process 1.117e-2

Duration Length of the test case in seconds 6.300e-1
Red Average level of red from screens - duration 5.000e-4
Green Average level of green from screens - duration 4.000e-4
Blue Average level of blue from screens - duration 5.200e-4
Fsync System calls (fsync & fdatasync) to synchronize a file’s state to disk 1.310e-3
bind System call to bind a name to a socket 6.033e-2

recvfrom System call to receive a message from a socket 5.000e-5
sendto System call to send a message to a socket 1.761e-2
Dup System calls (dup, dup2, dup3) to duplicate a file descriptor 5.406e-2
Poll System calls (poll and ppoll) to wait for some event on a file descriptor | 2.920e-3

for feature selection. For this reason, we did not use any of the GreenOracle dataset. Instead, 80% of
the measurements from Androzoo (i.e., 377 randomly selected applications out of 472) were used for
feature selection. Table 1 shows the final set of features that were selected from the feature selection
process. As we show later, this very small number of features is indeed capable of estimating virtually
any Android application’s energy consumption. This small set of features also helps to understand what
segment of code change can actually impact energy consumption. For example, if a code change invokes
more dup system call than before, a developer can directly examine the modified file related code for
possible optimization.

Machine learning algorithms perform slowly and suffer from low accuracy if the variance among the
feature values is very high [54]. In our case, we indeed observed such high variance. This was solved by
using 0-1 normalization, which normalizes any measured feature between 0 and 1.

3.6 Testing and Cross Validation

In order to avoid overfitting training data, we applied 10-fold cross validation for all the three algorithms
to tune the penalty parameters. And again, only 80% of the Androzoo applications were used with none
from the previous GreenOracle dataset. This provides an opportunity to evaluate our model on a dataset
that was never used for feature selection, training, or for cross validation. The coefficients of the penalty
terms for all the three algorithms were finalized during this cross validation phase. It is important to
note that when an application is under test—either from GreenOracle dataset or Androzoo—that specific
application, and all of its versions for GreenOracle dataset, were excluded from training data.

4 EVALUATING GREENSCALER

As of writing, GreenScaler is trained on 472 Androzoo applications. In case of accuracy testing,
however, the application under test is excluded from training. We also evaluate GreenScaler on the 24
GreenOracle [13] applications with all of their versions.

Figure 2 (a) shows the Cumulative Distribution Function (CDF) of estimation percentage error in
Jjoules of our three selected algorithms compared with the previous GreenOracle for all the collected
Androzoo applications. The significantly worse performance of GreenOracle is not surprising, as it
was trained only on 24 applications, which led to the selection of inappropriate features with inaccurate
coefficients. For example, according to the GreenOracle model, more number of recvfrom system
call leads to less energy consumption [13], which is not realistic. With the new set of 472 applications
and accurate feature set, all the three algorithms outperform GreenOracle with very large margin. Lasso
and Ridge perform very similarly and show better accuracy than SVR. In case of Lasso, for example,
almost 94% of the applications energy was estimated with an upper bound of 10% error. In extreme
cases, the upper bound was only 15% compared to the 70% worst case error with GreenOracle. The

718
Peer] Preprints | https://doi.org/10.7287/peerj.preprints.2419v3 | CC BY 4.0 Open Access | rec: 24 Feb 2017, publ: 24 Feb 2017




Androzoo applications GreenOracle applications

1.0 f ' 1.0
o P ‘,mu"' o A6 et
o “A‘ AR
oy Kl [ 4
0.8 foof R - I s ok
F) ¢ +
I 0
f’ / o
4
0.6f -/ g
[T I U [T
[a) e B [a)
@] 'y ‘o‘ O
0.af /7 ;.
‘f; o +-4  GreenOracle +-4  GreenOracle
; o --+ SVR =-+ SVR
025 ! ‘,0"‘ ~— Lasso ~— Lasso
o Ridge Ridge
0.0 A““" H H H 7 7 7 3 H H H ; T T
) 10 20 30 40 50 60 70 ) 10 20 30 40 50 60 70
Percent of error Percent of error
(a) Random 472 Androzoo applications (b) GreenOracle’s 24 applications

Figure 2. Models’ accuracy (percent of error in joules) for both dataset. GreenScaler (Lasso)
outperforms the old one in both cases. Mean error was considered for applications with multiple versions
in Figure 2 (b).

indistinguishably similar performance of Lasso and Ridge is because of the very small (close to zero)
penalty coefficient obtained from the cross validation phase. When the coefficient is zero, there is no
difference between /1 and /2 penalties. With the very small number of features—features that indeed
contribute to excess energy consumption—none of the models overfit the training data set, which led to
a negligible penalty coefficient. However, during the feature selection phase, Lasso was very different
than Ridge and helped us to find a good performing set of features. As a reward, we title Lasso with the
coefficients in Table 1 as the final GreenScaler.

The previous GreenOracle was based on 24 applications. As the feature selection phase also involved
those 24 applications, the model performed well for that set of applications. GreenScaler, on the other
hand, has no information on those 24 applications. Encouragingly, GreenOracle, even for its own dataset,
is outperformed by GreenScaler (Figure 2 (b)). The upper error bound for the new model is only 10%
(i.e., with Lasso), in contrast to the 13% error with the old one. This is another demonstration of the
robustness of GreenScaler.

4.1 The Final Model

Table 1 shows the final GreenScaler energy model. Although we evaluated our model using normalized
features to train the model faster—for each single application under test, we had to train the whole model
again with all other applications—the table shows coefficients without normalization so that one can
interpret the model without complication. The difference in accuracy between model with and without
normalization, however, is very negligible (below one percent) because of the selected very small and
accurate set of features. The good accuracy of this model is self explanatory.

The table shows that sources of energy consumption in Android systems are related to CPU usage, test
duration, screen color for OLED screen, file operations (Fsync, Dup and Poll), and data communication
(sendto, recvfrom, and bind). The model suggests that transmitting (sendt o) is more expensive than
receiving (recvfrom), which is complemented by previous research [40]. Moreover, in terms of pixel
color intensity, blue is the most expensive and green is the least expensive, exactly what was observed by
Dong et al. [14]. Interestingly, our model suggests that memory related operations, except for handling
major page faults, do not have significant impact on energy, which was also observed by Hasan et al. [22].

4.2 Finding Energy Regression in Source Code Changes

The main strength of GreenScaler is that it is precise, as it maintains similar shape between estimations
and ground truths for all the versions of any particular application. This is exactly what a developer
would want as they would be more interested to know if more energy consumption was introduced by the
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Figure 3. GreenScaler (Lasso) maintains similar error distribution among different versions of the same
application. This is helpful to identify the unoptimized versions of an application.

recent source code modification. We selected four applications from GreenOracle dataset that have lots of
versions. Figure 3 shows that although GreenScaler accuracy varies among the applications, the error
distribution is very similar among all the versions for the same application.

In order to further demonstrate the adeptness of GreenScaler in segregating energy buggy versions
from the optimized ones, we select six of the applications from GreenOracle dataset. Unlike other
applications, these six applications contain versions with very different energy profiles. In order to
understand how energy profiles evolved over time, we sorted the versions based on the actual committed
time.

Figure 4 shows that for all the six applications, GreenScaler successfully separates out the energy
buggy versions. In the case of Yelp, a travel & local application, only one version has very different
energy profile than all the others. GreenScaler distinguished that version accordingly. We observe similar
performance for all other applications. Memopad, a drawing application, exhibits three interesting energy
profiles throughout its life time—it got more and more energy efficient over time in contrast to Agram
and Pinball. Our proposed model very accurately distinguished those three phases.

Now that GreenScaler is adept to know if a code change is scary (or advantageous) in terms of energy
consumption, we ask: can it help to find out exactly which part of code modification caused the change in
energy consumption? The answer is yes, and the success lies within the very simplistic philosophy that
GreenScaler is built on—simple counts of different features. Here we provide two examples to support
our claim. In case of Agram, an application to generate anagrams, our dataset contains only three versions.
Figure (b) clearly suggests that version 2 and 3 consumes more energy than version 1. GreenScaler
suggests that the number of context switches has increased very significantly from version 1 and stays
similar to 2 and 3. Our first impression was that code related to thread interaction could have been
modified. We used git diff to verify our intuition. We found that all the Java methods responsible
for generating anagrams were indeed modified to synchronized methods. It is well-known that
synchronized methods, when not optimized properly, fight unnecessarily for shared locks, which
subsequently leads to more CPU usage [3, 48]. Similarly, we investigated the continuous improvements
of Memopad in terms of energy consumption. The only difference in our model among all the versions of
Memopad was their RGB counts, clearly suggesting the background color was changed over time. Indeed
we found three distinct background colors. A complete white background (the most expensive for OLED
screen) was used for versions up to 33, which was then modified to more efficient yellow followed by
even more efficient red. This articulates how significant a simple choice of background color can be for
devices with OLED screens, as also observed by previous research [33].
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Figure 4. GreenScaler’s efficiency in differentiating versions with different energy consumption. The

model maintains similar shape to the actual energy consumption across the committed versions over time.
This helps developers to know if a code change was more energy consuming then before. The rectangles
show the significantly different versions.
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5 THE IMPORTANCE OF BIG-DATA

Does big-data help? Once again, the answer is yes. Figure 5 shows the reduction in error as more
applications are used in training set. From the 472 random Androzoo applications, 50 applications were
sampled randomly as test instances. Using the rest of the applications, accuracy of GreenScaler is tested
using different training sets with different number of training applications (50, 100, 150 and so on). The
accuracy of the test set can also vary for the same training size based on the selected applications—some
applications capture more system calls than others. This is why for each training size x, we repeated each
test 100 times with 100 different combinations of x number of applications. Figure 5 shows the combined
error distribution for each training size.

10 - - - , , , r r
El ~-a Mean error of the worst 5 estimations
[
\\ +
s
S
o t + N
“Ll:l % % \\+
o % *s\ I
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Figure 5. Error distribution Vs. training size. The accuracy improves significantly as we add more
applications in training.

The box-plot graph in Figure 5 also shows that applications with high estimation errors (outliers) exist
for all the training sizes. This high error, however, dwindles continuously as we add more applications
in our training. In fact, with 400 applications in training the upper error-bound becomes very close to
10%. The dotted line shows the average of the 5 worst estimations with each training size. Although the
decay of error rate becomes slow after adding 300 applications in training set, the least number of outliers
with 400 applications suggest the possible improvement of GreenScaler with adding even more number
of applications. In fact, the difference between the accuracy with different training sizes would be more
obvious if we had not used the best set of features, which was revealed only after adding more than 400
applications.

It is evident that if we can add more applications in training, we can further improve the upper-error
bound of GreenScaler. And this is where our test generation tool, AutoTestGen, becomes so useful. In
fact, our data collection was still on at the time of writing this paper. AutoTestGen enables a continuous
process that allows GreenScaler to improve continuously.

6 CODE COVERAGE VS. POWER USAGE

This section explains the rationale behind using CPU usage as the heuristic to select the best test case for
our AutoTestGen.

In order to generate best test cases for our randomly selected applications, we need to ask what
search-based software engineering approach we should follow. In general, we want tests with the most
power consuming ability although we are modeling software energy consumption. If we set energy
consumption instead of power usage as the criteria for best test, test with the highest execution time will
be selected most of the time even if the test quality is subjectively poor—a test that runs for a long time
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Table 2. Description of selected applications’ master test suite coverage.

Feature | Klaxon | Password Hash | Storyhoard
SLOC 799 247 1959
Master Suite Size' 16 17 75
Class Coverage 24/33 (73%) 11/12 (92%) 56/81 (69%)
Method Coverage 85/150 (57%) 54/60 (90%) 306/497 (62%)
Line Coverage 383/799 (48%) 2177247 (88%) | 1252/1959 (64%)
Block Coverage 1937/4378 (44%) | 2225/2345 (95%) | 5345/8504 (63%)

and does nothing. Given this observation, we explore the relationship between code coverage and power
usage. Our methodology is a near replication of the work by Inozemtseva et al. [27]. The authors found
that code coverage is not strongly correlated with test suite effectiveness (i.e., ability to find bugs). In our
case, however, we use test suites of existing applications to determine the effectiveness of test suite’s code
coverage at exposing power usage—is code coverage strongly connected to power usage?

6.1 Selected Applications

We selected three open source Android applications: Klaxon—an SMS based pager that repeatedly
notifies the user by means of a ringtone and/or vibration; Password Hash— an application for generating
web specific passwords; and Storyhoard—create your own adventure application. The difficulty of finding
open source Android applications with good Junit test suites limited our number of applications. To better
match the work of Inozemtseva et al. [27], we also required the applications to have a coverage of at least
about 50% for either class, method, line, or block. This requirement further narrowed down the available
choices. Table 2 shows the characteristics of the selected applications. The varied number of lines in
source code, number of methods, classes and blocks help us better to understand the relation between
code coverage and power usage.

6.2 Generating Test Suites

Following the similar approach of Inozemtseva et al. [27], we generated test suites with different sizes.
For example, a test suit of size 3 means there are 3 test cases in the test suit. We started with test suit
size 2 and then repeated the procedure with test suites of sizes 4, 7, 10, 13, 16, 27, 40, 64, and 73. The
selected sizes of test suites are similar to Inozemtseva et al., but not identical because we used different
projects in our paper. Once the sizes were decided, a Python program was written to randomly choose test
cases from an application’s master suite and create different sized test suites from them. For each test
suite size, 100 test suites were generated, unless such 100 different combinations for a specific size was
not possible. We expect this would allow us to have a diverse enough collection of test suites of various
sizes and coverage levels.

For all the generated test suites, we calculated the code coverage and the associated energy consump-
tion. Coverage was obtained by a third-party tool emma [16] on the source code of each application. Four
different types of code coverage are supported by emma: line coverage, method coverage, class coverage,
and block coverage. We used all of them in our analysis. We made sure to disable “coverage true flag”
while measuring energy consumption to avoid any overhead incurred from coverage calculation. For
measuring energy, GreenMiner was used. As discussed earlier, each suite was run 10 times to take the
average energy consumption.

6.3 Result and Discussion

Table 3 shows the Pearson’s correlation coefficient between code coverage (with test suite size not fixed)
and power usage for all the three applications; power usage against test suite size is also presented. The
strong correlation between energy and code coverage is not surprising; larger code coverage means
larger execution time which has direct impact on the amount of energy consumption (i.e., E =P - T).
The correlation between energy and duration is indeed very high (minimum 0.98). In case of power,
however, we observed strong correlation (Klaxon) to extremely weak correlation (Password Hash). We
also evaluated the relation with fixed suite size and varied code coverage. The observation, however, is
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Table 3. Correlation between code coverage and power usage. In addition, correlation between suit size
and power is also presented.

Coverage

Applications Method | Class | Line | Block | Suite size Duration
Klaxon Power 0.72 0.74 | 0.73 0.72 0.67 N/A
Energy 0.84 0.85 | 0.86 0.85 0.80 0.98
Password Hash Power 0.07 0.09 | 0.04 0.04 -0.17 N/A
Energy 0.62 0.55 | 0.67 | 0.59 0.83 0.99
Storyhoard Power 0.29 0.31 | 0.28 | 0.27 0.15 N/A
Energy 0.86 0.84 | 0.85 0.85 0.95 0.98

very similar.

This indicates that covering more code during testing does not necessarily produce test case with high
resource usage. This is very intuitive as not all code is equally power hungry; for example, a single line of
code that makes a HTTP request might consume much more energy than other segments of code that do
not ask for high CPU usage or network operations [32]. In our case—modeling software energy against
the indirect measurement of resource usage—we need test cases that are more likely to exploit different
resources. This led us to select test cases with the most number of CPU usage; we believe, CPU usage is
also correlated to other I/O operations, as we observed more CPU jiffies leads to more number of different
system call invocations [13].

7 THREAT TO VALIDITY

Modeling software energy consumption is a hard problem [37]. For example, based on the architecture, a
CPU can operate in different power consuming states. Our expectation is that a CPU in high frequency
state would have more CPU jiffies, which was indeed captured in our model. Our mapping mechanism—
average from system call traces, CPU jiffies, and energy consumption—might not be 100% accurate as
little variation between different measurements is observed. Modern mobile devices and their software
are not as deterministic as one would hope. We mitigated this variation by running each scenario 10 times.
External validity can be criticized for using a single version of Android phone.

8 RELATED WORK

With the increased usage of battery-driven devices, research has been done in several areas of software
energy consumption: modeling software energy, techniques to find energy bugs and basic guideline for
developing energy efficient system.

8.1 Modeling Energy Consumption

Most developers do not have access to real hardware-based energy measurement systems like Green-
Miner [26]. Models have been developed to address this issue. We categorize previous models in three
broad categories: instruction-based modeling, utilization-based modeling, and modeling energy using
system call traces.

Instruction-based modeling refers to the technique of estimating energy consumption using program
instruction cost. Energy consumption for Java-based distributed systems was modeled by Seo et al. [50].
The model, in addition to the communication cost, used component level energy consumption. Shuai et
al. developed eLens [21] a model based tool that can estimate energy at different levels: program
level, method level, and instruction level. The basic problem of these approaches is their rigidness to one
particular programming language: a model developed for a Java-based system can not be applied systems
with different programming languages.

The most commonly used approach for modeling software energy consumption is the utilization-based
approach [9, 51, 20, 17, 57, 15]. The philosophy of such approaches is simple and intuitive: if we know
the usage time of a hardware component with its energy consumption, we can model its energy profile.
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The biggest limitation, however, is that such approaches cannot model tail energy leaks [45, 13, 5]—as
tail energy is the energy consumed by a component after completing the workload assigned to it.
Modeling energy using system call traces is the most relevant approach to our work. Pathak et al. [45]
proposed a Finite State Machine (FSM) based model using system call traces. Each hardware component
is represented as a FSM which is accessed when a particular system call relevant to the component
is invoked. In our earlier work, Aggarwal er al. [5, 4] applied system call counts to predict if energy
consumption of different versions differ from each other based on the number of changed system call
counts. This model, however, does not offer the actual energy consumption, and thus the developers
would not be sure how bad the energy regression incurred from a change in source code is. None of these
models take screen color information of applications and thus can profile other components inaccurately.
The number of applications used for learning and validation is also very small compared to our dataset.

8.2 Energy Optimization and Guidelines

Wake locks are frequently used by Android developers to continue operations even when a device goes
to sleep status [35]. Programmers write code to acquire wake lock before starting a task and release the
lock after the task completion. Unfortunately, the code related to wake lock release might not execute
ever with some unexpected run time exception. In many cases, programmers write code to acquire
wake lock at Android’s onCreate method, and write the release code at onDe st roy method without
knowing that onDest roy method might never execute [6]. This phenomenon severely impacts the
energy consumption, rapidly emptying batteries. Pathak ef al. [43] observed that 70% of energy bugs are
the result of wake lock related problems. This is no wonder that much research [44, 6, 35, 8, 53, 46] has
been conducted to characterize, detect, and minimize no sleep bugs so that the developers can optimize
their code.

Another source of energy consumption is tail energy leaks. Bundling I/O operations together was
found to be very effective to reduce the number of tail energy leaks [45, 11, 32]. Interestingly enough,
energy consumption of smart-phones can be effected by the type of servers they communicate with.
Chowdhury et al. observed that employing HTTP /2 server can help significantly in reducing clients
energy consumption [11]. As screen color is very sensitive for OLED screen’s energy consumption,
tools for automatic color transformation have been developed [33, 34]. In case of video streaming,
pre-fetching has been found helpful to save energy [18]. Job off-loading to a server to save energy was
also studied [41]. The overhead associated to data off-loading can be so expensive that it might even
worsen energy consumption [40]. Advertisements are another source of overheads for the end users in
terms of energy [19], so much so that using ad-blockers, in spite of its own cost, can actually help in
saving energy [49].

Some studies concentrated on guiding developers to write energy efficient code during the development
phase. Energy profiles of the frequently used Java collection framework for Android systems were
formulated by Hasan ef al. [22]. The authors found that selecting the best data structure can save 300%
energy over selecting the worst one. A very similar study was conducted by Pereira et al. [47] for Linux
server. Manotas et al. [38] developed a framework for automated selection of energy efficient Java
collections. Ding et al. [31] proposed some actionable guidelines to write energy efficient code. For
example, Application developers should be more concerned on the optimization of using APIs rather than
their own code, and enormous amount of energy consumption can be saved by reducing idle/waiting time.

9 CONCLUSION AND FUTURE WORK

In this paper, we show the value of continuous software energy consumption model building through
automatic test generation. We avoid expensive manual efforts in producing test cases to drive programs
while undergoing energy measurement. This process builds GreenScaler, an ever improving software
energy consumption model.

To support such automatic test generation, we demonstrate how irrelevant code coverage is to power
measurements. In fact, code coverage correlates more with test runtime than with power usage. This
prompted us to suggest test generation that aimed to produce tests with high CPU usage in order to access
the primary functionality of applications.

There is a clear relationship between number of applications measured and the upper error-bound
of count-based software energy consumption models. By automating formerly manual-labor intensive
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testing work, we can continuously produce ever more accurate models that can be used by developers
with no hardware-based instrumentation. We also demonstrate that these models work well in the relative
case whereby version to version the model successfully predicts changes in energy consumption of an
application undergoing modification.

Future work includes scaling up this big-data approach even further. There are numerous avenues of
research in application choice, context of the application under test, and deriving domain-specific software
energy models for software domains such as video-games, travel, or photography.
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