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Abstract

The cerebrum of mammals spans a vast range of sizes and yet has a very
regular structure. The amount of folding of the cortical surface and the
proportion of white matter gradually increase with size, but the underly-
ing mechanisms remain elusive. Here, two laws are derived to fully explain
these cerebral scaling relations. The two general laws are derived from the
notion that total processing power of the cortex is determined by the total
cortical surface (i.e., the number of neurons), whereas the most efficient
over-all flow of information is governed by the size of local networks (corti-
cal columns). Since information is transferred by axonal connections which
have a definite volume, a trade-off can be formulated from theoretical con-
siderations between local, inter-gyral information transfer and long-range
information transfer. It can be shown that this trade-off is governed by a
single parameter describing the size of local networks, tlocal. Despite having
just one free parameter, the first law fits the mammalian cerebrum better
than any existing function, both across species and within humans. Accord-
ing to the second law, the scaling of white matter volume is also determined
by the information principles. It follows that large cerebrums have much
local processing and little global information flow. Moreover, paradoxically,
a further increase in long-range connections would decrease the efficiency of
information flow. These theoretical scaling principles help to compare the
cerebrums across mammals regardless their size.
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1. Introduction

One of the most successful classical concepts of motor control is the
speed-accuracy trade-off. It was introduced in the 1950s by Paul Fitts
who could explain his results quantitatively from the hypothesis that the
trade-off between speed and accuracy of any movement is governed by the5

maximal rate of information that can flow to control the movement (Fitts,
1954, Fitts and Petterson, 1964). The rate of information is expressed in
bits per second (bit/s), so that Fitts proposed that any movement can be
expressed with an index of difficulty (bit).

If information flow is a crucial factor in shaping motor control, it is likely10

to be a central factor too in the evolution of the shape of the central nervous
system. Even if this notion may seem trivial, I am not aware it has ever been
formulated explicitly. The goal of this work therefore is to test this idea.
A most suitable structure to test seems to be the mammalian cerebrum,
because its anatomy and function have been extremely well studied, whereas15

the laws that govern its macroscopic structure are unknown.
The mammalian cerebrum is a highly regular structure, having a cortex

of grey matter on its surface which is wrapped around a core of white matter.
The cortex is built up of regular layers, which have specific afferent or
efferent long-distance connections (Shipp, 2005). The white matter contains20

long-range axonal connections. The white color comes from myelinization
of these axons.

Despite this regular structure, the mammalian cerebrums span a tremen-
dous size range from 11 mm3 (11 µl, pigmy shrew) to 2.5 · 106 mm3 (2.5 l,
elephant) (Zhang and Sejnowski, 2000), with the brain of the sperm whale25

being even 60% larger (Marino, 1998). Given these extreme size differences,
measures of the cerebrum are usually plotted on a double-logarithmic graph.

There exists a vast literature on interspecific scaling relationships of
any thinkable measure of the vertebrate body. What becomes clear on a
glance is that such relationships usually show a large variance, whereas30

narrow distributions are rare. The reason for this is obvious: most scaling
relationships are governed by many factors and parameters and thus lead
to a trend with much scatter (typically in the order of magnitudes). On
the other hand, if one does find a narrow distribution, the chances are good
that its singular cause is a simple mechanism.35

IScaling law for the cerebrum
∗E-Mail: lussanet@uni-muenster.de
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Interestingly, a number of such narrow distributions with little vari-
ability around the general trend are known for the mammalian cerebrum
(Harrison et al., 2002). These are usually described by a power relation
(i.e., a linear relation on a double-logarithmic scale). However, not every
relation that is well described by a linear regression on a double logarith-40

mic scale underlies a power-relation, as pointed out,for example, by Zhang
and Sejnowski (2000). These authors investigated the power-relationships
between the volume of the cortex, the white matter and the grey matter.
Each of the three relationships between these parameters followed a sim-
ple power over the entire size range and with remarkably little deviation.45

These volumetric measures, but also the outer surface and the total cortical
surface (including the inward folded surfaces) show power-relations to the
brain volume, and the latter also to the cortical volume (Hofman, 1989).
However, as the sum of two different powers (e.g., x1 +x1.5 or x+1) is never
a power relation, at least some of the above relations do not truly reflect a50

power law (Zhang and Sejnowski, 2000). Similar relations with little vari-
ability from the trend have been reported for the number of neurons in the
cerebrum, the cerebellum and the rest of the brain (Barton and Venditti,
2013, Gabi et al., 2010, Herculano-Houzel, 2011, Herculano-Houzel et al.,
2010).55

Two most prominent neuro-anatomic properties of the mammalian cere-
brum is the division in grey and white matter and the convoluted (folded)
surface, which increases gradually with brain size. Whereas the smallest
mammalian brains possess a lissencephalic (smooth) cerebral surface, larger
cerebrums have ridges (gyri) and folds (sulci). The number and depth of the60

sulci increase monotonically with brain size. Thus, since the outer shape
changes with size, the mammalian cerebrums do not scale isometrically.
According to Gross (1999, p. 90), already Franz Joseph Gall (1758-1828)
asked why the cerebral cortex is convoluted and proposed that the folds
conserve space. Many studies and a number of theories has been proposed65

since the early approaches (Changizi, 2001, Le Gros Clark, 1945, Mota and
Herculano-Houzel, 2012, Prothero and Sundsten, 1984, Van Essen, 1997,
Zhang and Sejnowski, 2000). Unfortunately these theories make no or ex-
tremely vague quantitative predictions, are circular, or contain serious errors
so the problem remains unsolved (see Appendix).70

The goal of the present work is to derive scaling laws for the cerebral
surface-volume relation and for the white-grey matter volume relation. The
laws are derived on the basis of a simple hypothesis, i.e., that the two central
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functions of the cerebrum, processing and transmission of information, are
the forces that shape the cerebrum. In the following it is shown that the75

volume-outer surface of the cerebrum scales isometrically. Subsequently,
theoretical relations for the cerebral cortical surface (including the typical
convolutions in large brains) to volume relation as well as for the volume of
the white matter are derived.

2. Methods and theoretical background80

2.1. Datasets

With the advent of neuroanatomy in the second half of the 19th cen-
tury, methods have been developed to estimate the surface area of the cor-
tex (Zilles et al., 2013). According to (Jerison, 1982) the first systematic
approach was made already by Baillarger (1845), who did measurements85

of the cortical surface of a number of mammals and proposed a relation
between total surface area and intelligence. To my knowledge, the first sys-
tematic and accurate measurements of a wide range of mammals have been
developed and published by Brodmann and Henneberg (Brodmann, 1913,
Henneberg-Neubabelsberg, 1910). A statistical approach for estimating the90

surface area was developed in the 1960-1970s, whereas modern methods are
usually based on neuroimaging techniques.

The latter kind of measurements are likely to be the most accurate,
because they are based on fresh, in-vivo measurements and can employ
computerized triangulation methods. Probably the best database for the95

human cortex is by Toro et al. (2008). Unfortunately, similar databases
for a range of mammals measured only the ratio of outer to total surface
(“gyrification index”) without retaining the true surface or volume of the
cortex and are thus useless here. Thus, the older measurements had to be
used here. The selection criteria for studies were as follows: 1. Systematic100

usage of a validated method; 2. Reporting of a range of mammals (not
just humans); 3. Reporting of at least the cerebral surface area and the
cerebral volume and/or the cerebral outer surface area from the same spec-
imen. Seven studies applied to these criteria: (Brodmann, 1913, Elias and
Schwartz, 1971, Haug, 1970, Mayhew et al., 1996, Schlenska, 1969, 1974).105

Finally, the measurements of reported total/outer surface ratio of 1.0 were
added from Hofman (1985).

Exclusion criteria were applied as follows: 1. Malformed or diseased
brains (Brodmann, 1913); 2. excessively deformed brains (Brodmann sus-
pected excessive shrinkage of two brains of Ganese origin); 3. Estimates110
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(e.g., of cerebral volume) that were based on other specimens or taken from
the literature; 4. Measures of cerebral volume that do not fit into a sphere
of the reported total cortical surface1; in the case of a large enough sample
of a single species, the statistical outliers were excluded.

The dataset thus 141 samples from 56 species (incl. 29 humans) and115

17 orders of mammals. The cerebral volume was available in 97 samples
and the outer surface of 104 samples. For the fitting (Section 3.1) a single
average per species was calculated: 45 species for the Ac-Vc fit and 51 species
for the Ac-Aout fit. In either case, the Ac of a species was calculated over the
samples that were available for the second parameter, so that the mean Ac120

for a given species could differ depending on the fit. The complete dataset
as well as a commented listing of the excluded measurements is provided
for downloading (see Supplement; de Lussanet, 2013).

The dataset of human data by Toro et al. (2008) was fitted individually.
Furthermore, a dataset by Zhang and Sejnowski (2000) was used for fitting125

the grey and white matter volume.

2.2. Volume-surface relations and sphericity

The relation between the surface area and the volume of a sphere can
be calculated from the standard formula:

Vsphere = 3
4
πr3

Ssphere = 4πr2 (1)

Vsphere = σA
3/2
sphere

where

σ =
Vsphere

S
3/2
sphere

=
4
3
π

(4π)
3/2

=
1

6
√
π
≈ 0.094 (2)

σ̂ =
Ssphere

V
2/3
sphere

=
3
√

36π ≈ 4.84

1This is a typical problem in the studies that made use of statistical approaches, which
most probably led to underestimation of the surface measurements. In order to keep as
many measurements as possible, I assumed that the ratio of inner and outer surface area
is retained in these measurements.
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The cerebral hemispheres deviate from a perfect sphere, so we can ex-130

press the cerebral volume Vc as a function of the outer cerebral surface area,
Sc:

Vc = σsS
3/2
c (3)

where the sphericity factor s expresses how much the outer cerebral surface
area differs from that of a sphere. Since the hemispheres are not exactly
spherical, s < 1. It can be computed directly from the outer cerebral135

surface, Sc, which is reported for part of the dataset:

s =
Vc

σS
3/2
c

= 0.56± 0.09 (mean± standard deviation)

ŝ =
Sc

σ̂V
2/3
c

= 1.51± 0.16 (mean± standard deviation)

with N = 49 species. However, the mean can only be used if Sc and Vc
scale isometrically. To test this, a linear regression on the log-transformed
data was performed, which gives Vc = −1.32S1.52

c (R2 = 0.998). Since
the power is very close to the 3

2
power predicted for isometric scaling, and140

not significantly different (P= 0.16), the sphericity factor s is indeed scale-
invariant (the same is true for ŝ).

2.3. The concept of equivalent thickness

A central observation of the gross anatomy of the cerebrum is that the
thickness of the grey-matter cortex tends to saturate with cerebral size. This145

has typically been quantified by simply dividing the grey matter volume by
the cortical surface area (Harman, 1947, Hofman, 1988). This measure is
not the average thickness, because it neglects that the cerebrum is convex
so that the surface area of the grey-white matter border is smaller than the
outer surface (i.e., the equivalent thickness is smaller than the geometric150

thickness).
The equivalent thickness is a measure of the dimensionality of the cor-

tical surface. For a sphere, the equivalent thickness is proportional to the
radius. For a basket filled with laundry, the total surface of the laundry is
proportional to the volume of the basket, because the [equivalent] thickness155

of the laundry is independent of the volume of the basket. Thus, the obser-
vation that the thickness of the grey matter seems to saturate with brain
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size, is an indication that the cortical surface tends to scale proportionally
to the cerebral volume for large cerebrums.

This can be expressed formally as:160

Vc = TcAc (4)

where Tc is the equivalent cerebral thickness (i.e., the sum of grey and
white matter), and Ac the total cortical surface area (i.e., including the
cortical area that is located inside the sulci). In this relation, Tc = Vc/Ac

indeed saturates for large cerebrums. (see Fig. S1 of Appendix).
Similarly, the equivalent thickness in terms of the outer surface Sc is:165

Ts =
Vc
Sc

=
Vc

σ̂ŝV
2/3
c

=
3
√
Vc
σ̂ŝ

(5)

2.4. Neurons in the cortex

The total cerebral surface is composed of the cortex of grey matter. The
cortex is the region where the vast majority of cerebral neurons are located.
Since the computational power of the cortex will depend largely on the
number of neurons, the distribution of neurons is highly relevant for scaling170

relations of the cerebrum.
The number of neurons per unit cerebral cortical surface is constant, 105

neurons/mm2. This was first estimated by Bok (1929), and confirmed using
cell counts (Carlo and Stevens, 2013, Rockel et al., 1980). In both latter
studies, cell counts (neurons and glia cells) were performed for five regions175

on the cerebral cortex that differ strongly in thickness and composition of
the layers. Moreover, these samples were taken from four mammals of very
different brain size (mouse, rat, cat, monkey). Both studies found not only
the same number of 105 neurons per mm2 for the different samples of each
species, but also for each of the four species tested. The average cortical180

surface per neuron is thus k = 10−5 mm2, irrespective of the cerebral size
and the location of the cortical surface.

2.5. Information conduction and axonal diameter

The diameter of axons in the white matter increases with cerebral size
(Harrison et al., 2002). It is known that both, the average spike rate and the185

transmission velocity increase linearly with axonal diameter (Perge et al.,
2009, 2012). Based on theoretical considerations, an increase of the signal
band width will not increase the information rate in a proportional manner
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(Balasubramanian et al., 2001, Shannon, 1948). Measurements on the optic
tract have indicated that the higher spiking rate in wide axons also leads to190

a stronger correlation of subsequent spikes (Koch et al., 2006). The latter
study estimated that the information rate per axon is independent of its
diameter. Thus, increasing the diameter leads to a quadratic increase of its
cross-sectional area, but only a linear increase in its transduction velocity.

Assuming that the axonal diameter is scaled such transmission time195

is approximately size-independent, means that the information rate in a
processing loop will decrease quadratically with the length of the connection.

3. Results

On the basis of the above background, a law can be derived to predict
the scaling of the cerebrum using just a single free parameter. The relations200

address the surface-volume relation with respect information flow and local
processing. A second part addresses the grey and white matter volume.

3.1. Scaling law for the cortical surface

The two central functions of the cerebrum are computational power and
information transfer. Assuming that the number of neurons in the cortex205

determines computational power, and given that the number of neurons
per cortical surface area is constant, the scaling parameter for the cerebral
volume Vc is cortical surface area, Ac.

There are two components to the information transfer in a neuron: long-
range afferent axonal connections and efferent dendritic trees. The length of210

axonal connections in the cerebrum has a typical, gamma-like distribution,
and increases with the size of the cerebrum (Jones and Wise, 1977, Kaiser
et al., 2009). Dendritic trees on the other hand, have a finite size. That
this is indeed so, is reflected by the fact that the number of neurons per cor-
tical surface area is constant (cf. section 2.4), and the established concept215

of the cortical column (Mountcastle, 1997, Roerig and Chen, 2002). These
two properties have been described as long-range scale-free connectedness
(Egúıluz et al., 2005, Markov et al., 2013) and small-scale, small-world prop-
erties (Stoop et al., 2013, Watts and Strogatz, 1998). In other words, the
network of the cerebrum has two different scales: the small scale is man-220

ifested on the level the cortical columns and the limited size of dendritic
trees, whereas the large scale is manifested in the long-range axonal con-
nections.
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Figure 1: (a) The model fit of tlocal (eq. (7)) on the mean values per species. Continuous
line: the model fit; dashed lines: the asymptotic relations with power slopes of 1 (cf. eq.
(4)) and 1.5 (cf. eq. (3)). Large dots: species means; small dots: single measurements.
Blue-shaded range: the limits of s±1 standard deviation (SD); red-shaded range: tlocal±1
mm. (b) Comparison of the distribution of errors for the single-parameter fit of panel a
(right) and a conventional two-parameter regression fit (left). The vertical scale measures
±0.25 order of magnitude. (c) Comparison of the model, equation (7), and a model based
on a linear relation between information resistance and channel length. (d) The model
fit of tlocal on the human data of Toro et al. (2008) (also indicated as black dots in panel
a). (e) Model fit of tlocal on the mean values per species, using the outer surface values
(eq. (8)). 9
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The volume to a given cortical surface area is thus determined by the
flow information processed by the neurons, and the transfer of this infor-225

mation on the local- and global-scale. This can easiest be expressed in
terms of information resistance: how the flow of information [bit/s] divides
among local and global networks depends on how well each route trans-
fers information. Information resistance is directly related to the inverse
of the channel capacity which expresses the rate of information that can230

be reliably transmitted by a channel (Balasubramanian et al., 2001, Shan-
non, 1948). Assuming that the resistance to information increases with the
squared length of the connection (Section 2.5), it becomes clear that the
relative contribution of the small-scale and large-scale connections depends
directly on the size of the cerebrum (Ts: eq. (5)). Thus, expressing informa-235

tion resistance in terms of equivalent connection length, and subsequently
substituting equation (5) we get:

1

RI,total

=
1

RI,global

+
1

RI,local

1

T 2
c

=
1

T 2
s

+
1

t2local

=

(
σ̂ŝ
3
√
Vc

)2

+
1

t2local
(6)

where the constant tlocal expresses the scale-invariant information resistance
of the local networks [m]. By substitution of the equivalent thickness (Tc,
equation (4)), the volume to cortical surface is obtained as:240

A2
c =

(
σ̂ŝV

2/3
c

)2
+

(
1

tlocal
Vc

)2

(7)

A remarkable property of this surface-volume relation is that it has just
a single free parameter: tlocal.

The fit of equation (7) on the log-transformed data (Section 2.1) resulted
in tlocal = 3.6 mm (N = 45 species, R2 = 0.995). This result is presented
in Figure 1a. Even though the model has just a single free parameter, it245

describes the data much better than a conventional linear regression on the
log-transformed data (which yields: log(Vc) = 0.67 + 1.24 log(Ac), with an
R2 = 0.98).
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Another manner to analyze the quality of the model is by the trend in
the errors. These are illustrated in Figure 1b. Whereas the linear regression250

shows a clear trend in the form of an inverted U, the model does not show
any trend in the errors.

For part of the dataset, the volume data are not present or not reliable
(see Section 2.1), but the outer surface is given in these data. Given that
the sphericity parameter is invariant (Section 2.2), we can rewrite the model255

(eqn. (7)) as a function of the outer surface Sc, by substitution of equation
(3):

A2
c = S2

c +

(
σs

tlocal

)2

S3
c (8)

(given that (σ̂ŝ)3 = (σs)−2).
The fit of relation is as good as the first (tlocal = 3.4 mm, R2 = 0.996, N

= 51 species). This is shown in Figure 1d.260

The second fit involves 7 species of cetaceans (rather than just three
species in the first fit). A fit of the 15 samples collected from these 7 species
of cetaceans resulted in tlocal = 3.1 mm, R2 = 0.92, which was thus close to
the ensemble-fitting result.

Since the wide availability of neuroimaging facilities, it has become pos-265

sible to measure the gross anatomy of large samples of cerebrums with
standardized and automized procedures. Such a data set of human sub-
jects (Pausova et al., 2007) was analyzed by Toro et al. (2008). These data
(314 subjects, 164 females and 150 males of 12-20 years old) are presented
in Figure 1c. The fit resulted in tlocal = 4.8 mm (R2 = 0.96), which was270

slightly better than the linear regression on the log-transformed data (which
resulted in a power slope of 1.0, intercept 0.54 and R2 = 0.94). Thus, the
model not only describes the inter- but also the intraspecific variation with
high accuracy.

To test for phylogenetic trends, t-tests were performed on the fitting275

errors, using tlocal = 3.6 mm (i.e., the result of the fit on all species). Orders
for which more than 5 species (and species with more than 10 samples) were
available were included, i.e., Carnivora (N=8), Primata without humans (N
= 8), Soricomorpha (N=7), and humans (N=315). The test only gave a
significant result for the human data (t(314)= 133, P< 0.001, Bonferroni-280

corrected). To test for systematic differences between the five literature
sources of the database (Brodmann, Haug, Hofman, Mayhew et al., Schlen-
ska) t-tests were performed on the non-averaged data (again with tlocal = 3.6
mm). This test gave no significant results (Bonferroni-corrected).
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Figure 2: The data of Figure 1a on a linear scale. Top panel shows the entire data range,
whereas the bottom panel shows the lissencephalic range on a much enlarged scale.

3.1.1. Sensitivity285

As shown in Figure 1b, the fit of the scaling law (eq. (7)) has no system-
atic errors. Two main causes can underly the variable errors: measurement
errors and true variations of the model parameters. The measurement er-
rors are difficult to estimate due to the generally low number of samples
measured per species. Judging from the human data (Fig. 1d) and taking290

the data of (Toro et al., 2008) as a reference, it seems that systematic errors
may be considerable, depending on the author.

The sphericity parameter, s had a standard deviation (SD) of 0.09. The
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variations in the sphericity parameter mainly affect the model predictions
for the small range of the cerebrums (Fig. 1a). Variations in tlocal, on the295

other hand affect the model predictions in the range of large cerebrums (Fig.
1a).

The model was based on a quadratic relation between brain size and in-
formation resistance for long-range axonal connections (see section 2.5), but
there are no reliable data to tell whether this really is the correct relation.300

The effect of assuming a linear relation is show in Figure 1c. The linear
assumption gives a slightly less good description of the data, but the effect
is small. A fit of the linear model resulted in tlocal = 6.1 mm (R2 = 0.995).

Even if double logarithmic plots have huge merits, they can be mislead-
ing. Therefore, the data are plotted on linear scales as well (Fig. 2). The305

figures confirm that the fits are good over most of the range. On the linear
scale it is much more clear that the human data are systematically off the
Cortical surface–cerebral volume model (eqn. (8)). Also, the indian and
african elephants may fit better with a larger tlocal, but more measurements
would be needed to confirm this.310

3.2. Relation of grey and white matter

In 2000, Zhang and Sejnowski discovered that there is a remarkably
regular relationship between the volumes of grey and white matter in the
mammalian cerebrum, as reproduced in Figure 3. They found that the rela-
tion between the grey (G) and white (W ) volume almost perfectly describes315

a straight line on a double-logarithmic scale, over a range of more than five
magnitudes of cerebral volume. A straight line on a double-logarithmic scale
can always be described by a simple power of the form

y = axb

with constants a and b.
Interestingly, the same was true for the relations between the total vol-320

ume (Vc) with the grey volume, but also with the white volume. As Zhang
and Sejnowski acknowledged, it is not possible that all three relations really
are simple power relations, because W + G = Vc. Zhang and Sejnowski
tried to derive a power law for the empirical relation, but their equations
were circular (see Appendix). Moreover, the empirical power of 1.23 was325

significantly lower than the expected natural scaling power of 4/3. Thus,
the relation between white and grey matter volume is not explained by a
simple power law. Moreover, a large family of relations are approximately
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Figure 3: (a) White and grey mater volumes from Zhang and Sejnowski (2000). The
white matter volumes (open symbols) and the model fit (eqn. (9)). (b) The same data on
a linear scale. Top panel shows the entire data range, whereas the bottom panel shows
the lissencephalic range on a much enlarged scale.

linear on double logarithmic scale.
Again the information transfer can be used as a starting point for deriv-330

ing a general scaling theory. Above has become clear that two scales play
a role in the scaling: the local, intra-gyral and the global, extra-gyral scale.
On the local, intra-gyral scale the information transfer is scale-invariant,
so the white matter volume, W , should scale proportionally to the total
volume, Vc.335

On the global scale theW should also scale with Vc. However, in addition
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the distances scale with cerebral size, so that W should also scale with the
radius. Since the scaling due to information transfer is governed by the
information resistance according to equation (6), the scaling of the white
matter volume should also be governed by the inverse sum of the local and340

global scales. Thus we obtain the following equation:

1

W
=

1

arVc
+

1

bVc
(9)

with r as given by equation (1). Fitting yields a = 0.0025 mm−1 and
b = 0.50 (R2

W = 0.995 and R2
G = 0.9998 for the white and grey matter

volume respectively). The fit is shown in Figure 3. This fit is as good as the
one by Zhang and Sejnowski (who obtained an R2 = 0.996 for their model).345

Both, the volume-surface model (eq. (7)) and the grey-white matter
volume model (eq. (9)) are limit relations, indicated by dashed lines in
Figures 1a and 3a. A measure for the transition between the limit relations
is the point of intersection between them. As expected if the models are
both driven by the same mechanism, the points of intersection are almost350

the same (at 1.9 · 104 and 1.6 · 104 mm3 respectively).

4. Discussion

Compared to other scaling relations known for animals over a wide size
range, the here treated scaling relations of the mammalian brain are re-
markably regular, and seemingly linear, on a double-logarithmic scale. This355

has been known for a long time but the reasons have remained elusive, be-
cause the power relations that are obtained by such linear regressions on
log-transformed data are incompatible with isometric scaling laws. Here,
for the first time, a theory is developed that fully explains these narrow
scaling relations. Moreover it predicts these relations with parameters that360

are physiologically meaningful, determined by the central functions of the
cerebrum –processing and transmitting information– and that can in part
be derived from independent measurements.

The obvious advantage of the current theory driven approach over mere
regression fitting, is that it opens the possibility to analyze exceptions to365

the scaling. The first thing that can be noted here is that such exceptions
are remarkably scarce. On the basis of the available data, there are no phy-
logenetic trends, either for the grey and white matter volumes nor for the
volume-surface relations. This is remarkable, given recent claims for such
effects, e.g., between Glires and Primates (Herculano-Houzel, 2011). In this370
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sense the discussion remains similar to that of a century ago when Brod-
mann proposed that the six-layered structure of the mammalian neocortex
is a universal feature (Brodmann, 1909).

There are, however also clear indications of a divergence in the volume-
surface relations for the largest cerebrums. The human data set is the375

most reliable, in having a tlocal of almost a mm more than the general fit.
The elephants appear to have a similar tlocal to humans. Interestingly, the
cetaceans align very well with the data of smaller mammals, although it is
usually thought that cetacean cerebrums are deviant, i.e., have a unusually
large cerebral surface. This latter conviction is an artifact of fitting the380

logarithmic data with a linear regression.
The scale-invariant sphericity s is assumed to be constant, though, as

indicated by the standard deviation, it does shows considerable variation.
The effect of such variations mainly affects the predictions for small cere-
brums, as shown by the sensitivity analysis (cf. Fig. 1a). Overall, the vol-385

ume of lissencephalic cerebrums is slightly underestimated by the model,
which is due to the very small (statistically not significant) size dependency
indicating that Ss increases slightly with brain size (cf. Section 2.2).

The only free parameter of the volume-surface model, tlocal ≈ 3.6 mm,
expresses the information resistance on the local scale, but is also a length390

measure for the local networks. The measure expresses equivalent length
(cf. Section 2.3). This is in the order of the size of the gyral lobes of
convoluted brains. The largest cerebrums closely approximate the limit
relation tlocal. That means, such large cerebrums effectively function more
like a communicating cluster of local processing centers than as a global395

processor. The model is only a first order approximation in so far, that
axonal lengths show a wide distribution within a cerebrum (Jones and Wise,
1977, Kaiser et al., 2009). Further the regional properties are likely to vary
(Shipp, 2005). The deviation of humans and elephants indicates a change
in the local network properties, so that the local processing is increased.400

As a result, the current result indicates that the large number of cortical
areas in the human brain is a true and remarkable property (Felleman and
Van Essen, 1991). It remains to be tested whether this is a property of
specific regions of the human cerebrum, such as the prefrontal cortex.

It was estimated that the information resistance increases quadratically405

with connective distance, but this may not be entirely accurate. As a com-
parison, the scaling law was also estimated with a linear scaling of informa-
tion resistance with connective distance (Fig. 1c). As shown by the figure,
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the predicted surface-volume relation is rather insensitive to such a seem-
ingly grave difference. The theoretical, quadratic scaling of information410

resistance with distance describes the available data better than the linear
example, which is still better than a linear regression.

Lastly, the principle of information processing can even be applied to the
grey and white matter volumes. This last law is the best that is currently
available, but it is less strong than the surface-volume model, because its two415

parameters (a and b) so-far do not have direct physiological meaning. The
model confirms that local processing networks are very prominent in large
cerebrums. The model seems to systematically underestimate the white
matter volume in the very small cerebrums (cf. Fig. 3a). This may in part
be due to systematic measurement errors in these very small cerebrums. In420

part it may be due to the deviation in sphericity parameter s indicating
that small cerebrums and therefore have relatively longer connections than
assumed by the model.

Several earlier studies have developed a theoretical approach to explain
the empirical scaling relations (Changizi, 2001, Mota and Herculano-Houzel,425

2012, Prothero and Sundsten, 1984, Toro and Burnod, 2005, Zhang and Se-
jnowski, 2000, see also Appendix). Different to these studies, the present
approach started from the notion that the computational power and in-
formation transfer are the most likely candidates as basic parameters in
shaping the cortex. Since computational power depends directly on the430

number of neurons, which is again constant per cortical surface, it follows
that cortical surface is to be taken as the independent parameter.

Still, the relations are mainly based on relatively scarce data from het-
erogenous sources. It would therefore be highly valuable to improve the
measurements, and with modern imaging techniques it is feasible to mea-435

sure much larger samples within species in a much more automated manner
(Manger et al., 2012, Pillay and Manger, 2007, Toro et al., 2008). Such
databases with larger samples should also enable to test more specific pat-
terns such as developmental and gender patterns (Paus and Toro, 2009) as
well as local differences between regions of the cerebrum.440

The result suggests that the structure of our cerebrum has landed us in
a local optimum, because the wrinkled surface structure makes that many
distances are longer than necessary (think of the two flanking sides of a
sulcus). In a nuclear structure such as the birds’ cerebrum this problem does
probably not exist (The Avian Brain Nomenclature Consortium, 2005).445

In conclusion, the general basis for scaling of the cerebrum are the corti-
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cal surface area, Ac, and the size of the local networks, as expressed by the
tlocal parameter. These local networks may well differ between regions of
the cortex, because the expression of layers differs substantially, for exam-
ple between granular and non-granular cortex. Moreover, the scaling of the450

cortex is only sensitive to variations in tlocal for large cerebrums (Section
3.1.1).

On the basis of the dataset used, there is no evidence for phylogenetic
trends in contrast to earlier claims for systematic phylogenetic differences.
With respect to the tlocal with one exception: Humans and elephants appear455

to have a significantly larger tlocal parameter than all other mammals (ex-
cept, possibly elephants), indicating that information flow within regional
networks may play a larger role than in other mammals.

Third, the amount of white matter in the cerebrum scales according the
current information approach.460

Fourth, the relation between cortical surface and cortical volume could
be fitted using just a single parameter, tlocal = 3.6 mm. The underlying
theory is based on efficient information processing and transmission. The
tlocal of 3.6 mm is consistent with an average gyral width of about 10 mm,
and a maximal lissencephalic radius of 10 mm (≈ 2 · 102 mm3 volume).465

The theoretical foundation of the scaling laws suggests that the functions
of the cerebrum, i.e., processing and transmission of information also are
central in defining its macroscopic shape. This in turn suggests that the
local structures in the cerebrum are also strongly related to their function,
which is consistent with the fact that primary sulci tent to be located at470

the primary sensory and motor regions, and that the borders of functional
regions in the cerebrum usually follow the gyral folds.

Thus, the volume to surface relation does seem to be optimal. The
optimization criterion is derived directly from the central function of the
cerebrum: the processing and transfer of information. This result also has475

a direct and important consequence for the way the brain works, because
it means that small cerebrums work fundamentally differently than large
cerebrums, in the regionalization of information processing.

Acknowledgements

The author was supported by the German Federal Ministry of Educa-480

tion and Research, BMBF [grant 01EC1003A]. I thank Heiko Wagner, Kim
Boström, Markus Lappe, and Thomas Wulff for discussions and comments.
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Felleman, D. J. and Van Essen, D. C. (1991). Distributed hierarchical processing in the
primate cerebral cortex. Cereb. Cortex, 1:1–47.

Fitts, P. M. (1954). The information capacity of the human motor system in controlling510

the amplitude of movement. J. Exp. Psych. Hum. Percept. Perform., 47:381–391.

Fitts, P. M. and Petterson, J. R. (1964). Information capacity of discrete motor responses.
J. Exp. Psych. Hum. Percept. Perform., 47:381–391.

Gabi, M., Collins, C. E., Wong, P., Torres, L. B., Kaas, J. H., and Herculano-Houzel, S.
(2010). Cellular scaling rules for the brains of an extended number of primate species.515

Brain Behav. Evol., 76:32–44.

Gross, C. G. (1999). Brain, vision, memory: Tales in the history of neuroscience. Brad-
ford books.

Harman, P. J. (1947). On the significance of fissuration of the isocortex. J. Comp.
Neurol., 87(2):161–168.520

Harrison, K. H., Hof, P. R., and Wang, S. S. H. (2002). Scaling laws in the mammalian
neocortex: Does form provide clues to function? J. Neurocytol., 31(3):289–298.

Haug, H. (1970). Der makroskopische Aufbau des Großhirns: Qualitative und quan-
titative Untersuchungen an den Gehirnen des Menschen, der Delphinoideae und des
Elefanten. In Ergebnisse der Anatomie und Entwicklungsgeschichte, volume 43, Berlin.525

Springer.

19

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.239v2 | CC-BY 4.0 Open Access | rec: 15 Jul 2015, publ: 15 Jul 2015

P
re
P
rin

ts



Henneberg-Neubabelsberg, R. (1910). Messungen der Oberfläche der Großhirnrinde. J.
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Appendix

Earlier theories

The theory of brain scaling has a long history. It is outside the scope620

to give a complete listing and I am not even sure to know all theories. A
few are worth treating in in more detail though because they are cited and
mentioned frequently.

Surface-volume relations

The theories for the convoluted surface area of the cerebrum seem to have625

to longest history Baillarger (1845), Gross (1999). For a review, see (Hof-
man, 1989). For a long time it has been thought that the folding is a result
of a large cortical area being fitted inside a comparably small space inside
the skull. This model apparently dates back to Le Gros Clark (1945), and
has been modeled numerically in a slightly modified form (Toro & Burnod,630

2005, Toro, 2012). However, for this model to work, one has to assume that
the grey matter is incompressible, rubber-like in the dimensions parallel to
the surface, and that the white matter is viscous. These are highly unlikely
properties making the model as a whole questionable. Moreover, the model
does not make any predictions as to the scaling relations of the cortical635

surface area.
A popular theory was developed by Prothero & Sundsten (1984) in a

number of works. According to this model, the gyral width and height are
governed by the white matter of the long-range axonal connections. The
strongest prediction of the model is that there exists an upper limit to the640

size of the cerebral cortex. The strongest weakness of the model is that it
approximates the cerebrum with a cubical core of white matter which has a
surface of equally-shaped gyral ridges, separated by sulci of equal depth. In
such a design, the gyri of a large cerebrum cannot contain any white matter.
However, in a true cerebrum, the depth of neighboring sulci shows strong645

differences, so in practice this is unlikely to present a real design problem
to the cerebrum.

According to one intuition the space required by the site matter is a
shaping factor for the gyri (Prothero & Sundsten, 1984). According to a
second notion, the anisotropic material properties of the grey and white650

matter are essential shaping factors. For example, according to an early
proposal, the cortex behaves like a thick, lubricated rubber sheet that is
packed inside a skull that is too small for its surface (Le Gros Clark, 1945).
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It will fold (as Le Gros Clark demonstrated experimentally) because the
sheet is hardy compressible in the tangential directions. This proposal has655

also been modeled numerically in a slightly modified form (Toro & Burnod,
2005). In this model, the cortical sheet did not grow against a skull, but
against a compliant centripetal force.

A very interesting mechanism for the development of folding has been
made by Van Essen (1997). According to Van Essen, the mechanical stiff-660

ness of axons make that the cerebral white matter is a highly anisotropic
material (Peter & Mofrad, 2012). It seems plausible that the mechanism of
Van Essen accounts for the development of the relationship between cerebral
volume and cortical surface.

A general law for white and grey volume?665

Zhang & Sejnowski (2000) also derived what they called “a general law”
to predict the relation between the grey and white matter volume. Unfor-
tunately, there was a circularity in their equations as I demonstrate here.
To avoid confusion, I will use symbols that are consistent with the present
work.670

Zhang and Sejnowski started with two assumptions. (1) That there is a
direct linear relation between the cortical surface area (Ac) and the physi-
ological cross-sectional area (PCSA) of the axons. (2) That the global ge-
ometry minimizes the average length of the axonal fibers (Lax). This latter
assumption is somehow incomplete, because the shortest possible average675

length would obviously be zero.
The grey matter volume Vg is the surface Ac times the equivalent cortical

thickness Tg (cf. eq. (4)):
Vg = TgAc (s1)

Given assumption no. 1, the white matter volume Vw is:

Vw = c1AcLax (s2)

the constant 0.5 < c1 < 1 was introduced by Zhang and Sejnowski to680

acknowledge that axons have a start and an end, so that cortico-cortical
connections would be counted double.

The crucial step is to obtain the relation between G and W . Zhang
and Sejnowski postulated that the total grey matter volume Vg depends
on the average axon length Lax. To match the dimensions they assumed685

that Vg = c2L
3. They tested this postulate against a family of alternative

postulates in which L3 is replaced by L3−nXn with n < 2 and X another
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length measure such as the cortical thickness T or average gyrus length, etc.
They then showed that Lax is smallest for the original postulate, assuming
that all alternative parameters X < L. Combining this postulate with690

equations (s1) and (s2) yields the “universal scaling law”:

Vw =
c3
Tg
G4/3 (s3)

This formulation is misleading because according to equation (s1) Vg
equals TgAc so “the law” really states:

Vw = c3T
1/3
g A

4/3
c (s4)

so, in fact, the equation does not directly link W and G at all. If we replace
Vw again with equation (s2) we obtain again the postulation, so we have695

not learned anything. The circularity in the derivation of their law occurred
in their equation [13], where they substituted the axonal length from their
equation [2] (eq. (s2)), which already been substituted in their equation [5]
(i.e., the “universal scaling law”, eq. (s3)).

Other relations700

T c
 (m

m
)

10-1
103 104 105 107102101 106

Cerebral volume [mm3]

100

101

Figure S1: Equivalent cerebral thickness (Tc = Vc/Ac). Computed from the data of
(Hofman, 1989). Dashed lines have a power slope of 1/3 and 1; the curve is equation (6).

A popular measure of the property of the cortex is the equivalent thick-
ness (see Section 2.3). The model also predicts the equivalent cerebral
thickness Tc, in equation (6). This relation is presented in Figure S1. It
shows again the very good fit of the model to the data.

The theoretical approach by Changizi (2001) is interesting for its at-705

tempt to explain a whole set of scaling relations of the mammalian cere-
brum at once, and thus aiming at a general theory, instead of focussing
on just one relation at the time. A weakness of his approach is that it is
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based on the power fitted from double-logarithmic relations of a long, het-
erogenous list of studies, without any reference to the quality of these fits.710

For example, he lists a power of 0.08-0.197 for the relation between cortical
thickness and grey matter volume although this relation deviates strongly
from a power relation (cf. Fig. S1). His model consists of two parts. The
first part predicts that the number of synapses per volume of dendritic tree
is a scale-invariant constant. However he fails to mention the implicit as-715

sumption that the branching rate must be independent of dendritic length.
The second part builds upon this, and a number of far-reaching assump-
tions. For example, it is assumed that each region of the brain connects
to a limited, fixed fraction of other regions, independent of the number of
regions in the cerebrum. Not only is the fraction of connected regions as-720

sumed constant, also the fraction of neurons connected to in each connected
area is assumed constant.

A recent modeling approach has been presented by Mota & Herculano-
Houzel (2012), to develop a computational framework for the data on cell
counts in the cerebrum and other brain regions in a large range of mammals725

by Susana Herculano-Houzel et al. (Gabi et al., 2010, Herculano-Houzel,
2009, Herculano-Houzel et al., 2010, Herculano-Houzel, 2011, 2012). This
model treats the cerebral volume as the sum of grey and white matter. It has
neurons, axons and glia as major parameters, and is explorative in nature,
meaning that it is an attempt to list and identify probable parameters that730

underly the empirical scaling laws. The main result is that it is a complex
matter.
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Supplement

Dataset775

The data used for validating the scaling laws are attached as an excel
table. At first the included measurements are printed, followed by the
excluded ones including the reason for exclusion, and finally the species’
mean values used for fitting. Cells with equations are marked in color.
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