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Abstract 13	

Nuclear transfer techniques (a.k.a. mitochondrial replacement therapies) are currently 14	

under development to provide a route to eliminating particular instances of mitochondrial 15	

disease from the germline. Before these kinds of techniques are implemented clinically it 16	

is of primary concern that their safety and efficacy is established. In a recent paper, 17	

Hyslop et al (2016) utilized a specific version of pronuclear transfer (PNT) to investigate 18	

the consequences for gene expression in the developing embryo, which may indicate 19	

whether or not developmental pathways have been perturbed. However, the study was 20	

only able to include a small number of blastocysts within each treatment group, although 21	

a larger number of single cell expression profiles from each blastocyst were acquired. 22	

Using simulated datasets we show that the size and experimental design of this study 23	

cannot provide conclusive evidence that expression profiles of manipulated or control 24	

samples are indistinguishable from one another due to low power. 25	

 26	

Introduction 27	

Two main methods of mitochondrial replacement - pronuclear transfer (PNT) and 28	

maternal spindle transfer (MST) - are currently under development as potential germline 29	

therapies for eliminating some forms of mitochondrial disease. Hyslop et al. (2016) 30	

examined the consequences for early stage embryos following an ‘early’ version of PNT 31	

(termed ePNT), where zygotes had completed meiosis but not yet undergone mitosis. 32	

Gene expression profiles were obtained from single cell samples of blastocysts created 33	

using 4 different main methods: ePNT of oocytes from two different unrelated women 34	

(heterologous, n = 9), unmanipulated controls (n = 3), and two types of procedural 35	
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controls – ePNT of oocytes from the same donor (autologous, n = 1), and ePNT of 36	

oocytes from two related sisters (homologous, n = 1). Including autologous and 37	

heterologous controls potentially enables the authors to disentangle the effects of the 38	

ePNT procedure itself from any effects that may arise from switching the nuclear 39	

genomes between different mitochondrial genetic backgrounds. This mitonuclear 40	

mismatching is a potential safety concern for the clinical implementation of any of the 41	

various versions of mitochondrial replacement therapy (Reinhardt, Dowling & Morrow, 42	

2013; Dunham-Snary & Ballinger, 2015). RNAseq data from blastocyst-derived single 43	

cells were explored via principle component analysis (PCA), t-distributed stochastic 44	

neighbour embedding, and unsupervised hierarchical clustering. On the basis of these 45	

exploratory analyses, the authors concluded that gene expression levels were 46	

indistinguishable between control and ePNT blastocysts. 47	

 48	

However, there a number of shortcomings to the analytical approaches undertaken. First, 49	

the power to detect differences between treatment groups is low due to the small number 50	

of biologically independent samples, which is at the level of blastocyst and not single cell 51	

sample. For instance, a test of the mitonuclear mismatching hypothesis would compare 9 52	

heterologous versus a maximum of 2 autologous/homologous blastocysts. Second, no 53	

statistical modeling of treatment effects was conducted, which obviously precludes the 54	

possibility of making any conclusions about whether or not there are statistical 55	

differences overall, or between specific treatment groups. 56	

 57	
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We investigated these issues using simulated datasets and subsequent power analysis and 58	

conclude that based on the number of samples included and the magnitude of effect sizes 59	

that might reasonably be expected to be present, the study is unable to provide clear 60	

evidence that the manipulated samples are indistinguishable from controls. 61	

 62	

Methods 63	

The power to detect differential gene expression between treatments was examined via 64	

simulation, where simulated datasets based on the experimental design used here were 65	

analysed for differences between treatments using a mixed effects linear model. In order 66	

to resemble a transcriptomic analysis of differential gene expression, simulations were 67	

ran in batches of 100 (i.e. analogous to analysing 100 genes) and the power was 68	

calculated from each batch as the percentage of significant tests. These batches were 69	

repeated to produce 100 power estimates from simulated data. Two sets of simulations 70	

were ran: Set 1 tested a range of effect sizes, and Set 2 tested a range of sample sizes. All 71	

analyses used R v3.2.1 and the ‘lmer’ mixed modelling function in the ‘lme4’ package 72	

(Bates et al., 2014). Methods are described below, and annotated R code that also 73	

generates two plots is provided in a supplement. 74	

 75	

Each simulated dataset was set up by initially specifying a small effect size for 76	

differences in gene expression between cell types, variance estimates both within 77	

blastocyst and for error variance (both based on the real data from Hyslop et al.  (2016), 78	

and the effect size for treatment. In Set 1, the effect size for treatment was tested for all 79	

values between 1 and 10, whereas in Set 2, the effect size for treatment was fixed at 2. 80	
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The effect sizes as shown are unstandardized, but when standardised using the error 81	

variance specified in the models, i.e. with a standard deviation = 10, an effect size of 1 is 82	

approximately d = 0.1 (very small; see Cohen (2013)) and an effect size of 10 is 83	

approximately d = 1 (very large). Note that the real effect size for differential gene 84	

expression will vary widely from one gene to another, but is likely to be low on average 85	

across all genes.  86	

 87	

Next, the experimental design for each simulated dataset was set up as a balanced design, 88	

based on the numbers of samples in Hyslop et al. (2016) (although the actual study is 89	

unbalanced). The first set of simulations used 8 blastocysts with 4 samples from each 90	

blastocyst (by comparison, Hyslop et al. (2016) successfully sequenced RNA from 10 91	

grade A-D blastocysts, with between 1 and 11 samples sequenced from each). In the 92	

simulated data, samples were split across a fully-factorial design between 4 different cell 93	

types (primitive endoderm, epiblast, trophectoderm and ambiguous) and 4 different 94	

treatments (control, autologous, homologous and heterologous). These factors represent 95	

the 4 cell types and 4 treatments in Hyslop et al. (2016), although samples were 96	

unbalanced across these factors. As in the study, all samples from the same blastocyst 97	

were under the same treatment. Set 2 of simulations varied the total number of 98	

blastocysts, but scaled the experiment to have the same fully-factorial design as the Set 1 99	

simulations. Note that simulations were re-ran with an unbalanced design that more 100	

closely matched the variable levels of replication in Hyslop et al. (2016), and very similar 101	

power estimates were obtained. 102	

 103	

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2412v1 | CC BY 4.0 Open Access | rec: 2 Sep 2016, publ: 2 Sep 2016



	 6	

To simulate the data, gene expression values were generated as the sum of cell type and 104	

treatment effects (calculated using the effect sizes), as well as blastocyst and error 105	

variance (see R code for details). The data was analysed in a mixed linear model as 106	

follows: 107	

 108	

Y ~ T + C + B + ε 109	

 110	

where Y is the simulated expression data, T and C are 4-level fixed factors representing 111	

treatment and cell type, respectively, and B is a random factor representing blastocyst ID. 112	

P values for the treatment effect were obtained via model simplification (Crawley, 2007). 113	

This simulation process was ran separately for treatment effect sizes 1-10 (assuming 8 114	

blastocysts; Set 1), and then separately for 48, 96, 144, 192 and 240 blastocysts 115	

(assuming a treatment effect size of 2; Set 2). Results are shown as the mean of 100 116	

power estimates for each effect size (Set 1) and the mean of 100 power estimates for each 117	

blastocyst sample size (Set 2), with 95% confidence intervals. 118	

 119	

Results 120	

The simulated analysis of differential expression between treatments, based on this 121	

experimental design, clearly demonstrates that reasonable statistical power to detect 122	

treatment effects would only be possible if: (i) effect sizes were unusually strong (Figure 123	

1); or (ii) a far higher number of blastocysts were sequenced (Figure 2). 124	

 125	

Conclusions 126	
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On the basis of the low power and the descriptive nature of the methods employed by 127	

Hyslop et al. (2016) the conclusion that blastocysts created via ePNT versus controls, or 128	

between the different ePNT treatments are indistinguishable from one another is 129	

premature until sufficient data is available to carry out statistical modelling. 130	

 131	
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Figure legends 149	

 150	

Figure 1 151	

Simulated power based on unstandardized effect sizes 152	

Results shown are the mean power estimate (±95% confidence intervals) for 100 153	

simulations at each effect size (ranging from 1-10). Effect size simulations use a similar 154	

experimental design and size as the experiment described in Hyslop et al. (2016). 155	

 156	

Figure 2 157	

Simulated power based on datasets with varying number of blastocysts 158	

Results shown are the mean power estimate (±95% confidence intervals) for 100 159	

simulations for each number of blastocysts (ranging from 8-240). Blastocyst number 160	

simulations use a similar experimental design as described in Hyslop et al. (2016), but 161	

scale the design to increase the number of blastocyst samples. 162	

  163	
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