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Complex physiological dynamics have been argued to be a signature of healthy

physiological function. Here we test whether the complexity of metabolic rate fluctuations

in small endotherms decreases with lower environmental temperatures. To do so we

examine the multifractal temporal scaling properties of the rate of change in oxygen

consumption r(VO2), in the laboratory mouse Mus musculus, assessing their long range

correlation properties across 7 different environmental temperatures, ranging from 0�C to

30�C. To do so, we applied multifractal detrended fluctuation analysis (MF-DFA), finding

that r(VO2) fluctuations show two scaling regimes. For small time scales below the

crossover time (approximately 102 seconds), either monofractal or weak multifractal

dynamics are observed depending on whether Ta<15�C or Ta > 15�C respectively. For

larger time scales, r(VO2) fluctuations are characterized by an asymptotic scaling exponent

that indicates multifractal anti-persistent or uncorrelated dynamics. For both scaling

regimes, a generalization of the multiplicative cascade model provides very good fits for

the Renyi exponents �(q), showing that the infinite number of exponents h(q) can be

described by only two independent parameters, a and b. We also show that the long-range

correlation structure of r(VO2) time series differs from randomly shuffled series, and may

not be explained as an artifact of stochastic sampling of a linear frequency spectrum.

These results show that metabolic rate dynamics in a well studied micro-endotherm are

consistent with a highly non-linear feedback control system.
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16 Abstract

17 Complex physiological dynamics have been argued to be a signature of healthy physiological 

18 function. Here we test whether the complexity of metabolic rate fluctuations in small endotherms 

19 decreases with lower environmental temperatures. To do so we examine the multifractal 

20 temporal scaling properties of the rate of change in oxygen consumption r(VO2), in the 

21 laboratory mouse Mus musculus, assessing their long range correlation properties across 7 

22 different environmental temperatures, ranging from 0°C to 30°C.  To do so, we applied 

23 multifractal detrended fluctuation analysis (MF-DFA), finding that r(VO2) fluctuations show two 

24 scaling regimes. For small time scales below the crossover time (approximately 102 seconds), 

25 either monofractal or weak multifractal dynamics are observed depending on whether Ta<15°C 

26 or Ta>15°C respectively. For larger time scales, r(VO2) fluctuations are characterized by an 

27 asymptotic scaling exponent that indicates multifractal anti-persistent or uncorrelated dynamics. 

28 For both scaling regimes, a generalization of the multiplicative cascade model provides very 

29 good fits for the Renyi exponents (q), showing that the infinite number of exponents h(q) can be 

30 described by only two independent parameters, a and b. We also show that the long-range 

31 correlation structure of r(VO2) time series differs from randomly shuffled series, and may not be 

32 explained as an artifact of stochastic sampling of a linear frequency spectrum. These results 

33 show that metabolic rate dynamics in a well studied micro-endotherm are consistent with a 

34 highly non-linear feedback control system.  
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36 Introduction

37 Physiologic complexity is ubiquitous in all living organisms (West et al. 1994; Glass 2001; 

38 Golberger et al. 2002; Burggren & Monticino 2005). It emerges as the result of interactions 

39 among multiple structural units and regulatory feedback loops, all of which function over a wide 

40 range of temporal and spatial scales, allowing the organism to respond to the stresses and 

41 challenges of everyday life (West et al. 1994; Goldberger et al. 2002). As a consequence of these 

42 intricate regulation feedbacks, most physiological state variables typically present non-linear, 

43 non-stationary dynamics, with irregular fluctuations that follow power-law probability 

44 distributions and present long-range correlations over multiple time scales (Glass 2001; 

45 Goldberger & West 1987; Kantelhardt 2011; Labra et al. 2007; Mantegna & Stanley 2000; West 

46 et al. 1994). The application of analytic techniques from nonlinear dynamics and statistical 

47 physics to the study of different physiologic variables has led to the proposition of a general 

48 theory to account for the complexity of physiologic variables (Glass 2001; Costa et al. 2002; 

49 Goldberger et al. 2002; Kantelhardt 2011; Lipsitz 2004). This theory states that, given certain 

50 parameter conditions, the state variables of healthy systems reveal complex variability associated 

51 with long-range (fractal) correlations, along with distinct classes of nonlinear interactions 

52 (Goldberger 1996; Goldberger et al. 1990; Goldberger et al. 2002). Over the last two decades, 

53 different studies have shown that the break down of this type of multi-scale, nonlinear 

54 complexity is a characteristic signature of disease and senescence, and as a result, the study of 

55 complexity in physiological variables has shown important promise in the efforts to understand 

56 and diagnose different pathologies (Costa et al. 2008; Delignières & Torre 2009; Goldberger et 

57 al. 2002; Hausdorff et al. 2001; Hu et al. 2004; Ivanov et al. 2007; Lipsitz 2004). 
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58 While different quantitative approaches have been devised to measure the degree of complexity 

59 in physiological signals (e.g. Burggren & Monticino 2005; Costa et al. 2002; Feldman & 

60 Crutchfield 1998; Pincus 1991; Rezek & Roberts 1998; Richman & Moorman 2000; Schaefer et 

61 al. 2014), most studies examining changes in physiological complexity as a result of pathological 

62 alterations have been conducted by examining either the change or loss of long-range 

63 correlations of physiologic signals (e.g. Costa et al. 2008; Delignières & Torre 2009; Goldberger 

64 et al. 2002; Hausdorff et al. 2001; Hu et al. 2004; Ivanov et al. 2007; Lipsitz 2004). Long-range 

65 correlated time series typically exhibit slowly decaying auto-correlation functions C(s) across 

66 different time scales s, which are characterized by power law decay:

67 C(s)s- (1)

68 with scaling exponent taking values in the range 0<<1, such that a characteristic correlation 

69 time scale cannot be defined (Chaui-Berlinck et al., 2002a; Chaui-Berlinck et al., 2002b; Billat et 

70 al., 2006; Kantelhardt 2011). It has been argued that the lack of a characteristic scale in 

71 physiological systems may help the organism to be more stable and adaptive to internal and 

72 external perturbations by preventing the emergence of periodic behaviors or phase locking, thus 

73 avoiding any restriction to the functional responsiveness of the organism in the face of external 

74 perturbations (Peng et al. 1993; Peng et al. 2002, West & Shlesinger 1989). If this were correct, 

75 the study of long-range correlations would provide important insights on the degree of regulation 

76 and homeostasis of living organisms, as well as potential tools in the diagnosis of certain 

77 pathologies. A power law scaling of the spectrum of Fourier frequencies may also describe the 

78 presence of long-term correlations in any given stationary physiological signal:
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79 S(f)f - (2)

80 Long-range correlated processes of this type are often referred to as 1/f  processes or noises, and 

81 are characterized by a unique value of the scaling exponent , which provides a measure of the 

82 type of long-range correlation (Chaui-Berlinck et al., 2002a; Chaui-Berlinck et al., 2002b; Billat 

83 et al., 2006; Kantelhardt 2011; Schaefer et al 2014). Again, the power law scaling implies that no 

84 single characteristic scale may be identified. The Fourier power spectrum scaling exponent may 

85 be related to the correlation function exponent by the relationship =1-. Further, the different 

86 scaling exponent values are associated with different types of correlation structure in a given 

87 time series or signal. Thus, for processes where =0 (or  =-1) the signal shows no long-range 

88 correlation between values, while values where >0 (or  >-1) describe a process with long-

89 range correlation or persistence. Processes where <0 (or  <-1) describe a signal with long-

90 range anti-correlations, or anti-persistence, where large values are followed by small ones (Witt 

91 & Malamud 2013). Nevertheless, the use of frequency spectra requires not only that the time 

92 series be stationary, but also the use of particular binning procedures as well as averaging over a 

93 large number of realizations in order to accurately estimate the value of the scaling exponent  

94 (Kantelhardt 2011; Witt & Malamud 2013). An alternative approach for non-stationary time 

95 series is to characterize its long-range persistence by examining the self-affinity of the profile or 

96 cumulative sum zi= ∑r(VO2,i), for all samples  i=1 to N (Peng et al. 2002, Kantelhardt 2011). 

97 Examination of these time series requires us to take into account that the time axis and the axis of 

98 the measured values x(t) are not equivalent quantities, and that a rescaling of time t by a factor a 

99 may require rescaling of the series values x(t) by a different factor aH in order to obtain a signal 

100 that is statistically self-similar to the original one (Kantelhardt 2011). Hence, the exact type of 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2404v1 | CC BY 4.0 Open Access | rec: 1 Sep 2016, publ: 1 Sep 2016



101 self-affinity or statistical self-similarity in a time series may be described by the resulting scaling 

102 relation x(t)aH x(at) where H corresponds to the Hurst exponent, which measures the degree of 

103 persistence or predictability of the profile or cumulated time series (Kantelhardt 2011). The 

104 exponent H may be studied by different methods including rescaled range analysis, fluctuation 

105 analysis, and detrended fluctuation analysis (Peng et al. 2002, Kantelhardt 2011). In particular, 

106 Detrended fluctuation analysis (DFA) has been widely employed to reliably detect long-range 

107 autocorrelations in non-stationary time series, with a large number of studies using it to report 

108 long-range autocorrelations, although a few studies have reported anti-persistent anti correlations 

109 (e.g. Bahar et al. 2001; Delignières et al. 2006, 2011; Kantelhardt 2011). The value of the Hurst 

110 exponent H may be approximated by the DFA, which calculates the scaling of mean-square 

111 fluctuations with time series scale, yielding the scaling exponent (Feder 1988; Hurst 1951; 

112 Peng et al. 2002, Kantelhardt 2011). When DFA scaling relationships are observed, the scaling 

113 exponent H is related to the correlation exponent  by the relationship =1- /2, with =0.5 

114 being the threshold between anti persistence and persistence (Peng et al. 2002, Kantelhardt 

115 2011).

116

117 Despite the increased interest to study fractal or long-range correlated dynamics across many 

118 systems, in some highly nonlinear complex systems, the resulting time series presents a scaling 

119 autocorrelation function and frequency power spectrum which may be better described by a large 

120 number of scaling exponents rather than by a single scaling exponent value (Kantelhardt 2011). 

121 Thus, one may distinguish between monofractal and multifractal signals. Monofractal signals 

122 present a long-range correlation structure where a single scaling exponent suffices to describe the 
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123 correlation scaling. On the other hand, multifractal signals require an infinite spectrum of scaling 

124 exponents to describe their correlation structure (Humeau et al. 2009; Ivanov et al. 1999; 

125 Kantelhardt 2011; Suki et al. 2003; West & Scafetta 2003). Thus, multifractal time series are 

126 heterogeneous, showing a given value of the self-affinity exponent only in local ranges of the 

127 signal structure, such that their self-affinity exponent varies in time. Hence, multifractal signals 

128 may be characterized by a set of local fractal sets that represent the support for each Hurst 

129 exponent value (Bassingthwaighte et al. 1994; Ivanov et al. 1999; Kantelhardt 2011). In this 

130 regard, multifractal time series are more complex than monofractal ones, and determining 

131 whether a given complex physiologic system presents monofractal or multifractal dynamics may 

132 provide insight on the degree of complexity or nonlinearity of the underlying control 

133 mechanisms (Mantegna & Stanley 1997). 

134 In endotherms, metabolic rate (VO2) is a global emergent property that reflects the sum of the 

135 energetic costs required to maintain homeostasis, allowing body temperature (Tb) to remain as 

136 constant as possible despite any changes of its surrounding ambient temperatures (Ta) (Karasov 

137 & Rio 2007; Lighton 2008; McNab 2002). Under controlled laboratory conditions, it is possible 

138 to identify a range of optimal Ta values where Tb may be kept constant without changes in 

139 energy expenditure, but rather as a result of adjustments to physical processes (i.e. conductance, 

140 radiation, and convection). Within this range of Ta values VO2 is expected to show minimal 

141 variation, and hence it is named the thermo-neutral zone (TNZ) (Bozinovic & Rosenmann 1988; 

142 Chaui-Berlinck et al. 2005; Karasov & Rio 2007; Lighton 2008; Lipsitz 2004; McNab 2002). A 

143 striking characteristic of VO2 signals is that, even within the TNZ, they may be non-stationary, 

144 showing changes in the mean and variance of the time series (Chaui-Berlinck et al. 2002a). 

145 Studies with small endotherms have shown that VO2 dynamics within the TNZ present irregular 
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146 fluctuations with long-range correlations, evidenced by the presence of a single monofractal 1/f  

147 scaling exponent in the Fourier frequency spectrum (Chaui-Berlinck et al., 2002a; Chaui-

148 Berlinck et al., 2002b; Billat et al., 2006).  Thus, within the TNZ, VO2 shows complex dynamics 

149 that are consistent with a dynamical system under non-linear control (Chaui-Berlinck et al. 

150 2005). The non-stationary behaviour in metabolic rate may be examined by analysing the rate of 

151 change in oxygen consumption, r(VO2) as a measure of the fluctuations of VO2. It is defined as 

152 r(VO2)=log10[VO2(t+1)/ VO2(t)] (Labra et al. 2007). This variable reveals whether clusters of 

153 large, abrupt changes may be seen in the r(VO2) time series, or if similar variability is observed 

154 throughout. In addition, the calculation of r(VO2) allows the de-trending of the data, yielding a 

155 much more stationary time series. Examination of r(VO2) time series for different species of 

156 small mammals, birds and reptiles have shown that this variable has a symmetric power law 

157 probability distribution, centered in r(VO2)=0, with a universal triangular shape that does not 

158 change across different species (Labra et al. 2007). Thus, metabolic rate fluctuations follow a 

159 single statistical distribution despite differences in cardiovascular and respiratory designs, with 

160 distribution width scaling inversely with individual body size (Labra et al. 2007). However, to 

161 date, the correlation structure in r(VO2) has not been examined. In a similar fashion to other 

162 complex non-linear time series, long-term correlations in r(VO2) would mean that large 

163 fluctuations are more likely to be followed by another large oscillation, while a small oscillation 

164 is likely to be followed by a small oscillation (Ashkenazy et al. 2003; Bunde & Lennartz 2012). 

165 If this were the case, the expected average value of VO2 would increase, showing a persistent 

166 trend. For VO2 to show homeostatic regulation however, its fluctuations would be expected to 

167 show anti-persistence over at least at some scales, so that large r(VO2) increases may be followed 

168 by large r(VO2) decreases, ensuring that overall average VO2 values remain under homeostatic 
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169 control. Thus, the presence of anti-persistent correlations may be expected for r(VO2) time series, 

170 particularly if there are strong control feedback loops regulating total energy expenditure in an 

171 organism. This suggests that examination of the type of autocorrelations present in r(VO2) time 

172 series, as well as the range of time scales involved  may provide insight on the regulation 

173 feedback that may be acting on metabolic rate at the level of the organism. To gain some 

174 understanding of how this may be so, we examine the relationship between thermal stress and 

175 VO2 fluctuations.

176

177 In endotherms, VO2 fluctuations are expected to be proportional to the environmental thermal 

178 challenges, measured as changes in the difference (Tb � Ta) (Bozinovic & Rosenmann 1988; 

179 Chaui-Berlinck et al. 2005; Karasov & Rio 2007; Lighton 2008). Outside the TNZ, adjustments 

180 to the body's thermal conductance are not enough to sustain thermal homeostasis, and 

181 consequently additional physiological and biochemical process are required in order to keep 

182 constant the internal state, which leads to an increase both VO2 and presumably r(VO2) as well. 

183 In the case of small endotherms, their body size leads to higher challenges associated to the loss 

184 of temperature resulting from the large body surface through radiation (Chaui-Berlinck et al. 

185 2005; Karasov & Rio 2007; Lighton 2008; Lipsitz 2004; McNab 2002). Given the intricate 

186 nature of the network of control processes involved in achieving constant Tb (Chaui-Berlinck et 

187 al. 2005), it is reasonable to expect that when faced with lower environmental temperatures 

188 values below the TNZ, endothermic homeostatic processes would be accompanied by a more 

189 complex pattern of auto-correlations. To determine whether this is the case, we use fractal and 

190 multifractal analysis to examine whether the correlation structure of VO2 shows any changes as a 
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191 result of decreasing environmental temperatures. In this regard, a working hypothesis is that for 

192 Ta values below the TNZ the r(VO2) signal should show a more complex pattern of long-range 

193 correlations, resulting in a broader range of autocorrelation scaling exponents, as expected for 

194 multifractal signals. These changes should come about as a result of the activation of internal 

195 feedback mechanisms to regulate Tb. A related question to this prediction concerns the form of 

196 this possible relation between complexity and decreasing of Ta. Records in wild rodents show a 

197 monotonic and linear increment of average VO2 in animals exposed to Ta decreasing (30°C to 

198 0°C) (Bozinovic & Rosenmann 1988), suggesting that VO2 and r(VO2) complexity levels may 

199 also increase linearly. An alternative outcome may be the gradual decrease and eventual loss of 

200 complexity, due to a drop in the efficiency of the thermoregulatory feedback control at lower 

201 temperatures (Angilletta 2006; McNab 2002). This second pattern would be in agreement with 

202 the hypothesis of loss of physiological complexity in the face of extreme system degradation or 

203 acute stress (Goldberger et al. 2002). To test these hypotheses we examine the fractal properties 

204 of time series of r(VO2) measurements n laboratory mice (Mus musculus) exposed to 

205 environmental temperatures ranging from TNZ (30ºC in this species) to 0°C. Thus, as first step in 

206 this work we assess whether r(VO2)  values exhibit either monofractal or multifractal long-term 

207 correlations under different environmental temperatures. We do this by testing whether 

208 metabolic rate fluctuations show any long-range correlations, and if so, testing whether there 

209 may be described either by a single scaling exponent or if multiple scaling exponents are 

210 required, using the multifractal detrended fluctuation analysis (MF-DFA) method. We then 

211 assess how these quantitative descriptors of long-range correlations vary with environmental 

212 temperature, assessing how they change with decreasing values of Ta.

213
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214 Methods

215 Determination of Metabolic rate

216 Empirical VO2 time series were determined by measuring metabolic rate in wild-type male white 

217 laboratory mice. Mice were transferred to the laboratory and housed individually with sawdust 

218 bedding. Mice were provided with water and fed with food pellets ad libitum. Ambient 

219 temperature and photoperiod were held constant at 20 ± 2°C and 12L:12D respectively. Care of 

220 experimental animals was in accordance with institutional guidelines. The Bioethics 

221 commissions of Universidad Santo Tomás, Pontificia Universidad Católica de Chile, and The 

222 Chilean National Committee of Science and Technology (CONICYT) approved all experimental 

223 protocols followed. Animals were held under these conditions for two weeks prior to 

224 measurements and then fasted for 3 h immediately prior to metabolic rate records in metabolic 

225 chambers (Lighton 2008). Individuals were measured at seven different Ta, 0°C, 5°C, 10°C, 

226 15°C, 20°C, 25°C and 30°C, with the latter corresponding to the lower limit of TNZ in this 

227 species. Overall, 18 individuals were assigned to different temperature treatments, with the order 

228 of temperature treatments for each individual assigned at random to avoid any artefacts. In 

229 addition, colonic body temperature (Tb) was recorded at the end of each measurement using a 

230 Digi-Sense copper-constant thermocouple to evaluate a possible torpor condition at the end of 

231 the experiment. In each experimental record VO2 was measured in a computerized open-flow 

232 respirometry system (Sable Systems, Las Vegas, Nevada). The metabolic chamber received dried 

233 air at a rate of 800 ml/min from mass flow-controllers (Sierra Instruments�, Monterey, 

234 California), which ensured adequate mixing in the chamber. Air passed through CO2 and H2O 

235 absorbent granules of Baralyme� and Drierite� respectively before and after passing through 

236 the chamber and was monitored every 1 sec. This allowed us to obtain time series of oxygen 
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237 consumption recorded at periodic intervals of t=1 second. After the r(VO2) time series were 

238 registered, they were then analysed by calculating the corresponding r(VO2) time series.

239 Assessing long range correlations in metabolic rate

240 To determine the presence of long-term correlations in the r(VO2) time series, we examined the 

241 power spectral density S(f)x(f)2, where x(f) is the Fourier transform of r(VO2)  data 

242 observations measured under experimental conditions (xi) evaluated at frequencies f = 0, ..., N/2  

243 (Bunde & Lennartz 2012; Kantelhardt 2011). As mentioned above, for long-term correlated time 

244 series, it can be shown that the power spectral density decays with frequency following a power 

245 law (see Equation 2). In order to avoid potential artefacts due to lack of stationary behaviour, we 

246 also used the Detrended Fluctuation Analysis method (DFA) (Kantelhardt 2011; Peng et al. 

247 1995a). Briefly, DFA analyses a profile or accumulated data series zi= ∑r(VO2,i), for all samples  

248 i=1 to N. The profile is divided into Ns non-overlapping segments of scale s. For every segment 

249 ν, the local trend is fit by a polynomial of order n, and the variance raised to the 2-th power  

250 [σ2(v,s)]2 between the local trend and the profile in each segment  is calculated. The mean 

251 fluctuation function F(s)2 is then calculated by: 

252 (3)

253

254 ( equation 3: F2(s)=[1/Ns][(s2(s))]1/2)

255 Examination of how F2(s) scales with box size or scale s allows the estimation of the scaling 
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256 exponent αDFA, which is often referred to as the global Hurst exponent H (Goldberger et al. 2002; 

257 Ivanov et al. 2007; Kantelhardt 2011; Peng et al. 1995a). When observed time series are either 

258 uncorrelated or show short term correlations, αDFA=0.5 (Kantelhardt 2011; Peng et al. 1995a). 

259 For long-term correlated data with persistent 1/f   noise, where β=1.0, αDFA exhibits values of 

260 equal to 1.0. For values of αDFA below 0.5, the series is said to be anti-persistent, with positive 

261 trends being associated with negative trends (Delignières et al. 2006, 2011).

262 Assessing multifractality of metabolic rate

263 To determine the presence of multifractality in the fluctuations of metabolic rate we applied 

264 multifractal detrended fluctuation analysis (MF-DFA) (Kantelhardt 2011; Kantelhardt et al. 

265 2002) to r(VO2)  data measured under experimental conditions. This method yields similar 

266 results to other existing methods of multifractal analysis in time series (Ivanov et al. 2007; 

267 Kantelhardt 2011; Kantelhardt et al. 2002; Ludescher et al. 2011; Oswiecimka et al. 2006), but is 

268 considerably easier to implement, being based on an extension of DFA (Kantelhardt 2011; 

269 Kantelhardt et al. 2002; Ludescher et al. 2011). Briefly, MF-DFA analyses a profile or 

270 accumulated data series zi= ∑r(VO2,i), for all samples  i=1 to N. The profile is divided into Ns 

271 non-overlapping segments of scale s. For every segment ν, the local trend is fit by a polynomial 

272 of a given order o, where o=1,2 or 3. The resulting variance is then raised to the q/2-th power 

273 [σ2(v,s)]q/2 between the local trend and the profile in each segment  is calculated. When q = 0, 

274 logarithmic averaging may be applied (Kantelhardt 2011; Kantelhardt et al. 2002; Ludescher et 

275 al. 2011). A generalized fluctuation function Fq(s) is then calculated by averaging all the 

276 variances across all segments of scale s: 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2404v1 | CC BY 4.0 Open Access | rec: 1 Sep 2016, publ: 1 Sep 2016



277 (4)

278 ( equation 4: Fq(s)=[1/Ns][(σ2(v,s))]q/2)1/q

279 In general, Fq(s) exhibits a scaling relationship with time scale s:  Fq(s)~sh(q), which allows the 

280 estimation of a set of exponents h(q) for every moment q. These scaling exponents correspond to 

281 the generalized Hurst exponents. In some nonlinear complex systems, the Fq(s) function has been 

282 shown to exhibit scaling crossovers, with more than one asymptotic scaling exponent 

283 (Koscielny-Bunde et al. 2006). Hence, we tested whether linear or piecewise linear regressions 

284 best fit the scaling relationship of Fq(s) with s, using log-transformed data. The piecewise or 

285 segmented relationship between the mean response  = E[Y] and the variable X, for observation 

286 i = 1, 2,...,n was modeled by adding the following terms in the linear predictor: 

287 0 + 1Xi + 2 (Xi )+ (4)

288 where (Xi )+ = (Xi )×I(Xi  , and  is the fitted breakpoint or crossover point and I(·) is an 

289 indicator function that is equal to one when the statement is true and is equal to zero when the 

290 statement is false (Muggeo 2003). Piecewise linear models were fitted using the segmented 

291 library (Muggeo 2003) in the R program (R Development Core Team 2014, available at www.r-

292 project.org). If no crossovers were observed, then linear regression would be favored over a 

293 piecewise regression. To test this, the segmented library uses Davie's test to test for a non-

294 constant regression parameter in the linear predictor (Muggeo 2003). Once the correct regression 

295 model is identified, the regression slopes provide the asymptotic estimates for the scaling 

296 exponents h(q). If no crossover is present, only one scaling exponent h(q) is obtained for every 
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297 moment q. If a crossover point is detected, then two scaling exponents h(q) and h(q) are obtained 

298 for every moment q. 

299 For monofractal self-affine time series, h(q) is independent of the chosen moment q, and 

300 is identical to the global Hurst exponent H regardless of the value of the moment q (Feder 1988; 

301 Hurst 1951; Kantelhardt et al. 2003; Kantelhardt et al. 2002). Hence, for monofractal self-affine 

302 time series αDFAH. On the other hand, in multifractal time series h(q) varies with q, reflecting 

303 the fact that small and large fluctuations scale differently (Kantelhardt et al. 2002). For negative 

304 values of q, h(q) describes the scaling behaviour of those time series segments with small 

305 fluctuations, whereas for positive values of q, h(q) describes the scaling behaviour of those time 

306 series segments with large fluctuations (Kantelhardt et al. 2002).  It has been shown that the 

307 generalized Hurst exponent h(q) can be directly related to the classical multifractal scaling Renyi 

308 exponents τ(q) defined by the standard partition function-based formalism using the 

309 relationships: τ (q) = qh(q) − 1 and  h(q) = (τ(q)+1)/q  (Kantelhardt et al. 2002; Koscielny-

310 Bunde et al. 2006). Thus, it may be shown for normalized, stationary time series that the 

311 multifractal spectra estimated by MF-DFA have a deep similarity with thermodynamics 

312 (Kantelhardt et al. 2002). 

313 For monofractal records, τ(q) is a linear function of q, while multifractal records are 

314 characterized by non-linear dependence of τ(q) on q  (Ivanov et al. 1999; Kantelhardt et al. 2002; 

315 Koscielny-Bunde et al. 2006). Also, it can be shown that h(q) may be related to the singularity 

316 spectrum f(α) via a Legendre transform: 

317  f (α) = q[α − h(q)] + 1 (5)
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318  where α = [dτ (q)/dq] is the singularity strength, or Hölder exponent, while f(α) denotes the  

319 singularity dimension of the subset of the time series that is characterized by a given value of 

320 singularity strength α  (Feder 1988; Kantelhardt et al. 2002; Ludescher et al. 2011, Ihlen 2012). 

321 For monofractal self affine signals, the singularity spectrum of the time series is a single point, 

322 showing that there is a unique value or a very small set of values of singularity strength α, with a 

323 corresponding fractal dimension f(α) = 1. For multifractal self affine signals, the singularity 

324 spectrum of the time series is a parabola, with a maximum at the dominant singularity strength 

325 observed in the time series. 

326 To assess multifractality in r(VO2) time series, we calculated the fluctuation function Fq(s) for 

327 data obtained from wild-type white laboratory mice r(VO2) time series measured under 

328 controlled conditions. Following recent studies, we fit both the h(q) and τ(q) spectra with a 

329 modified version of the multiplicative cascade model, which has been proposed by (Koscielny-

330 Bunde et al. 2006): 

331 h(q)=(1/q) - (ln(aq+bq))/(qln(2)) (6)

332 and

333 τ(q)=-(ln(aq+bq))/(ln(2)) (7)

334 The modified multiplicative cascade model functions (MMCM) allows the description of 

335 multifractal spectra with only two parameters, a and b, which take values between 0 and 1 with a 

336 + b ≥ 1. An additional advantage is that these functions also extend to negative q values, and 

337 thus allow estimation of the multifractal spectrum f(α) for these values as well (Koscielny-Bunde 

338 et al. 2006). Using the τ(q) spectra, we estimated the parameters a and b for eqn. (7), allowing us 
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339 to obtain continuous τ(q) and f(α) spectra from the MMCM fits.

340 To test whether observed long term correlation behaviour was different from a random 

341 expectation, we randomized all time series using an amplitude-adjusted Fourier transform 

342 algorithm (AAFT) (Schreiber & Schmitz 1996; Schreiber & Schmitz 2000). The scaling 

343 functions were calculated for all surrogate time series and the corresponding scaling exponents 

344 (e.g. β and αDFA for Fourier spectral density and DFA respectively) were calculated (Schreiber & 

345 Schmitz 1996; Schreiber & Schmitz 2000). 

346 Assessing the effect of temperature on multifractality of metabolic rate fluctuations

347 As explained above, regular VO2 time series were obtained under temperature-controlled 

348 conditions (see Methods sections for details). To assess the effect of Ta on long range and 

349 multifractal measures of r(VO2) fluctuations, we calculated the average fluctuation function Fq(s) 

350 for each of the seven temperature treatment groups, testing whether the resulting h(q) and τ(q) 

351 spectra are also multifractal. In order to summarize the observed results, we calculated the 

352 singularity spectrum f(α), which allows a compact description of the degree of multifractality 

353 through the quantification of Δα , the width of the singularity spectrum as well as the average 

354 dominant exponent αmax , which indicates which is the dominant scaling exponent, or the one 

355 which shows greater support on average across the time series. We then summarized the various 

356 spectra across the experimental temperature treatments, allowing us to examine their response to 

357 temperature. To test whether observed multifractal behaviour was different from a random 

358 expectation, we randomized all time series using an amplitude-adjusted Fourier transform 

359 algorithm (AAFT) (Schreiber & Schmitz 1996; Schreiber & Schmitz 2000). After the surrogates 

360 were generated, the general fluctuation function Fq(s) and the h(q) spectra were calculated as 
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361 explained above. We then compared h(q), τ(q) and f(α) spectra for the shuffled time series. 

362 Again, we summarized the various spectra for shuffled time series across the experimental 

363 temperature treatments, allowing us to compare them with original time series spectra as for 

364 different temperature treatments. To assess the potential effect of de-trending polynomial order 

365 o, all data analyses were carried out for each individual time series were carried out using three 

366 orders: o=1, 2 or 3. Data analyses were carried out using Matlab R2011b and R software (R 

367 Development Core Team 2014, available at www.r-project.org).

368

369

370 Results

371 As described in the physiological literature for endotherms, average VO2 values in the lab mouse 

372 show a marked thermal response below TNZ, with higher VO2 values that increase away from 

373 basal metabolic rate (BMR) as Ta becomes progressively lower (Figure 1a). None of the animals 

374 studied showed signs of torpor either during or after the VO2 measurements, and observed Tb 

375 varied from 36.0 to 37.3 ºC across all records. However, even within the TNZ (30°C), typical 

376 VO2 time series exhibit irregular non-stationary fluctuations (Figure 1b). The rate of change 

377 r(VO2) yields a de-trended time series, which reveals abrupt changes in VO2 , with clusters of 

378 large fluctuations separated from clusters of smaller fluctuations(Figure 1c).  This suggests the 

379 presence of long-term correlation or persistence in these time series. The clustering of large 

380 fluctuations is lost when data are shuffled randomly using AAFT (Figure 1d), providing 

381 indication that the observed pattern of r(VO2) fluctuations may be associated with the 

382 autocorrelation structure of the time series (Schreiber & Schmitz 1996; Schreiber & Schmitz 
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383 2000; Kantelhardt 2011) rather than with the fat tailed probability distribution shown by this 

384 variable (Labra et al. 2007). The statistical pattern of autocorrelation in the sequence of large and 

385 small fluctuations may be examined by calculating the Fourier frequency power spectra, which 

386 reveals the presence of long-term correlations, shown by a 1/f-like scaling exponent (Figure 1e). 

387 On the other hand, shuffled time series exhibit a shallower power spectrum, indicating the loss of 

388 these long-term correlations (Figure 1e) (Kantelhardt et al. 2002; Schreiber & Schmitz 1996; 

389 Schreiber & Schmitz 2000). However, while r(VO2) time series do not exhibit obvious trends in 

390 the mean, they do show changes in variability through time, and as a result may not meet the 

391 statistical assumptions of spectral frequency estimation (Kantelhardt 2011). Examination of 

392 detrended fluctuation analysis reveals a scaling crossover, with two clear scaling regimes shown 

393 by the root mean square fluctuation function F2(s) (Figure 1f). This suggests that a single scaling 

394 exponent may not be sufficient to characterize the autocorrelation of r(VO2) fluctuations 

395 (Kantelhardt et al. 2002). In this time series, the scaling exponent for small time scales (s <100 

396 seconds), DFA1, indicates the presence of persistent, long-range correlated fluctuations 

397 (DFA1=0.91)  (Figure 1f). However, for larger time scales (s>100 seconds) we see that 

398 fluctuations over these time scales are anti-persistent, with the second scaling exponent 

399 DFA2=0.39 (Eke 2000, Delignières et al. 2006, 2011). As mentioned above, in anti-persistent 

400 time series dynamics positive trends are usually followed by negative trends, thus showing a 

401 phenomenological signature of control or negative feedback over the rate of change of VO2 

402 (Delignières et al. 2011). Shuffling the data results in a loss of the observed crossover scaling 

403 behaviour, indicating this is property is not a result of randomness in the pattern of fluctuations 

404 (Figure 1f). Thus, we find that r(VO2) fluctuations within the TNZ show non-trivial long-range 

405 correlations, in agreement with previous observations for VO2 in small endotherms (Chaui-
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406 Berlinck et al., 2002a, 2002b). However, a single scaling exponent does not suffice to describe 

407 these long-range correlations.  

408

409 When we examined the DFA scaling functions for r(VO2) fluctuations both within and 

410 outside the TNZ, we observe a similar crossover pattern across different temperatures, with 

411 average F2(s) scaling functions show a crossover pattern which is similar to that observed in 

412 Figure 1f. Hence, observed scaling exponent values for small to intermediate time scales) are 

413 consistent with persistent long-range autocorrelations (i.e. 0.5<DFA1<1.0) (Figures 2a to 2d). On 

414 the other hand, for intermediate to large scales, the scaling exponent values are consistent with 

415 anti-persistent long-range correlations (DFA2<0.5) (Figures 2a to 2d). Shuffling the individual 

416 time series results in changes to the F2(s) scaling functions, with average DFA1 values becoming 

417 smaller (Figures 2e to 2h). Examination of the scaling exponent values shows that DFA2 values 

418 do not show large changes for shuffled data (Figure 3). This pattern is observed for linear (Figure 

419 3) as well as for quadratic and cubic de-trending orders o (see Supplementary Figure 1). The 

420 existence of two scaling regimes for the long-range correlations of r(VO2) may be interpreted as 

421 evidence that two dominant scaling exponents may suffice to account for the correlation 

422 structure of the r(VO2) time series. An alternative possibility may be that a continuous spectrum 

423 of scaling exponents are required in order to account for the observed pattern of long-term 

424 correlations in VO2 fluctuations. If the latter were the case, local scaling exponents would show a 

425 large number of possible values. 

426 To visualize whether a sample r(VO2) time series is consistent with a multifractal process,  

427 we examined the changes in the value of local DFA scaling exponent DFA through time in the 
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428 time series shown in Figure 1 (which was measured within the TNZ). We calculated the local 

429 value of DFA as for a moving window placed along the time series. We calculated DFA values 

430 using moving windows of 128, 256 and 512 seconds (Figures 4a, 4b and 4c respectively). All 

431 these window sizes correspond to the asymptotic exponent expected for the second scaling 

432 regime identified before for this time series (Figure 1f). Observed local DFA exponent values 

433 change through time for all window sizes used, forming an irregular pattern (Figure 4). Further, 

434 DFA values range broadly between 0.5 and 1.5, as shown by the blue lines in Figure 4. Thus, 

435 while in some sections show exponent values close to 1.0, corresponding to persistent power law 

436 long-range correlations, other sections may show values closer to either 1.5 (corresponding to 

437 persistent Brownian motion) or to 0.5 (corresponding to uncorrelated fluctuations) (Peng et al. 

438 1995b). There are also sections where the local DFA scaling exponent may take values below 

439 0.5, corresponding to anti-persistent fluctuations (Eke 2000, Delignières et al. 2006, 2011). 

440 Again, random shuffling of the time series destroys the observed pattern of irregular fluctuations 

441 of DFA, with all exponent values clustering around 0.5, as shown by the red lines in Figure 4. 

442 Thus, for this time series, we can see that observed r(VO2) fluctuations cannot be characterized 

443 by a single scaling exponent, and hence may be multifractal. 

444 To determine whether this is the case, we examined whether the MF-DFA formalism can 

445 describe VO2 fluctuations across different environmental temperatures. Figure 5 shows the 

446 average MF-DFA generalized fluctuation functions Fq(s) calculated from time series measured at 

447 30°, 20°, 10° and 0°C (Figures 5a, 5b, 5c and 5d respectively). Across all temperatures studied, 

448 and for all the values of q examined, observed Fq(s) functions show a crossover  that defines 

449 two scaling regions, as shown by the fitted piecewise linear regressions (shown in black lines) 

450 (Figure 5). Shuffling the time series leads to some changes in the crossover pattern, although no 
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451 striking overall pattern may be discerned by qualitative examination (Figures 5e to 5f). It must be 

452 noted that while the remaining three series for 5°, 15° and 25°C are not shown, they show similar 

453 patterns. In fact, detailed examination of the average generalized fluctuation functions reveals 

454 that Fq(s) show the presence of crossover time scales  for all temperatures studied, regardless of 

455 the order o of the de-trending polynomial used (see supplementary Figures 2 to 8 for detailed 

456 results for different de-trending polynomial orders and all temperatures from 0ºC to 30ºC). Thus, 

457 for all temperatures examined, regardless of the order of de-trending polynomial used, we 

458 observed two scaling regimes are present, with the piecewise break point changing as a function 

459 of q in some cases (see supplementary Figure 9). While it could be argued that such scaling 

460 crossovers may be the result of trends associated with non-stationary dynamics in the data, 

461 examination of the Augmented Dickey-Fuller Test (ADF test) for all r(VO2) time series rejected 

462 the hypothesis of the presence of trends, and we observed that the ADF test yields p<0.01 in all 

463 time series. Shuffling of the observed r(VO2) time series does not completely remove the 

464 crossover scales  or the two observed regimes, but does seem to change the scaling exponent for 

465 the first scaling regime (see supplementary Figures 2 to 8). Given the presence of two scaling 

466 regimes across all time series studied, we then examined the scaling slopes of the curves for both 

467 of these scaling regimes and their change with the exponents q. This allowed us to estimate the 

468 average Hurst (h(q)) and Renyi (τ(q)) spectra for each of these two scaling regimes. We then also 

469 fitted the MMCM model to the observed Renyi (τ(q)) spectra, and estimated the singularity 

470 spectra (f(α)) based on these parameter fits.

471 When we examined average Hurst (h(q)) and Renyi (τ(q)) spectra, as well as the 

472 corresponding singularity spectra (f(α)) estimated from the MMCM fits on τ(q), we found that 

473 the two scaling regimes differ in their multifractal spectra across the seven temperatures studied. 
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474 The left hand column of Figure 6 shows the multifractality of r(VO2) fluctuations, as indicated by 

475 the dependence of h(q) on q for different temperature values. We find that fluctuations of 

476 different magnitudes in r(VO2) time series show different scaling behaviour, similar to what has 

477 been observed other complex systems  (Bunde & Lennartz 2012; Kantelhardt et al. 2006; 

478 Kantelhardt et al. 2002). However, the first and second scaling regimes differ in their behaviour, 

479 with smaller time scales (in the approximate range  showing generalized Hurst 

480 exponent h1(q) values closer to 1.5, while larger time scales (in the approximate range 

481  show generalized Hurst exponents decreasing from h2(q) 0.9 to h2(q) 0.25 as the 

482 exponent order q increases (Figure 6). Hence, fluctuations on the first scaling regime show long-

483 range correlations or persistence, similar to that of Brownian motion, regardless of the magnitude 

484 of the fluctuation. On the other hand, for the second scaling regime, small VO2 fluctuations are 

485 characterized by larger scaling exponents h2(q), corresponding to power law, long-range 

486 correlated persistent dynamics, while larger VO2 fluctuations present smaller h2(q) exponent 

487 values, corresponding to anti-persistent dynamics (see left hand column in Figure 6). Thus, over 

488 intermediate to large time scales, large positive r(VO2) values are balanced by large negative 

489 values. On the other hand, for this range of scales, small r(VO2) values are persistent, such that 

490 small positive increases are followed by similarly valued changes, resulting in gradual positive 

491 trends in VO2. A similar pattern occurs for negative rates of change, which leads to gradual 

492 negative trends in VO2. Shuffling the r(VO2) time series results in markedly lower values of h(q) 

493 scaling exponents for the first scaling regime, indicating the observed, persistent long-range 

494 correlation cannot be accounted for by a random sample of the observed spectral density 

495 function. On the other hand, in the second scaling regime, a complex response is observed, 

496 where shuffling results in changes only for negative and small positive q values, whereas 
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497 observed exponents for large positive q values overlap with the exponents from shuffled time 

498 series. In fact, with the exception of 30ºC, very large fluctuations in r(VO2) do not differ from 

499 the random expectation (Figure 6). 

500 Observed differences in the range of h(q) exponents for the two scaling regimes can also be 

501 observed when examining the Renyi exponent spectra. We observed mostly linear Renyi 

502 exponent spectra in the first scaling regime, while the second scaling regime shows nonlinear 

503 Renyi exponent spectra as expected for multifractal time series (Kantelhardt 2011) (see central 

504 column, Figure 6). This suggests that the first scaling regime should either be monofractal or 

505 weakly multifractal, requiring a smaller range of scaling exponents to account for the observed 

506 singularities. On the other hand, the second scaling regime is characterized by strong 

507 multifractality, with a broader range of scaling exponent values. As observed in previous results, 

508 shuffling destroys the observed scaling spectra, with the exception of τ(q) values observed for 

509 positive q , which do not differ from the shuffled spectra (Figure 6). In all the time series we 

510 examined, the observed Renyi exponent spectra were fit extremely well my the MMCM model 

511 shown in equation 6, with R2 values for the nonlinear fitting procedure being close to 1.0 in all 

512 cases (see Supplementary Figure 10). This allowed us to use the fitted τ(q) values to estimate the 

513 singularity spectra f() for each individual, which were then averaged across all the different 

514 temperature treatments. 

515 Examination of the average singularity spectra f() for different temperature treatments shows 

516 that the first scaling regime of these r(VO2) time series are monofractal or weakly multifractal, 

517 as evidenced by either a single point or a narrower parabola in the (α , f(α)) plane (see dashed 

518 lines in graphs on the right hand column in Figure 6). These qualitative patterns do not change 
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519 when quadratic or cubic de-trending polynomials are used (see right hand columns of 

520 Supplementary Figures 11 and 12). Indeed, the average degree of multifractality, Δα shows that 

521 the first scaling regime the strength of multifractality decreases with temperature (see Figure 7). 

522 While a similar qualitative pattern is observed for all de-trending polynomial orders, a the 

523 decrease with temperature is significant only for the linear de-trending case (linear OLS 

524 regression, F=8.202, d.f.=(1,5), p=0.035) (Figures 7a 7b and 7c). In sharp contrast, the second 

525 scaling regime shows broad singularity spectra, indicating a much larger degree of 

526 multifractality, Δα (see continuous lines in graphs on the right hand column in Figure 6). For this 

527 second scaling regime, no significant linear trends with temperature were observed, with the 

528 exception of the cubic de-trended data (linear OLS regression, F=13.43, d.f.=(1,5), p=0.015)  

529 (Figure 7c). Shuffled data tend to show similar degrees of multifractality across different 

530 temperatures and orders of detrending polynomials (Figure 7d to 7f). 

531 On the other hand, when we examine the exponent αmax of the singularity spectra, we see that 

532 the first scaling regime is characterized by much stronger singularities, with αmax taking values 

533 closer to 1.5, being slightly larger for 15ºC and 20ºC (Figures 6i and 6o). On the other hand, the 

534 second scaling regime is characterized by weaker stronger singularities, showing values of αmax 

535 below 0.5 (see right hand column of Figure 6 and Figure 8). Examination of the changes in αmax 

536 as a function of temperature for the first scaling regime indicates that the value of αmax has 

537 significant increases with temperature only for the linear and cubic cases (linear de-trending: 

538 F=7.52, d.f.=(1,5), p=0.04; cubic de-trending: F=7.52, d.f.=(1,5), p=0.04) (Figure 8a to 8c). In 

539 the case of quadratic de-trending, temperature values equal or greater than 15ºC show high 

540 values of αmax, coherent with the persistent, Brownian motion-like values of h(q) observed 

541 before. On the other hand, for the second scaling regime, αmax does not show significant changes 
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542 with temperature for any de-trending order (Figure 8a to 8c). Shuffled data tend to show similar 

543 degrees of multifractality for different temperatures and orders of de trending polynomials, with 

544 shuffled data for the first scaling regime clustering around values close to αmax =0.9, and shuffled 

545 data for the second scaling regime clustering around values close to αmax =0.3 (Figure 8d to 8f). 

546 Thus, both the observed degree of multifractality Δα, and the dominant multifractal singularity 

547 exponent αmax in these two scaling regimes cannot be attributed to random fluctuations. 

548

549 Discussion 

550 Physiological systems, and their state variables and signals, have been recognized as 

551 complex (Burggren & Monticino 2005; Glass 2001). To date, most studies examining the causes 

552 and functional implications of the loss of complexity in organisms have largely focused on 

553 human biomedicine, aiming to understand either pathologies or the senescence process (Costa et 

554 al. 2008; Delignières & Torre 2009; Goldberger et al. 2002; Hausdorff et al. 2001; Lipsitz 2004). 

555 In this regard, our study aims to provide a better understanding of the role of physiological 

556 complexity in the homeostatic response to thermal challenges, particularly in the context of a 

557 changing world climate. Here, we analyzed the dynamics of metabolic rate fluctuations, 

558 r(VO2),under different Ta's using a well-studied model organism, the lab mouse Mus musculus. 

559 Using MF-DFA, our results show that within the TNZ, r(VO2) time series show two distinct 

560 scaling regimes in the fluctuation functions Fq(s), with a crossover time scale  of approximately 

561 102 seconds. Examination of the generalized Hurst exponents shows that these two scaling 

562 regimes correspond to persistent and anti-persistent dynamics for scales below and above the 

563 crossover time scale, with the strength of multifractality differing between these two regimes. 
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564 When environmental temperature Ta is decreased below the TNZ, the observed pattern of 

565 multifractal, anti-persistent long-range correlations over longer time scales does not vary a great 

566 deal. On the other hand, over short scales, the persistent long-range correlations transition from a 

567 weakly multifractal to a monofractal distribution.  We now discuss these results

568

569 The first aspect we discuss is the robustness of the rather complex long-correlation structure 

570 observed for our data. While previous analysis of VO2 have reported long-range persistent 1/f  

571 fluctuations, described by a single dominant monofractal scaling exponent (Chaui-Berlinck et al. 

572 2002a; Chaui-Berlinck et al. 2002b), we show here that that VO2 fluctuations of different 

573 magnitudes are clustered throughout the experimental time series with varying types of long-

574 range correlation, depending on the time scale analyzed. Thus, r(VO2) is a multifractal self-affine 

575 signal. This suggests that the feedback control mechanisms underlying rapid changes in energy 

576 consumption involve strongly non-linear dynamic processes. Both the observed multifractal 

577 exponent spectra and the scaling crossover differ from those observed under a random linear 

578 transformation in the frequency domain (Kantelhardt 2011; Schreiber & Schmitz 1996; Schreiber 

579 & Schmitz 2000). This indicates that the observed multifractality of r(VO2) is a robust property 

580 of metabolic rate. The existence of this long-range correlation structure indicates the potential for 

581 plastic dynamic responses to thermal stress (Goldberger et al. 2002; Ivanov et al. 2007). In this 

582 regard, the existence of a crossover, with two characteristic long-range correlation signatures 

583 may be related to the dynamics of both VO2 and r(VO2). As we have shown for data within the 

584 TNZ (see Figure 1), VO2 time series may show periods of higher energy consumption 

585 interspersed with periods of lower energy use (Figure 1b). These periods present particularly 
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586 different patterns of VO2 changes, which are reflected in the pattern of r(VO2) fluctuations. Thus, 

587 higher average energy uses (larger mean VO2 values) are associated with less variable values of 

588 r(VO2), in agreement with observed results for inter-specific scaling of r(VO2)  across different 

589 vertebrate species (Labra et al. 2007), as well as in diverse complex systems (see references in 

590 Labra et al. 2007). Examination of r(VO2) data using different approaches Fourier power spectra, 

591 DFA and MFDFA reveal that small-scale and larger scales present different scaling 

592 relationships. The first two methods agree qualitatively with the pattern shown by the MF-DFA 

593 Fq(s) fluctuation functions. It is important point to out that that in all series, the scaling crossover 

594 was observed regardless of the de-trending polynomial order used in MF-DFA. On the other 

595 hand, the type of long-range correlation structure identified was also robust. When data were 

596 analysed using MF-DFA using 2nd and 3rd order de-trending polynomials, the scaling regime for 

597 smaller time scales is observed to be either weakly multifractal or monofractal across most 

598 temperatures, while the second scaling regime is found to be multifractal for all three de-trending 

599 orders used in MF-DFA. For the second scaling regime, corresponding to larger time scales, the 

600 broadest singularity spectra are observed for 15ºC and 20ºC, with either max0.5 for first de-

601 trending order MF-DFA, or 0.5>max>1.0 for 2nd and 3rd de-trending order MF-DFA. 

602

603 The second aspect we discuss is the possible explanations for the qualitative changes 

604 observed in the long-range correlation structure in the vicinity of 15ºC, as well as their potential 

605 significance. Metabolic rate changes are central for the control of Tb in endotherms (Chaui-

606 Berlinck et al. 2005; Karasov & Rio 2007). Thus, body temperature in these organisms is 

607 regulated through a complex set of processes and feedback relationships involving behavioral, 
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608 endocrine, vasomotor and neural processes (Chaui-Berlinck et al. 2005; Karasov & Rio 2007). A 

609 recent review on the thermal physiology of Mus musculus shows that in this species the lower 

610 limit of normothermia ranges between 5 and 15°C (Gordon 2012). Below these temperatures, 

611 thermal homeostasis requires increased VO2, which become nearly twice the BMR. These 

612 additional homeostatic requirements may be offset with different thermoregulation strategies that 

613 include behavioral, postural and physiological adjustments, all of which carry with them 

614 increased energetic costs. Over longer periods of time, these energetic requirements may not be 

615 met without resorting to alternative physiological strategies such as torpor (Gordon 2012). 

616 Interestingly, individuals in our measurements did not reach the torpor stage, resorting only to 

617 individual huddling within the measurement chamber. Studies on thermoregulatory behavior 

618 have shown that small mammals such as lab mice form groups by huddling together as a 

619 behavioral thermoregulatory response to temperature challenges (Canals et al. 1997; Canals et al. 

620 1998). Interestingly, this behavioral response behaves as a system with a continuous (second-

621 order) phase transition, with a critical environmental temperature value found between 16ºC and 

622 20ºC (Canals & Bozinovic 2011).  For low temperatures, individuals spontaneously aggregate, 

623 forming groups with a higher fractal dimension and a lower mass-specific metabolic rate. This 

624 change in behavior occurs in the same temperature range where we have observed maximal 

625 values for the degree of multifractality, supporting the idea that different physiological regimes 

626 may occur above and below this temperature range. Hence, future work could examine the long-

627 range correlation properties of VO2 fluctuations under different strategies such as torpor or group 

628 huddling, in order to determine whether the degree of multifractality decreases below that 

629 observed at 0°C, giving rise either to monofractal scaling or to the loss of fractal 

630 autocorrelations. 
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631 A third point we discuss is the biological significance of these results. As mentioned earlier, 

632 whole-body metabolic rate is an emergent phenomenon, resulting from microscopic interactions 

633 with a large number of degrees of freedom and a complex set of opposing feedback mechanisms 

634 acting at different time scales (Bozinovic 1992; Chaui-Berlinck et al. 2005). In this regard, the 

635 multifractal nature of metabolic rate highlights the complex and non-linear nature of the multiple 

636 feedback loops involved in the maintenance of physiological homeostasis (Chaui-Berlinck et al. 

637 2005; Darveau et al. 2002; Hochachka et al. 2003). The existence of multifractality in metabolic 

638 rate fluctuations has several interesting implications, particularly regarding the sensitivity to 

639 initial conditions. In general, multifractal dynamics are generated by non-linear recursive 

640 processes, which show different scaling or fractal properties depending on the initial conditions 

641 or on the particular history of external disturbances to the system (Kantelhardt 2011). As a result, 

642 the observed singularities and scaling exponents of multifractal time series can change in time, 

643 leading to the presence of local abrupt shifts in the dynamics of these systems (Kantelhardt 

644 2011). In addition, these singularities are associated with the presence of both extreme events 

645 and fat tailed power law distributions, which have been shown to be a universal feature of 

646 metabolic rate across different vertebrate species (Labra et al. 2007). Despite the seemingly 

647 irregular unpredictable nature of metabolic rate fluctuations, our results show that they have a 

648 characteristic long-range correlation structure. Although in many applications the proximal 

649 mechanistic causes of observed fractality or multifractality have not been elucidated (Kantelhardt 

650 2011), the fact remains that multifractal processes such as r(VO2) are completely different from 

651 simple linear random fluctuations. This opens an interesting scenario regarding the potential use 

652 of multifractal properties as either a diagnostic tool or as baseline to determine animal response 

653 to environmental stress. This improved characterization may also eventually allow the modeling 
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654 the dynamics and projection of the likelihood of extreme events or prediction of future behavior 

655 (Kantelhardt 2011). This may complement the empirical estimates of metabolic rate, which 

656 typically correspond to the average value of VO2 registered in a small section of the time series 

657 under specific environmental conditions (Lighton 2008). Similarly, measurements of the rate of 

658 VO2 under the maximum sustainable rate of exercise (i.e. maximal metabolic rate) have been 

659 shown to be mostly a function of aerobic capacity of the muscle mass (Weibel et al. 2004). In the 

660 light of our results, it seems reasonable to expect that VO2 fluctuations under conditions of 

661 maximum sustainable exercise would also show multifractal long-term correlations as well as 

662 power law distributed fluctuations. 

663

664 In addition to the physiological significance of long-range multifractal correlations of r(VO2), 

665 a related aspect pertains the taxonomic and systemic generality and significance of our results. It 

666 is relevant to discuss whether these observed patterns are expected to hold true for all 

667 endothermic species. While previous work on r(VO2) has reported a universal probability 

668 distribution function across different vertebrate species (Labra et al. 2007), no systematic 

669 comparative assessment has been carried out to determine if the long-range correlation structure 

670 may hold true for different endothermic species, be these birds or mammals. A particularly 

671 interesting aspect of such comparisons would be to examine the role of individual body size. Our 

672 work was carried out using a small endothermic species, the lab mouse. Analysis of a theoretical 

673 model of body temperature control by shifts in metabolic rate has suggested that the rate of heat 

674 loss and the capacity to rapidly increase metabolic output may lead to non-equilibrium between 

675 metabolic rate and body temperature in micro-endotherms (such as hummingbirds and small 
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676 mice), resulting in non-random 1/f  persistent oscillations of VO2, even within the TNZ (Chaui-

677 Berlinck et al. 2002a). Our results indicate that VO2 are not only long-range correlated, but that 

678 have a complex multifractal structure, which indicates that the model of Chaui-Berlinck et al. 

679 (2002a) yields predictions that are at least qualitatively correct. Interestingly, this theoretical 

680 model also predicts that larger endotherms such as the rat may not exhibit similar complex 

681 oscillations, due to a dynamic equilibrium between metabolic rate and body temperature, given 

682 the smaller surface area-volume ratio. If correct, this model predicts the absence of long-range 

683 correlated r(VO2) oscillations for larger endotherms, with multifractal dynamics being found 

684 only in micro-endotherms, regardless of whether they are mammals or birds. Whether a 

685 threshold body size may be identified below which multifractality may be observed would 

686 indicate the onset of a highly nonlinear configuration of control processes acting in the regulation 

687 of body temperature.  The alternative outcome would be that multifractal long-range correlations 

688 also hold true for larger endotherms. This alternative scenario would indicate that a more 

689 detailed model analysis is required to account for the processes affecting metabolic rate 

690 oscillations. 

691 General Conclusion

692 While an increasing number of authors have pointed out the complex nature of physiological 

693 processes (Burggren & Monticino 2005; Spicer & Gaston 2009), an emerging research question 

694 is what are the consequences and implications of physiological complexity for the homeostatic 

695 adaptive capability of animals, particularly on a scenario of global climate change. In addition to 

696 considering the potential role of organism body size, it is important to determine whether the 

697 observed multifractal correlation structure is a general trait of all endotherm taxa, or if it is a 
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698 characteristic trait of mammals as a lineage. Comparative experimental studies may help to 

699 untangle the relative importance of body size and taxonomic inertia in the emergence of 

700 multifractality. A related question is whether ectotherms do present any long-range correlation 

701 structure in their metabolic rate dynamics. If complexity is an emergent characteristic arising 

702 from the different thermal control feedback loops, then multifractality should be absent in 

703 metabolic rate dynamics of reptiles or amphibians. The goal of such studies would be to allow 

704 the assessment of the relative importance of universal emergent statistical behaviour and 

705 phylogenetic inertia in morphological and physiological traits that may give rise to complex 

706 metabolic rate fluctuations. Again, the use of a comparative, controlled experimental approach 

707 may allow careful examination of the relationships between the complexity of metabolic rate 

708 dynamics and the origins of endothermy. 

709

710

711

712

713 Our results show that the dynamic response of the metabolic machinery in a model mammal 

714 species facing thermal challenge do not reduce themselves to the linear variance response 

715 expected , evidencing in addition that this response is regulated by environmental history 

716 experienced of individual. In this regards, the humped shape observed from the relationship 

717 between complexity level of VO2 and decrease of temperature agree with a limit at the 

718 physiological capability to control of body temperature. Future work in this area may focus on 
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719 experimental explorations of the physiological basis of long-term correlations and multifractality 

720 of VO2 fluctuations. For example, such work may examine the relative importance of different 

721 control mechanisms regulating the rate of oxygen uptake as part of a hierarchical cascade of 

722 feedback loops that lead to multifractality. 
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Figure 1(on next page)

Long-term correlations of metabolic rate fluctuations in Mus musculus.

(a) Average metabolic rates (VO2) measured at different ambient temperatures. Average

values � standard errors are shown with open circles and error bars. Straight line shows

calculated thermal conductance, while the humped curve corresponds to a fitted three

parameter Gaussian function (g(x)=a*exp(-.5*((x-x0)/b)^2)). (b) Metabolic rate (VO2) time

series shown for a representative individual measured at 30�C for 1 � hours at 1(s) intervals.

Note the irregular, nonstationary dynamics, despite thermo neutral ambient temperature. (c)

Observed VO2 fluctuations r(VO2)=log10[VO2 (t+1)/ VO2 (t)] time series for data in (b). Note

the clustering of broad and narrow fluctuations. (d) Randomized r(VO2) values, showing the

loss of the clustering of fluctuations. (e) Fourier power spectra for time series in (c) and (d)

shown by blue and red lines respectively. A smoothing procedure was applied, which

consisted of averaging the spectra for consecutive overlapping segments of 256 data points.

Fitted OLS scaling relationships are shown in dotted lines. (f) Detrended fluctuation analyses

(DFA) for the two time series shown in (c) and (d). Fluctuation functions for original and

shuffled time series in are shown in open and filled circles respectively. Fitted scaling

relationships are shown in dashed lines. Note the change in exponent values above s=100

for the original time series.
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Figure 2(on next page)

Temperature effects on root-mean-square fluctuation function of r(VO2) in mice.

The figure shows the average F2(s) functions calculated with linear detrending for all mice.

Results for the time series studied at 30�C, 20�C, 10�C and 0�C are shown in the respective

columns arranged from left to right. Figures (a) to (d) show the average DFA functions

calculated for the r(VO2) time series, while figures (e) to (h) show average DFA functions

calculated for the AAFT shuffled data. All figures show the DFA root-mean-square fluctuation

functions obtained using three different orders of detrending polynomials: linear (open

circles), quadratic (open squares) and cubic functions (open triangles). Two scaling regimes

can be observed across all temperatures and for all polynomial detrending orders. The first

scaling regime spans scales between 8 and 100 s, while the second one spans scales from

100 to 1024 s. All curves have been shifted vertically for clarity. Please note that while only

four experimental temperatures are shown, the remaining three temperatures show similar

patterns.
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Figure 3(on next page)

Temperature effects on long range scaling exponent � in metabolic rate fluctuations.

The figure shows the average DFA scaling exponent �DFA calculated as a function of

experimental temperature. Average scaling exponents corresponding to exponent for raw

r(VO2) data within the 10 < s < 100 scaling regime are shown with filled circles, while filled

squares show the scaling exponents for the raw r(VO2) data within the 100 < s < 1024

scaling regimes are shown with.
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Figure 4(on next page)

Local DFA scaling exponents.

The Figure shows the value of local DFA scaling exponents �DFA for the time series in figures

1c (blue lines) and 1d (red lines). Local exponents are calculated with a moving window

shifted across the whole time series. Figures (a), (b) and (c) show the results for shifting

window widths of 128, 256 and 512 seconds respectively. The heterogeneity of the rate of

change in metabolic rate is revealed by the broad range of local scaling exponents �DFA,

which shows a complex structure in time as opposed to the simpler and more restricted

changes in the shuffled time series.
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Figure 5(on next page)

Temperature effects on generalized fluctuation function of r(VO2) in mice.

Figure shows log-log plots of the average generalized fluctuation function Fq(s) as a function

of time s in r(VO2) time series. Columns left to right show the results for Fq(s) functions

calculated for 30�C, 20�C, 10�C and 0�C respectively. Figures (a) to (d) show the average

Fq(s) functions calculated for the r(VO2) time series, while figures (e) to (h) show average Fq(s)

functions calculated for the AAFT shuffled data. Open circles in all figures show the observed

Fq(s) values for different values of q, with q = 8, 4, 2,1,0, -1,-2, -4, and -8 (from the top to the

bottom). Also shown in black lines are piecewise linear regression fits to the Fq(s) functions.

Dashed straight lines with slope h = 0.5 are shown below the data in each figure to allow

qualitative comparison with the uncorrelated case. Please note that while only four

experimental temperatures are shown, the remaining three temperatures show similar

patterns.
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Figure 6(on next page)

Multifractal Detrended Fluctuation Analysis of Mus musculus r(VO2) time series across

different temperature treatments.

The figure shows the results of the multifractal scaling analysis for all mice studied. Left,

central and right hand column show the results for the generalized Hurst exponent spectra

(h(q)), Renyi exponent spectra (�(q)) and singularity spectra (f(�)). Each figure shows in

dashed and continuous black lines the smoothed conditional mean of the different spectra for

the first and second scaling regimes respectively. For shuffled data, the smoothed conditional

mean of the different spectra for the first and second scaling regimes are shown by dashed

and continuous red lines respectively. For figures (c), (f) and (i), the singularity spectra of the

first regime corresponds to a single point, shown by a filled circle. The singularity spectra

reveal that for temperatures in the range 0�C < Ta <1 0�C the time scales in the 8 < s < 100

range present a monofractal scaling, while all remaining temperatures show a weak

multifractal scaling. All data for the second scaling regime show strong multifractality, which

is not completely lost when data are shuffled.
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Figure 7(on next page)

Temperature effects on the strength of multifractality in mice.

The figure shows the average widths ��, of the f(�) spectra as a function of environmental

temperature Ta. Left hand, central and right hand columns show the results for linear,

quadratic and cubic polynomial de-trending respectively. Figures (a) to (d) show the average

�� values calculated for the r(VO2) time series, while figures (e) to (h) show the average ��

values calculated for the AAFT shuffled data.
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Figure 8(on next page)

Temperature effects on the dominant multifractal exponent in mice.

Temperature effects on the dominant multifractal exponent in Mus musculus. The figure

shows the average dominant fractal exponent �max, for the different the f(�) spectra as a

function of environmental temperature Ta. The left hand, central and right hand columns

show the results for linear, quadratic and cubic polynomial detrending respectively. Figures

(a) to (d) show the average �max values calculated for the r(VO2) time series, while figures (e)

to (h) show the average �max values calculated for the AAFT shuffled data.
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