
Tree mortality from a short-duration freezing event and 
global-change-type drought in a Southwestern piñon-juniper 
woodland, USA

This study documents tree mortality in Big Bend National Park in Texas in response to the 

most acute one-year drought on record, which occurred following a five-day winter freeze. I 

estimated changes in forest stand structure and species composition due to freezing and 

drought in the Chisos Mountains of Big Bend National Park using permanent monitoring plot 

data. The drought killed over half (63%) of the sampled trees over the entire elevation 

gradient. Significant mortality occurred in trees up to 20 cm diameter (P < 0.05). Pinus 

cembroides Zucc. experienced the highest seedling and tree mortality (P < 0.0001) (55% of 

piñon pines died), and over five times as many standing dead pines were observed in 2012 

than in 2009. Juniperus deppeana vonSteudal and Quercus emoryi Leibmann also 

experienced significant declines in tree density (P < 0.02) (30.9% and 20.7%, respectively). 

Subsequent droughts under climate change will likely cause even greater damage to trees 

that survived this record drought, especially if such events follow freezes. The results from 

this study highlight the vulnerability of trees in the Southwest to climatic change and that 

future shifts in forest structure can have large-scale community consequences.
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1. Introduction

Recent widespread tree mortality has been documented across the globe in response to 

increasingly warmer and drier climatic conditions (Allen and Breshears, 1998; Breashears et al., 

2009; vanMantgem et al., 2009; Allen et al., 2010). Global-change-type droughts, which are 

severe droughts coupled with elevated summer temperatures, have resulted in landscape- and 

regional-scale shifts in forest stand structure and species composition (Breshears et al., 2005; 

Shaw et al., 2005). While multi-year droughts have been widely identified as agents of tree 

mortality (Guarin and Taylor, 2005; vanMantgem et al., 2009; Ganey and Vojta, 2011), short-

duration acute droughts of one to two years in duration can also be responsible for extensive tree 

death (Breshears et al., 2005; Hogg et al., 2008).

Acute drought events that follow short-duration winter freezes can be especially 

damaging to plant tissue. Tree death can occur under severe drought after just a single, short-

duration freezing event (Willson and Jackson, 2006). Rapid changes in temperature present a 

unique challenge to trees because cold snaps can cause air bubbles and sap ice to form which can 

result in stem breakage and hinder water transport (Scholander et al., 1961; Hammel, 1967; 

Sucoff, 1969; Zimmermann, 1983).

A five-day freeze occurred in February 2011 in Big Bend National Park, which was 

followed by the most severe one-year drought on record in Texas in the spring and summer of 

2011 (Neilson-Gammon, 2011) (Figure 1). West Texas was particularly affected by the drought 

(National Drought Mitigation Center, 2011), and the Chisos Basin of Big Bend National Park 

received just 10.9 cm of precipitation in 2011 (one fifth its historical average of 49.2 cm) 

(WRCC, 2012). Together, the freeze and drought events were likely responsible for widespread 

tree mortality between 2011 and 2012 in this region. 
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As part of a permanent forest monitoring study in The Chisos Mountains (CM) of Big 

Bend National Park, I monitored tree mortality in a Southwestern piñon-juniper forest between 

2009 and 2012. This interval overlapped the five-day February freezing event and global-change-

type acute drought that occurred in 2011, providing the unique opportunity to document a 

coupled freezing- and drought-induced tree mortality event. While piñon-juniper tree mortality in 

response to severe drought has been documented in several sites in the southwestern United 

States, few studies have examined the combined effects of short-duration freezing and acute 

drought events on piñon-juniper woodland stand structure and species composition. Moreover, 

this research highlights tree mortality patterns across a post-Pleistocene relictual mountain range 

(i.e. Sky Island) that differs dramatically from other previously studied piñon-juniper forests in 

terms of species composition and climatic setting.

In this paper, I quantify tree mortality by estimating changes in forest stand structure and 

species composition across the forested area of the elevation gradient in Big Bend National Park. 

I measured changes in live and standing dead tree density, basal area, and species composition in 

CM as a whole and at low, middle and high elevations individually. This information provides an 

assessment of the combined effects of freezing and acute drought stress in Sky Island forests that 

are surrounded by lowland desert and whose distributions are already greatly restricted by 

contemporary climatic conditions.

2. Materials and methods

2.1 Study area

The Chisos Mountains are a small rhyolitic mountain range located entirely within Big 

Bend National Park. Current forests are Pleistocene relicts, and their distributions are the product 
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of species migrations from lowlands to uplands during early Holocene warming (VanDevender 

and Spaulding, 1979). The CM rise to 2300 m asl. They are bound at lower elevations by deserts 

dominated by shrub and succulent desert flora, where tree establishment and growth is inhibited 

due to high temperatures and moisture-limited conditions. The CM represent an ecological 

transition zone because of their position at the eastern edge of the Basin and Range Province and 

they share biological affinities with flora of the Rocky Mountains and the Sierra Madre Ranges 

(Muldavin, 2002). Soils are a mixture of mollisols and entisols. They are composed of 

moderately deep gravelly loam, which is well drained and non-calcareous (Carter, 1928). Runoff 

is moderate to rapid. Available water capacity is low.

Forests (above 1600 m asl) in CM are composed of piñon-juniper-oak, pine-oak, and 

mixed conifer woodlands. Piñon-juniper woodland is the dominant forest type which is 

comprised of Mexican piñon pine (Pinus cembroides Zuccarini), alligator juniper (Juniperus 

deppeana vonSteudal), gray oak (Quercus grisea Liebmann), Emory oak (Q. emoryi Leibmann), 

and weeping juniper (J. flaccida vonSchlechtendal) (Poulos and Camp, 2010). Lower elevations 

also contain small populations of one seed juniper (J. monosperma Englemann) and red berry 

juniper (J. pinchotii Sudworth) and oak shrublands that are dominated by Q. pungens Leibmann. 

Arizona pine (P. arizonica Englemann), Douglas fir (Pseudotsuga menziesii Mirbel), and Arizona 

cypress (Cupressus arizonica Greene) also have restricted populations in Boot Canyon in CM. 

Taxonomy follows Powell (1998).

The modern climate is arid, characterized by cool winters and warm summers. 

Precipitation is distributed bi-modally in late summer and winter with the majority of 

precipitation falling during summer storms as part of the North American Monsoon System.  

Mean annual precipitation for the Chisos Basin is 49.7 cm (range 10 – 135 cm).  Mean January 

precipitation is 1.5 cm (range 0-2.5 cm) and is 8.0 cm (range 0.2 – 20.5 cm) in July.  Mean 
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monthly minimum temperatures are 1.8 ºC in January and 17.0 ºC in July.  Maximum 

temperatures are 14.1 ºC in January and 29.1 ºC in July. 

2.2 Field sampling

Thirty-six plots were established at low, middle, and high elevations (12 at each elevation) 

in the CM in June 2009 and I resampled them during the growing season in June 2012 after the 

drought. Low elevation plots were randomly placed in Green Gulch within 100 m of the edge of 

tree cover in CM. Middle elevation plots were randomly distributed across the Chisos Basin. 

High elevation plots were randomly distributed along the Southeast Rim. Plots were located so 

that they did not intersect trails, power lines, or archeological or cultural resources. The Southeast 

Rim was chosen for the high elevation sampling area because it had not previously burned in 

prescribed fires or wildfires. Trees > 5 cm diameter at breast height (dbh) were measured using 

10 m radius (0.03 ha) fixed area plots. Seedlings (individuals < 5 cm dbh) were tallied by species 

in nested 5 m radius plots. Plot boundaries for both the tree and seedling plots were determined 

using a two-way ultrasonic rangefinder (Cptcam Inc., Shenzhen, China). The center point of each 

plot was marked with rebar and its location was recorded with a gps. Each tree was tagged with a 

uniquely numbered brass tree tag in 2009.  I recorded the species, dbh, condition (live or standing 

dead), distance from the plot center and azimuth from north of each individual. Distance and 

azimuth measurements greatly assisted in relocating plot center. In 2012, plots were revisited and 

all trees from the 2009 inventory were resampled. Tree condition (live, recent snag, snag broken 

above dbh, snag broken below dbh, or clean snag) was noted. Trees lacking leaves or needles, 

with brittle and/or missing branches were classified as recent snags in the 2012 sampling interval. 

All recent snags were also checked for evidence of bark beetle infestation including presence of 

pitch tubes and beetle galleries.
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2.3 Statistical analysis

I quantified differences in forest stand structure in 2009 and 2012 using linear mixed 

effects models to account for the repeated measures sampling design.  I used the R Statistical 

Language (R Development Core Team 2012) and the lme4 (Bates, Mächler et al. 2012) and 

lmerTest (Kuznetsova, Brockhoff et al. 2013) packages to perform linear mixed effects analyses 

of the temporal shifts in forest structure and species composition from the freeze and drought 

events. Timestep was designated as a fixed effect. Random effects were considered for the 

intercept, the sample plot, and the interaction of sample plot and timestep. The residuals of each 

model were inspected for deviations from homoscedasticity, and only models containing 

residuals without obvious deviations from normality were kept in the analysis. The final structure 

of the fixed-effects for each model was selected by sequentially dropping non-significant terms 

from the full model, by measuring changes in the significance of conditional F-tests for each term 

(Pinheiro and Bates 2000). The intra-class correlation was also estimated for each model in order 

to assess the amount of variance in the response variable that can be attributed to the random 

effects in a model. The models describing the data most adequately were then selected using the 

Akaike Information Criterion (AIC) (Akaike 1974). The significance of individual sites and site-

year combinations was assessed after final model selection via the F statistic using the lmerTest 

package.

I used plots as the repeated sampling unit and the sampling year as the treatment 

representing pre- and post-drought sampling intervals. I compared tree basal area, live seedling 

and tree density by species, and differences in forest size structure for the two sampling years. I 

also used mixed effects models to investigate how the drought affected tree populations across 

the elevation gradient by evaluating changes in tree density and species composition in response 
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to the drought. I evaluated the trend in tree mortality by size by performing a regression analysis 

comparing the percentage mortality at 1.0 cm size-class intervals. 

3. Results

The 2011 freeze and drought killed over half (62.9%) of the trees in the sample plots in 

CM.  The event triggered significant mortality of both seedlings and trees up to 20 cm dbh (P < 

0.05) (Figure 2). Live tree densities decreased by approximately 100 trees ha-1. Seedlings and 

smaller trees were preferentially affected by the drought, while larger trees generally survived 

(Figures 2C-D and 3) (R2 = 0.62; F = 13.1; P = 0.0016). Over half (59.9%) of the seedlings in the 

monitoring plots died between 2009 (1059 + 49.8 ha-1) and 2012 (428.8 + 34.7 ha-1) (P = 0.002). 

However, basal area also decreased significantly from 12.38 + 1.75 m2 ha-1 in 2009 to  8.47.6 + 

1.84 m2 ha-1 (P = 0.001) in 2012 indicating that some larger tree mortality also occurred. None of 

the adult trees that died over the sampling interval showed evidence of bark beetle infestation.

The freeze and drought resulted in divergent tree mortality patterns among species. Piñon 

pine experienced the highest seedling and tree mortality (P < 0.0001), and over five times as 

many standing dead piñon pines were observed in 2012 as in 2009 (54.5% of the piñon pines 

died). Alligator juniper and Emory oak trees also experienced significant declines in live tree 

abundance (P < 0.02) (20.7% and 30.9% change in tree density, respectively), and alligator 

juniper, one seeded juniper, and Emory oak similarly experienced significant seedling mortality 

(P < 0.05).

Tree mortality occurred across the entire CM elevation gradient (Table 1). Overall tree 

mortality was significant across all elevations (P < 0.05), and mortality increased with increasing 

elevation (Figure 4). Piñon pine experienced significantly greater tree mortality at low elevations 
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(P = 0.007), but otherwise tree mortality by species did not vary significantly over the elevation 

gradient in response to the freeze and drought. 

4. Discussion

Landscape-scale tree mortality occurred in the Chisos Mountains in response to the five-

day February freeze and subsequent global-change-type drought in 2011. The effects of this event 

spanned the entire mountain range and affected multiple tree species. The tree mortality that 

occurred in response to this short-duration freezing event and one-year drought is striking 

because relatively few trees in CM succumbed to the longer decadal drought of the 1990s in this 

region (Poulos, personal observation). 

While the individual effects of the drought and freezing event could not be distinguished 

from the present study, both freezing- and drought-induced xylem cavitation likely contributed to 

the CM tree mortality patterns due to air bubble formation from frozen sap at low temperatures 

(Pittermann et al., 2005; Sperry, 2011) and to the entry of air bubbles into the xylem conduits 

across the pit membrane under extremely negative water potentials during the drought 

(Zimmerman, 1983; Sperry and Tyree, 1990). Pittermann et al. (2005) demonstrated 

experimentally that conifers exposed to freeze-thaw events occurring in concert with drought 

stress had high cavitation vulnerability relative to conifers experiencing drought alone. Schaberg 

et al. (2008) also demonstrated that spring warming following winter freeze caused root damage 

that resulted in almost 100% seedling mortality in greenhouse experiments on Alaskan yellow 

cedar. While some have suggested that multiple freeze-thaw cycles are necessary to cause 

extensive damage to xylem vessels in conifers (Sperry and Sullivan, 1992; Sperry et al., 1994), 

Willson and Jackson (2006) demonstrated that even conifers with small tracheid diameters like 
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junipers could experience xylem embolism from just a single freeze-thaw cycle when under 

drought stress. While the drought may have been responsible for most of the tree mortality 

observed between 2009 and 2012, the visible branch splitting and bark heaving on many CM 

trees after the freeze (Poulos, personal observation) indicated that low temperatures during the 

winter of 2011 could have also contributed to tree death.

4.2 Preferential mortality of small trees

With increasing tree size, mortality rate commonly decreases (Lorimer et al., 2001; Palahi 

et al., 2003). The pattern of higher mortality of smaller trees in CM was consistent with the recent 

die off event of Pinus edulis between 2002 and 2004 Arizona, New Mexico, Colorado, and Utah, 

although Mueller et al. (2005) observed the opposite pattern during the 1996 and 2002 acute 

droughts in piñon-juniper woodlands of northern Arizona. My results in the CM were consistent 

with the trend of high seedling and sapling mortality under drought relative to larger trees that, 

with their deeper root systems and larger carbon stores, were able to survive those same drought 

events (Mendel et al., 1997; Mueller et al., 2005; Lopez and Kursar, 2007, Ganey and Vojta 

2011). The lack of evidence of bark beetle infestation in trees that died over the sampling interval 

also suggests that the high mortality of small-diameter trees was not related to insect attack.

4.3 Differential tree mortality by species

Although Mexican piñon pine is a site generalist in west Texas (Poulos and Berlyn, 2007), 

the increased mortality of piñon pine relative to other tree species was consistent with the patterns 

of recent mass tree mortality in the Southwest in 1996 and 2002 where piñon pine was more 
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severely affected by drought than juniper (Mueller et al., 2005; Breshears et al., 2009). Junipers 

are typically more drought tolerant than pines in the American Southwest (Breshears et al., 2009; 

McDowell et al., 2008 but see Bowker et al., 2012). So while junipers in CM did experience 

significant mortality from the 2011 drought, they were probably less affected than the piñon pines 

because of their higher drought hardiness. 

Emory oak was also significantly affected by the drought, and large stands of this species 

were completely killed in CM. Although, Southwestern oaks can survive over two months of 

severe moisture stress under experimental conditions (Poulos et al., 2007; Ehleringer and Phillips, 

1996), little is known about the mechanisms of oak drought and freezing tolerance in the 

American Southwest (but see Neilson and Wullstein, 1985; Davis et al., 1999). Oaks in this 

region likely display considerable variation in drought and freezing tolerance, but their large 

tracheid diameters may have led to greater freeze-induced cavitation vulnerability relative to 

other tree species (Davis et al., 1999). Emory oaks experienced lower mortality than piñon pines 

and junipers in this study, yet, there remains a need for more information about the range of 

variability in oak drought tolerance mechanisms in the Southwest as they represent a major 

component of Madrean Sky Island systems.

4.4 Shifts in forest stand structure and species composition

Although the mortality event will undoubtedly provide new nesting sites for cavity-

nesting birds in CM, the higher mortality of smaller trees, the loss of over half of the piñon pines 

in my monitoring plots, and the death of piñon pine and entire stands of Emory oak across all 

elevations could result in major shifts in forest stand structure and species composition. Since 

2011, CM has moved out of the drought and is experiencing normal temperature and precipitation 
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levels. The return to normal climatic conditions could have a positive effect on surviving trees by 

releasing them from competition for moisture and bolstering their survival potential in 

subsequent droughts (Bowker et al., 2012) since water use efficiency in piñon-juniper woodlands 

can be associated with stand density (Lajtha and Getz, 1993). Nonetheless, surviving trees in CM 

may have experienced permanent losses in xylem conductivity in 2011, which could result in 

delayed tree mortaility (i.e. Bigler et al., 2007) or predispose them to succumb to future acute 

droughts, especially if these events are coupled with winter freezes. While many piñon pines 

survived the 2011 drought, future global-change-type droughts could shift CM species towards 

dominance by junipers and more drought-tolerant oaks.   

4.5 Mortality patterns across the elevation gradient

The pattern of increased tree mortality with increasing elevation was surprising and 

contradictory to other prior landscape-scale accounts of drought-induced tree mortality (Allen 

and Breshears, 1998; Gitlin et al., 2006; McDowell et al., 2009) and canopy dieback (D. Schwilk, 

2013, unpublished data). The increased tree mortality at higher elevations in CM is probably 

related to the southerly exposure of the high elevation plots that were located on mesas of the 

southeast rim at the edge of high elevation forest cover and the exacerbation of the drought 

effects by the February freeze-thaw cycle. While high elevations of CM are cooler and more 

humid than low elevations, the South Rim is exposed to high incident solar radiation due to its 

southerly aspect, as well as high winds and temperature fluctuations because it forms the southern 

edge of forest cover where the rim drops from 1981 m asl down to the desert floor.  Higher 

elevations also probably experienced the lowest temperatures during the short-duration freeze 

event in 2011, although cold air drainage also contributes to low temperatures at low elevations 

(Schwilk, unpublished data). This may have stimulated greater damage to high elevation trees 
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through freezing-induced xylem cavitation in high elevation trees which may have let to higher 

mortality during the course of the drought. 

Conclusion

The results from this study demonstrate the impact of freeze-thaw events followed by 

drought on Sky Island forest stand structure and species composition. Future acute drought events 

are likely to occur with greater frequency as global mean temperatures rise in the coming 

decades, and the climate becomes more unpredictable (Jentsch et al., 2007). Subsequent droughts 

are likely to cause even greater damage to trees that survived this record drought in Texas, 

especially if future drought events are coupled with severe freezes. Although I documented 

significant rapid tree mortality in CM over the study period, lagged tree mortality is likely. 

Delayed mortality has been observed elsewhere in response to severe drought (Pederson 1998; 

Bigler et al., 2007), since damage to water transport tissue can occur over multiple years (Tyree 

and Sperry, 1988; Hanson and Weltzin, 2000) and because tissue damage scan also predispose 

trees to subsequent mortality from beetle infestations (Allen and Breshears, 1998). The dramatic 

tree die off in CM in response to just one year of abnormal climatic conditions highlights the 

need for long-term forest monitoring and studies that predict the effects of future climatic 

extremes on Sky Island forests of the American Southwest. 
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Table 1(on next page)

mortality by elevation

Table 1: Changes in live tree density (ha-1) between 2009 and 2011 in the Chisos Mountains 

of Big Bend National Park, Texas. Values are reported as means ( + S. E.).
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Table 1: Changes in live tree density (ha-1) between 2009 and 2011 in the Chisos Mountains of 

Big Bend National Park, Texas. Values are reported as means (+ S. E.). 

elevation
live trees pre 

drought  live trees post-drought  
change in live tree 

density
Low 236.6 + 41.6  146.7 + 29.1  127.3 + 23.9

 midddle 605.1 + 100.0  483.3 + 100.0  132.7 + 60.8
High 748.4 + 142.0  502.0 + 150.0  296.2 + 82.3
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Figure 1

Chisos Climate

Climatic conditions from 2010-2012 in the Chisos Basin of Big Bend National Park, Texas 

(WRCC 2013) including A) monthly extreme low temperatures, B) mean monthly maximum 

temperatures, and C) mean monthly precipitation. The weather station is located within 0.25 

km of the middle elevation sample sites in this study.
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Figure 2

Stand Structure Change

Changes in forest stand structure due to drought and freezing in 2011 in the Chisos 

Mountains, Big Bend National Park, Texas. Mean values ( + S. E.) prior to the drought (2009) 

and after the drought (2011) are shown for A) seedlings by species, B) live trees (> 5 cm 

dbh) by species, C) live trees in 5 cm diameter classes, and D) standing dead trees. 

Significant changes between sampling intervals (P < 0.05) are indicated with an (*).
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Figure 3

size mortality regression

Regression of tree dbh (cm) as a predictor of percentage tree mortality. Percentage mortality 

was significantly (P = 0.0016) correlated with tree size (y = 9.9538e-0.062x). Smaller trees 

suffered 2 to 5 times higher mortality than larger trees.
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Figure 4

mortality by elevation

Changes in mean ( + SE) live tree density (ha-1) at low, middle, and high elevations of the 

Chisos Mountains, Texas. Significant changes between sampling intervals (P < 0.05) are 

indicated with an (*).

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.237v1 | CC-BY 4.0 Open Access | received: 4 Feb 2014, published: 4 Feb 2014

P
re
P
rin

ts


