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Longitudinal studies focusing on lifetime reproductive success (LRS) have been used to

measure individual breeding performance and identify commonalities among successful

breeders. By extending the focus to subsequent generations we identify a proportion of

high-quality individuals that contribute disproportionately to the population over multiple

generations. We used 23 years of yellow-eyed penguin (Megadyptes antipodes) breeding

data from one breeding area to identify the proportion of individual birds that raised

successful breeders, which in turn raised offspring that bred successfully. We explored

which life-history components influenced lifetime reproductive success, as this knowledge

would enable conservation resources to be focused on high-performing individuals in this

endangered population. From 2147 birds marked as chicks, 370 (17.2%) survived to

adulthood and recruited to their natal location, of which 219 (10.2%) fledged offspring: 124

(56.6%) of the 219 birds produced offspring that recruited as breeders. Only 102 birds

(4.8% of 2147) fledged first-generation offspring that in turn fledged offspring (second-

generation offspring, or grand-offspring). We found that c. 26% of the birds that survived

to breed had above-average LRS as well as above-average numbers of grand-offspring,

and were more likely to have produced first-generation chicks that recruited and also

produced above-average numbers of second-generation chicks. Our findings suggest that

there is a core of �super-breeders� that contribute disproportionately to the population

over successive generations. Lifespan and age-at-first-breeding were correlated with LRS.

We suggest that traits of birds relating to longevity, health (e.g. immunocompetence) and

fitness could be examined to identify potential links with high LRS and inter-generational

fecundity. �Super-breeders� appear to consistently balance high LRS with long- life-span in

a stochastic environment, demonstrating greater resilience in the face of extreme events.
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9 ABSTRACT

10 Longitudinal studies focusing on lifetime reproductive success (LRS) have been used to measure 

11 individual breeding performance and identify commonalities among successful breeders. By 

12 extending the focus to subsequent generations we identify a proportion of high-quality 

13 individuals that contribute disproportionately to the population over multiple generations. We 

14 used 23 years of yellow-eyed penguin (Megadyptes antipodes) breeding data from one breeding 

15 area to identify the proportion of individual birds that raised successful breeders, which in turn 

16 raised offspring that bred successfully. We explored which life-history components influenced 

17 lifetime reproductive success, as this knowledge would enable conservation resources to be 

18 focused on high-performing individuals in this endangered population. From 2147 birds marked 

19 as chicks, 370 (17.2%) survived to adulthood and recruited to their natal location, of which 219 

20 (10.2%) fledged offspring: 124 (56.6%) of the 219 birds produced offspring that recruited as 

21 breeders. Only 102 birds (4.8% of 2147) fledged first-generation offspring that in turn fledged 

22 offspring (second-generation offspring, or grand-offspring). We found that c. 26% of the birds 

23 that survived to breed had above-average LRS as well as above-average numbers of grand-

24 offspring, and were more likely to have produced first-generation chicks that recruited and also 

25 produced above-average numbers of second-generation chicks. Our findings suggest that there is 

26 a core of �super-breeders� that contribute disproportionately to the population over successive 

27 generations. Lifespan and age-at-first-breeding were correlated with LRS. We suggest that traits 

28 of birds relating to longevity, health (e.g. immunocompetence) and fitness could be examined to 

29 identify potential links with high LRS and inter-generational fecundity. �Super-breeders� appear 

30 to consistently balance high LRS with long- life-span in a stochastic environment, demonstrating 

31 greater resilience in the face of extreme events.

32 Keywords: Yellow-eyed penguin, lifetime reproductive success, intergenerational fecundity, 

33 breeding, seabird
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36 INTRODUCTION

37 Unlike cross-sectional studies across one or two breeding seasons, longitudinal studies based on 

38 lifetime reproductive success (LRS) average out occasional breeding failures, and increase the 

39 accuracy of measurement of individual success (Krüger & Lindström, 2001). By collecting long-

40 term life-history data from a population of marked individuals, it becomes possible to identify 

41 the proportion of animals that produce recruits, enabling conservation efforts to be efficiently 

42 focused on individuals with successful traits (Moreno, 2003), and the overall contribution of 

43 individuals with different lifespans or reproductive strategies to subsequent generations can be 

44 compared (Clutton-Brock, 1988; Newton, 1989; Wooller, Bradley & Croxall, 1992; Brommer, 

45 Pietiäinen & Kolunen 1998).

46 Studies of LRS have revealed commonalities across bird species: a significant proportion 

47 of fledglings from a given population will die before sexual maturity (Bryant, 1979; Newton, 

48 1989); not all individuals that attempt to breed will be successful; and successful individuals vary 

49 in their productivity (Newton, 1989). The LRS distribution of a population is typically highly 

50 skewed, with large numbers of individuals producing small numbers of young, and only a small 

51 proportion of adults producing large numbers of young (Clutton-Brock, 1988, Newton, 1989). 

52 Specific life-history and reproductive traits can be indicative of LRS. Lifespan is the strongest 

53 correlate, with longer-lived individuals commonly achieving a higher LRS (Gustafsson, 1986; 

54 Clutton-Brock, 1988; Newton, 1989). In seabirds, where individuals can start breeding at various 

55 ages, variance in LRS is largely related to variation in breeding lifespan (Moreno, 2003), because 

56 an increased number of breeding seasons allows individuals more opportunities to successfully 

57 fledge offspring.
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58 If only a small proportion of individuals maintain most of the population, the 

59 identification of traits affecting lifetime fecundity of an individual are relevant for conservation 

60 efforts. Resources can be diverted towards protecting particularly productive individuals at times 

61 when the population is assailed by environmental challenges such as adverse climate conditions, 

62 reduced food availability, disease outbreaks, or catastrophic events (e.g. oil spills, Gartrell et al., 

63 2013). In the case of a pest species, culling efforts could be focused on these highly productive 

64 individuals (Moreno, 2003). 

65 Factors known to affect reproductive performance in seabirds and which can interact with 

66 each other include age, experience, pair bond duration, health condition, sex, number of mates, 

67 mate fidelity and site fidelity (Ryder ,1980; Clutton-Brock, 1988; Gavin & Bollinger, 1988; 

68 Bradley et al., 1990; Wooller et al., 1990; Chastel, Weimerskirch & Jouventin, 1995). For 

69 example, in long-lived seabird species, a period of poor reproductive success at a young age or at 

70 a lower level of experience may be superseded by a period at which the individual performs at 

71 their peak reproductive output (Forslund & Pärt, 1995). At an older age, senescence may begin to 

72 reduce reproductive output, followed by terminal illness and death (Fowler, 1995; Nisbet & 

73 Dann, 2009; Froy et al., 2013). With increasing age, maternal efficiency might allow for control 

74 of the timing, size, volume, composition and pore density of eggs, and high levels of pair 

75 synchrony through maintenance of long-term pair bonds may reduce incubation periods and 

76 increase nesting success (Massaro et al., 2002; Massaro et al., 2004). Gaining breeding 

77 experience has been postulated to be no different to the honing of other skills, such as foraging. 

78 Breeding skills may therefore improve with both age and experience, as well as with improved 

79 synchrony between mated pairs (Forslund & Pärt, 1995). The relative importance of each of 
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80 these factors in estimating LRS is difficult to assess, and can differ dramatically between species 

81 and geographic locations. 

82 Breeder quality might not necessarily be age related; some birds might just be better than 

83 others because they have better skills. State-based assessment of individual breeder quality often 

84 requires the assumption or prediction that a component of the individual�s health or skill within 

85 that system is a driving factor determining its reproductive success (Wendeln & Becker, 1999; 

86 Moreno, 2003), and that this superior skill is independent of age-related performance. Individual 

87 state explaining superior breeding abilities can be measured as mass, body condition or 

88 morphology at commencement of the breeding season (Wauters & Dhont, 1989; Wendeln & 

89 Becker, 1999; Jensen et al., 2004); foraging and predator evasion skills (Daunt et al., 2007; 

90 Lescroël, Ballard, Toniolo, Barton, et al., 2010); attractiveness or ornamental traits (Massaro, 

91 Davis & Darby, 2003; Brommer, Ahola & Karstinen, 2005; Kim et al., 2011; Potti, Canal & 

92 Serrano, 2013); health, hormonal stress response or immunocompetence (Wendeln & Becker, 

93 1999; Moreno, 2003; Ellenberg et al., 2007; Costantini et al., 2014). These state-based qualities 

94 and their relationship with breeding success and LRS can be highly variable within a population 

95 of seabirds, but might have low variation for individual birds over time (e.g. common terns 

96 Sterna hirundo, Wendeln & Becker, 1999). Breeding seabirds have a range of responses to 

97 catastrophic climatic or weather events, e.g. El Niño Southern Oscillation (ENSO) (Boersma, 

98 1978), and vary in the rate at which food is delivered to chicks (Ens et al., 1992). Territoriality 

99 also can be associated with individual quality in relation to nesting density (Stokes & Boersma, 

100 2000), nest site characteristics (Stokes & Boersma, 1998) and rank dominance (Schubert et al., 

101 2007).  
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102 LRS measures the number of offspring produced over a lifetime, however it does not 

103 consider the viability of those offspring. There may be variability in the quality of offspring 

104 produced by different individuals that further reduces the proportion of individuals contributing 

105 to subsequent generations. By using a 23-year dataset we were able to track reproductive success 

106 over more than one generation and identify the proportion of a penguin population that produces 

107 grand-offspring. Yellow-eyed penguins  Megadyptes antipodes) are endemic to New 

108 Zealand and listed as �endangered� on the IUCN Red List (Birdlife International, 2015). Some 

109 mainland populations are intensively managed to mitigate threats posed by introduced predators, 

110 disturbance and habitat destruction (McKinlay, 2001). Because yellow-eyed penguins are 

111 sedentary (Seddon, van Heezik & Ellenberg, 2013), long-lived, have high natal philopatry, high 

112 breeding site fidelity once breeding, and are monogamous (Richdale, 1957), they are an ideal 

113 species to study LRS. We investigated: (1) the proportion of birds that survive to adulthood; (2) 

114 the proportion of adults that breed; (3) the proportion of breeders that produce young that recruit 

115 to the breeding population (first-generation); and (4) the proportion of adults producing grand-

116 offspring (second-generation). We also explored the characteristics of highly-fecund breeders, 

117 and the relationship of this trait between generations. We predicted that in line with other seabird 

118 species, only a small proportion of yellow-eyed penguins would survive to adulthood, breed, and 

119 produce young, and that differences in LRS between males and females exist due to the 

120 difference in age-at-first-breeding, with females known to begin breeding earlier than males 

121 (Richdale, 1957; Darby & Seddon, 1990). We predicted that lifespan would have the greatest 

122 influence on the number of offspring produced, and be positively correlated with LRS. Yellow-

123 eyed penguins with earlier age-at-first-breeding and fewer overall mates were predicted to have 

124 greater LRS. 
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125

126 METHODS

127 Yellow-eyed penguins are solitary breeders, in contrast with most other penguin species and 

128 seabirds that breed colonially (Richdale, 1957; Darby & Seddon, 1990). In September-October 

129 clutches of up to two eggs are laid, and chicks fledge at c. 106 days from late January to late 

130 February (Richdale, 1957; Seddon & Davis, 1989; Darby & Seddon, 1990). 

131 Yellow-eyed Penguin Database   

132 We obtained breeding data from the Yellow-eyed Penguin Database administered by the New 

133 Zealand Department of Conservation (DOC). We analysed only data from yellow-eyed penguins 

134 breeding at the Boulder Beach complex on the Otago Peninsula, New Zealand, (45°500 S and 

135 170°300 E; Fig. 1) because it supports a relatively large population of yellow-eyed penguins, has 

136 an inter-decadal history of intensive monitoring and it has been trapped for introduced predators 

137 over time. This site has the longest history of chick marking; the majority of chicks fledged at 

138 this site have been marked with a stainless steel flipper band issued by the New Zealand Bird 

139 Banding Scheme (NZBBS). We acknowledge that the use of flipper bands might present bias 

140 (sensu Petersen et al., 2005), however yellow-eyed penguins are inshore foragers (van Heezik & 

141 Seddon, 1990; Mattern et al., 2007) and this bias is likely to be minimal. A separate study 

142 analysing the impact of research manipulations found that even a double banding study in one 

143 season had no effect on productivity or subsequent survival (Seddon, van Heezik & Ellenberg, 

144 2013). Before commencing this study, we completed a comprehensive error check, which 

145 involved checking the original notebook records against electronic database records to ensure a 

146 high level of accuracy and consistency.

147 Data for survival to adulthood and breeding, and LRS analyses
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148 A total of 2147 birds were marked at Boulder Beach as chicks between 1981 and 2003. We used 

149 this sample to calculate the proportion of birds that survived to adulthood (defined as reaching 

150 two years of age), attempted to breed, fledged offspring, fledged offspring that survived to 

151 adulthood and returned to the breeding population but did not necessarily breed (recruited), and 

152 fledged offspring (first-generation) that in turn successfully bred and produced offspring 

153 (second-generation, or grand-chicks). We chose the year 2003 as the cut-off for including any 

154 new breeders in the sample, since mean age at first breeding is between three and four years 

155 (Richdale, 1957): this allowed for birds to be re-sighted by age 4, breed, have offspring that 

156 survived to breed and grand offspring that survived up until the 2014/15 breeding season, when 

157 these data were last updated. Inclusion of birds from the cohort beyond 2003 might have been re-

158 sighted only once or not at all, and could have skewed the results. Birds that were still alive or 

159 had been sighted after 2007 were excluded from the sample as their breeding lifetime might not 

160 have ended (n = 73 birds). 

161 We defined LRS as the number of offspring produced by an individual over their lifetime. 

162 Only data recorded from birds marked as chicks or as juveniles (one-year olds) could be used to 

163 ensure complete life-histories, as they were of known age due to plumage differences (duller 

164 colouration and lack of the distinctive yellow eye and crown of the adults). Yellow-eyed 

165 penguins are typically marked at c. 80 - 90 days, before fledging at c. 106 days (Seddon et al., 

166 2013). If a bird was marked as a juvenile, we estimated the cohort year by subtracting one year. 

167 Only birds that survived to adulthood (two or more years of age) could be used for life-history 

168 analysis, as these were potential breeders and by default, had sufficient data recorded for 

169 measuring LRS. The majority of birds that were never recorded to have attempted breeding 

170 typically lacked recorded data of any kind. A bird was considered to have attempted to breed if it 
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171 or its mate laid an egg. 

172 Analysis of LRS requires complete detectability of the focal population: this would be 

173 compromised if individuals bred elsewhere, or skipped breeding years and were consequently 

174 recorded as having died. We are confident that we have full records of birds due to the intensive 

175 monitoring at the study site and annual monitoring at adjacent sites along the coast, and the high 

176 level of natal (c. 81%) and breeding philopatry (c. 98%), and monogamy exhibited by this 

177 species (Richdale, 1957; Ratz et al., 2004). Birds that skip breeding remain largely undetectable 

178 during the breeding season, with only c. 8% of skipped birds in our sample being resighted as a 

179 non-breeder, however detection of breeders is close to 100% (Hegg et al., 2012). In our sample, 

180 72 yellow-eyed penguins that survived to breed skipped at least one breeding season once they 

181 had established breeding, which is not uncommon, particularly in the year following a poor 

182 season, death of a mate or a divorce (Moore, 1994; Ratz et al., 2004; Setiawan et al., 2005). Due 

183 to the small, discrete size of nesting areas, the intensity of monitoring at this and in surrounding 

184 sites, and the high degree of breeding site fidelity, we assumed that if a bird or breeding pair 

185 were not seen during multiple visits to the breeding area and to other surrounding areas from 

186 early incubation to the end of the guard period they were undertaking a breeding skip. None of 

187 the birds we assumed to be undertaking a breeding skip were re-sighted at adjacent monitored 

188 breeding areas during their skipped year. 

189 We excluded birds if they were found dead two or more years after marking at a location 

190 other than Boulder Beach, or were found dead on Boulder Beach more than five years after 

191 marking with no other resightings or nesting records in between. The latest year a bird could be 

192 recorded as observed and be presumed dead was 2007. We excluded birds if they were marked 

193 before the 1981 cohort when intensive monitoring began. 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2386v1 | CC BY 4.0 Open Access | rec: 23 Aug 2016, publ: 23 Aug 2016



194 Sample parameters

195 The sample parameters for modelling included sex, total number of breeding attempts, 

196 recruitment of first-generation offspring, recruitment of successful first-generation offspring, 

197 age-at-first-breeding, breeding lifespan, total number of mates and lifespan.

198 Birds were sexed by adult head and foot measurements according to Setiawan, Darby & 

199 Lambert (2004). In instances where birds had never been measured or when fledgling 

200 measurements were analysed, we inferred the sex from mates where possible, on the assumption 

201 that pairings were between males and females only and that the mate had been correctly 

202 identified. If there were no measurements or sex recorded for mates, we removed these birds 

203 from any lifetime data analysis. A total of 264 (12.3%) birds survived to breed out of the original 

204 sample of 2147 birds marked as chicks or juveniles, however data for sexing were available for 

205 217 birds from the sample (females n =112, and males n = 105). We used this sample of sexed 

206 birds for the analysis of life-history traits affecting LRS. It was critical to limit this study to birds 

207 that had been sexed so as not to pseudo-replicate breeding pairs. 

208 We measured lifespan in whole years at the time of marking as chicks (c. 3 months old), 

209 to the time of either being found dead or �missing� after three consecutive years.  Age-at-first-

210 breeding was recorded as the age of the bird during its first recorded breeding attempt. We 

211 calculated the number of mates as the minimum possible number of mates, due to 38 of 217 birds 

212 in the sample having unidentified mates in some years. We assumed that if a bird's mate was not 

213 recorded but it was breeding with a particular bird in the previous and subsequent years that it 

214 was the same mate in all three seasons.

215 Statistical analysis
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216 We carried out all statistical analyses using R (Version 3.3.0, R Core Team 2016).  We used two-

217 sample Wilcoxon rank-sum tests to test for statistical significance between males and females, 

218 for parameters including LRS, age-at-first-breeding, recruitment of first-generation offspring, 

219 recruitment of successful first-generation offspring, lifespan, total number of mates, total number 

220 of breeding attempts and breeding lifespan. 

221 The relationships between recruitment of first-generation breeders, successful first-

222 generation breeders, sex, and the effect of life-history traits on LRS were analysed using 

223 generalised linear models (GLM) with a quasi-Poisson error distribution to account for 

224 overdispersion and log-link function, using the lme4 package (Bates et al., 2015). There was the 

225 potential for bias, as the response and predictor variables were non-independent. We used an 

226 information-theoretic approach to model selection, by constructing a maximal model containing 

227 all probable input variables (based on a priori reasoning), and then ranking this model against all 

228 of its derivatives using QAICc. To account for model selection uncertainty, model-averaging was 

229 conducted for the best models  using the MuMIn and AICcmodavg packages in R 

230  2016; Mazerolle, 2016).

231 In order to compare specifically the life-history characteristics between birds which 

232 proved over the three generations to be highly fecund (�high quality�), and the remainder of the 

233 birds (�ordinary�), we defined the highly fecund individuals as follows: those birds with above-

234 average LRS relative to their sex (females  6, males  5) and those that had an above-average 

235 number of grand-offspring (second-generation chicks; females  7, males  4). Using the same 

236 GLM approach, we analysed the effect of life-history parameters on the LRS of these two groups 

237 of birds to determine differences in breeder quality.

238
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239 RESULTS 

240 Of the total sample of 2147 birds marked as chicks or juveniles from 1981 to 2003, 1546 

241 (72.0%) were thought to have died before reaching adulthood, whereas 441 birds survived to be 

242 seen at least once as an adult: 71 of these birds were sighted away from Boulder Beach at other 

243 monitoring locations where they subsequently bred. Of the 370 birds that were re-sighted at 

244 Boulder Beach as an adult at least once (17.2%), 264 attempted to breed at least once (12.3%), 

245 and 219 bred successfully at least once (10.2%). Only 124 birds produced at least one first-

246 generation chick that recruited to the breeding population and attempted to breed at least once 

247 (5.8%), and 102 had first-generation offspring that not only recruited but bred successfully at 

248 least once (4.8%). Overall figures are presented in Table 1.

249 LRS of male and female yellow-eyed penguins

250 There was high individual variance in LRS calculated for both males and females (n = 217), with 

251 this variance being higher for females (Table 2; Figure 2). The maximum number of total 

252 offspring a female yellow-eyed penguin produced was 24, compared to 23 for males. The only 

253 significant differences between males and females was age-at-first-breeding (Wilcoxon rank-sum 

254 test, W = 4373, P = 0.0004; Fig. 2), and recruitment of successful breeders (W = 6803, P = 

255 0.026); There was no difference between males and females for LRS (W = 6563.5, P = 0.14); 

256 recruitment (W = 6594, P = 0.10); lifespan (W = 5538, P = 0.46); total number of mates, (W = 

257 5879.5, P = 1.00); total number of breeding attempts (W = 6292, P = 0.37), and breeding lifespan 

258 (W = 6142.5, P = 0.57).

259 Relationships between fledging and recruitment
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260 There was a strong positive relationship between number of chicks fledged per parent (LRS) and 

261 number that recruited for females i) = exp (-0.659) * exp(0.14*LRSi) and males 

262 i) = exp (-0.864) * exp(0.149*LRS). There was also a significant positive relationship 

263 between the number of chicks fledged (LRS) and number of successful recruits (i.e. recruits that 

264 in turn successfully fledged offspring during at least one breeding attempt) for females 

265 i) = exp (-1.06) * exp(0.14*LRSi)) and males i) = exp (-1.51) * 

266 exp(0.158*LRS).

267 Life-history traits

268 Lifespan was the strongest positive correlate of LRS, followed by a negative correlation with 

269 age-at-first-breeding (Pseudo R-squared = 59.6%; Table 3). There was a trend associated with 

270 sex, with males having slightly lower LRS compared to females (Fig. 3). There was no 

271 association with the number of mates and LRS; or interactions between sex, age-at-first-breeding 

272 and lifespan (Table 3).

273 Determining the traits of highly fecund �high quality� breeders

274 �High-quality� birds (i.e., those with above-average LRS and fecundity; females = 32, males = 

275 24) produced 604 fledged chicks, of which 204 first-generation offspring recruited, and 146 were 

276 successful, producing 1002 grand-offspring (second-generation chicks) (Fig. 4). These higher-

277 quality breeding birds produced 76 first-generation offspring with an above-average LRS  6. In 

278 contrast, the remaining �ordinary� birds (females = 80, males = 81) produced 503 chicks, of 

279 which 92 first-generation offspring recruited, and 42 were successful in producing 154 grand-

280 offspring (second-generation chicks) (Fig. 4). The ordinary breeding birds (n = 161) produced 8 

281 above-average first-generation offspring.
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282 An interaction effect between breeder type and lifespan was detected, but there was no 

283 interaction between age-at-first breeding and breeder type (Table 4), despite the ordinary birds 

284 beginning breeding at least one year younger than the high-quality birds (Table 5). The ordinary 

285 birds had shorter lifespans and therefore lower LRS, with high-quality birds having on average 

286 double the longevity of their short-lived conspecifics (Table 5). 

287

288 DISCUSSION

289 By tracking reproductive success in yellow-eyed penguins over more than one generation we 

290 show that only a small proportion of fledglings survive, recruit, and attempt to breed, however 

291 fecundity and survival appears to be an inter-generational trait, with above-average breeders 

292 more likely to produce chicks that will be highly successful breeders. Fewer than 2.6% (56 of 

293 2147) of these breeding birds are what we call �super-breeders�, that appear to be successful in 

294 producing offspring that will themselves survive and go on to contribute disproportionately to 

295 the next generation. 

296 Only 10.2% of the sample population of 2147 fledgling yellow-eyed penguins eventually 

297 recruited and produced offspring at all, meaning that 89.8% of young fledged did not contribute 

298 to the next generation at Boulder Beach. Low juvenile survival is likely to be the principal reason 

299 for the low number of penguins recruiting to breeding populations. Only 20.5% of yellow-eyed 

300 penguin fledglings survived to adulthood (two years of age), a similar proportion to the 20.8% 

301 yellow-eyed penguins resighted as adults at the Boulder Beach complex between 1981 to 1990 

302 (Efford, Darby & Spencer, 1996), however our reported result includes 3.3% of birds that were 

303 resighted away from Boulder Beach. Our results (370 of 441 birds surviving to two years and 

304 sighted at Boulder Beach, 83.9%) suggest a similar rate of philopatry to Richdale�s (1957) study 
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305 (c. 81%). Our survival to adulthood rate was higher than the 10.4% of Adélie penguins 

306 (Pygoscelis adeliae) that survived to age two (Ainley & DeMaster, 1980), but low compared to 

307 the range of values for survivorship from fledging to sexual maturity for 19 species of passerines 

308 and seabirds (42 - 86%; Newton, 1989). Survivorship to two years was significantly lower than 

309 reported in several other studies of seabirds, including 57.6% for common guillemots (Uria 

310 aalge; Crespin et al., 2006), 41 to 54% for sooty shearwaters (Puffinus griseus; Fletcher et al., 

311 2013), and c. 77% for king penguins after one year (Aptenodytes patagonicus; Saraux et al., 

312 2011): it was even lower than the c. 32% of yellow-eyed penguins that survived to age two 

313 between 1936 and 1952 (Richdale, 1957). 

314 The probability that birds survive the period between parental care and adulthood has a 

315 large influence on population dynamics, but is highly variable (Maness & Anderson, 2013). The 

316 most common hypothesis for high rates of mortality in young birds is their lack of experience, 

317 poor foraging skills and physical immaturity (Lack, 1954; Ashmole, 1963; Orians, 1969; Dunn, 

318 1972), with positive correlations predicted between body mass and juvenile survival, based on 

319 the assumption that heavier juveniles have fat reserves that buffer the food limitation associated 

320 with inexperience (Lack, 1966; McClung et al., 2004; Maness & Anderson 2013).  Yellow-eyed 

321 penguins are sedentary foragers that lack a long-distance migratory phase in their life history, 

322 however juveniles undergo a pelagic phase lasting for up to two years, during which time they 

323 are sighted only erratically along the coast. No information exists on where juveniles disperse to 

324 (Darby & Seddon, 1990), and most mortality occurs during this post-fledging pelagic phase. It is 

325 unclear whether the low survival of juvenile penguins in this study is normal or depressed by 

326 changing environmental conditions. 
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327 This study indicates that while 530 marked chicks (24.7% of the original sample) were 

328 seen at Boulder Beach after fledging, 370 were seen at Boulder Beach by age 2 (69.8%), but only 

329 264 survived to breed at least once (49.8%). These figures suggest that juvenile mortality occurs 

330 in two or more stages: as high post-fledging mortality due to inexperience, immaturity and lack 

331 of skill, and possibly due to seasonal fluctuations in prey availability later in the breeding season 

332 when juveniles must prepare for their first annual moult. The difference in juvenile survival 

333 between Richdale's (1957) study and ours may be indicative of an adverse change in foraging 

334 conditions (Browne et al., 2011; Mattern et al., 2014), entanglement in recreational or 

335 commercial fishing gear (Darby & Dawson, 2000), increasing frequency of poor seasons (van 

336 Heezik 1990), and competition with or predation by recovering otariid populations (Bradshaw, 

337 Lalas & Thompson, 2000; Lalas et al., 2007). Marine pollution that results in disease outbreaks 

338 and mass mortality events, have also been hypothesised (e.g. 1990 mass mortality event, Gill & 

339 Darby 1993; e.g. diphtheritic stomatitis, Alley et al., 2004; Trathan et al., 2015). 

340 From the sample of 2147 fledglings, the proportions that survived and attempted breeding 

341 (12.3%), fledged offspring (10.2%) and fledged offspring that recruited (5.8%) seem low, 

342 however, the proportion of birds that attempted breeding and were successful is relatively high 

343 (219 of 264, 82.9%). In other words, if a bird was successful in surviving to make a breeding 

344 attempt, there was an 83% probability that it would be successful in fledging at least one chick in 

345 its lifetime, a 47% (124/264) probability it would fledge at least one chick that would recruit to 

346 the breeding population, and a 39% (102/264) probability that the bird would fledge chicks that 

347 would recruit and subsequently fledge offspring. The proportion of yellow-eyed penguins 

348 surviving to attempt to breed at least once was comparatively lower than in red-billed gulls 

349 (Larus novaehollandiae, 18 - 22%), little penguins (Eudyptula minor, 28 -35%), kittiwakes 
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350 (Rissa tridactyla, 34 - 42%) and short-tailed shearwaters (P. tenuirostris, 69 - 73%); however the 

351 proportion of breeding yellow-eyed penguins that produced recruits (47%) is one of the highest, 

352 with only kittiwakes having similar recruitment rates (c. 41 - 50%) (Coulson, 1988; Wooller et 

353 al., 1988; Mills, 1989; Dann & Cullen, 1990; Moreno, 2003). In yellow-eyed penguins, 

354 recruitment into the breeding population appears to be driven in part by the higher survival rate 

355 of the offspring of a subset of breeders, with high-quality birds, labelled here as �super-

356 breeders�, producing more recruits (204 first-generation recruits from 56 birds, 68.9%) than the 

357 ordinary breeders (92 first-generation recruits from 181 birds, 31.1%).

358 There was considerable variation between both male and female penguins that survived to 

359 breed in the total number of offspring they fledged. For a long-lived species, the average number 

360 of fledged young seems relatively small (female mean = 5.61, male mean = 4.56), however it is 

361 within the range of values reported from the few studies that have estimated mean LRS in 

362 seabirds, passerines and birds of prey, demonstrating that LRS for many species of birds remain 

363 similar as a result of life-history trade-offs (Table 6). Females had shorter lifespans but longer 

364 breeding lifespans than males, because females started breeding earlier than males. Females may 

365 have more opportunities to breed than males, due to an apparent sex-skew, with males 

366 outnumbering females (Richdale, 1957). Inexperience, and a high energetic cost from the first 

367 breeding attempt may compromise the survival of young females, whereas males may have more 

368 time to hone foraging and predator avoidance skills before being recruited, and because there is a 

369 surplus of males each season, sporadic breeding may allow them to have longer lifespans but 

370 similar LRS to females, because they do not have to bear the cost of breeding every year. The 

371 maximum number of fledged offspring for both male (23) and female yellow-eyed penguins (24) 

372 was much higher than mean values, reflecting the highly negatively skewed distribution of LRS 
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373 (Fig.2), and consistent with the observation that most individuals produce small numbers of 

374 young, and only a few produce many (Newton 1989). However, there was a wide range in the 

375 number of young fledged by individual birds regardless of sex, despite the greater cost of 

376 reproduction incurred by breeding females. Newton (1989) concluded that LRS is generally 

377 similar for males and females in species that lack high levels of sexual dimorphism, which is the 

378 case for yellow-eyed penguins (Seddon et al., 2013). 

379 LRS predictors

380 Lifespan was the strongest correlate of LRS, with the number of offspring produced increasing 

381 significantly with increased lifespan. This trend is very common for seabirds (Clutton-Brock, 

382 1988; Newton, 1989; Newton, 1995), and is attributed to a number of factors: increased 

383 opportunities for these long-lived birds to breed, the association between success and experience 

384 observed in many seabird species (Limmer & Becker, 2009; Saraux et al., 2012), and the general 

385 fitness required for a long lifespan. Long-lived birds are the primary contributors to the gene 

386 pool in many species, meaning there is likely to be selection for viability (Moreno, 2003; Mauck, 

387 Huntington & Grubb, 2004). We found that high-quality breeders had lifespans that were on 

388 average double that of ordinary breeders, but they produced 3 to 4 times more offspring in their 

389 lifetimes than ordinary birds (Table 5). In other species lifespan explains less of the variance 

390 when the number of recruits is examined, as opposed to number of offspring produced (Newton, 

391 1989). In contrast, we found a highly significant relationship between LRS and the number of 

392 recruits and successful recruits produced for yellow-eyed penguins, meaning that the 

393 characteristics of birds with longer lifespans are likely to be reliable predictors of parental quality 

394 for this species. 
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395 Age-at-first-breeding was the second strongest predictor of LRS in yellow-eyed 

396 penguins, with birds that began breeding later having lower lifetime totals of offspring, due to a 

397 decrease in total breeding opportunities (Newton, 1989). The theory of antagonistic pleiotropy 

398 suggests that increased early-life fecundity is at the expense of later-life fitness, and can be 

399 selected for if selection is stronger at early stages of life, so that early benefits outweigh later 

400 costs (Williams, 1957).  While there was a difference between the LRS of males and females in 

401 this study, no interaction effect could be detected, despite earlier reproduction in females, which 

402 may potentially result in accelerated reproductive senescence (Partridge, 1992, Reed et al., 

403 2008). This trend has been observed in several long-lived bird species, which all showed a 

404 positive correlation between age-at-first-breeding and survival in females, suggesting a trade-off 

405 between early recruitment and lifespan (Ollason & Dunnet ,1978; Ainley & DeMaster, 1980; 

406 Pyle et al., 1997; Tavecchia et al., 2001). Individual variation in LRS for yellow-eyed penguins 

407 therefore appears to be due to variation in lifespan (1-24 years) and age-at-first-breeding (2-12 

408 years), together determining the length of the breeding lifespan (1-18 years). 

409 It is common for many species of seabirds to show reduced breeding success after 

410 changing mates, most likely due to a trade-off in time and energy expenditure for finding a new 

411 mate and foraging, and also due to lack of familiarity with the new mate (Ollason & Dunnet, 

412 1978; Coulson & Thomas, 1985; Newton, 1989). In short-tailed shearwaters a mate change 

413 results in a temporary decrease in breeding success, but this effect lessens with each new pairing 

414 of an individual as breeding experience increases (Wooller et al., 1989), while  breeding success 

415 of male common guillemots decreased with an increasing number of mates (Lewis et al. 2006). 

416 Yellow-eyed penguins that change mates are more likely to experience breeding failure the 

417 subsequent year (Setiawan et al., 2005). We did not detect a significant negative effect of number 
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418 of mates on lifetime number of offspring produced, possibly due to the tendency for longer-lived 

419 birds to outlive their mates, resulting in higher overall numbers of mates.  

420 Conservation implications 

421 Chronic and acute stress as a result of climate change, marine pollution, disturbance at terrestrial 

422 breeding sites and extreme nutritional stress may decrease LRS, as the cumulative effects of 

423 increasing types of stressors force individuals to reduce their investment in productivity, increase 

424 breeding skip behaviours (e.g. red-footed boobies Sula sula, Cubayanes et al., 2011) or result in 

425 breeder mortality (Kitaysky et al., 2010). In black-legged kittiwakes, breeding behaviour is 

426 mediated by increased corticosterone production during periods of poor food supply (Kitaysky et 

427 al., 2010; Schultner et al. 2013), with luteinising hormone levels decreasing with increased 

428 mercury contamination, resulting in increased breeding skips (Tartu et al., 2013). Clarifying the 

429 factors that separate the success of the few that produce many offspring from the many that do 

430 not may therefore need to take into account the role of chronic or acute stress on the parameters 

431 that may be used to measure their fitness. Likewise, birds that contribute disproportionately to 

432 successive generations may have higher thresholds for anthropogenic and environmental 

433 stressors than average birds. The impact of extreme events on different phenotypes of 

434 conspecifics may differ as a consequence of the "super-breeder" phenomenon, since these birds 

435 tend to consistently balance high LRS with long-lifespans in a stochastic environment. 

436 It appears that the Boulder Beach population of yellow-eyed penguins is sustained by a 

437 small proportion of high-quality, long-lived birds, the �super-breeders�. High levels of philopatry 

438 may drive high- quality and ordinary breeding recruits to return to their natal area, and once they 

439 begin breeding they are likely to remain at these breeding sites for life, which may be hazardous 

440 for population stability should either one of their marine or terrestrial habitats become 
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441 threatened. If circumstances require that it is deemed necessary to protect specific individuals in 

442 a population from catastrophe, or to differentially allocate resources due to budget constraints, it 

443 would be important to distinguish between potentially very successful breeders and the 

444 evolutionary �living dead� (Moreno, 2003). Oiling is the greatest anthropogenic threat to 

445 penguins (Trathan et al., 2015), requiring triage of breeders for temporary captive management. 

446 The unexplained mass mortalities of adult and juvenile yellow-eyed penguins on the Otago 

447 Peninsula in 1990, 1996 and 2013 due to exposure to an unknown toxic agent have presented 

448 opportunities to safeguard specific individuals from harm (Gill & Darby, 1993; DOC, 

449 unpublished data). While effort should be placed on safeguarding all individuals in a threatened 

450 population during a period of catastrophe, only a small proportion of individuals will contribute 

451 to the recovery of the population following such an event. 

452 Although it seems sensible to focus conservation resources on �super-breeders�, the 

453 challenge lies in identifying them. The positive relationship between LRS and the number of 

454 successful recruits indicates that birds demonstrating relatively high LRS are also those that 

455 produce high-quality offspring. Lifespan is the main predictor of LRS, but unfortunately it 

456 cannot be calculated until the death of an individual. Age-at-first-breeding can be identified 

457 before death, although its association with potential LRS is much weaker, however high-quality 

458 birds tended to recruit a year later than ordinary birds. 

459 It may be possible to single out birds on the basis of life-history traits that relate to state-

460 based quality. The importance of state-based assessments for yellow-eyed penguins has yet to be 

461 fully explored, especially with regard to analysing the immunocompetence of individuals. 

462 Disease prevalence has increased in recent years (Alley et al., 2004; Hill et al., 2010; Argilla et 

463 al., 2013). Moreno et al. (1998) measured variables related to health state and cell-mediated 
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464 immunity between early and late breeders for chinstrap penguins (P. antarctica), finding that 

465 early breeders experienced better health than later breeders. Female chinstrap penguins with 

466 leukocytosis laid smaller eggs, had slower chick growth rates, and were more prone to failure 

467 (Moreno et al., 1998). Future studies could investigate state-based aspects that may coincide with 

468 age-specific breeding success, in order to gain an understanding of what makes some of these 

469 birds resilient and consistently successful breeders. Information about foraging ecology, 

470 particularly in young birds is also necessary. Foraging strategies in high quality Adélie penguins 

471 have been linked to better provisioning of chicks, suggesting that some birds may be 

472 physiologically more capable by virtue of genetic superiority (Lescroël et al., 2010). Given the 

473 ongoing decline in the population of yellow-eyed penguins at Boulder beach, management would 

474 benefit from further research into how super-breeders and their offspring may contribute to 

475 population viability and effective population size. 
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741 Table 1. Breeding and recruitment overview of numbers and percentages of individual yellow-

742 eyed penguins marked between 1981 and 2003 at Boulder Beach, Otago Peninsula, New Zealand 

743 (n = 2147).

Number Percent

Marked as chick or juvenile at Boulder Beach 2147

Marked chicks that were never resighted 1546 72.0

Marked chicks that were resighted under 2 years 601 28.0

Survived to adulthood (2 years) 441 20.5

Sighted at Boulder Beach 370 17.2

Sighted elsewhere 71 3.3

Attempted breeding 264 12.3

Fledged offspring 219 10.2

Fledged first-generation offspring that recruited 124 5.8

Fledged successful first-generation offspring 102 4.8

744
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746 Table 2. Mean  LRS, number of recruits, number of recruits that bred successfully, lifespan, age-

747 at-first-breeding, breeding lifespan, number of breeding attempts and number of mates of female 

748 (n = 112) and male (n = 105) yellow-eyed penguins breeding at Boulder Beach, New Zealand. 

749 (Var = variance; se = standard deviation; min = minimum; med = median; max = maximum).

Variable mean var se min med max

FEMALES

LRS 5.61 26.17 0.48 0 4 24

Recruits 1.60 3.88 0.19 0 1 9

Successful recruits 1.08 2.11 0.14 0 0 7

Lifespan (years) 8.00 25.96 0.48 2 6.5 24

Age at first breeding 3.28 2.02 0.13 2 3 12

Breeding lifespan (years) 4.72 21.25 0.44 0 3 17

Breeding attempts 4.95 14.23 0.36 1 4 16

Total mates 1.97 1.49 0.12 1 2 7

MALES

LRS 4.56 19.21 0.43 0 4 23

Recruits 1.11 2.31 0.15 0 1 6

Successful recruits 0.64 1.10 0.10 0 0 5

Lifespan (years) 8.17 20.98 0.45 2 8 21

Age at first breeding 3.87 2.58 0.16 2 3 11

Breeding lifespan (years) 4.30 18.02 0.41 0 3 18

Breeding attempts 4.39 10.36 0.31 1 4 14

Total mates 1.97 1.41 0.12 1 2 6
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751 Table 3. Model-averaged generalised linear model of lifetime reproductive success (LRS) and 

752 life-history parameters of yellow-eyed penguins that were marked at Boulder Beach, New 

753 Zealand between 1981 and 2003 (All non-binary data are standardised to have mean = 0 and SD 

754 = 1).

755

Coefficients Estimate SE

95% 

Confidence 

Interval

Relative 

Importance

(Intercept)* 1.50 0.06 (1.38, 1.61) -

Sex (Male) -0.20 0.09 (-0.38, -0.03) 0.88

z (Lifespan) 0.62 0.05 (0.53, 0.72) 1.00

z (Age at first breeding) -0.12 0.05 (-0.22, -0.02) 1.00

z (Total mates) -0.03 0.04 (-0.10, 0.05) 0.20

Sex (Male): z (Age at first 

breeding) 0.05 0.07 (-0.09, 0.19)

0.25

Sex (Male): z (Lifespan) 0.07 0.07 (-0.07, 0.20) 0.38

756 *Sex (Female) is the reference category

757  Significant results

758

759 Model statement: glm (LRS ~ zLIFESPAN + zAGEATFIRSTBREEDING + zTOTALMATES 

760 + factor(SEX) + factor(SEX): zAGEATFIRSTBREEDING + factor(SEX): zLIFESPAN 

761

762
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763 Table 4. Model-averaged generalised linear model of lifetime reproductive success (LRS), life-

764 history parameters and breeder quality of yellow-eyed penguins that were marked at Boulder 

765 Beach, New Zealand between 1981 and 2003 (All non-binary data are standardised to have mean 

766 = 0 and SD = 1).

767

Coefficients Estimate SE

95% 

Confidence 

Interval

Relative 

Importance

(Intercept)* 1.19 0.05 (1.09, 1.20) -

Breeder quality (higher-

quality) 0.82 0.09 (0.65, 1.00)

1.00

z (Age at first breeding) -0.13 0.06 (-0.26, -0.01) 1.00

z (Lifespan) 0.63 0.05 (0.53, 0.72) 1.00

Breeder quality (higher-

quality): z (Age at first 

breeding) -0.26 0.07 (-0.40, -0.13)

1.00

Breeder quality (higher-

quality): z (Lifespan) 0.04 0.07 (-0.06, 0.25) 0.43

768 *Breeder quality (lower-quality) is the reference category

769  Significant results

770

771 Model statement: glm (LRS ~ zLIFESPAN + zAGEATFIRSTBREEDING + zTOTALMATES 

772 + factor(BREEDERQUALITY) + factor(BREEDERQUALITY): zAGEATFIRSTBREEDING + 

773 factor(BREEDERQUALITY): zLIFESPAN 
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775 Table 5. Mean LRS, number of first-generation offspring, number of first-generation offspring that bred 

776 successfully, lifespan, age-at-first-breeding, breeding lifespan, number of breeding attempts and number 

777 of mates of female (n = 112) and male (n = 105) yellow-eyed penguins breeding at Boulder Beach, New 

778 Zealand. (Var = variance; se = standard deviation; min = minimum; med = median; max = maximum). 

779 Continued overleaf.

Variable mean var se min med max

Females (ordinary breeders, n = 80)

LRS 3.31 8.67 0.33 0 2 13

Recruits 0.63 0.87 0.10 0 0 4

Successful recruits 0.34 0.33 0.06 0 0 2

Lifespan (years) 6.10 14.8 0.43 2 5 22

Age at first breeding 2.96 0.62 0.09 2 3 5

Breeding lifespan (years) 3.14 13.49 0.41 0 2 17

Breeding attempts 3.46 6.94 0.29 1 3 13

Total mates 1.79 1.46 0.14 1 1 7

Females (high-quality breeders, n = 32)

LRS 11.34 24.04 0.87 6 10.5 24

Recruits 4.03 3.13 0.31 1 4 9

Successful recruits 2.94 1.74 0.23 1 3 7

Lifespan (years) 12.75 22.65 0.84 5 12 24

Age at first breeding 4.06 4.77 0.39 2 3 12

Breeding lifespan (years) 8.69 18.99 0.77 2 8 17

Breeding attempts 8.66 13.39 0.65 3 8 16

Total mates 2.44 1.29 0.20 1 2 5

Males (ordinary breeders, n = 81)

LRS 2.94 7.68 0.31 0 2 13

Recruits 0.52 0.70 0.09 0 0 4

Successful recruits 0.19 0.15 0.04 0 0 1

Lifespan (years) 6.88 13.43 0.41 2 6 17

Age at first breeding 3.73 1.83 0.15 2 3 9

Breeding lifespan (years) 3.15 12.28 0.39 0 2 14

Breeding attempts 3.44 7.30 0.30 1 3 10

Total mates 1.84 1.41 0.13 1 1 6
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Males (high-quality breeders, n = 24)

LRS 10.04 19.52 0.90 5 9 23

Recruits 3.13 2.55 0.33 1 3 6

Successful recruits 2.17 1.28 0.23 1 2 5

Lifespan (years) 12.54 22.34 0.96 6 10.5 21

Age at first breeding 4.33 5.01 0.46 2 4 11

Breeding lifespan (years) 8.20 18.71 0.87 3 6.5 18

Breeding attempts 7.58 7.64 0.56 4 7 14

Total mates 2.41 1.21 0.22 1 2 6

780
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781 Table 6. Comparison of LRS and maximum number of young fledged by individuals of five 

782 different bird species for males and females (where data were available from Coulson 1988; 

783 Mills 1989; Dann and Cullen 1990; Korpimäki 1992; Krüger and Lindström 2001; Garamszegi 

784 et al. 2004).

785

Species LRS

(Female)

LRS

(Male)

Max.

fledged 

(Female)

Max. 

fledged

(Male)

Yellow-eyed penguin 

(Megadyptes antipodes)

5.61 4.56 24 23

Black-legged kittiwake 

(Rissa tridactyla)

6.93 7.41 - -

Red-billed gull 

(Larus novaehollandiae)

3.4 3 26 28

Little penguin 

(Eudyptula minor)

2.28 2.13 35 44

Tengmalm�s owl 

(Aegolius funereus)

- 5.2 - 26

Common buzzard 

(Buteo buteo)

3.48 2.72 20 20

Collared flycatcher 

(Ficedula albicollis) 

5.18 - - -

786  

787  

788
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790

791 Figure 1. Map showing the location of Boulder Beach on the Otago Peninsula, Dunedin, New 

792 Zealand (adapted from McClung et al. 2004).
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793

794 Figure 2. Age-of-first-breeding of female (striped, n = 112) and male (black, n = 105) yellow-

795 eyed penguins with complete life histories that bred at Boulder Beach, New Zealand.  
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797

798 Figure 3. Frequencies of the total number of chicks fledged (lifetime reproductive success, LRS) 

799 by female (striped, n = 112) and male (black, n = 105) yellow-eyed penguins with complete life 

800 histories that bred at Boulder Beach, New Zealand.
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801

802

803

804 Figure 4. The relationship between lifetime reproductive success (LRS) and the production of 

805 second-generation offspring (grand-offspring) for female ( = �high-quality breeder�,  = 

806 �low-quality breeder�, n = 112) and male ( = �high-quality breeder�,  = �low-quality 

807 breeder�, n = 105) yellow-eyed penguins with complete life histories that bred at Boulder Beach, 

808 New Zealand. 
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