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Abstract 27 

 28 

Background. VSEARCH is an open source and free of charge multithreaded 64-bit tool for 29 

processing metagenomics nucleotide sequence data. It is designed as an alternative to the widely 30 

used USEARCH tool (Edgar 2010) for which the source code is not publicly available, algorithm 31 

details are only rudimentarily described, and only a memory-confined 32-bit version is freely 32 

available for academic use. 33 

 34 

Methods. When searching nucleotide sequences, VSEARCH uses a fast heuristic based on 35 

words shared by the query and target sequences in order to quickly identify similar sequences, a 36 

similar strategy is probably used in USEARCH. VSEARCH then performs optimal global 37 

sequence alignment of the query against potential target sequences, using full dynamic 38 

programming instead of the seed-and-extend heuristic used by USEARCH. Pairwise alignments 39 

are computed in parallel using vectorisation and multiple threads. 40 

 41 

Results. VSEARCH includes most commands for analysing nucleotide sequences available in 42 

USEARCH version 7 and several of those available in USEARCH version 8, including searching 43 

(exact or based on global alignment), clustering by similarity (using length pre-sorting, 44 

abundance pre-sorting or a user-defined order), chimera detection (reference-based or de novo), 45 

dereplication (full length or prefix), pairwise alignment, reverse complementation, sorting, and 46 

subsampling. VSEARCH also includes commands for FASTQ file processing, i.e. format 47 

detection, filtering, read quality statistics, and merging of paired reads. Furthermore, VSEARCH 48 

extends functionality with several new commands and improvements, including shuffling, 49 

rereplication, masking of low-complexity sequences with the well-known DUST algorithm, a 50 

choice among different similarity definitions, and FASTQ file format conversion. VSEARCH is 51 

here shown to be more accurate than USEARCH when performing searching, clustering, chimera 52 

detection and subsampling, while on a par with USEARCH for paired-ends read merging. 53 

VSEARCH is slower than USEARCH when performing clustering and chimera detection, but 54 

significantly faster when performing paired-end reads merging and dereplication. VSEARCH is 55 

available at https://github.com/torognes/vsearch under either the BSD 2-clause license or the 56 

GNU General Public License version 3.0. 57 

 58 

Discussion. VSEARCH has been shown to be a fast, accurate and full-fledged alternative to 59 

USEARCH. A free and open-source versatile tool for sequence analysis is now available to the 60 

metagenomics community.  61 
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 68 

Introduction 69 

Rockström et al. (2009) and Steffen et al. (2015) presented biodiversity loss as a major threat for 70 

the short-term survival of humanity. Recent progress in sequencing technologies have made 71 

possible large scale studies of environmental genetic diversity, from deep sea hydrothermal vents 72 

to Antarctic lakes (Karsenti et al., 2011), and from tropical forests to Siberian steppes (Gilbert, 73 

Jansson and Knight, 2014). Recent clinical studies have shown the importance of the 74 

microbiomes of our bodies and daily environments for human health (Human Microbiome 75 

Project Consortium, 2012). Usually focusing on universal markers (e.g., 16S rRNA, ITS, COI), 76 

these targeted metagenomics studies produce many millions of sequences, and require open-77 

source, fast and memory efficient tools to facilitate their ecological interpretation. 78 

 79 

Several pipelines have been developed for microbiome analysis, among which mothur (Schloss 80 

et al., 2009), QIIME (Caporaso et al., 2010), and UPARSE (Edgar, 2013) are the most popular. 81 

QIIME and UPARSE are both based on USEARCH (Edgar, 2010), a set of tools designed and 82 

implemented by Robert C. Edgar, and available at http://drive5.com/usearch/. USEARCH offers 83 

a great number of commands and options to manipulate and analyse FASTQ and FASTA files. 84 

However, the source code of USEARCH is not publicly available, algorithm details are only 85 

rudimentarily described, and only a memory-confined 32-bit version is freely available for 86 

academic use. 87 

 88 

We believe that the existence of open-source solutions is beneficial for end-users and can 89 

invigorate research activities. For this reason, we have undertaken to offer a high quality open-90 

source alternative to USEARCH, freely available to users without any memory limitation. 91 

VSEARCH includes most of the USEARCH functions in common use, and further development 92 

may add additional features. Here we describe the details of the VSEARCH implementation. To 93 

assess its performance in terms of speed and quality of results, we have evaluated some of the 94 

most important functions (searching, clustering, chimera detection and subsampling) and 95 

compared them to USEARCH. We find that VSEARCH delivers results that are better or on a 96 

par with USEARCH results. 97 
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Materials and Methods 98 

Algorithms and implementation 99 

Below is a brief description of the most important functions of VSEARCH and details of their 100 

implementation. VSEARCH command line options are shown in italics, and should be preceded 101 

by a single (-) or double dash (--) when used. 102 

 103 

Reading FASTA and FASTQ files 104 

Most VSEARCH commands read files in FASTA or FASTQ format. The parser for FASTQ files 105 

in VSEARCH is compliant with the standard as described by Cock et al. (2010) and correctly 106 

parses all their tests files. FASTA and FASTQ files are automatically detected and many 107 

commands accept both as input. Files compressed with gzip or bzip2 are automatically detected 108 

and decompressed using the zlib library by Gailly and Adler (2016) or the bzip2 library by 109 

Seward (2016), respectively. Input may also be piped into or out of VSEARCH, allowing for 110 

instance many separate FASTA files to be piped into VSEARCH for simultaneous dereplication, 111 

or allowing the creation of complex pipelines without ever having to write on slow disks. 112 

 113 

VSEARCH is a 64-bit program and allows very large datasets to be processed, essentially 114 

limited only by the amount of memory available. The free USEARCH versions are 32-bit 115 

programs that limit the available memory to somewhere less than 4GB, often seriously 116 

hampering the analysis of realistic datasets. 117 

 118 

Writing result files 119 

VSEARCH can output results in a variety of formats (FASTA, FASTQ, tables, alignments, 120 

SAM) depending on the input format and command used. When outputting FASTA files, the line 121 

width may be specified using the fasta_width option, where 0 means that line wrapping should 122 

be turned off. Similar controls are offered for pairwise or multiple sequence alignments. 123 

 124 

Searching 125 

Global pairwise sequence comparison is a core-functionality of VSEARCH. Several commands 126 

compare a query sequence against a database of sequences: all-vs-all alignment 127 

(allpairs_global), clustering (cluster_fast, cluster_size, cluster_smallmem), chimera detection 128 

(uchime_denovo and uchime_ref) and searching (usearch_global). This comparison function 129 

proceeds in two phases: an initial heuristic filtering based on shared words, followed by optimal 130 

alignment of the query with the most promising candidates. 131 

 132 

The first phase is presumably quite similar to USEARCH (Edgar, 2010). Heuristics are used to 133 

identify a small set of database sequences that have many words in common with the query 134 

sequence. Words (or k-mers) consist of a certain number k of consecutive nucleotides of a 135 

sequence (8 by default, adjustable with the wordlength option). All overlapping words are 136 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2409v1 | CC BY 4.0 Open Access | rec: 1 Sep 2016, publ: 1 Sep 2016



5 

included. A sequence of length n then contains at most n - k + 1 unique words. VSEARCH 137 

counts the number of shared words between the query and each database sequence. Words that 138 

appear multiple times are counted only once. To count the words in the database sequences 139 

quickly, VSEARCH creates an index of all the 4
k
 possible distinct words and stores information 140 

about which database sequences they appear in. For extremely frequent words, the set of 141 

database sequences is represented by a bitmap; otherwise the set is stored as a list. A finer 142 

control of k-mer indexing is possible by introducing the pattern (binary string indicating which 143 

positions must match) and slots options. USEARCH has such options but seems to ignore them. 144 

Currently, VSEARCH ignores these two options too. The minimum number of shared words 145 

required may be specified with the minwordmatches option (10 by default), but a lower value is 146 

automatically used for short or simple query sequences with less than 10 unique words. 147 

 148 

Comparing sequences based on statistics of shared words is a common method to quickly assess 149 

the similarity between two sequences without aligning them, which is often time-consuming. The 150 

D2 statistic and related metrics for alignment-free sequence comparison have often been used for 151 

rapid and approximate sequence matching and their statistical properties have been well studied 152 

(Song et al., 2014). The approach used here has similarities to the D2 statistic, but multiple 153 

matches of the same word are ignored. 154 

 155 

In the second phase, searching proceeds by considering the database sequences in a specific 156 

order, starting with the sequence having the largest number of words in common with the query, 157 

and proceeding with a decreasing number of shared words. If two database sequences have the 158 

same number of words in common with the query, the shortest sequence is considered first. The 159 

query sequence is compared with each database sequence by computing the optimal global 160 

alignment. The alignment is performed using a multi-threaded and vectorised full dynamic 161 

programming algorithm (Needleman and Wunsch, 1970) adapted from SWIPE (Rognes, 2011). 162 

Due to the extreme memory requirements of this method when aligning two long sequences, an 163 

alternative algorithm described by Hirschberg (1975) and Myers and Miller (1988) is used when 164 

the product of the length of the sequences is greater than 25,000,000, corresponding to aligning 165 

two 5,000 bp sequences. This alternative algorithm uses only a linear amount of memory but is 166 

considerably slower. This second phase is probably where USEARCH and VSEARCH differ the 167 

most, as USEARCH by default presumably performs a heuristic seed-and-extend alignment 168 

similar to BLAST (Altschul et al., 1990), and only performs optimal pairwise alignments when 169 

the option fulldp (full dynamic programming) is used. Computing the optimal pairwise alignment 170 

in each case gives more accurate results but is also computationally more demanding. The 171 

efficient and vectorised full dynamic programming implementation in VSEARCH compensates 172 

that extra cost, at least for sequences that are not too long. 173 

 174 

If the resulting alignment indicates a similarity equal to or greater than the value specified with 175 

the id option, the database sequence is accepted. If the similarity is too low, it is rejected. Several 176 
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other options may also be used to determine how similarity is computed (iddef, as USEARCH 177 

used to offer up to version 6), and which sequences should be accepted and rejected, either 178 

before (e.g. self, minqsize) or after alignment (e.g. maxgaps, maxsubs). The search is terminated 179 

when either a certain number of sequences have been accepted (1 by default, adjustable with the 180 

maxaccepts option), or a certain number of sequences have been rejected (32 by default, 181 

adjustable with the maxrejects option). The accepted sequences are sorted by sequence similarity 182 

and presented as the search results. 183 

 184 

VSEARCH also includes a search_exact command that only identifies exact matches to the 185 

query. It uses a hash table in a way similar to the full-length dereplication command described 186 

below. 187 

 188 

Clustering 189 

VSEARCH includes commands to perform de novo clustering using a greedy and heuristic 190 

centroid-based algorithm with an adjustable sequence similarity threshold specified with the id 191 

option (e.g., 0.97). The input sequences are either processed in the user supplied order 192 

(cluster_smallmem) or pre-sorted based on length (cluster_fast) or abundance (the new 193 

cluster_size option). Each input sequence is then used as a query in a search against an initially 194 

empty database of centroid sequences. The query sequence is clustered with the first centroid 195 

sequence found with similarity equal to or above the threshold. The search is performed using 196 

the heuristic approach described above which generally finds the most similar sequences first. If 197 

no matches are found, the query sequence becomes the centroid of a new cluster and is added to 198 

the database. If maxaccepts is higher than 1, several centroids with sufficient sequence similarity 199 

may be found and considered. By default, the query is clustered with the centroid presenting the 200 

highest sequence similarity (distance-based greedy clustering, DGC), or, if the sizeorder option 201 

is turned on, the centroid with the highest abundance (abundance-based greedy clustering, AGC) 202 

(He et al., 2015; Westcott and Schloss, 2015; Schloss, 2016). VSEARCH performs multi-203 

threaded clustering by searching the database of centroid sequences with several query sequences 204 

in parallel. If there are any non-matching query sequences giving rise to new centroids, the 205 

required internal comparisons between the query sequences are subsequently performed to 206 

achieve correct results. For each cluster, VSEARCH can perform a simple center-star multiple 207 

sequence alignment to compute consensus sequences and sequence profiles. 208 

 209 

Dereplication and rereplication 210 

Full-length dereplication (derep_fulllength) is performed using a hash table with an open 211 

addressing and linear probing strategy based on the Google CityHash hash functions (written by 212 

Geoff Pike and Jyrki Alakuijala, and available at https://github.com/google/cityhash). The hash 213 

table is initially empty. For each input sequence, the hash is computed and a lookup in the hash 214 

table is performed. If an identical sequence is found, the input sequence is clustered with the 215 

matching sequence; otherwise the input sequence is inserted into the hash table. 216 
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 217 

Prefix dereplication (derep_prefix) is also implemented. As with full-length dereplication, 218 

identical sequences are clustered. In addition, sequences that are identical to prefixes of other 219 

sequences will also be clustered together. If a sequence is identical to the prefix of multiple 220 

sequences, it is generally not defined how prefix clustering should behave. VSEARCH resolves 221 

this ambiguity by clustering the sequence with the shortest of the candidate sequences. If they are 222 

equally long, priority will be given to the most abundant, the one with the lexicographically 223 

smaller identifier or the one with the earliest original position, in that order. 224 

 225 

To perform prefix dereplication, VSEARCH first creates an initially empty hash table. It then 226 

sorts the input sequences by length and identifies the length s of the shortest sequence in the 227 

dataset. Each input sequence is then processed as follows, starting with the shortest: If an exact 228 

match to the full input sequence is found in the hash table, the input sequence is clustered with 229 

the matching hash table sequence. If no match to the full input sequence is found, the prefixes of 230 

the input sequence are considered, starting with the longest prefix and proceeding with shorter 231 

prefixes in order, down to prefixes of length s. If a match is now found in the hash table, the 232 

sequences are clustered, the matching sequence is deleted from the hash table and the full input 233 

sequence is inserted into the hash table instead. If no match is found for any prefix, the full 234 

sequence is inserted into the hash table. In the end, the remaining sequences in the hash table will 235 

be output with accumulated abundances for all sequences in each cluster. 236 

  237 

In order to identify matches in the hash table during prefix dereplication, a hash is computed for 238 

each full-length input sequence and all its prefixes. The hash function used is the 64-bit Fowler–239 

Noll–Vo 1a hash function (Fowler et al., 1991), which is simple and quick to compute for such a 240 

series of sequences by adding one nucleotide at a time. 241 

 242 

The sequences resulting from dereplication and many other commands may be relabeled with a 243 

given prefix followed by a sequentially increasing number. VSEARCH exclusively also offers 244 

the possibility of relabelling each sequence with the SHA-1 (Eastlake and Jones, 2001) or MD5 245 

(Rivest, 1992) message digest (hash) of the sequence. These are strings that are highly likely to 246 

be unique for each sequence. Before the digest is computed, the sequence is normalized by 247 

converting U’s to T’s and converting all symbols to upper case. VSEARCH includes public 248 

domain code for the MD5 algorithm written by Alexander Peslyak, and for SHA1 by Steve Reid 249 

and others. 250 

 251 

VSEARCH also includes a new command (rereplicate) to perform rereplication that can be used 252 

to recreate datasets has they were before full-length dereplication, but of course original labels 253 

cannot be recreated. 254 

 255 
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Chimera detection 256 

Chimeras are detected either de novo (uchime_denovo command) or with a reference database 257 

(uchime_ref command) using the UCHIME algorithm described by Edgar et al. (2011). 258 

VSEARCH will divide each query sequence into four segments and look for similarity of each 259 

segment to sequences in the set of potential parents using the heuristic search function described 260 

earlier. It will consider the four best candidates for each segment using maxaccepts 4 and 261 

maxrejects 16, and an id threshold of 0.55. VSEARCH optionally outputs borderline sequences, 262 

that is, sequences having a high enough score (as specified with the minh option) but with too 263 

small a divergence from the closest parent (as specified with the mindiv option). Multi-threading 264 

is supported for reference-based chimera detection. 265 

 266 

Low-complexity sequence masking 267 

VSEARCH includes a highly optimized and parallelized implementation of the Dust algorithm 268 

by Tatusov and Lipman for masking of simple repeats and low-complexity nucleotide sequences, 269 

that is considerably faster than the implementation of the same algorithm in USEARCH. Their 270 

code available at ftp://ftp.ncbi.nlm.nih.gov/pub/tatusov/dust/version1/src/ is in the public 271 

domain. VSEARCH uses this algorithm by default, while USEARCH by default uses an 272 

undocumented rapid masking algorithm called fastnucleo. VSEARCH performs soft-masking 273 

automatically for the pairwise alignment, search, clustering and chimera detection commands. 274 

This behaviour can be controlled with the hardmask option to replace masked symbols with N’s 275 

instead of lower-casing them, and the dbmask and qmask options, which selects the masking 276 

algorithm (none, dust or soft) used for the database and query sequences, respectively. Masking 277 

may also be performed explicitly on an input file using the fastx_mask and maskfasta commands. 278 

 279 

FASTQ file processing 280 

VSEARCH includes commands to detect the FASTQ file version and the range of quality scores 281 

used (fastq_chars), as well as two commands for computing sequence quality statistics 282 

(fastq_stats and fastq_eestats). It can also truncate and filter sequences in FASTQ files based on 283 

various criteria (fastq_filter). A new command is added to convert between different FASTQ file 284 

versions and quality encodings (fastq_convert), e.g. from the old Phred+64 encoded Illumina 285 

FASTQ files to the newer Phred+33 format. 286 

 287 

Merging of paired-end reads 288 

Merging of paired-end reads is supported by VSEARCH using the fastq_mergepairs command. 289 

The method used has some similarity to PEAR (Zhang et al., 2014) and recognises options 290 

similar to USEARCH. The algorithm computes the optimal ungapped alignment of the 291 

overlapping region of the forward sequence and the reverse-complemented reverse sequence. 292 

The alignment requires a minimum overlap length (specified with the fastq_minovlen option, 293 

default 10), a maximum number of mismatches (fastq_maxdiffs option, default 5), and a 294 

minimum and maximum length of the merged sequence (fastq_minmergelen option, default 1, 295 
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and fastq_maxmergelen option, default infinite). Staggered read pairs, i.e. read pairs where the 3' 296 

end of the reverse read has an overhang to the left of the 5' end of the forward read, are not 297 

allowed by default, but may be turned on by the fastq_allowmergestagger option. VSEARCH 298 

uses a match score (alpha) of +4 and a mismatch score (beta) of -5 for perfect quality residues. 299 

These scores are weighted by the probability that these two residues really match or mismatch, 300 

respectively, taking quality scores into account. These probabilities are computed in a way 301 

similar to PEAR score method 2 described in section 2.1 of the PEAR paper (Zhang et al., 2014), 302 

but VSEARCH assumes all nucleotide background frequencies are 0.25. When merging 303 

sequences, VSEARCH computes posterior quality scores for the overlapping regions as 304 

described by Edgar and Flyvbjerg (2015). For speed, scores and probabilities are pre-computed 305 

for all possible quality scores. 306 

 307 

Sorting and shuffling 308 

VSEARCH can sort FASTA files by decreasing sequence length (sortbylength) or abundance 309 

(sortbysize). VSEARCH can also perform shuffling of FASTA files in random order (shuffle). A 310 

seed value for the pseudo random number generator may be provided by the randseed option to 311 

obtain replicable results. 312 

 313 

Subsampling 314 

Sequences in FASTA and FASTQ files can be subsampled (fastx_subsample) by randomly 315 

extracting a certain number (sample_size) or percentage (sample_pct) of the input sequences. 316 

Abundances may be taken into account, giving results as if the input sequences were 317 

rereplicated, subsampled and then dereplicated. 318 

 319 

Results and Discussion 320 

Supported commands and options 321 

VSEARCH implements the following commands available in USEARCH version 7: 322 

allpairs_global, cluster_fast, cluster_smallmem, derep_fulllength, derep_prefix, fastq_chars, 323 

fastq_filter, fastq_mergepairs, fastq_stats, fastx_mask, maskfasta, sortbylength, sortbysize, 324 

uchime_denovo, uchime_ref and usearch_global. In addition, the following commands available 325 

in USEARCH version 8 have been implemented: fastq_eestats, fastx_revcomp, fastx_subsample 326 

and search_exact. VSEARCH additionally includes a few new commands that do not exist in 327 

USEARCH: cluster_size, fastq_convert, rereplicate and shuffle. 328 

 329 

Some USEARCH version 7 commands have not yet been implemented in VSEARCH. We have 330 

not prioritized commands related to amino acid sequences (findorfs), local alignment 331 

(allpairs_local, pairs_local, search_local, ublast), brute-force search (search_global, 332 

pairs_global), UDB databases (makeudb_ublast, makeudb_usearch, udb2fasta, udbinfo, 333 

udbstats), and the UPARSE pipeline (cluster_otus, uparse_ref). 334 
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 335 

Almost all USEARCH 7 options are supported, except for those related to non-standard database 336 

indexing (alpha, dbaccelpct, dbstep, pattern, slots) as well as local alignments and alignment 337 

heuristics (band, hspw, lext, lopen, matrix, minhsp, xdrop_g, xdrop_nw, xdrop_u). 338 

 339 

The same command and option names as in USEARCH version 7 has generally been used in 340 

order to make VSEARCH an almost drop-in replacement. In fact, in QIIME most commands will 341 

run fine if an alias or link from usearch to vsearch is made. Detailed documentation of 342 

VSEARCH is available as a man page. We will consider adding further commands and options 343 

to VSEARCH in the future. 344 

 345 

Performance Assessment 346 

The performance of the most important functions of VSEARCH version 2.0.3 was evaluated and 347 

compared to USEARCH version 7.0.1090 and 8.1.1861. Chimera detection was also compared 348 

to UCHIME version 4.2. All tests were run on GNU/Linux CentOS 6.7 compute nodes with 16 349 

physical cores (Intel(R) Xeon(R) CPU E5-2670 0 @ 2.60GHz) and 64GB RAM. Programs were 350 

run with 8 threads, if possible. All times indicated are wall-clock times. All scripts and data 351 

necessary to perform the evaluations are available in the GitHub repository at 352 

https://github.com/torognes/vsearch-eval/ to enable independent replication. 353 

 354 

Searching 355 

Evaluation of search accuracy was carried out as described in the USEARCH paper (Edgar, 356 

2010), its supplementary, and on the website (http://drive5.com/usearch/benchmark_rfam.html), 357 

by assessing the ability of the programs to identify RNA sequences belonging to the same family 358 

in RFAM (Burge et al., 2013). The 383,004 sequences in Rfam version 11 were randomly 359 

shuffled and then the first sequence from each of the 2,085 (out of 2,208) families that contained 360 

at least 2 members was selected as a representative and used as a query against the remaining 361 

380,919 sequences. The programs were run with options id 0.0, minseqlength 1, maxaccepts 1, 362 

maxrejects 32, and strand plus. If the matching sequence found belonged to the same family, it 363 

was considered a true positive, otherwise it was considered as a false positive. We combined the 364 

results from 20 shufflings and plotted the results in the ROC-like curve shown in Fig. 1. For a 365 

false discovery rate comprised between 0.010 and 0.015, VSEARCH is more accurate than 366 

USEARCH’s latest version. For lower values, the three programs have similar accuracies. At 367 

higher false discovery rates, USEARCH version 8 has an advantage. 368 

 369 

The time to search the Rfam database as described above was measured. To avoid extremely 370 

short running times, 1,000 replicates of the datasets were used. USEARCH version 7 required on 371 

average 5 min 29 seconds for the search, USEARCH version 8 took 5 min 57 seconds, while 372 

VSEARCH took 5 min 26 seconds.  373 
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 374 
Figure 1 Search accuracy on the RFAM v11 dataset. USEARCH version 7 (blue), USEARCH 375 

version 8 (orange) and VSEARCH (black) was run using the usearch_global command on 376 

subsets of the RFAM dataset to identify members of the same families. The plot shows the true 377 

positive rate (also known as the recall or sensitivity) as a function of the false discovery rate at 378 

varying sequence similarity levels. This curve is based on data from 20 shufflings of the dataset. 379 
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Clustering 380 

Westcott and Schloss (2015) have already carried out an evaluation of the clustering 381 

performance of VSEARCH. They tested the ability of several tools to assign OTUs for 16S 382 

rRNA sequences and “demonstrated that for the greedy algorithms VSEARCH produced 383 

assignments that were comparable to those produced by USEARCH making VSEARCH a viable 384 

free and open source alternative to USEARCH.” Schloss (2016) also evaluated de novo 385 

clustering by VSEARCH. 386 

 387 

We independently evaluated the clustering accuracy of USEARCH and VSEARCH as described 388 

for Swarm (Mahé et al., 2014) using two mock datasets, one with an even and one with uneven 389 

composition of 57 archaea and bacteria. The datasets were first dereplicated. Then the taxonomy 390 

of the unique sequences was assigned by a search against the set of rRNA reference sequences 391 

representing the species in the mock datasets, carried out with the usearch_global command of 392 

USEARCH. The sequences were shuffled randomly 10 times and clustering was performed at 20 393 

different similarity levels ranging from 80% to 99% in steps of 1%. Clustering was carried out in 394 

two ways, first using the cluster_fast command that pre-sorts the sequences by length, and then 395 

using the cluster_smallmem command after first sorting the sequences by abundance using the 396 

sortbysize command. We then compared the clusters obtained to the assigned species and 397 

computed the recall, precision and the adjusted Rand index of the classifications. The average 398 

values over the all shufflings are presented in Fig. 2 and Fig. 3 for the even and uneven datasets, 399 

respectively. For abundance-sorted sequences, the difference between VSEARCH and 400 

USEARCH version 8 is negligible. The difference is larger for length-sorted sequences. When 401 

using length sorting, USEARCH 8 (as well as version 7 on the even dataset) shows better 402 

precision than VSEARCH for similarity levels below 93%. However, since we are comparing to 403 

species we expect the correspondence with OTUs to occur at high similarities, and in fact overall 404 

accuracy as measured by the adjusted Rand index is maximised at 95-97% similarity, this is 405 

precisely the region where for length sorting at least VSEARCH outperforms USEARCH. 406 

 407 

The time used for clustering is shown in Fig. 4. The time used depended on the dataset, 408 

algorithm and clustering threshold. The USEARCH programs were in general 2-3 times faster 409 

than VSEARCH. In general the difference in speed was smaller for higher thresholds, especially 410 

at 99% similarity.  411 
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 412 
Figure 2 Clustering accuracy on the even dataset. USEARCH version 7 (blue) and 8 (orange) 413 

and VSEARCH (black) was run using abundance sorting (cluster_smallmem) (left) and length 414 

sorting (cluster_fast) (right) on the even dataset. The performance is indicated with the adjusted 415 

Rand index (top), recall (middle) and precision (bottom) metrics.  416 
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 417 
Figure 3 Clustering accuracy on the uneven dataset. USEARCH version 7 (blue) and 8 (orange) 418 

and VSEARCH (black) was run using abundance sorting (cluster_smallmem) (left) and length 419 

sorting (cluster_fast) (right) on the uneven dataset. The performance is indicated with the 420 

adjusted Rand index (top), recall (middle) and precision (bottom) metrics.  421 
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 422 
Figure 4 Clustering speed. Median wall time in seconds to cluster the even (top) and uneven 423 

(bottom) datasets using USEARCH version 7 (blue) and 8 (orange) and VSEARCH (black) 424 

using abundance sorting (cluster_fast) (left) and length sorting (with cluster_smallmem) (right). 425 
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Dereplication 426 

Measurements of dereplication speed were performed on the even and uneven datasets described 427 

earlier as well as on the BioMarKs dataset (Karsenti et al., 2011). For full-length dereplication 428 

(derep_fulllength) VSEARCH was about 40-50% faster than USEARCH version 7 and 50-70% 429 

faster than version 8 on all three datasets. All programs were approximately equally fast on 430 

prefix dereplication (derep_prefix) of the even and uneven datasets. However, prefix 431 

dereplication of the BioMarKs dataset was extremely slow with USEARCH. USEARCH version 432 

7 used more than 4 minutes and version 8 more than 27 minutes, while VSEARCH used less 433 

than 4 seconds. The prefix dereplication algorithm used in USEARCH appears ineffective when 434 

dealing with short sequences. Removing the 811 sequences shorter than 200 bp out of the 435 

312,503 sequences of the BioMarKs dataset reduces the running time of USEARCH version 7 436 

and 8 down to just 5 and 6 seconds, respectively. 437 

 438 

Chimera detection 439 

We evaluated the chimera detection accuracy of VSEARCH and USEARCH in two ways, first 440 

using a method similar to that performed for UCHIME, and then using a new chimera simulation 441 

procedure from Greengenes and SILVA sequences. 442 

 443 

First we repeated the evaluation of the uchime_ref command described in the UCHIME paper 444 

(Edgar, 2011) using the SIMM dataset downloaded from 445 

http://drive5.com/uchime/uchime_download.html. The dataset consists of 900 simulated 446 

chimeras that are approximately 250 bp long. The chimeras were generated from 2, 3 or 4 447 

segments selected randomly from 86 original sequences and have similarities in the ranges 90-448 

95%, 95-97% and 97-99% to the original sequences. They were either used unmodified or with 449 

1-5% indels or 1-5% substitutions. We assessed the performance of i) the original open-source 450 

UCHIME version 4.2 program, ii) USEARCH version 7, iii) USEARCH version 8, and iv) 451 

VSEARCH. The results are shown in Table 1 and indicate that VSEARCH is superior to the 452 

other tools in almost all cases, and in particular when indels were added. The original UCHIME 453 

program was found to be quite effective, but also considerably slower than all the other tools. 454 

USEARCH was better than VSEARCH in only 3 out of 99 cases.  455 
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Table 1 Chimera detection performance with the SIMM dataset. UCHIME (UC), USEARCH 456 

version 7 (U7) and 8 (U8), and VSEARCH (V) was run using the uchime_ref algorithm on the 457 

SIMM dataset that was originally also used to evaluate the UCHIME algorithm. Divergence is 458 

the percentage of similarity to the original sequences. Noise is either zero (-) or the percentage of 459 

indels (i1-i5) or substitutions (m1-5) added. The number of chimeras detected out of 100 of each 460 

type is shown. The best results in each category are shaded. 461 

 462 

 2 segments 3 segments 4 segments 

Divergence Noise UC U7 U8 V UC U7 U8 V UC U7 U8 V 

97-99% - 89 88 88 89 56 52 52 55 38 33 34 35 

i1 79 79 77 85 46 44 43 53 32 27 24 34 

i2 64 57 56 77 33 32 31 56 24 20 18 33 

i3 48 45 36 72 37 35 29 45 16 17 16 21 

i4 29 24 23 65 18 11 13 40 9 9 8 25 

i5 27 22 16 53 15 12 12 39 7 8 6 17 

m1 83 83 83 81 53 48 48 53 33 29 29 30 

m2 73 71 71 72 49 44 44 50 28 22 22 27 

m3 66 66 66 68 40 40 39 44 21 20 21 21 

m4 55 54 53 57 28 24 23 28 21 18 18 19 

m5 44 44 42 48 20 19 18 28 16 14 12 12 

95-97% - 100 100 100 100 80 77 76 79 64 60 59 63 

i1 100 98 98 100 77 75 72 75 54 55 53 61 

i2 96 94 93 99 60 55 55 71 48 44 44 60 

i3 86 82 82 95 61 50 52 70 38 36 31 53 

i4 75 66 64 95 48 41 39 64 29 29 22 47 

i5 64 58 53 86 37 32 25 60 24 19 19 46 

m1 99 99 99 99 76 73 73 76 60 57 57 60 

m2 98 97 97 97 71 69 69 71 50 48 46 48 

m3 93 94 94 96 63 61 61 64 41 41 41 42 

m4 92 92 90 93 56 55 54 57 39 39 37 41 

m5 86 86 85 86 53 51 51 56 35 35 34 34 

90-95% - 100 100 100 100 93 93 93 93 88 88 88 86 

i1 100 100 100 100 88 88 87 91 86 86 87 88 

i2 99 97 99 99 83 79 78 88 74 72 72 84 

i3 100 100 100 100 79 76 75 88 74 69 70 82 

i4 99 94 96 99 80 71 72 84 66 62 61 79 

i5 95 84 86 99 74 65 65 88 55 48 48 71 

m1 100 100 100 100 89 89 89 92 87 87 86 85 

m2 100 100 100 100 87 87 87 89 78 78 78 79 

m3 100 99 99 100 86 86 86 89 76 76 78 80 

m4 100 100 100 100 82 82 84 83 73 73 72 78 

m5 99 98 98 99 82 81 82 84 75 73 75 79 

  463 
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Next, we tested reference-based (uchime_ref) and de novo (uchime_denovo) chimera detection 464 

using sequences from the 2011 version of Greengenes downloaded from 465 

http://greengenes.lbl.gov/Download/Sequence_Data/Fasta_data_files/ (DeSantis et al., 2006) and 466 

from version 106 (May 2011) of the SILVA database downloaded from https://www.arb-467 

silva.de/no_cache/download/archive/release_106/Exports/ (Quast et al., 2013). Sequences from 468 

the 16S rRNA V4 region was computationally extracted using the 515F (52-469 

GTGNCAGCMGCCGCGGTAA-32) and 806R (52-GGACTACHVGGGTWTCTAAT-32) 470 

primers, and 8,000 reads were randomly selected from each database. PCR was simulated using 471 

a new simulation algorithm known as Simera (Nichols and Quince, 2016) (available at 472 

https://github.com/bnichols1979/Simera) that includes amplification and creation of PCR 473 

artefacts like chimeras. We sampled 30,000 reads (-s 30000) and generated 20,000 potential 474 

chimeras (-c 20000). Defaults were used for other options to Simera. The output sequences were 475 

then fed into an Illumina MiSeq noise simulator (Schirmer et al., 2015) ending up with 14,966 476 

reads based on Greengenes and 14,952 reads based on SILVA, of which 1,262 and 1,640 reads 477 

contain chimeric sequences, respectively. Next, the sequences were either clustered using the 478 

cluster_fast command at 97% identity or dereplicated. VSEARCH and USEARCH version 7 and 479 

8 were run using the uchime_denovo command and then using the uchime_ref command with the 480 

Gold database downloaded from http://drive5.com/uchime/uchime_download.html as the 481 

reference database. To assess the performance, the results were sorted based on the chimera 482 

score, and then the ability to classify individual sequences correctly into chimeric and non-483 

chimeric was plotted as ROC curves. The curves reflect the accuracy of classifying individual 484 

reads, not clusters, as abundances were taken into account. The plots in Fig. 5 and Fig. 6 show 485 

that de novo chimera detection performs better than reference-based detection, with the SILVA 486 

dataset in particular, but it does of course depend on the reference database used. VSEARCH 487 

performs better than both versions of USEARCH for de novo chimera detection. For reference-488 

based detection VSEARCH also performs better for the Greengenes dataset, while none of the 489 

programs works well with the SILVA dataset. Clustering at 97% appears to be more appropriate 490 

than dereplication. In this test, the USEARCH programs were about twice as fast as VSEARCH 491 

for de novo detection, while they were about 10-30% faster than VSEARCH for reference-based 492 

detection.  493 
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 494 
 495 

Figure 5 Chimera detection performance with the Greengenes dataset shown with ROC curves. 496 

USEARCH version 7 (blue) and 8 (orange) and VSEARCH (black) was run using the 497 

uchime_denovo (top) and the uchime_ref (bottom) commands on simulated Illumina data based 498 

on the Greengenes database that has either been clustered with a 97% identity threshold (using 499 

the cluster_fast command in VSEARCH) (left) or dereplicated (using the derep_fulllength 500 

command in VSEARCH) (right).  501 
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 502 
 503 

Figure 6 Chimera detection performance on the SILVA dataset shown with ROC curves. 504 

USEARCH version 7 (blue) and 8 (orange) and VSEARCH (black) was run using the 505 

uchime_denovo (top) and the uchime_ref (bottom) commands on simulated Illumina data based 506 

on the SILVA database that has either been clustered with a 97% identity threshold (using the 507 

cluster_fast command in USEARCH) (left) or dereplicated (using the derep_fulllength command 508 

in VSEARCH) (right).  509 
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Merging of paired-end reads 510 

Evaluation of paired-end reads merging performance was carried out in a manner similar to that 511 

described for the evaluation of PEAR (Zhang et al., 2014). We used whole genome sequencing 512 

data from Staphylococcus aureus subspecies aureus strain USA 300 TCH 1516 sequenced by 513 

MacCallum et al. (2009) and retrieved from the GAGE-B repository (http://ccb.jhu.edu/gage_b/). 514 

The S.aureus reads were 101 bp long from on average 180 bp long fragments, giving a 45X 515 

coverage of the genome. We also used Methylococcus capsulatus strain Bath 16S rRNA V3 516 

region amplicon reads sequenced by Masella et al. (2012). These reads were 108 bp long and the 517 

pairs should have an overlap of exactly 18 bp. Merging options were set to allow a minimum 518 

overlap of 10 bp and a maximum of 5 mismatches (USEARCH 7 and 8 have different default 519 

values for those), while other options were left at defaults. All programs were run with 8 threads. 520 

Merged sequences that could be perfectly aligned to their respective reference sequences (either 521 

the entire genome or the specific rRNA region) using BWA MEM (Li et al., 2009) were 522 

considered correctly merged. The results are shown in Table 2. The numbers indicate that 523 

USEARCH version 7 merges the most reads for both bacteria, but also has the lowest percentage 524 

of correctly merged pairs of those merged. USEARCH version 8 merges the fewest reads, but 525 

has the highest percentage of correctly merged reads of those merged. VSEARCH is in the 526 

middle by merging more reads than USEARCH 8 with only a small decrease in the percentage of 527 

correct merges. VSEARCH is about twice as fast as USEARCH 8 and 4-5 times faster than 528 

USEARCH version 7. 529 

  530 
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Table 2. Paired-end reads merging performance. The number of sequence pairs, merged pairs, 531 

and correctly merged pairs are shown for each bacterium and program. The percentage of reads 532 

merged, as well as the percentage of correctly merged reads both of the merged reads and of all 533 

reads are also shown. Times are in seconds using 8 threads. 534 

 535 

Bacterium Program Pairs Merged Correct %Merged %Cor/Mer %Cor/All Time (s) 

Staphylococcus aureus USEARCH 7 647,052 273,438 270,849 42.26 99.05 41.86 11.65 

USEARCH 8 647,052 203,729 202,003 31.49 99.15 31.22 4.69 

VSEARCH 647,052 214,988 213,103 33.23 99.12 32.93 2.15 

Methylococcus capsulatus 

strain Bath 
USEARCH 7 673,845 643,903 642,720 95.56 99.82 95.38 14.43 

USEARCH 8 673,845 554,099 553,747 82.23 99.94 82.18 6.27 

VSEARCH 673,845 581,752 581,346 86.33 99.93 86.27 3.61 

  536 
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Subsampling 537 

We evaluated the subsampling commands of USEARCH version 8 and VSEARCH to check if 538 

the results obtained correspond to those expected. We performed 10,000 random subsamplings 539 

of 5% of the 9.5 million unique sequences in the TARA V9 dataset (Karsenti et al., 2011). To 540 

make this possible with the 32-bit USEARCH, we first downsampled the dataset once to 10% 541 

using VSEARCH and then randomly subsampled it again at 50% with either USEARCH or 542 

VSEARCH. Plots of the distribution of the abundance of the most abundant sequence in each 543 

subsampling are shown in Fig. 7. The highest amplicon abundance in the original dataset is 544 

15,638,316. After the initial 10% subsampling, the highest abundance was 1,564,267. After the 545 

second subsampling, the top abundances should therefore have a distribution centred on a value 546 

of 782,133.5. As can be seen from the figure, the USEARCH distribution has a mean that is 547 

about 2,000 too small, while the VSEARCH distribution is correctly centred on the expected 548 

value. Subsampling experiments were also performed at 2.5%, 1.5% and 0.5% with similar 549 

results, although the errors were of decreasing size. USEARCH seems to under-sample abundant 550 

amplicons and to over-sample rare amplicons.  551 
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552 
Figure 7 Subsampling performance. The observed distribution of the maximum amplicon 553 

abundance in 10,000 random subsamplings of 5% of the TARA V9 dataset results using 554 

VSEARCH (top, black) and USEARCH version 8 (bottom, orange) is shown. The expected 555 

mean abundance is 782,133.5 (blue dashed line).  556 
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Conclusions 557 

VSEARCH supports almost all of the commands and options for nucleotide sequence analysis in 558 

USEARCH version 7 as well several new features. It has a 64-bit design and handles large 559 

datasets virtually only limited by the amount of available memory. We have demonstrated that 560 

VSEARCH is in general more accurate than USEARCH when performing searching, clustering, 561 

chimera detection and subsampling. The accuracy is on a par with USEARCH for paired-end 562 

reads merging. VSEARCH is faster than USEARCH when performing dereplication and 563 

merging of paired-end reads, but slower for clustering and chimera detection. We will continue 564 

to improve the accuracy, speed and robustness of VSEARCH in the future, as well as adding new 565 

features. 566 

 567 

Availability 568 

VSEARCH is freely available at https://github.com/torognes/vsearch under a dual license, either 569 

the GNU General Public License version 3, or the BSD 2-clause license. Binaries are provided 570 

for x86-64 systems running GNU/Linux or OS X (10.7 or higher). 571 

 572 

Thanks to the work of several people, there is now a vsearch package in Debian and a vsearch 573 

package for Homebrew, as well as a Galaxy wrapper for VSEARCH in the Galaxy ToolShed. 574 
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