

A peer-reviewed version of this preprint was published in PeerJ
on 18 October 2016.

View the peer-reviewed version (peerj.com/articles/2584), which is the
preferred citable publication unless you specifically need to cite this
preprint.

Rognes T, Flouri T, Nichols B, Quince C, Mahé F. 2016. VSEARCH: a
versatile open source tool for metagenomics. PeerJ 4:e2584
https://doi.org/10.7717/peerj.2584

https://doi.org/10.7717/peerj.2584
https://doi.org/10.7717/peerj.2584

1

VSEARCH: a versatile open source tool for 1

metagenomics 2

 3

Short title: 4

VSEARCH: a versatile metagenomics tool 5

 6

Torbjørn Rognes
1,2,*

, Tomáa Flouri
3,4

, Ben Nichols
5
, Christopher Quince

5,6
, Frédéric Mahé

7,8
 7

 8
1
 Department of Informatics, University of Oslo, Oslo, Norway 9

2
 Department of Microbiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway 10

3
 Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany 11

4
 Karlsruhe Institute of Technology, Institute for Theoretical Informatics, Karlsruhe, Germany 12

5
 School of Engineering, University of Glasgow, Glasgow, UK 13

6
 Warwick Medical School, University of Warwick, Coventry, UK 14

7
 Department of Ecology, University of Kaiserslautern, Germany 15

8
 CIRAD, UMR LSTM, Montpellier, France 16

 17

* Corresponding author. Address: Department of Informatics, University of Oslo, PO Box 1080 18

Blindern, NO-0316 Oslo, Norway. 19

 20

Email addresses: 21

torognes@ifi.uio.no 22

tomas.flouri@h-its.org 23

b.nichols.1@research.gla.ac.uk 24

c.quince@warwick.ac.uk 25

frederic.mahe@cirad.fr 26

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2409v1 | CC BY 4.0 Open Access | rec: 1 Sep 2016, publ: 1 Sep 2016

2

Abstract 27

 28

Background. VSEARCH is an open source and free of charge multithreaded 64-bit tool for 29

processing metagenomics nucleotide sequence data. It is designed as an alternative to the widely 30

used USEARCH tool (Edgar 2010) for which the source code is not publicly available, algorithm 31

details are only rudimentarily described, and only a memory-confined 32-bit version is freely 32

available for academic use. 33

 34

Methods. When searching nucleotide sequences, VSEARCH uses a fast heuristic based on 35

words shared by the query and target sequences in order to quickly identify similar sequences, a 36

similar strategy is probably used in USEARCH. VSEARCH then performs optimal global 37

sequence alignment of the query against potential target sequences, using full dynamic 38

programming instead of the seed-and-extend heuristic used by USEARCH. Pairwise alignments 39

are computed in parallel using vectorisation and multiple threads. 40

 41

Results. VSEARCH includes most commands for analysing nucleotide sequences available in 42

USEARCH version 7 and several of those available in USEARCH version 8, including searching 43

(exact or based on global alignment), clustering by similarity (using length pre-sorting, 44

abundance pre-sorting or a user-defined order), chimera detection (reference-based or de novo), 45

dereplication (full length or prefix), pairwise alignment, reverse complementation, sorting, and 46

subsampling. VSEARCH also includes commands for FASTQ file processing, i.e. format 47

detection, filtering, read quality statistics, and merging of paired reads. Furthermore, VSEARCH 48

extends functionality with several new commands and improvements, including shuffling, 49

rereplication, masking of low-complexity sequences with the well-known DUST algorithm, a 50

choice among different similarity definitions, and FASTQ file format conversion. VSEARCH is 51

here shown to be more accurate than USEARCH when performing searching, clustering, chimera 52

detection and subsampling, while on a par with USEARCH for paired-ends read merging. 53

VSEARCH is slower than USEARCH when performing clustering and chimera detection, but 54

significantly faster when performing paired-end reads merging and dereplication. VSEARCH is 55

available at https://github.com/torognes/vsearch under either the BSD 2-clause license or the 56

GNU General Public License version 3.0. 57

 58

Discussion. VSEARCH has been shown to be a fast, accurate and full-fledged alternative to 59

USEARCH. A free and open-source versatile tool for sequence analysis is now available to the 60

metagenomics community. 61

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2409v1 | CC BY 4.0 Open Access | rec: 1 Sep 2016, publ: 1 Sep 2016

3

Subjects 62

Biodiversity, Bioinformatics, Computational Biology, Genomics, Microbiology 63

 64

Keywords 65

alignment, clustering, chimera detection, dereplication, metagenomics, searching, sequences, 66

masking, shuffling, parallelization 67

 68

Introduction 69

Rockström et al. (2009) and Steffen et al. (2015) presented biodiversity loss as a major threat for 70

the short-term survival of humanity. Recent progress in sequencing technologies have made 71

possible large scale studies of environmental genetic diversity, from deep sea hydrothermal vents 72

to Antarctic lakes (Karsenti et al., 2011), and from tropical forests to Siberian steppes (Gilbert, 73

Jansson and Knight, 2014). Recent clinical studies have shown the importance of the 74

microbiomes of our bodies and daily environments for human health (Human Microbiome 75

Project Consortium, 2012). Usually focusing on universal markers (e.g., 16S rRNA, ITS, COI), 76

these targeted metagenomics studies produce many millions of sequences, and require open-77

source, fast and memory efficient tools to facilitate their ecological interpretation. 78

 79

Several pipelines have been developed for microbiome analysis, among which mothur (Schloss 80

et al., 2009), QIIME (Caporaso et al., 2010), and UPARSE (Edgar, 2013) are the most popular. 81

QIIME and UPARSE are both based on USEARCH (Edgar, 2010), a set of tools designed and 82

implemented by Robert C. Edgar, and available at http://drive5.com/usearch/. USEARCH offers 83

a great number of commands and options to manipulate and analyse FASTQ and FASTA files. 84

However, the source code of USEARCH is not publicly available, algorithm details are only 85

rudimentarily described, and only a memory-confined 32-bit version is freely available for 86

academic use. 87

 88

We believe that the existence of open-source solutions is beneficial for end-users and can 89

invigorate research activities. For this reason, we have undertaken to offer a high quality open-90

source alternative to USEARCH, freely available to users without any memory limitation. 91

VSEARCH includes most of the USEARCH functions in common use, and further development 92

may add additional features. Here we describe the details of the VSEARCH implementation. To 93

assess its performance in terms of speed and quality of results, we have evaluated some of the 94

most important functions (searching, clustering, chimera detection and subsampling) and 95

compared them to USEARCH. We find that VSEARCH delivers results that are better or on a 96

par with USEARCH results. 97

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2409v1 | CC BY 4.0 Open Access | rec: 1 Sep 2016, publ: 1 Sep 2016

4

Materials and Methods 98

Algorithms and implementation 99

Below is a brief description of the most important functions of VSEARCH and details of their 100

implementation. VSEARCH command line options are shown in italics, and should be preceded 101

by a single (-) or double dash (--) when used. 102

 103

Reading FASTA and FASTQ files 104

Most VSEARCH commands read files in FASTA or FASTQ format. The parser for FASTQ files 105

in VSEARCH is compliant with the standard as described by Cock et al. (2010) and correctly 106

parses all their tests files. FASTA and FASTQ files are automatically detected and many 107

commands accept both as input. Files compressed with gzip or bzip2 are automatically detected 108

and decompressed using the zlib library by Gailly and Adler (2016) or the bzip2 library by 109

Seward (2016), respectively. Input may also be piped into or out of VSEARCH, allowing for 110

instance many separate FASTA files to be piped into VSEARCH for simultaneous dereplication, 111

or allowing the creation of complex pipelines without ever having to write on slow disks. 112

 113

VSEARCH is a 64-bit program and allows very large datasets to be processed, essentially 114

limited only by the amount of memory available. The free USEARCH versions are 32-bit 115

programs that limit the available memory to somewhere less than 4GB, often seriously 116

hampering the analysis of realistic datasets. 117

 118

Writing result files 119

VSEARCH can output results in a variety of formats (FASTA, FASTQ, tables, alignments, 120

SAM) depending on the input format and command used. When outputting FASTA files, the line 121

width may be specified using the fasta_width option, where 0 means that line wrapping should 122

be turned off. Similar controls are offered for pairwise or multiple sequence alignments. 123

 124

Searching 125

Global pairwise sequence comparison is a core-functionality of VSEARCH. Several commands 126

compare a query sequence against a database of sequences: all-vs-all alignment 127

(allpairs_global), clustering (cluster_fast, cluster_size, cluster_smallmem), chimera detection 128

(uchime_denovo and uchime_ref) and searching (usearch_global). This comparison function 129

proceeds in two phases: an initial heuristic filtering based on shared words, followed by optimal 130

alignment of the query with the most promising candidates. 131

 132

The first phase is presumably quite similar to USEARCH (Edgar, 2010). Heuristics are used to 133

identify a small set of database sequences that have many words in common with the query 134

sequence. Words (or k-mers) consist of a certain number k of consecutive nucleotides of a 135

sequence (8 by default, adjustable with the wordlength option). All overlapping words are 136

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2409v1 | CC BY 4.0 Open Access | rec: 1 Sep 2016, publ: 1 Sep 2016

5

included. A sequence of length n then contains at most n - k + 1 unique words. VSEARCH 137

counts the number of shared words between the query and each database sequence. Words that 138

appear multiple times are counted only once. To count the words in the database sequences 139

quickly, VSEARCH creates an index of all the 4
k
 possible distinct words and stores information 140

about which database sequences they appear in. For extremely frequent words, the set of 141

database sequences is represented by a bitmap; otherwise the set is stored as a list. A finer 142

control of k-mer indexing is possible by introducing the pattern (binary string indicating which 143

positions must match) and slots options. USEARCH has such options but seems to ignore them. 144

Currently, VSEARCH ignores these two options too. The minimum number of shared words 145

required may be specified with the minwordmatches option (10 by default), but a lower value is 146

automatically used for short or simple query sequences with less than 10 unique words. 147

 148

Comparing sequences based on statistics of shared words is a common method to quickly assess 149

the similarity between two sequences without aligning them, which is often time-consuming. The 150

D2 statistic and related metrics for alignment-free sequence comparison have often been used for 151

rapid and approximate sequence matching and their statistical properties have been well studied 152

(Song et al., 2014). The approach used here has similarities to the D2 statistic, but multiple 153

matches of the same word are ignored. 154

 155

In the second phase, searching proceeds by considering the database sequences in a specific 156

order, starting with the sequence having the largest number of words in common with the query, 157

and proceeding with a decreasing number of shared words. If two database sequences have the 158

same number of words in common with the query, the shortest sequence is considered first. The 159

query sequence is compared with each database sequence by computing the optimal global 160

alignment. The alignment is performed using a multi-threaded and vectorised full dynamic 161

programming algorithm (Needleman and Wunsch, 1970) adapted from SWIPE (Rognes, 2011). 162

Due to the extreme memory requirements of this method when aligning two long sequences, an 163

alternative algorithm described by Hirschberg (1975) and Myers and Miller (1988) is used when 164

the product of the length of the sequences is greater than 25,000,000, corresponding to aligning 165

two 5,000 bp sequences. This alternative algorithm uses only a linear amount of memory but is 166

considerably slower. This second phase is probably where USEARCH and VSEARCH differ the 167

most, as USEARCH by default presumably performs a heuristic seed-and-extend alignment 168

similar to BLAST (Altschul et al., 1990), and only performs optimal pairwise alignments when 169

the option fulldp (full dynamic programming) is used. Computing the optimal pairwise alignment 170

in each case gives more accurate results but is also computationally more demanding. The 171

efficient and vectorised full dynamic programming implementation in VSEARCH compensates 172

that extra cost, at least for sequences that are not too long. 173

 174

If the resulting alignment indicates a similarity equal to or greater than the value specified with 175

the id option, the database sequence is accepted. If the similarity is too low, it is rejected. Several 176

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2409v1 | CC BY 4.0 Open Access | rec: 1 Sep 2016, publ: 1 Sep 2016

6

other options may also be used to determine how similarity is computed (iddef, as USEARCH 177

used to offer up to version 6), and which sequences should be accepted and rejected, either 178

before (e.g. self, minqsize) or after alignment (e.g. maxgaps, maxsubs). The search is terminated 179

when either a certain number of sequences have been accepted (1 by default, adjustable with the 180

maxaccepts option), or a certain number of sequences have been rejected (32 by default, 181

adjustable with the maxrejects option). The accepted sequences are sorted by sequence similarity 182

and presented as the search results. 183

 184

VSEARCH also includes a search_exact command that only identifies exact matches to the 185

query. It uses a hash table in a way similar to the full-length dereplication command described 186

below. 187

 188

Clustering 189

VSEARCH includes commands to perform de novo clustering using a greedy and heuristic 190

centroid-based algorithm with an adjustable sequence similarity threshold specified with the id 191

option (e.g., 0.97). The input sequences are either processed in the user supplied order 192

(cluster_smallmem) or pre-sorted based on length (cluster_fast) or abundance (the new 193

cluster_size option). Each input sequence is then used as a query in a search against an initially 194

empty database of centroid sequences. The query sequence is clustered with the first centroid 195

sequence found with similarity equal to or above the threshold. The search is performed using 196

the heuristic approach described above which generally finds the most similar sequences first. If 197

no matches are found, the query sequence becomes the centroid of a new cluster and is added to 198

the database. If maxaccepts is higher than 1, several centroids with sufficient sequence similarity 199

may be found and considered. By default, the query is clustered with the centroid presenting the 200

highest sequence similarity (distance-based greedy clustering, DGC), or, if the sizeorder option 201

is turned on, the centroid with the highest abundance (abundance-based greedy clustering, AGC) 202

(He et al., 2015; Westcott and Schloss, 2015; Schloss, 2016). VSEARCH performs multi-203

threaded clustering by searching the database of centroid sequences with several query sequences 204

in parallel. If there are any non-matching query sequences giving rise to new centroids, the 205

required internal comparisons between the query sequences are subsequently performed to 206

achieve correct results. For each cluster, VSEARCH can perform a simple center-star multiple 207

sequence alignment to compute consensus sequences and sequence profiles. 208

 209

Dereplication and rereplication 210

Full-length dereplication (derep_fulllength) is performed using a hash table with an open 211

addressing and linear probing strategy based on the Google CityHash hash functions (written by 212

Geoff Pike and Jyrki Alakuijala, and available at https://github.com/google/cityhash). The hash 213

table is initially empty. For each input sequence, the hash is computed and a lookup in the hash 214

table is performed. If an identical sequence is found, the input sequence is clustered with the 215

matching sequence; otherwise the input sequence is inserted into the hash table. 216

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2409v1 | CC BY 4.0 Open Access | rec: 1 Sep 2016, publ: 1 Sep 2016

7

 217

Prefix dereplication (derep_prefix) is also implemented. As with full-length dereplication, 218

identical sequences are clustered. In addition, sequences that are identical to prefixes of other 219

sequences will also be clustered together. If a sequence is identical to the prefix of multiple 220

sequences, it is generally not defined how prefix clustering should behave. VSEARCH resolves 221

this ambiguity by clustering the sequence with the shortest of the candidate sequences. If they are 222

equally long, priority will be given to the most abundant, the one with the lexicographically 223

smaller identifier or the one with the earliest original position, in that order. 224

 225

To perform prefix dereplication, VSEARCH first creates an initially empty hash table. It then 226

sorts the input sequences by length and identifies the length s of the shortest sequence in the 227

dataset. Each input sequence is then processed as follows, starting with the shortest: If an exact 228

match to the full input sequence is found in the hash table, the input sequence is clustered with 229

the matching hash table sequence. If no match to the full input sequence is found, the prefixes of 230

the input sequence are considered, starting with the longest prefix and proceeding with shorter 231

prefixes in order, down to prefixes of length s. If a match is now found in the hash table, the 232

sequences are clustered, the matching sequence is deleted from the hash table and the full input 233

sequence is inserted into the hash table instead. If no match is found for any prefix, the full 234

sequence is inserted into the hash table. In the end, the remaining sequences in the hash table will 235

be output with accumulated abundances for all sequences in each cluster. 236

 237

In order to identify matches in the hash table during prefix dereplication, a hash is computed for 238

each full-length input sequence and all its prefixes. The hash function used is the 64-bit Fowler–239

Noll–Vo 1a hash function (Fowler et al., 1991), which is simple and quick to compute for such a 240

series of sequences by adding one nucleotide at a time. 241

 242

The sequences resulting from dereplication and many other commands may be relabeled with a 243

given prefix followed by a sequentially increasing number. VSEARCH exclusively also offers 244

the possibility of relabelling each sequence with the SHA-1 (Eastlake and Jones, 2001) or MD5 245

(Rivest, 1992) message digest (hash) of the sequence. These are strings that are highly likely to 246

be unique for each sequence. Before the digest is computed, the sequence is normalized by 247

converting U’s to T’s and converting all symbols to upper case. VSEARCH includes public 248

domain code for the MD5 algorithm written by Alexander Peslyak, and for SHA1 by Steve Reid 249

and others. 250

 251

VSEARCH also includes a new command (rereplicate) to perform rereplication that can be used 252

to recreate datasets has they were before full-length dereplication, but of course original labels 253

cannot be recreated. 254

 255

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2409v1 | CC BY 4.0 Open Access | rec: 1 Sep 2016, publ: 1 Sep 2016

8

Chimera detection 256

Chimeras are detected either de novo (uchime_denovo command) or with a reference database 257

(uchime_ref command) using the UCHIME algorithm described by Edgar et al. (2011). 258

VSEARCH will divide each query sequence into four segments and look for similarity of each 259

segment to sequences in the set of potential parents using the heuristic search function described 260

earlier. It will consider the four best candidates for each segment using maxaccepts 4 and 261

maxrejects 16, and an id threshold of 0.55. VSEARCH optionally outputs borderline sequences, 262

that is, sequences having a high enough score (as specified with the minh option) but with too 263

small a divergence from the closest parent (as specified with the mindiv option). Multi-threading 264

is supported for reference-based chimera detection. 265

 266

Low-complexity sequence masking 267

VSEARCH includes a highly optimized and parallelized implementation of the Dust algorithm 268

by Tatusov and Lipman for masking of simple repeats and low-complexity nucleotide sequences, 269

that is considerably faster than the implementation of the same algorithm in USEARCH. Their 270

code available at ftp://ftp.ncbi.nlm.nih.gov/pub/tatusov/dust/version1/src/ is in the public 271

domain. VSEARCH uses this algorithm by default, while USEARCH by default uses an 272

undocumented rapid masking algorithm called fastnucleo. VSEARCH performs soft-masking 273

automatically for the pairwise alignment, search, clustering and chimera detection commands. 274

This behaviour can be controlled with the hardmask option to replace masked symbols with N’s 275

instead of lower-casing them, and the dbmask and qmask options, which selects the masking 276

algorithm (none, dust or soft) used for the database and query sequences, respectively. Masking 277

may also be performed explicitly on an input file using the fastx_mask and maskfasta commands. 278

 279

FASTQ file processing 280

VSEARCH includes commands to detect the FASTQ file version and the range of quality scores 281

used (fastq_chars), as well as two commands for computing sequence quality statistics 282

(fastq_stats and fastq_eestats). It can also truncate and filter sequences in FASTQ files based on 283

various criteria (fastq_filter). A new command is added to convert between different FASTQ file 284

versions and quality encodings (fastq_convert), e.g. from the old Phred+64 encoded Illumina 285

FASTQ files to the newer Phred+33 format. 286

 287

Merging of paired-end reads 288

Merging of paired-end reads is supported by VSEARCH using the fastq_mergepairs command. 289

The method used has some similarity to PEAR (Zhang et al., 2014) and recognises options 290

similar to USEARCH. The algorithm computes the optimal ungapped alignment of the 291

overlapping region of the forward sequence and the reverse-complemented reverse sequence. 292

The alignment requires a minimum overlap length (specified with the fastq_minovlen option, 293

default 10), a maximum number of mismatches (fastq_maxdiffs option, default 5), and a 294

minimum and maximum length of the merged sequence (fastq_minmergelen option, default 1, 295

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2409v1 | CC BY 4.0 Open Access | rec: 1 Sep 2016, publ: 1 Sep 2016

9

and fastq_maxmergelen option, default infinite). Staggered read pairs, i.e. read pairs where the 3' 296

end of the reverse read has an overhang to the left of the 5' end of the forward read, are not 297

allowed by default, but may be turned on by the fastq_allowmergestagger option. VSEARCH 298

uses a match score (alpha) of +4 and a mismatch score (beta) of -5 for perfect quality residues. 299

These scores are weighted by the probability that these two residues really match or mismatch, 300

respectively, taking quality scores into account. These probabilities are computed in a way 301

similar to PEAR score method 2 described in section 2.1 of the PEAR paper (Zhang et al., 2014), 302

but VSEARCH assumes all nucleotide background frequencies are 0.25. When merging 303

sequences, VSEARCH computes posterior quality scores for the overlapping regions as 304

described by Edgar and Flyvbjerg (2015). For speed, scores and probabilities are pre-computed 305

for all possible quality scores. 306

 307

Sorting and shuffling 308

VSEARCH can sort FASTA files by decreasing sequence length (sortbylength) or abundance 309

(sortbysize). VSEARCH can also perform shuffling of FASTA files in random order (shuffle). A 310

seed value for the pseudo random number generator may be provided by the randseed option to 311

obtain replicable results. 312

 313

Subsampling 314

Sequences in FASTA and FASTQ files can be subsampled (fastx_subsample) by randomly 315

extracting a certain number (sample_size) or percentage (sample_pct) of the input sequences. 316

Abundances may be taken into account, giving results as if the input sequences were 317

rereplicated, subsampled and then dereplicated. 318

 319

Results and Discussion 320

Supported commands and options 321

VSEARCH implements the following commands available in USEARCH version 7: 322

allpairs_global, cluster_fast, cluster_smallmem, derep_fulllength, derep_prefix, fastq_chars, 323

fastq_filter, fastq_mergepairs, fastq_stats, fastx_mask, maskfasta, sortbylength, sortbysize, 324

uchime_denovo, uchime_ref and usearch_global. In addition, the following commands available 325

in USEARCH version 8 have been implemented: fastq_eestats, fastx_revcomp, fastx_subsample 326

and search_exact. VSEARCH additionally includes a few new commands that do not exist in 327

USEARCH: cluster_size, fastq_convert, rereplicate and shuffle. 328

 329

Some USEARCH version 7 commands have not yet been implemented in VSEARCH. We have 330

not prioritized commands related to amino acid sequences (findorfs), local alignment 331

(allpairs_local, pairs_local, search_local, ublast), brute-force search (search_global, 332

pairs_global), UDB databases (makeudb_ublast, makeudb_usearch, udb2fasta, udbinfo, 333

udbstats), and the UPARSE pipeline (cluster_otus, uparse_ref). 334

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2409v1 | CC BY 4.0 Open Access | rec: 1 Sep 2016, publ: 1 Sep 2016

10

 335

Almost all USEARCH 7 options are supported, except for those related to non-standard database 336

indexing (alpha, dbaccelpct, dbstep, pattern, slots) as well as local alignments and alignment 337

heuristics (band, hspw, lext, lopen, matrix, minhsp, xdrop_g, xdrop_nw, xdrop_u). 338

 339

The same command and option names as in USEARCH version 7 has generally been used in 340

order to make VSEARCH an almost drop-in replacement. In fact, in QIIME most commands will 341

run fine if an alias or link from usearch to vsearch is made. Detailed documentation of 342

VSEARCH is available as a man page. We will consider adding further commands and options 343

to VSEARCH in the future. 344

 345

Performance Assessment 346

The performance of the most important functions of VSEARCH version 2.0.3 was evaluated and 347

compared to USEARCH version 7.0.1090 and 8.1.1861. Chimera detection was also compared 348

to UCHIME version 4.2. All tests were run on GNU/Linux CentOS 6.7 compute nodes with 16 349

physical cores (Intel(R) Xeon(R) CPU E5-2670 0 @ 2.60GHz) and 64GB RAM. Programs were 350

run with 8 threads, if possible. All times indicated are wall-clock times. All scripts and data 351

necessary to perform the evaluations are available in the GitHub repository at 352

https://github.com/torognes/vsearch-eval/ to enable independent replication. 353

 354

Searching 355

Evaluation of search accuracy was carried out as described in the USEARCH paper (Edgar, 356

2010), its supplementary, and on the website (http://drive5.com/usearch/benchmark_rfam.html), 357

by assessing the ability of the programs to identify RNA sequences belonging to the same family 358

in RFAM (Burge et al., 2013). The 383,004 sequences in Rfam version 11 were randomly 359

shuffled and then the first sequence from each of the 2,085 (out of 2,208) families that contained 360

at least 2 members was selected as a representative and used as a query against the remaining 361

380,919 sequences. The programs were run with options id 0.0, minseqlength 1, maxaccepts 1, 362

maxrejects 32, and strand plus. If the matching sequence found belonged to the same family, it 363

was considered a true positive, otherwise it was considered as a false positive. We combined the 364

results from 20 shufflings and plotted the results in the ROC-like curve shown in Fig. 1. For a 365

false discovery rate comprised between 0.010 and 0.015, VSEARCH is more accurate than 366

USEARCH’s latest version. For lower values, the three programs have similar accuracies. At 367

higher false discovery rates, USEARCH version 8 has an advantage. 368

 369

The time to search the Rfam database as described above was measured. To avoid extremely 370

short running times, 1,000 replicates of the datasets were used. USEARCH version 7 required on 371

average 5 min 29 seconds for the search, USEARCH version 8 took 5 min 57 seconds, while 372

VSEARCH took 5 min 26 seconds. 373

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2409v1 | CC BY 4.0 Open Access | rec: 1 Sep 2016, publ: 1 Sep 2016

11

 374
Figure 1 Search accuracy on the RFAM v11 dataset. USEARCH version 7 (blue), USEARCH 375

version 8 (orange) and VSEARCH (black) was run using the usearch_global command on 376

subsets of the RFAM dataset to identify members of the same families. The plot shows the true 377

positive rate (also known as the recall or sensitivity) as a function of the false discovery rate at 378

varying sequence similarity levels. This curve is based on data from 20 shufflings of the dataset. 379

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2409v1 | CC BY 4.0 Open Access | rec: 1 Sep 2016, publ: 1 Sep 2016

12

Clustering 380

Westcott and Schloss (2015) have already carried out an evaluation of the clustering 381

performance of VSEARCH. They tested the ability of several tools to assign OTUs for 16S 382

rRNA sequences and “demonstrated that for the greedy algorithms VSEARCH produced 383

assignments that were comparable to those produced by USEARCH making VSEARCH a viable 384

free and open source alternative to USEARCH.” Schloss (2016) also evaluated de novo 385

clustering by VSEARCH. 386

 387

We independently evaluated the clustering accuracy of USEARCH and VSEARCH as described 388

for Swarm (Mahé et al., 2014) using two mock datasets, one with an even and one with uneven 389

composition of 57 archaea and bacteria. The datasets were first dereplicated. Then the taxonomy 390

of the unique sequences was assigned by a search against the set of rRNA reference sequences 391

representing the species in the mock datasets, carried out with the usearch_global command of 392

USEARCH. The sequences were shuffled randomly 10 times and clustering was performed at 20 393

different similarity levels ranging from 80% to 99% in steps of 1%. Clustering was carried out in 394

two ways, first using the cluster_fast command that pre-sorts the sequences by length, and then 395

using the cluster_smallmem command after first sorting the sequences by abundance using the 396

sortbysize command. We then compared the clusters obtained to the assigned species and 397

computed the recall, precision and the adjusted Rand index of the classifications. The average 398

values over the all shufflings are presented in Fig. 2 and Fig. 3 for the even and uneven datasets, 399

respectively. For abundance-sorted sequences, the difference between VSEARCH and 400

USEARCH version 8 is negligible. The difference is larger for length-sorted sequences. When 401

using length sorting, USEARCH 8 (as well as version 7 on the even dataset) shows better 402

precision than VSEARCH for similarity levels below 93%. However, since we are comparing to 403

species we expect the correspondence with OTUs to occur at high similarities, and in fact overall 404

accuracy as measured by the adjusted Rand index is maximised at 95-97% similarity, this is 405

precisely the region where for length sorting at least VSEARCH outperforms USEARCH. 406

 407

The time used for clustering is shown in Fig. 4. The time used depended on the dataset, 408

algorithm and clustering threshold. The USEARCH programs were in general 2-3 times faster 409

than VSEARCH. In general the difference in speed was smaller for higher thresholds, especially 410

at 99% similarity. 411

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2409v1 | CC BY 4.0 Open Access | rec: 1 Sep 2016, publ: 1 Sep 2016

13

 412
Figure 2 Clustering accuracy on the even dataset. USEARCH version 7 (blue) and 8 (orange) 413

and VSEARCH (black) was run using abundance sorting (cluster_smallmem) (left) and length 414

sorting (cluster_fast) (right) on the even dataset. The performance is indicated with the adjusted 415

Rand index (top), recall (middle) and precision (bottom) metrics. 416

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2409v1 | CC BY 4.0 Open Access | rec: 1 Sep 2016, publ: 1 Sep 2016

14

 417
Figure 3 Clustering accuracy on the uneven dataset. USEARCH version 7 (blue) and 8 (orange) 418

and VSEARCH (black) was run using abundance sorting (cluster_smallmem) (left) and length 419

sorting (cluster_fast) (right) on the uneven dataset. The performance is indicated with the 420

adjusted Rand index (top), recall (middle) and precision (bottom) metrics. 421

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2409v1 | CC BY 4.0 Open Access | rec: 1 Sep 2016, publ: 1 Sep 2016

15

 422
Figure 4 Clustering speed. Median wall time in seconds to cluster the even (top) and uneven 423

(bottom) datasets using USEARCH version 7 (blue) and 8 (orange) and VSEARCH (black) 424

using abundance sorting (cluster_fast) (left) and length sorting (with cluster_smallmem) (right). 425

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2409v1 | CC BY 4.0 Open Access | rec: 1 Sep 2016, publ: 1 Sep 2016

16

Dereplication 426

Measurements of dereplication speed were performed on the even and uneven datasets described 427

earlier as well as on the BioMarKs dataset (Karsenti et al., 2011). For full-length dereplication 428

(derep_fulllength) VSEARCH was about 40-50% faster than USEARCH version 7 and 50-70% 429

faster than version 8 on all three datasets. All programs were approximately equally fast on 430

prefix dereplication (derep_prefix) of the even and uneven datasets. However, prefix 431

dereplication of the BioMarKs dataset was extremely slow with USEARCH. USEARCH version 432

7 used more than 4 minutes and version 8 more than 27 minutes, while VSEARCH used less 433

than 4 seconds. The prefix dereplication algorithm used in USEARCH appears ineffective when 434

dealing with short sequences. Removing the 811 sequences shorter than 200 bp out of the 435

312,503 sequences of the BioMarKs dataset reduces the running time of USEARCH version 7 436

and 8 down to just 5 and 6 seconds, respectively. 437

 438

Chimera detection 439

We evaluated the chimera detection accuracy of VSEARCH and USEARCH in two ways, first 440

using a method similar to that performed for UCHIME, and then using a new chimera simulation 441

procedure from Greengenes and SILVA sequences. 442

 443

First we repeated the evaluation of the uchime_ref command described in the UCHIME paper 444

(Edgar, 2011) using the SIMM dataset downloaded from 445

http://drive5.com/uchime/uchime_download.html. The dataset consists of 900 simulated 446

chimeras that are approximately 250 bp long. The chimeras were generated from 2, 3 or 4 447

segments selected randomly from 86 original sequences and have similarities in the ranges 90-448

95%, 95-97% and 97-99% to the original sequences. They were either used unmodified or with 449

1-5% indels or 1-5% substitutions. We assessed the performance of i) the original open-source 450

UCHIME version 4.2 program, ii) USEARCH version 7, iii) USEARCH version 8, and iv) 451

VSEARCH. The results are shown in Table 1 and indicate that VSEARCH is superior to the 452

other tools in almost all cases, and in particular when indels were added. The original UCHIME 453

program was found to be quite effective, but also considerably slower than all the other tools. 454

USEARCH was better than VSEARCH in only 3 out of 99 cases. 455

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2409v1 | CC BY 4.0 Open Access | rec: 1 Sep 2016, publ: 1 Sep 2016

17

Table 1 Chimera detection performance with the SIMM dataset. UCHIME (UC), USEARCH 456

version 7 (U7) and 8 (U8), and VSEARCH (V) was run using the uchime_ref algorithm on the 457

SIMM dataset that was originally also used to evaluate the UCHIME algorithm. Divergence is 458

the percentage of similarity to the original sequences. Noise is either zero (-) or the percentage of 459

indels (i1-i5) or substitutions (m1-5) added. The number of chimeras detected out of 100 of each 460

type is shown. The best results in each category are shaded. 461

 462

 2 segments 3 segments 4 segments

Divergence Noise UC U7 U8 V UC U7 U8 V UC U7 U8 V

97-99% - 89 88 88 89 56 52 52 55 38 33 34 35

i1 79 79 77 85 46 44 43 53 32 27 24 34

i2 64 57 56 77 33 32 31 56 24 20 18 33

i3 48 45 36 72 37 35 29 45 16 17 16 21

i4 29 24 23 65 18 11 13 40 9 9 8 25

i5 27 22 16 53 15 12 12 39 7 8 6 17

m1 83 83 83 81 53 48 48 53 33 29 29 30

m2 73 71 71 72 49 44 44 50 28 22 22 27

m3 66 66 66 68 40 40 39 44 21 20 21 21

m4 55 54 53 57 28 24 23 28 21 18 18 19

m5 44 44 42 48 20 19 18 28 16 14 12 12

95-97% - 100 100 100 100 80 77 76 79 64 60 59 63

i1 100 98 98 100 77 75 72 75 54 55 53 61

i2 96 94 93 99 60 55 55 71 48 44 44 60

i3 86 82 82 95 61 50 52 70 38 36 31 53

i4 75 66 64 95 48 41 39 64 29 29 22 47

i5 64 58 53 86 37 32 25 60 24 19 19 46

m1 99 99 99 99 76 73 73 76 60 57 57 60

m2 98 97 97 97 71 69 69 71 50 48 46 48

m3 93 94 94 96 63 61 61 64 41 41 41 42

m4 92 92 90 93 56 55 54 57 39 39 37 41

m5 86 86 85 86 53 51 51 56 35 35 34 34

90-95% - 100 100 100 100 93 93 93 93 88 88 88 86

i1 100 100 100 100 88 88 87 91 86 86 87 88

i2 99 97 99 99 83 79 78 88 74 72 72 84

i3 100 100 100 100 79 76 75 88 74 69 70 82

i4 99 94 96 99 80 71 72 84 66 62 61 79

i5 95 84 86 99 74 65 65 88 55 48 48 71

m1 100 100 100 100 89 89 89 92 87 87 86 85

m2 100 100 100 100 87 87 87 89 78 78 78 79

m3 100 99 99 100 86 86 86 89 76 76 78 80

m4 100 100 100 100 82 82 84 83 73 73 72 78

m5 99 98 98 99 82 81 82 84 75 73 75 79

 463

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2409v1 | CC BY 4.0 Open Access | rec: 1 Sep 2016, publ: 1 Sep 2016

18

Next, we tested reference-based (uchime_ref) and de novo (uchime_denovo) chimera detection 464

using sequences from the 2011 version of Greengenes downloaded from 465

http://greengenes.lbl.gov/Download/Sequence_Data/Fasta_data_files/ (DeSantis et al., 2006) and 466

from version 106 (May 2011) of the SILVA database downloaded from https://www.arb-467

silva.de/no_cache/download/archive/release_106/Exports/ (Quast et al., 2013). Sequences from 468

the 16S rRNA V4 region was computationally extracted using the 515F (52-469

GTGNCAGCMGCCGCGGTAA-32) and 806R (52-GGACTACHVGGGTWTCTAAT-32) 470

primers, and 8,000 reads were randomly selected from each database. PCR was simulated using 471

a new simulation algorithm known as Simera (Nichols and Quince, 2016) (available at 472

https://github.com/bnichols1979/Simera) that includes amplification and creation of PCR 473

artefacts like chimeras. We sampled 30,000 reads (-s 30000) and generated 20,000 potential 474

chimeras (-c 20000). Defaults were used for other options to Simera. The output sequences were 475

then fed into an Illumina MiSeq noise simulator (Schirmer et al., 2015) ending up with 14,966 476

reads based on Greengenes and 14,952 reads based on SILVA, of which 1,262 and 1,640 reads 477

contain chimeric sequences, respectively. Next, the sequences were either clustered using the 478

cluster_fast command at 97% identity or dereplicated. VSEARCH and USEARCH version 7 and 479

8 were run using the uchime_denovo command and then using the uchime_ref command with the 480

Gold database downloaded from http://drive5.com/uchime/uchime_download.html as the 481

reference database. To assess the performance, the results were sorted based on the chimera 482

score, and then the ability to classify individual sequences correctly into chimeric and non-483

chimeric was plotted as ROC curves. The curves reflect the accuracy of classifying individual 484

reads, not clusters, as abundances were taken into account. The plots in Fig. 5 and Fig. 6 show 485

that de novo chimera detection performs better than reference-based detection, with the SILVA 486

dataset in particular, but it does of course depend on the reference database used. VSEARCH 487

performs better than both versions of USEARCH for de novo chimera detection. For reference-488

based detection VSEARCH also performs better for the Greengenes dataset, while none of the 489

programs works well with the SILVA dataset. Clustering at 97% appears to be more appropriate 490

than dereplication. In this test, the USEARCH programs were about twice as fast as VSEARCH 491

for de novo detection, while they were about 10-30% faster than VSEARCH for reference-based 492

detection. 493

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2409v1 | CC BY 4.0 Open Access | rec: 1 Sep 2016, publ: 1 Sep 2016

19

 494
 495

Figure 5 Chimera detection performance with the Greengenes dataset shown with ROC curves. 496

USEARCH version 7 (blue) and 8 (orange) and VSEARCH (black) was run using the 497

uchime_denovo (top) and the uchime_ref (bottom) commands on simulated Illumina data based 498

on the Greengenes database that has either been clustered with a 97% identity threshold (using 499

the cluster_fast command in VSEARCH) (left) or dereplicated (using the derep_fulllength 500

command in VSEARCH) (right). 501

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2409v1 | CC BY 4.0 Open Access | rec: 1 Sep 2016, publ: 1 Sep 2016

20

 502
 503

Figure 6 Chimera detection performance on the SILVA dataset shown with ROC curves. 504

USEARCH version 7 (blue) and 8 (orange) and VSEARCH (black) was run using the 505

uchime_denovo (top) and the uchime_ref (bottom) commands on simulated Illumina data based 506

on the SILVA database that has either been clustered with a 97% identity threshold (using the 507

cluster_fast command in USEARCH) (left) or dereplicated (using the derep_fulllength command 508

in VSEARCH) (right). 509

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2409v1 | CC BY 4.0 Open Access | rec: 1 Sep 2016, publ: 1 Sep 2016

21

Merging of paired-end reads 510

Evaluation of paired-end reads merging performance was carried out in a manner similar to that 511

described for the evaluation of PEAR (Zhang et al., 2014). We used whole genome sequencing 512

data from Staphylococcus aureus subspecies aureus strain USA 300 TCH 1516 sequenced by 513

MacCallum et al. (2009) and retrieved from the GAGE-B repository (http://ccb.jhu.edu/gage_b/). 514

The S.aureus reads were 101 bp long from on average 180 bp long fragments, giving a 45X 515

coverage of the genome. We also used Methylococcus capsulatus strain Bath 16S rRNA V3 516

region amplicon reads sequenced by Masella et al. (2012). These reads were 108 bp long and the 517

pairs should have an overlap of exactly 18 bp. Merging options were set to allow a minimum 518

overlap of 10 bp and a maximum of 5 mismatches (USEARCH 7 and 8 have different default 519

values for those), while other options were left at defaults. All programs were run with 8 threads. 520

Merged sequences that could be perfectly aligned to their respective reference sequences (either 521

the entire genome or the specific rRNA region) using BWA MEM (Li et al., 2009) were 522

considered correctly merged. The results are shown in Table 2. The numbers indicate that 523

USEARCH version 7 merges the most reads for both bacteria, but also has the lowest percentage 524

of correctly merged pairs of those merged. USEARCH version 8 merges the fewest reads, but 525

has the highest percentage of correctly merged reads of those merged. VSEARCH is in the 526

middle by merging more reads than USEARCH 8 with only a small decrease in the percentage of 527

correct merges. VSEARCH is about twice as fast as USEARCH 8 and 4-5 times faster than 528

USEARCH version 7. 529

 530

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2409v1 | CC BY 4.0 Open Access | rec: 1 Sep 2016, publ: 1 Sep 2016

22

Table 2. Paired-end reads merging performance. The number of sequence pairs, merged pairs, 531

and correctly merged pairs are shown for each bacterium and program. The percentage of reads 532

merged, as well as the percentage of correctly merged reads both of the merged reads and of all 533

reads are also shown. Times are in seconds using 8 threads. 534

 535

Bacterium Program Pairs Merged Correct %Merged %Cor/Mer %Cor/All Time (s)

Staphylococcus aureus USEARCH 7 647,052 273,438 270,849 42.26 99.05 41.86 11.65

USEARCH 8 647,052 203,729 202,003 31.49 99.15 31.22 4.69

VSEARCH 647,052 214,988 213,103 33.23 99.12 32.93 2.15

Methylococcus capsulatus

strain Bath
USEARCH 7 673,845 643,903 642,720 95.56 99.82 95.38 14.43

USEARCH 8 673,845 554,099 553,747 82.23 99.94 82.18 6.27

VSEARCH 673,845 581,752 581,346 86.33 99.93 86.27 3.61

 536

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2409v1 | CC BY 4.0 Open Access | rec: 1 Sep 2016, publ: 1 Sep 2016

23

Subsampling 537

We evaluated the subsampling commands of USEARCH version 8 and VSEARCH to check if 538

the results obtained correspond to those expected. We performed 10,000 random subsamplings 539

of 5% of the 9.5 million unique sequences in the TARA V9 dataset (Karsenti et al., 2011). To 540

make this possible with the 32-bit USEARCH, we first downsampled the dataset once to 10% 541

using VSEARCH and then randomly subsampled it again at 50% with either USEARCH or 542

VSEARCH. Plots of the distribution of the abundance of the most abundant sequence in each 543

subsampling are shown in Fig. 7. The highest amplicon abundance in the original dataset is 544

15,638,316. After the initial 10% subsampling, the highest abundance was 1,564,267. After the 545

second subsampling, the top abundances should therefore have a distribution centred on a value 546

of 782,133.5. As can be seen from the figure, the USEARCH distribution has a mean that is 547

about 2,000 too small, while the VSEARCH distribution is correctly centred on the expected 548

value. Subsampling experiments were also performed at 2.5%, 1.5% and 0.5% with similar 549

results, although the errors were of decreasing size. USEARCH seems to under-sample abundant 550

amplicons and to over-sample rare amplicons. 551

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2409v1 | CC BY 4.0 Open Access | rec: 1 Sep 2016, publ: 1 Sep 2016

24

552
Figure 7 Subsampling performance. The observed distribution of the maximum amplicon 553

abundance in 10,000 random subsamplings of 5% of the TARA V9 dataset results using 554

VSEARCH (top, black) and USEARCH version 8 (bottom, orange) is shown. The expected 555

mean abundance is 782,133.5 (blue dashed line). 556

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2409v1 | CC BY 4.0 Open Access | rec: 1 Sep 2016, publ: 1 Sep 2016

25

Conclusions 557

VSEARCH supports almost all of the commands and options for nucleotide sequence analysis in 558

USEARCH version 7 as well several new features. It has a 64-bit design and handles large 559

datasets virtually only limited by the amount of available memory. We have demonstrated that 560

VSEARCH is in general more accurate than USEARCH when performing searching, clustering, 561

chimera detection and subsampling. The accuracy is on a par with USEARCH for paired-end 562

reads merging. VSEARCH is faster than USEARCH when performing dereplication and 563

merging of paired-end reads, but slower for clustering and chimera detection. We will continue 564

to improve the accuracy, speed and robustness of VSEARCH in the future, as well as adding new 565

features. 566

 567

Availability 568

VSEARCH is freely available at https://github.com/torognes/vsearch under a dual license, either 569

the GNU General Public License version 3, or the BSD 2-clause license. Binaries are provided 570

for x86-64 systems running GNU/Linux or OS X (10.7 or higher). 571

 572

Thanks to the work of several people, there is now a vsearch package in Debian and a vsearch 573

package for Homebrew, as well as a Galaxy wrapper for VSEARCH in the Galaxy ToolShed. 574

 575

Acknowledgements 576

We highly appreciate the feedback from numerous people who submitted bug reports and 577

suggestions for features. 578

 579

Thanks to Melanie Schirmer for noise generation on sequences for chimera detection. 580

 581

References 582

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. 583

Journal of Molecular Biology, 215:403-410. DOI: 10.1016/S0022-2836(05)80360-2 584

 585

Burge SW, Daub J, Eberhardt R, Tate J, Barquist L, Nawrocki EP, Eddy SR, Gardner PP, 586

Bateman A. 2013. Rfam 11.0: 10 years of RNA families. Nucleic Acids Research, 41(D1):D226-587

D232. DOI: 10.1093/nar/gks1005 588

 589

Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña 590

AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone 591

CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, 592

Widmann J, Yatsunenko T, Zaneveld J, Knight R. 2010. QIIME allows analysis of high-593

throughput community sequencing data. Nature Methods, 7:335–336. DOI: 10.1038/nmeth.f.303 594

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2409v1 | CC BY 4.0 Open Access | rec: 1 Sep 2016, publ: 1 Sep 2016

26

 595

Cock PJA, Fields CJ, Goto N, Heuer ML and Rice PM. 2010. The Sanger FASTQ file format for 596

sequences with quality scores, and the Solexa/Illumina FASTQ variants. Nucleic Acids 597

Research, 38(6):1767-1771. DOI: 10.1093/nar/gkp1137 598

 599

DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, 600

Andersen GL. 2006. Greengenes, a Chimera-Checked 16S rRNA Gene Database and Workbench 601

Compatible with ARB. Applied and Environmental Microbiology, 72(7):5069-72. DOI: 602

10.1128/AEM.03006-05 603

 604

Eastlake D, Jones P. 2001. US Secure Hash Algorithm 1 (SHA). Internet RFC 3174. Available at 605

ftp://ftp.rfc-editor.org/in-notes/rfc3174.txt 606

 607

Edgar RC. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 608

26(19):2460-2461. DOI: 10.1093/bioinformatics/btq461 609

 610

Edgar RC. 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. 611

Nature Methods, 10(10):996-8. DOI: 10.1038/nmeth.2604 612

 613

Edgar RC, Flyvbjerg H. 2015. Error filtering, pair assembly and error correction for next-614

generation sequencing reads. Bioinformatics, 31(21):3476-3482. DOI: 615

10.1093/bioinformatics/btv40 616

 617

Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. 2011. UCHIME improves sensitivity and 618

speed of chimera detection. Bioinformatics, 27(16):2194-2200. DOI: 619

10.1093/bioinformatics/btr381 620

 621

Fowler G, Noll LC, Vo P. 1991. Fowler / Noll / Vo (FNV) hash. Available at 622

http://www.isthe.com/chongo/tech/comp/fnv/index.html 623

 624

Gailly JL, Adler M. 2016. zlib: A Massively Spiffy Yet Delicately Unobtrusive Compression 625

Library. Available at http://www.zlib.net/ (accessed 3 August 2016) 626

 627

Gilbert JA, Jansson JK, Knight R. 2014. The Earth Microbiome project: successes and 628

aspirations. BMC Biology, 12:69. DOI: 10.1186/s12915-014-0069-1 629

 630

Guillou L, Bachar D, Audic S, Bass D, Berney C, Bittner L, Boutte C, Burgaud G, de Vargas C, 631

Decelle J, del Campo J, Dolan J, Dunthorn M, Edvardsen B, Holzmann M, Kooistra W, Lara E, 632

Lebescot N, Logares R, Mahé F, Massana R, Montresor M, Morard R, Not F, Pawlowski J, 633

Probert I, Sauvadet A.-L, Siano R, Stoeck T, Vaulot D, Zimmermann P, Christen R. 2013. The 634

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2409v1 | CC BY 4.0 Open Access | rec: 1 Sep 2016, publ: 1 Sep 2016

27

Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote Small Sub-Unit 635

rRNA sequences with curated taxonomy. Nucleic Acids Research, 41(D1):D597-D604. DOI: 636

10.1093/nar/gks1160 637

 638

He Y, Caporaso JG, Jiang XT, Sheng HF, Huse SM, Rideout JR, Edgar RC, Kopylova E, 639

Walters WA, Knight R and Zhou HW. 2015. Stability of operational taxonomic units: an 640

important but neglected property for analyzing microbial diversity. Microbiome, 3:20. DOI: 641

10.1186/s40168-015-0081-x 642

 643

Hirschberg DS. 1975. A linear space algorithm for computing maximal common subsequences. 644

Communications of the ACM, 18(6):341-343. DOI: 10.1145/360825.360861 645

 646

Human Microbiome Project Consortium. 2012. Structure, function and diversity of the healthy 647

human microbiome. Nature, 486:207-214. DOI: 10.1038/nature11234 648

 649

Karsenti E, González Acinas S, Bork P, Bowler C, de Vargas C, Raes J, Sullivan M. B, Arendt 650

D, Benzoni F, Claverie J.-M, Follows M, Jaillon O, Gorsky G, Hingamp P, Iudicone D, Kandels-651

Lewis S, Krzic U, Not F, Ogata H, Pesant S, Reynaud E. G, Sardet C, Sieracki M. E, Speich S, 652

Velayoudon D, Weissenbach J, Wincker P, the Tara Oceans Consortium. 2011. A holistic 653

approach to marine eco-systems biology. PLoS Biology, 9(10):e1001177. DOI: 654

10.1371/journal.pbio.1001177 655

 656

Kopylova E, Navas-Molina JA, Mercier C, Xu ZZ, Mahé F, He Y, Zhou HW, Rognes T, 657

Caporaso JG, Knight R. 2016. Open-Source Sequence Clustering Methods Improve the State Of 658

the Art. mSystems, 1(1):e00003-15. DOI: 10.1128/mSystems.00003-15 659

 660

Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. 661

Bioinformatics, 25(14):1754-60. DOI: 10.1093/bioinformatics/btp324 662

 663

Logares R, Audic S, Bass D, Bittner L, Boutte C, Christen R, Claverie J.-M, Decelle J, Dolan J. 664

R, Dunthorn M, Edvardsen B, Gobet A, Kooistra W. H. C. F, Mahé F, Not F, Ogata H, 665

Pawlowski J, Pernice M. C, Romac S, Shalchian-Tabrizi K, Simon N, Stoeck T, Santini S, Siano 666

R, Wincker P, Zingone A, Richards T, de Vargas C, Massana R. 2014. The patterning of rare and 667

abundant community assemblages in coastal marine-planktonic microbial eukaryotes. Current 668

Biology, 24(8):813-821. DOI: 10.1016/j.cub.2014.02.050 669

 670

Mahé F, Rognes T, Quince C, de Vargas C, Dunthorn M. 2014. Swarm: robust and fast 671

clustering method for amplicon-based studies. PeerJ, 2:e593. DOI: 10.7717/peerj.593 672

 673

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2409v1 | CC BY 4.0 Open Access | rec: 1 Sep 2016, publ: 1 Sep 2016

28

Masella AP, Bartram AK, Truszkowski JM, Brown DG and Neufeld JD. 2012. PANDAseq: 674

paired-end assembler for illumina sequences. BMC Bioinformatics, 13:31. DOI: 10.1186/1471-675

2105-13-31 676

 677

Myers EW, Miller W. 1988. Optimal alignments in linear space. Computer Applications in the 678

Biosciences, 4(1):11-17. DOI: 10.1093/bioinformatics/4.1.11 679

 680

Needleman SB, Wunsch CD. 1970. A general method applicable to the search for similarities in 681

the amino acid sequence of two proteins. Journal of Molecular Biology, 48(3):443–53. DOI: 682

10.1016/0022-2836(70)90057-4. 683

 684

Nichols B, Quince C. 2016. Simera: Modelling the PCR Process to Simulate Realistic Chimera 685

Formation. bioRxiv, 072447. DOI: 10.1101/072447 686

 687

Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. 2013. The 688

SILVA ribosomal RNA gene database project: improved data processing and web-based tools. 689

Nucleic Acids Research, 41(D1):D590-D596. DOI: 10.1093/nar/gks1219 690

 691

Rivest R. 1992. The MD5 Message-Digest Algorithm. Internet RFC 1321. Available at 692

ftp://ftp.rfc-editor.org/in-notes/rfc1321.txt 693

 694

Rockström J, Steffen W, Noone K, Persson A, Chapin FS 3rd, Lambin EF, Lenton TM, Scheffer 695

M, Folke C, Schellnhuber HJ, Nykvist B, de Wit CA, Hughes T, van der Leeuw S, Rodhe H, 696

Sörlin S, Snyder PK, Costanza R, Svedin U, Falkenmark M, Karlberg L, Corell RW, Fabry VJ, 697

Hansen J, Walker B, Liverman D, Richardson K, Crutzen P, Foley JA. 2009. A safe operating 698

space for humanity. Nature, 461(7263):472-5. DOI: 10.1038/461472a 699

 700

Rognes T. 2011. Faster Smith-Waterman database searches by inter-sequence SIMD 701

parallelisation. BMC Bioinformatics, 12:221. DOI: 10.1186/1471-2105-12-221 702

 703

Schirmer M, Ijaz UZ, D'Amore R, Hall N, Sloan WT, Quince C. 2015. Insight into biases and 704

sequencing errors for amplicon sequencing with the Illumina MiSeq platform. Nucleic Acids 705

Research, 43(6):e37. doi: 10.1093/nar/gku1341 706

 707

Schloss PD (2016) Application of a Database-Independent Approach To Assess the Quality of 708

Operational Taxonomic Unit Picking Methods. mSystems, 1(2):e00027-16. DOI: 709

10.1128/mSystems.00027-16 710

 711

Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, 712

Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF. 713

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2409v1 | CC BY 4.0 Open Access | rec: 1 Sep 2016, publ: 1 Sep 2016

29

2009. Introducing mothur: open-source, platform-independent, community-supported software 714

for describing and comparing microbial communities. Applied and Environmental Microbiology, 715

75:7537–7541. DOI: 10.1128/AEM.01541-09. 716

 717

Seward J. 2016. bzip2 and libbzip2. Available at http://www.bzip.org/ (accessed 3 August 2016) 718

 719

Song K, Ren J, Reinert G, Deng M, Waterman MS, Sun F. 2014. New developments of 720

alignment-free sequence comparison: measures, statistics and next-generation sequencing. 721

Briefings in Bioinformatics, 15(3):343–53. DOI: 10.1093/bib/bbt067 722

 723

Steffen W, Richardson K, Rockström J, Cornell SE, Fetzer I, Bennett EM, Biggs R, Carpenter 724

SR, de Vries W, de Wit CA, Folke C, Gerten D, Heinke J, Mace GM, Persson LM, Ramanathan 725

V, Reyers B, Sörlin S. 2015. Sustainability. Planetary boundaries: guiding human development 726

on a changing planet. Science, 347(6223):1259855. DOI: 10.1126/science.1259855 727

 728

Westcott SL, Schloss PD. 2015. De novo clustering methods outperform reference-based 729

methods for assigning 16S rRNA gene sequences to operational taxonomic units. PeerJ, 3:e1487 730

DOI: 10.7717/peerj.1487 731

 732

Zhang J, Kobert K, Flouri T, Stamatakis A. 2014. PEAR: a fast and accurate Illumina Paired-End 733

reAd mergeR. Bioinformatics, 30(5):614-20. DOI: 10.1093/bioinformatics/btt593 734

 735

Declarations 736

Competing Interests 737

The authors declare there are no competing interests. 738

 739

Funding statement 740

This research was supported in part with computational resources at the University of Oslo 741

provided by NOTUR project NN9383K and funded by the Research Council of Norway. 742

 743

BN was funded by BBSRC CASE studentship supported by Unilever. 744

 745

CQ was funded through the MRC Cloud Infrastructure for Microbial Bioinformatics (CLIMB) 746

project (MR/L015\-080/1) through fellowship (MR/M50161X/1) 747

 748

FM was supported by the Deutsche Forschungsgemeinschaft (grant #DU1319/1-1). 749

 750

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2409v1 | CC BY 4.0 Open Access | rec: 1 Sep 2016, publ: 1 Sep 2016

30

Author contributions 751

Which authors conceived and designed the experiments? TR, TF, BN, CQ, FM 752

Which authors performed the experiments? TR, TF, BN, FM 753

Which authors analyzed the data? TR, TF, BN, CQ, FM 754

Which authors contributed reagents/materials/analysis tools? TR, TF, BN, CQ, FM 755

Which authors wrote the manuscript? TR, TF, BN, CQ, FM 756

Which authors prepared the figures and/or tables? TR, BN, FM 757

Which authors reviewed drafts of the paper? TR, TF, BN, CQ, FM 758

Which authors made other contributions? None 759

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2409v1 | CC BY 4.0 Open Access | rec: 1 Sep 2016, publ: 1 Sep 2016

