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ABSTRACT

Most reconstruction methods for genomes of ancient origin that are used today require a closely

related reference. In order to identify genomic rearrangements or the deletion of whole genes,

de novo assembly has to be used. However, because of inherent problems with ancient DNA, its

de novo assembly is highly complicated. In order to tackle the diversity in the length of the input reads,

we propose a two-layer approach, where multiple assemblies are generated in the first layer, which

are then combined in the second layer. We used this two-layer assembly to generate assemblies for

an ancient sample and compared the results to current de novo assembly approaches. We are able

to improve the assembly with respect to the length of the contigs and can resolve more repetitive

regions.
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INTRODUCTION

The introduction of next generation sequencing (NGS) made large scale sequencing projects fea-

sible (Bentley et al., 2008). Their high throughput allows fast and cheap sequencing of arbitrary

genomic material. It revolutionized modern sequencing projects and made the study of ancient

genomes possible (Der Sarkissian et al., 2015). However, the resulting short reads pose several

challenges for the reconstruction of the desired genome when compared to the longer Sanger reads (Li

et al., 2010). For modern DNA samples, the problem of having only short reads can be mitigated

by the sheer volume of sequenced bases and usage of long fragments with paired-end sequencing.

The insert size is used to determine the distance between the forward and the reverse read, which are

sequenced from both ends of the fragments. These distances can be important for de novo assembly as

they are used for repeat resolution and scaffolding. They provide the same information as using one

long Sanger read as the bases in between can be derived from other reads. However, samples from

ancient DNA (aDNA) mostly contain only very short fragments between 44 and 172 bp (Sawyer et al.,

2012). Paired-end sequencing of these short fragments therefore often results in overlapping forward

and reverse reads (thus actually negative inner mate pair distances). Additionally, post-mortem

damage of aDNA, most importantly the deamination of cytosine to uracil, can result in erroneous

base incorporation (Rasmussen et al., 2010). Using reference based approaches, these errors can

be detected, as they always occur at the end of the fragments. This is not possible using de novo

assembly approaches and these errors can lead to mistakes in the assembly. Deeper sequencing does

not yield better results as the amount of endogenous DNA contained in aDNA samples is often very

low (Sawyer et al., 2012).

In order to achieve a higher content of endogenous DNA, samples are often subject to enrichment

using capture methods (Avila-Arcos et al., 2011). The principle of these capture methods relies on

selection by hybridization (Maricic et al., 2010). Regions of interest are fixed to probes prior to

sequencing. These probes can be immobilized on glass slides, called array capture (Hodges et al.,

2007), or recovered by affinity using magnetic beads, referred to as in-solution capture (Gnirke et al.,

2009). Using these capture methods, only DNA fragments that can bind to the probes are used for

amplification, which increases the amount of the desired DNA. However, as these methods only

amplify sequences that are contained in the probes, regions that were present in ancient samples and

lost over time cannot be amplified and thus cannot be identified. Nevertheless, most of the current

aDNA projects use these capture methods.

Currently, there are two ways to reconstruct a genome from sequencing data. If there is a known,

closely related genome, it can be used as a reference. Mapping programs like BWA (Li and Durbin,

2009) can then be used to align the reads against the reference genome. Single nucleotide variations

(SNVs) or short indels between the DNA sequence of the sample and reference can be identified after

all reads are aligned.
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Because of the inherent characteristics of aDNA, specialized mapping pipelines for the recon-

struction of aDNA genomes, such as EAGER (Peltzer et al., 2016) and PALEOMIX (Schubert et al.,

2014), have recently been published. The mapping against a reference genome allows researchers to

easily eliminate non-endogenous DNA and identify erroneous base incorporations. These errors can

be identified after the mapping and used to verify that the sequenced fragments stem from ancient

specimen.

The reference-based mapping approaches cannot detect large insertions or other genomic ar-

chitectural rearrangements. In addition, if the ancient species contained regions that are no longer

present in the modern reference, these cannot be identified via mapping against modern reference

genomes. In these cases a de novo assembly of the genome should be attempted. This is also true for

modern samples, if no closely related reference is available. If the ancient sample was sequenced

after amplification through capture arrays, genomic regions that are not contained on the probes

also can’t be identified. Using shotgun sequencing, sequences that stem from species that migrated

into the sample post-mortem are often more abundant (Knapp and Hofreiter, 2010). However, if

shotgun data is available an effort for assembly can be made to identify longer deletions or genomic

rearrangements. The introduction of NGS has lead to new assembly programs that can handle short

reads such as SOAPdenovo2 (Luo et al., 2012), SPADES (Bankevich et al., 2012) and many more.

The assembly of modern NGS data is still a hard problem (Chao et al., 2015) and methods to

improve them are constantly developed. Among these is ALLPATHS-LG (Gnerre et al., 2011),

arguably the winner of the so-called Assemblathon (Earl et al., 2011). ALLPATHS-LG uses the

information provided by long fragments from paired-end and mate-pair sequencing to improve the

assembly, and has therefore been shown to be one of the best assembly programs that are available

today (Utturkar et al., 2014). However, because of the short fragments contained in aDNA samples,

this approach is not feasible for aDNA samples and other methods have to be employed.

De Bruijn graph assemblers highly rely on the length of the k-mer to generate the graph (Li

et al., 2012). The choice of an optimal value is already a hard problem for modern sequencing

projects (Durai and Schulz, 2016).

Because of the short fragments of aDNA samples, the sequencing adapter is often partially or fully

sequenced. After the adapter is removed, the length of the resulting read is then equal to the length of

the fragment. Furthermore, overlapping forward and reverse reads can be merged to generate longer

reads, which is usually done in aDNA studies to improve the sequence quality (Peltzer et al., 2016).

Thus the length distribution of reads from aDNA samples is often very skewed. This implies that the

choice of one single fixed k for the k-mer in de Bruijn graph-based assembly approaches is not ideal

in aDNA studies. Long k-mers miss all reads that are shorter than the value of k and shorter k-mers

cannot resolve repetitive regions.

We have developed a two-layer assembly approach where in the first layer, the contigs are

assembled from short reads using a de Bruijn graph approach with multiple k-mers. These contigs

are then used in the second layer in order to combine overlapping contigs contained in the different

assemblies resulting from the first layer. This is done using an overlap-based approach.

Outline This article is organized as follows. The next section contains the methods we used to

improve the de novo assembly for aDNA samples. In short, we used multiple assemblies with different

k-mers and then merge these assemblies into longer contigs. In the results section, we used our

two-layer assembly to improve the assembly of the sample Jorgen625 published by Schuenemann

et al. (2013). Finally, we conclude our findings and give an outlook.

METHODS

The general structure of our two-layer approach is as follows: In the first layer, the raw fastq

files are preprocessed, followed by a de Bruijn graph-based assembly using multiple k-mer sizes to

generate several different, yet similar assemblies. All produced contigs are quality filtered before

they are combined and used in the second layer. There, an overlap-based approach is used to identify

contigs in the different assemblies that represent the same genomic region. These can be merged

into longer contigs. Afterwards small contigs are removed from the result. The rest of this section

explains these steps in more detail.

We used the tool Clip & Merge (Peltzer et al., 2016) to remove the sequencing adapters. It was

also used to quality trim all bases in reads below a minimum phred score of 20.This threshold was left

at this default value as the low-quality ends of the reads are merged and thus the base call is confirmed

by two reads. The value was not changed for the unmerged reads in order to be able to compare the

experiments. In order to evaluate how different preprocessing affects the assembly, the reads were
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Figure 1. Workflow of our two-layer assembly approach. First the reads are preprocessed by

removing sequenced adapters and clipping low-quality bases. After that, multiple de novo assemblies

are generated using a de Bruijn graph approach with multiple values for k. The reads are then

mapped back against each of these resulting contigs and the contigs with no read support are filtered

out. In Layer 2, these filtered contigs are then combined and assembled again using an

Overlap-Layout-Consensus approach. Very short contigs are removed. The resulting contigs are

mapped against a reference genome and contig statistics are calculated in order to assess the quality

of the assembly.

treated using three different methods: First, the reads were only adapter clipped and trimmed. Reads

that no longer have a partner were removed. These reads were then used in a paired-end assembly.

Second, after the reads were adapter clipped and quality trimmed, all resulting forward and reverse

reads were combined into one file, each read given a unique identifier so that they could be used in a

single-end assembly. Third, after the adapter clipping the forward and reverse reads were merged into

longer reads whenever possible. For the merging of the reads, we used the standard parameters of

Clip & Merge defining a minimum overlap length of 10 bp with a maximum mismatch rate of 5%.

The resulting reads were then quality trimmed as described above. Unique identifiers were assigned

to forward and reverse reads that could not be merged and added to the resulting fastq file. These

reads were then used in a single-end assembly. In all three sets, resulting reads that were shorter than

25 bp were removed before the assembly.

After the preprocessing, the resulting reads are of different lengths. The reason for this are the

different fragment lengths contained in the sample. This is why we propose assembly of aDNA using a

two-layer approach. In the first layer, we use a k-mer based assembly program like SOAPdenovo2 (Luo

et al., 2012), MEGAHIT (Li et al., 2014), or any other assembly program for which different values

for k can be chosen.

De Bruijn based programs first generate all possible k-mers based on the input reads. Matching

k-mers are used to generate the de Bruijn graph. This can lead to random overlaps of k-mers

contained in different reads and therefore to infeasible contigs. To filter out these contigs, the reads

are mapped back against the resulting contigs.This can be done by using modern mapping programs

like BWA-MEM (Li, 2013). Contigs that are not supported by any read are removed before the next

step.

To combine the results of the different assemblies, each contig is given a unique identifier before

they are combined into one file. This file is the input of the second layer assembly. Here, the assembly

is based on string overlaps instead of k-mers. An assembly program that uses this approach is the

String Graph Assembler (SGA) (Simpson and Durbin, 2012). It efficiently calculates all overlaps of

the input using suffix arrays (Manber and Myers, 1993). These overlaps are then used to generate an

overlap graph and the final contigs are generated based on this graph. We used this method to merge

the contigs from the different assemblies based on their overlap.

As SGA uses string-based overlaps and modern sequencing techniques are not error-free, it

provides steps to correct for these errors. There is a preprocessing step that removes all bases that are

not A,G,C or T. There is also a correction step that performs a k-mer based error correction and a

filtering step that removes input reads with a low k-mer frequency. Because the input for SGA are

already pre-assembled contigs, these errors are already averaged out and these steps are not used

for the assembly of the second layer. However, the assemblies with the different k-mers produce

similar contigs, which is why the duplicate removal step of SGA is performed. SGA can also use the

Ferragina Manzini (FM) index (Ferragina and Manzini, 2000) to merge unambiguously overlapping

sequences, which is used to further remove duplicate information. Afterwards the overlap graph

is calculated and the new contigs are assembled. All these steps are performed using the standard

parameters provided by SGA. Afterwards, contigs shorter than 1 000 bp are removed from the final

assembly. In order to evaluate our two-layer assembly method, the resulting contigs are then aligned
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with the reference genome of interest. We use again BWA-MEM for this step. Finally various

statistics for the assembly are computed.

An overview of this methodology can be seen in Figure 1.

RESULTS
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Figure 2. Read length distribution for

the different preprocessed fastq files.

Blue: merged reads, red: single reads.

To evaluate our two-layer assembly, we applied it to

a published ancient sample containing DNA from My-

cobacterium leprae. We used the sample Jorgen625 pub-

lished by Schuenemann et al. (2013). The bones from

which the DNA was extracted, are approximately 700

years old. Two different sequencing libraries are avail-

able for this sample. In order to get an overview of

the two libraries, we used the EAGER pipeline (Peltzer

et al., 2016) to map the two libraries against the refer-

ence genome of Mycobacterium leprae TN. One of the

two libraries contained relatively long fragments with a

mean fragment length of 173.5 bp and achieved an aver-

age coverage on the reference genome of 102.6X. The

other library was sequenced on an Illumina MiSeq with

a read length of 151 bp. It was produced from shorter

fragments with a mean fragment length of 88.1 bp and

a mean coverage of 49.3X. With its shorter fragments

and lower achieved coverage, the second library better re-

flects typical sequencing libraries generated from aDNA

samples (Sawyer et al., 2012), so we focused our experi-

ments on this library.

The distribution of the different read lengths after the different preprocessing steps were performed

is shown in Figure 2. There are many reads that were clipped, trimmed or merged and thus not of

equal length.

Each of the three input read files (generated from the three different preprocessing methods) were

then subject to our two-layer assembly approach. We used both SOAPdenovo2 (Version 2.04) and

MEGAHIT (v1.0.4-beta-3-g027c6b6) in the first layer of the assembly. In order to cover a broad

range of k-mers representing both short and long reads contained in the input, we used ten different

k-mer sizes (37,47,57, . . . ,127). After removing contigs with no read support, the contigs were then

reassembled with SGA. To identify contigs that belong to the genome of Mycobacterium leprae, the

results were mapped against the reference sequence of Mycobacterium leprae TN. Contigs that could

be mapped against the reference were extracted and used to compare the assemblies generated in the

different layers.

Table 1 shows statistical results of the contigs that could be mapped against the reference genome

of Mycobacterium leprae TN. The results that were generated in the second layer are shown as well as

the assembly that generated the longest contig in the first layer using the respective assembly program.

Additionally, results from SGA directly on the fastq files as well as results from programs that can

use multiple k-mers in their assembly are shown. It can be seen that when using SOAPdenovo2 in the

first layer, the longest contig, the N50 and the mean contig length could be improved by using SGA to

merge the different assemblies in the second layer. Here, the overall best assembly was derived with

the preprocessing method using the combined trimmed and clipped reads for a single-end assembly

in the first layer. SOAPdenovo2 can also generate its graph using multiple k-mers. The result of

this method is better than using only one k-mer but not as good as our two-layer approach. Using

MEGAHIT, the merging in the second layer with SGA also improved the assemblies generated in the

first layer. MEGAHIT also provides the possibility to generate an assembly using multiple k-mers.

As with SOAPdenovo2, they improve the assembly compared to using only one k-mer but the result

is worse than out two-layer methodology. Another assembly program that can use multiple k-mers to

generate a result is the “interactive de Bruijn graph de novo assembler” (IDBA) (Peng et al., 2010).

Its results are very good but not as good as the second layer assembly with SOAPdenovo2 in the first

layer.

The length distribution of the resulting contigs is shown in Figure 3. After the second layer

assembly, the number of contigs at the upper end of the length distribution has increased, compared

to the first layer. With MEGAHIT, this is also true, even though it is not as pronounced as in the

assembly using SOAPdenovo2. Using MEGAHIT, the total number of contigs that could be mapped

4/10

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2383v1 | CC BY 4.0 Open Access | rec: 22 Aug 2016, publ: 22 Aug 2016



Submitted to the German Conference on Bioinformatics 2016 (GCB2016)

Table 1. Results using our two-layer assembly with SOAPdenovo2 and MEGAHIT as primary

assemblies compared with the standard assemblies of SGA, SOAPdenovo2, MEGAHIT and IDBA

on the short fragment library. The results show only values for contigs that could be mapped against

the genome of Mycobacterium leprae. Here only the best assemblies (based on the longest mapped

contig) for the different preprocessing methods and k-mers are shown. “SOAP” alone represents the

results using the parameter (-m) resulting in an assembly using multiple different k-mers for the

generation of their underlying graph structure. “MEGAHIT” and “IDBA” alone also represent an

assembly using multiple internal k-mers. “SOAP K57” and “MEGAHIT K77” represent the best

assemblies in the first layer of our pipeline using the respective k-mers of 57 and 77. “SOAP SGA”

and “MEGAHIT SGA” show the results of the second layer using SOAPdenovo2 and/or MEGAHIT

in the first layer. The column “preprocessing” describes the preprocessing method that was used to

generate the result. Values in bold represent the best value that could be achieved. All other statistical

values can be found in the supplementary material.

name prepro-

cessing

# contigs N50 mean con-

tig length

longest

contig

# gaps

L
ay

er
1

SOAP single 249 21909 13210.3 99866 103

MEGAHIT merged 175 28410 16777.5 91499 106

IDBA paired 164 35419 20152.7 118220 118

SGA single 1157 2199 1997.3 8640 952

SOAP K57 single 215 24962 14918.6 72345 120

MEGAHIT K77 merged 253 21863 12765.4 87880 108

L
v
l

2 SOAP SGA single 133 42136 25225.0 135656 88

MEGAHIT SGA merged 668 19758 12245.3 109259 80

against the reference genome after the second layer assembly with SGA is significantly higher than

in the individual assemblies of the first layer. There are several more short contigs, whereas using

SOAPdenovo2 in the first layer leads to fewer shorter contigs and more longer contigs after the second

layer. Using SGA directly on the preprocessed fastq files did not result in good assembly results.

Since one normally is interested in one genome of interest (here the genome of the leprosy causing

bacterium), we computed the genome coverage after mapping all contigs of length at least 1000

bases against Mycobacterium leprae TN. We used Qualimap2 (Okonechnikov et al., 2015) for the

analysis of the mapping. The percentage of the genome that could be covered using only contigs

longer than 1 000,1 500, . . . ,10 000 bp is shown in Figure 4. It can be seen that the percentage of the
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Figure 3. Distribution of the length of the contigs generated by the different assemblies. The results

generated by the second layer assembly with SGA is shown in white. The results of one first layer

assembly is shown in dark grey. The light grey part represents values that belong to both methods.

In 3a, the results using SOAPdenovo2 in the first layer are described. The results using MEGAHIT in

this layer are shown in 3b.
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Figure 4. The percentage that could be covered with contigs longer than the minimum contig length

genome that could be covered using different cutoffs for the minimum length of the contigs is always

higher after the second layer assembly using SGA than using only the results generated in the first

layer assemblies. This becomes more and more pronounced with increasing filter threshold for the

minimum contig lengths. When using only contigs longer than 1 000 bp, the results are almost the

same. Using only contigs longer than 10 000 bp, around 90% of the genome can be covered using the

second layer assembly with SGA, whereas at most 80% of the genome is covered by contigs from

assemblies generated in the first layer.

The percentage of the genome that was covered at least twice is around 1% for the assemblies

generated in the first layer with SOAPdenovo2 and MEGAHIT. This value has increased after the

second layer assembly where the contigs were assembled again with SGA, showing that not all

overlapping contigs could be identified and merged by SGA.

In order to be able to merge more contigs, we performed a new experiment that also uses the

internal error correction of SGA that were described in the previous section. The resulting assembly

contained contigs of length ≥ 400,000 bp that could be mapped against the reference genome.

However, when analyzing these contigs, only subsequences of at most 500 bp actually mapped to

the genome. The beginning and the end of these contigs were soft-clipped by BWA-MEM and did

not map anywhere else on the reference genome. When analyzing the contigs from the assemblies

generated without this internal error correction of SGA, the whole contig (with some small insertions

and deletions) could be mapped against the reference genome.

The mapping of the contigs generated by the first layer assemblies of SOAPdenovo2 and

MEGAHIT against the reference genome resulted in approximately 115 gaps. This value is re-

duced to around 84 gaps for the contigs generated by the second layer assembly with SGA (see

Table 1). These gaps, together with annotated repeat regions of Mycobacterium leprae, are shown in

Figure 5. It can be seen that the gaps in the mapping of the contigs mainly coincide with annotated

repeat regions in the reference genome, as already shown by Schuenemann et al. (2013). It can also

be seen that there are repetitive regions that can be resolved after assembling the different contigs in

the second layer with SGA.

Up until now we showed that we were able to generate long, high quality contigs that can be

mapped against the reference of Mycobacterium leprae TN. In order to show that the assembled

contigs actually belong to the species of Mycobacterium leprae and not to other Mycobacteria,

we took the ten longest contigs from each assembly and used BLASTN (Altschul et al., 1990)

available on the NCBI webserver to align the contigs with all the genomes available from the genus

Mycobacterium. The hits that generated the highest score for all of these contigs always belonged to

a strain of Mycobacterium leprae.

While previous analyses confirmed the specificity of mapped contigs, there were several long
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Figure 5. Gaps in the mapping of the contigs against the reference genome of Mycobacterium

leprae TN together with annotated repeat regions in the reference genome. The outer ring represents

the gaps that occur after the mapping of the contigs that were generated by the second layer assembly

with SGA after a first layer assembly with SOAPdenovo2. The second outer ring shows the same but

for a first layer assembly using MEGAHIT. The middle ring represents the annotated repeat regions

of the reference genome. The second inner ring represents the gaps after using only SOAPdenovo2

with a k-mer size of 57 and the inner most ring represents the gaps after using only MEGAHIT with a

k-mer size of 77.

contigs that could not be mapped. This is not surprising, because DNA from ancient bones is often

mixed with other DNA and thus a metagenomic sample. For this experiment, the longest contig that

could not be mapped against the reference genome of Mycobacterium leprae TN was used. This

contig was aligned against the whole nr/nt database with BLASTN. The best hits achieved only a

query coverage of approximately 13%. These regions on the query are not consecutive and map to

different genes. The most promising gene that can be identified is the heat shock protein 70, which is

a highly conserved gene among several bacteria (Bukau and Horwich, 1998). The same is true for

the very long contigs generated using the correction steps of SGA or the iterative graph construction

approach of MEGAHIT. There is not one species in the database where more than 15% of these

queries could be aligned to.

In order to see how this two-layer assembly handles sequencing libraries of lower mean coverage

of the desired species, we performed several experiments of different samples that showed a mean

coverage between 2X and 7X after being mapped with the EAGER pipeline against the respective

reference gnome. Here we could not achieve any meaningful results.

Furthermore we evaluated the scalability of our pipeline through subsampling. We used the library

from the Jorgen625 sample with the longer fragments as it contained more than twice as many reads

(2×15,101,591 instead of 2×6,751,711 reads). We evaluated the whole pipeline using 1, 2, 5, 10

and all 15.1 million reads. The calculations were performed on a server with 500GB memory and 32

CPUs of type Intel R� XEON R� E5-416 v2 with 2.30 GHz using four threads wherever parallelization

was possible. The results shown in Figure 6 show that the runtime scales linearly with the number of

input reads. The time it would take to assemble a human genome using our two-layer approach can be

estimated using this linear model. The ancient human LBK/Stuttgart sample published by Lazaridis

et al. (2014) was sequenced using eight lanes, each containing between 200 and 230 million reads.

The assembly of one such lane would take approximately one week and the assembly of all 1.74

billion reads almost two months.

DISCUSSION AND CONCLUSIONS

With ancient genome assembly one faces a number of challenges. The underlying dataset stems from

a metagenomic sample with short fragments. When performing a paired-end sequencing experiment,

this results in mostly overlapping forward and reverse reads. Because of the highly different read

lengths after the necessary preprocessing steps, including adapter removal and quality trimming,

typical de Bruijn approaches using a fixed k-mer size cannot sufficiently assemble the sample. On
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Figure 6. Runtime scaling of the two-layer assembly approach. The black dots show the runtime in

minutes using 1, 2, 5, 10 and all 15.1 million input reads. The black line shows the fitted linear

regression and the grey area represents the 95% confidence region.

the other hand overlap-based approaches alone are also inferior. Our two-layer approach combining

various assemblies using different k-mer sizes followed by a second assembly based on string overlaps

is able to fuse the contigs generated in the first layer into longer contigs and reduce the redundancy.

Additionally, we could show that longer, high quality contigs are generated after the second layer

assembly. In particular, at least for our example of a Mycobacterium leprae genome, these longer

contigs are able to close more gaps, mainly spanning repetitive regions. The different values for k that

are used in the first layer assembly lead to similar contigs that can be combined in the second layer

assembly. The percentage of the genome that is covered more than once is increased after the second

layer assembly. This proves that SGA is not able to identify and merge all overlapping contigs. One

reason for this could be the underlying metagenomic sample. Multiple species in the sample share

similar but not identical sequences. As SGA is not designed to assemble metagenomic samples, these

differences cannot be distinguished from different sequences of the same genome containing small

errors. One possibility to solve this could be to optimize the parameters that SGA provides, as the

current parameters for SGA cannot merge all relevant contigs. This probably has to be adapted for

each sample. However, we showed that when using the steps to account for sequencing errors, the

resulting contigs became worse, when considering the specificity of the contigs (of the organism of

interest). We believe that it could be a problem of multiple Mycobacteria in the sample that share

similar sequences which are then combined to sequences that are built-up out of fragments of different

species in the sample. The contigs that are generated without these steps are of high quality and

map almost perfectly against the reference sequence that is known to be highly similar to the desired

genome (Mendum et al., 2014). When assembling metagenomic and especially aDNA samples, the

results always have to be regarded critically in order to avoid mistakes. Another possibility could

be sequencing errors in the sample, leading to distinct contigs using different k-mers. However,

these errors should be averaged out by the different assemblies (Schatz et al., 2010). Erroneous base

incorporations can be ruled out as the sample was treated with Uracil-DNA Glycosylase (UDG),

removing these errors.

An important step is the preprocessing of the raw reads. We compared the performance using

all reads as single reads, as paired reads or as merged reads. However, at least from our study, we

can conclude that the results highly depends on the first layer assembler and probably also on the

dataset itself. What is interesting is the fact that SOAPdenovo2 produces better results when using all

input reads in a single-end assembly than in a paired-end assembly. One possible explanation is that

the information between the pairs does not contain additional information as almost all paired-end

reads overlap and can be merged. It is possible that the program then disregards some overlaps in

order to fulfill the paired-end condition. Overlaps that were disregarded this way could be used in

the single-end assembly leading to a better assembly. Additionally, reads that did not have a partner

were removed before the paired-end assembly. These reads are of course available in the single-end

assembly. It could be that they contained some relevant information.

The mapping of the assembled contigs against the reference show that in our case,all gaps align
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with annotated repeat regions. Using our two-layer assembly approach, more of these regions could

be resolved, but many still remain. In sequencing projects of modern DNA, repetitive regions are

resolved using other sequencing technologies such as PacBio. It can produce much longer sequences

that span these regions. However, these technologies are not applicable to aDNA as most of the

fragments contained in the sample are even shorter than the sequences that can be produced using the

Illumina platforms.

In general, it can be concluded that assembly of aDNA is highly dependent on the amount of

endogenous DNA in the sample. We are able to improve results generated by current assembly

programs. However, the information gain generated by the second layer assembly is dependent on the

quality of the first layer assemblies. Thus if the first layer assemblies are of low quality, the second

layer assembly cannot significantly improve them.

The runtime scales linearly with the number of input reads, which is no problem for small bacterial

datasets. However, big projects like the assembly of human specimen does not seem to be feasible.

Nevertheless it has to be kept in mind that the current pipeline currently consists of bash scripts that

have not been optimized for parallelization. Using more threads on optimized code might make this

approach feasible even for large genomes.

We have shown that the concept of our two-layer approach can improve the assembly of aDNA

samples. The results in this study were generated using several scripts. In order to facilitate other

researchers to use our two-layer approach, we are currently developing an automated pipeline

containing all the steps described above. In the meantime, we provide a shell script that can perform

the two-layer assembly with SOAPdenovo2 in the first layer up to the removal of small contigs after

the second layer assembly. This script as well as the supplementary material can be downloaded from

https://lambda.informatik.uni-tuebingen.de/gitlab/seitz/MADAM.
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