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ABSTRACT

The reliable detection of novel bacterial pathogens from next generation sequencing data is a key challenge for
microbial diagnostics. Current computational tools usually rely on sequence similarity and often fail to detect novel
species when closely related genomes are unavailable or missing from the reference database used.
Here, we present the machine learning based approach PaPrBaG (Pathogenicity Prediction for Bacterial Genomes).
PaPrBaG overcomes genetic divergence by training on a wide range of species with known pathogenicity phenotype.
To that end we compiled a comprehensive list of pathogenic and non-pathogenic bacteria, using a rule-based
protocol to annotate pathogenicity based on genome metadata. A detailed comparative study reveals that PaPrBaG
has several advantages over sequence similarity approaches. Most importantly, it always provides a prediction
whereas other approaches discard a large number of sequencing reads that are far away from currently known
reference genomes. Furthermore, PaPrBaG remains reliable even at very low genomic coverages. Combining
PaPrBaG with existing approaches further improves prediction results.
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1 INTRODUCTION
The vast amount and diversity of bacteria on Earth, together with ever increasing human exposure Vouga and Greub (2016),
suggests that we will be continuously confronted with novel bacterial pathogens, too. The identification of novel strains or
even species with pathogenic potential directly from NGS sequencing data has so far been problematic when no closely related
genomes are known or when these are missing from the used reference database. The availability of high-throughput sequencing
technology and increasingly comprehensive microbial genome databases makes it possible to detect putative novel pathogens
solely based on sequence. This is true even given that pathogenesis is ultimately governed by the interplay of host (state) and
pathogen and therefore one may better speak of pathogenic potential when referring to e.g. a specific bacterium. Existing
methods amenable to pathogenicity prediction broadly fall into two classes: protein content based and whole-genome based.

Protein content methods Where assembled genomes are available, the presence/absence pattern of certain protein families
can be expected to correlate with organism phenotypes like pathogenicity. This is primarily based on the presence of virulence
factors (VFs) - often acquired through horizontal gene transfer Juhas (2015) - or the absence of more common genes (functions)
that become dispensable when, e.g., host-specific pathogens evolve from commensal ancestors Merhej et al. (2013). Three recent
studies rely on these considerations.

The BacFier method by Iraola et al. Iraola et al. (2012) was the first to apply the described approach on a large scale. The
authors defined eight VF categories and obtained 814 related VF protein families from KEGG Kanehisa et al. (2014). They
further used a set of 848 human-pathogenic (HP) and non-pathogenic (NP) genomes broadly covering bacterial taxonomy. Using
a support vector machine (SVM) based approach, they subsequently selected the most discriminative subset of all 814 features
(presence/absence of a given family in a given genome) through cross-validation.

For PathogenFinder, Cosentino and coworkers Cosentino et al. (2013) compiled a list of 1,334 genomes with available
pathogenicity information. They clustered all proteins from those 885 genomes that were published before November 2010
into tens of thousands of families using CD-HIT Fu et al. (2012). Those significantly enriched in either HPs or non-HPs were
assigned a signed weight value depending on the degree of enrichment. The 449 genomes published later formed the test set.
Their phenotype was predicted by assigning the encoded proteins to the previously generated families and summing up the
associated weights, respectively.

In a more focused and qualitative study, Barbosa and colleagues Barbosa et al. (2014) used a manually labelled set of 240
actinobacterial genomes and identified just under 30,000 protein families using their own Transitivity Clustering method Röttger
et al. (2013). The authors further distinguished between HPs, broad-spectrum animal pathogens, opportunistic human pathogens
and NPs.

Whole-genome methods Pathogenicity may also be predicted using a range of established tools that were originally
developed for mapping NGS reads to reference genomes and/or classifying them taxonomically. In doing so, the likelihood of
pathogenicity increases with proximity to a pathogenic reference. While the challenge of detecting known pathogens in mixed
(e.g. clinical) samples is very much related to general metagenomic analysis workflows Miller et al. (2013); Mande et al. (2012);
Lindner and Renard (2015), these methods have rarely been used for predicting the presence of novel pathogens. While classic
alignment tools like BLAST Altschul et al. (1990) may be used for mapping with high sensitivity but relatively low throughput,
the opposite applies to dedicated read mappers such as Bowtie2 Langmead and Salzberg (2012) and BWA Li and Durbin (2009),
whose performance deteriorates quickly for highly divergent query strains or even novel species. Still, the latter are widely
used in non-predictive NGS analysis pipelines. PathoScope Francis et al. (2013); Hong et al. (2014), for example, provides a
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statistical filtering scheme to resolve mapping conflicts, i.e. reads mapping to different references. Clinical PathoScope Byrd et al.
(2014) is particularly useful to remove large numbers of contaminant reads, e.g. human ones in the context of clinical samples.
Instead of using existing mappers, the SURPI pipeline Naccache et al. (2014) relies on two custom-built tools for nucleotide and
BLASTX-like translated alignment. Both are shown to scale better with data set size compared to their conventional competitors
whilst maintaining similar performance. The translated alignment step with de-novo assembled contigs is reported to increase
sensitivity particularly in the viral domain.

Composition-based methods compare the distributions of different compositional features (usually k-mer occurrence or
frequencies) in the query and reference sequences. Kraken Wood and Salzberg (2014), for example, tries to match 31-mers
found in the query to a precomputed database, which maps those sequences to the lowest common ancestor taxon of all reference
genomes they occur in, respectively. Somewhat related, MetaPhlAn Segata et al. (2012) first creates a compact database of
clade-specific marker genes (with clades ranging from strain to phylum level), which it then uses for prediction. NBC Rosen
et al. (2008, 2011) calculates k-mer frequency profiles of all references and uses them to train a naı̈ve Bayesian classifier.
Other machine learning approaches use kernelised nearest neighbour Diaz et al. (2009) or hierarchical structured-output SVMs
McHardy et al. (2007); Patil et al. (2012). Hogan et al. Hogan et al. (2013) trained binary classifiers on two reference groups (e.g.
two phyla or one vs. all others). In this case, a database of ’competing’ classifiers must be built for wide taxonomic coverage.

Motivation and aims The existing approaches exemplarily outlined above have, like any method, different strengths and
weaknesses depending on the specific usage scenario. In brief, ours is the fast, robust and user-friendly estimation of pathogenic
potential based on raw NGS data from newly discovered bacterial strains or species with potentially large sequence divergence.
Note that the latter is not an uncommon event: e.g., Schlaberg and colleagues Schlaberg et al. (2012) identified 673 isolates that
belong to ’as-yet-undescribed’ species. More recently, sequencing of bacterial isolates from patients in an intensive care unit led
to the discovery of 428 potential novel species within a single year Roach et al. (2015).

While protein content based methods show great potential for not only prediction but also qualitative analyses (e.g.
pinpointing clade-specific VFs), and even for identifying yet uncharacterised VFs (as illustrated in the above-cited publications),
their primary, shared drawback is the dependence on genome assembly and annotation. These steps are both time-consuming and,
particularly in novel-species and/or low-coverage scenarios, error-prone. Further, these methods neglect the signal potentially
found outside of protein-coding genes. While dedicated read mappers do not share these problems, they may still struggle with
highly divergent strains or (even) novel species; in turn, this impacts frameworks like PathoScope. The same applies to methods
depending on long, gapless k-mer matches, like Kraken and NBC. BLAST, on the other hand, is generally considered too slow
for large-scale read mapping. Finally, we are not aware of any previous studies using a read-based machine learning approach for
pathogenicity prediction, in conjunction with a comprehensive evaluation.

Given our above-stated scenario, however, more fundamental differences exist between these genome-based methods and
what we were aiming for. They are (i) heavily influenced by the taxonomic coverage of the underlying data sets, (ii) make
taxonomic instead of phenotypical predictions, and (iii) are not designed to make predictions per se (but rather identify already
known organisms). In summary, while all these methods are highly useful in different contexts, they do not necessarily fit the
task at hand. Therefore, we developed PaPrBaG: Pathogenicity Prediction for Bacterial Genomes. In an important preliminary
step, we compiled a comprehensive set of genomic data and metadata. Based on the latter, we then established a system of rules
to automatically identify human-pathogenic and human-non-pathogenic bacteria. For the prediction task, we introduced several
new compositional features and used them for training as well as querying a binary random forest classifier. These are known
to be fast, error-tolerant and capable of dealing with a large number of features. Finally, we provide a solid evaluation, also
comparing against other types of methods. This may serve as a guideline for users to select the most appropriate method for a
given task, e.g. in clinical settings. A user-friendly R package is additionally provided at https://github.com/crarlus/paprbag.

2 DATA
No comprehensive standard resource listing bacterial strains with or without pathogenic potential in human is publicly available.
However, the Integrated Microbial Genomes (IMG) system collects a wide range of metadata on microbial genome projects
Markowitz et al. (2014). We accessed the IMG web site on 04/06/2015 and downloaded a table containing all available data. In a
first step we pre-filtered the IMG data for the key Bacteria in the field Domain, for Finished or Permanent draft in Status and for
Genome Analysis in Project Type; the latter serves to exclude metagenomic studies. We furthermore excluded any genomes for
species marked as unclassified.

In the following, we describe a set of rules to infer reliable labels for HPs and non-HPs. To infer the pathogen label we
search for entries that contain the term Pathogen in the fields Phenotype or Relevance. Additionally, all genomes that contain an
entry in the field Diseases are labelled as pathogenic. We inferred non-pathogens by searching for the keyword Non-pathogen in
the field Phenotype. Note that no further field clearly designates non-pathogens. In particular, from a missing entry in the field
Disease, it does not follow that the organism is not a pathogen. The same holds for (reference) genomes that were sequenced as
part of the Human Microbiome Project (HMP), since those include both pathogens and commensals Human Microbiome Project
Consortium (2012a,b). If contradicting rules were met for an entry, e.g. non-pathogenic phenotype yet still an annotated disease,
the label ’unknown’ was assigned and the genome excluded from further analysis.

For the present study, and with a clinical setting in mind, we were interested in human pathogens and non-pathogens only.
Therefore, including e.g. plant pathogens or non-pathogenic soil bacteria could result in misleading conclusions (those could be
used in analogous studies for other habitats and hosts, though). Bacteria with human host were identified using the following set
of rules: either the entries human or Homo Sapiens are found in the fields Host Name, Ecosystem Category or Habitat; or the
field Study Name contains the entry HMP. For further analysis we kept all entries with human host and either pathogenic or
non-pathogenic phenotype.

We finally obtained labels for 2,836 bacterial strains (177 non-pathogens and 2,659 pathogens). These belong to 422 different
species. On the species level, we found 363 pure pathogens and 53 pure non-pathogens. For 6 species, we found that labels were
mixed between strains. Most strikingly, Escherichia coli comprises 172 pathogenic and 93 non-pathogenic strains. For five other
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species, Campylobacter jejuni, Listeria monocytogenes, Staphylococcus epidermidis, Peptoclostridium difficile and Clostridium
botulinum, we found one or two non-pathogenic strains vs. many pathogenic strains. However, these species are commonly
known as pathogens and therefore the non-pathogenic entries were excluded from further analysis. The resulting table of label
data is provided in the supplied R package.

3 METHODS

Approach Figure 1 summarises the individual steps of PaPrBaG. The supervised machine learning setup consists of a training
and a prediction workflow. The entire set of HP and non-HP bacterial species is divided into non-overlapping training and
test sets. Subsequently, selected genomes from all species are fragmented into reads (see section 3.1), from which a range of
sequence features are extracted (section 3.2). The training sequence features together with the associated phenotype labels
compose the training database, on which the random forest algorithm trains a pathogenicity classifier (section 3.3). In turn, this
classifier predicts the pathogenic potential for each read in the test set. Based on these raw results various analysis steps can be
performed. This section further provides a summary of the different benchmark approaches (3.4) and evaluation strategies (3.5)
used in the Results section.

3.1 Training and test data
This work is based on the analysis of the newly generated collection of pathogenic and non-pathogenic bacterial strains (see
section 2). For all labeled genomes, FASTA files were obtained from the NCBI Entrez Benson et al. (2013) database via queries
using the NCBI Bioproject accessions (on August 24, 2015).

To evaluate the classifier on independent test data, we performed a randomised five fold cross-validation study. Therefore,
we randomly distributed unique pathogenic and non-pathogenic species into five non-overlapping parts, preserving the original
label distribution. The number of strains per species varies from 1 to more than 200, particularly pathogens have been studied at
much greater breadth. This imbalance would translate into a largely skewed training database. Therefore, we kept only one
random strain per species for further analysis. Apart from markedly reducing the label imbalance (the ratio decreases from 16 to
7), this also reduces the training data size. This approach also reflects the scope of this article, which is predicting phenotypes on
the species level. To evaluate possible effects of this sub-sampling strategy, we included all strains of each training species in
a separate benchmark study (see Results). E. coli played a unique role in that it possesses a large number of pathogenic and
non-pathogenic strains. For the current analysis, we considered the pathogenic strains of E. coli only. Since our aim was to
provide species-level predictions, the rationale was to be more sensitive towards pathogens.

For both the training and test data sets, we simulated 250 bp long Illumina reads. To that end we used the Mason read
simulator with the default Illumina error model Holtgrewe (2010). The number of reads sampled for each genome differs for
the training and test sets. The ratio of pathogens and non-pathogens in each training fold is about 7:1. However, for binary
classification tasks it is advantageous to show the learner an equal number of examples for both classes. Therefore, we decided
to sample the same total number of reads per class. For the present study we chose 106 reads per class, which represent a
trade-off between genome coverage and training data size. An increase of the training size to 107 did not substantially improve
prediction results. The number of reads per genome in each class was chosen such that each genome has the same coverage, i.e.
proportional to the size of the genome. Conversely, for the test data sets, we chose to sample up to a coverage of approximately 1
for each genome. The read simulation was repeated for each fold.

3.2 Features
For the machine learning task, a set of informative features must be extracted from the read sequences. We implemented a
number of different feature types to capture the information content present in a sequencing read.
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Figure 1. Overview of PaPrBaG workflow. Reads are simulated from genomes in both the training (left) and prediction
workflow (center), from which features are extracted. The training sequence features together with the associated phenotype
labels, compose the training database, on which the random forest algorithm trains a pathogenicity classifier. This classifier
predicts the pathogenic potential for each read in the test set. From these raw results, the prediction profile, the genome
aggregate prediction and a combined prediction can be generated (right).
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Genomic features Different features can be extracted from DNA sequences. They are all based on sequences based on
k-mer occurrence patterns. Since we analyze read data, strand information is not available. Therefore, we cast all features
symmetrically so that the occurrence of a word and its reverse-complement considered jointly, a common strategy in related
methods Melsted and Pritchard (2011); Marçais and Kingsford (2011).

A first features type is the relative k-mer frequency. We found that including monomers, dimers, trimers and tetramers led
to good results, but higher values of k did not lead to further improvement. The occurrences of longer k-mers are less likely
to overlap among highly divergent sequences. Conversely, the consideration of a large number of uninformative long k-mers
can compromise prediction performance. However, as focussing on selected longer sequence motifs can still be beneficial for
classification, we also recorded the frequencies of the 100 most abundant 8-mers in an independent set of bacterial genomes.
More precisely, we scanned both possible sequence strands and allowed for one mismatch. Spaced words were introduced for the
alignment of dissimilar sequences Ma et al. (2002); Leimeister et al. (2014). Thus, their incorporation is useful in the context of
novel species discovery. Spaced words denote the occurrence of all k-mers interrupted by (l-k) spacers in a word of length l. For
this analysis we searched for all symmetric 4-mers in a spaced word of length 6.

Protein features Bacterial genomes are known to be densely packed with proteins Patthy (1999). Since protein sequences
are evolutionarily more conserved than DNA sequences, peptide features can provide additional valuable information. A read
might (partially) cover a protein sequence, but the correct reading frame is unknown. However, longer DNA sequences tend
to contain frequent stop codons in the anti-sense frames by chance. Therefore, as a simple heuristic, we generally used the
frame and strand with the fewest number of stop codons. This frame was translated into a peptide sequence and several types of
features were extracted: codon frequencies, relative monopeptide and dipeptide frequencies, amino acid properties and Amino
Acid Index (AAIndex) Nakai et al. (1988); Tomii and Kanehisa (1996); Kawashima and Kanehisa (2000) statistics. The amino
acid property features consist of the relative frequencies of tiny, small, aliphatic, aromatic, non-polar, polar, charged, basic and
acidic residues Creighton (1993). Finally, the AAIndex assigns scores for diverse properties (often based on peptide secondary
structure) to each residue. From 544 indices, we selected the 32 with the lowest pairwise correlation. Features were obtained by
computing the product of the amino acid frequencies and their associated index scores. In total, we included 948 features in our
classification workflow.

Feature importance As measured by both the permutation and Gini tests, the most important features come from the DNA
monomer, dimer and trimer feature groups. Among the 100 most important features, the tetramer, codon frequency, AAIndex
and spaced words groups are also prevalent. We estimated the importance of the different groups by searching for the highest
scoring member of each group. The resulting order of group importance was trimer, monomer, dimer, tetramer, spaced words,
AAIndex score, codon frequencies, monopeptides, DNA motifs, amino acid properties and dipeptides. Particularly the last 5
groups were of minor importance for the classification task.

3.3 Machine Learning
A random forest classifier Breiman (2001) was trained using the above-described features and (genome) pathogenicity labels
for each read in the training data set. We chose this classifier type because it combines high accuracy, fast prediction speed
and the capability to deal with noisy data Folleco et al. (2008b,a). Among the different implementations of the random forest
algorithm available, we opted for ranger Malley et al. (2012); Wright and Ziegler (2015) since it is one of the fastest and can
handle large data sets. We used probability forests, which return the fraction of votes for each class. This can also be interpreted
as the prediction probability. We refer to the prediction probability of the pathogenic class as the pathogenic potential of a read.
Another advantage of random forest is that it has only few tunable parameters. We found that it is sufficient to train 100 per
forest and that more trees do not lead to better predictions. We further adjusted the minimum size for terminal nodes. High
numbers can result in impure terminal nodes and smaller trees. Changing it from 1 to 10 had no effect, while sizes above 1000
led to overfitting. Changing other parameters had no substantial effect. The trained random forest objects are available on github.

3.4 Benchmark configuration
We compared the performance of PaPrBaG with a range of other tools, most of which were originally developed for taxonomic
classification. We used Bowtie2 Langmead and Salzberg (2012) as one of the commonly used read mappers that combines
speed and accuracy Hatem et al. (2013). Furthermore, we considered Pathoscope2 Hong et al. (2014) as a dedicated pipeline for
pathogen identification. More sensitive mapping is expected from BLAST Altschul et al. (1990), which is still widely used in
NGS pipelines. As a candidate for composition-based methods, we chose Kraken, which has emerged as one of the primary
taxonomic classification tools Wood and Salzberg (2014). Finally, we considered NBC as a composition-based machine learning
method Rosen et al. (2008, 2011). It is advantageous over similar approaches in that it allows the construction of a custom
training database. We evaluated the performance of these tools using the PaPrBaG training genomes and test sets, again using
five fold cross-validation.

Bowtie2 For read mapping, we used Bowtie2 (v2.2.4) in the very-sensitive configuration, which is highly tolerant towards
mismatches and gaps. We obtained the 50 top alignments of each read. Parsing the resulting SAM file, we matched the
best-scoring mapping for each read against the label database. When more than one alignment shared the best score, we chose
a match to a pathogen over a match to a non-pathogen. For unmapped reads, no prediction could be made. Additionally, we
repeated this mapping workflow for a larger reference genome set that included all strains of the training species.

Pathoscope2 Pathoscope2 (v2.0.6) works as a post-mapping filter. Hence, we ran the Pathoscope2 ID Module on the SAM
file produced by our Bowtie2 read mapping. The resulting filtered SAM file was analysed as above to obtain label predictions.
Also, the Pathoscope2 workflow was repeated with the larger reference data set containing all strains.

Kraken We provided Kraken (v0.10.5) with the training genome sequences, from which it builds a database based on 31-mers
and generates a taxonomic tree. Based on this, the tool classifies each read taxonomically and returns an NCBI taxonomy id,
which can be translated into the corresponding name using the translation module. The predicted label can now either be inferred
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from the NCBI taxonomy id or by matching the classified species to the label database. In case Kraken’s prediction was not at
species resolution, no prediction was made. Since matching 31-mers to divergent sequences might be a difficult challenge, we
also repeated the entire analysis using 16-mers (Kraken-16).

BLAST We ran NCBI BLAST (v2.2.28) with the option ’-task dc-megaBLAST’, which is tailored for inter-species compar-
isons. Additionally, we chose an E-value cutoff of 10. From the resulting BLAST output, the highest-scoring target was matched
to the reference label database.

Naı̈ve Bayes Classifier We created a set of NBC (v1.0) training databases with word length 15 and then scored all test read
sets against all training databases. For each read, we selected the highest-scoring hit and matched the species name to the label
reference database. Since classification with NBC took very long, we had to use parallel threads.

3.5 Evaluation metrics

Majority prediction rule All tested methods return a prediction for each read, but ultimately we are interested in one
integrated prediction for each genome. A single read matching to a pathogen is not by itself deemed significant, given that also
non-pathogen genomes may contain stretches showing similarity to pathogen genomes. Therefore, a straight-forward integration
scheme weighs the evidence for the presence of a pathogen versus a non-pathogen. In PaPrBaG we average over all read-based
prediction probabilities. If this value exceeds 0.5, the organism is classified as pathogenic. Likewise, for the other methods, if the
number of reads mapped to a pathogen exceeds the number of reads mapped to a non-pathogen, the organism is classified as
pathogenic. This evaluation metric will henceforth be referred to as majority prediction rule.

Minimum detection threshold The majority prediction rule allows for a simple estimation of the pathogenic potential of
a sample; however, it completely ignores uncertainty due to missing predictions. Therefore, we also use a complementary metric,
the minimum detection threshold. Here, a user can define the minimum fraction of reads that should be required for a confident
phenotype prediction. As before, for a given test genome we collect the read-based evidence. If the number of reads supporting a
phenotype exceeds the minimum detection threshold, a prediction is made accordingly. If both phenotypes are supported, that
with higher support determines the prediction.

For both phenotypes, we assess the fraction of correct predictions, which corresponds to the true positive rate (TPR) and true
negative rate (TNR), respectively. We then summarise the performance using informedness, also known as Youden’s J statistic,
which is a joined measure of specificity and sensitivity Youden (1950). Formally, informedness is defined as I = TPR + TNR �1
and ranges from -1 (only wrong predictions) to 1 (only correct predictions).

The optimal value of the minimum detection threshold is not known a-priori and depends on the particular experimental
settings. Therefore, we vary the threshold from 0 to 1.

Consensus filter Individual approaches may yield heterogeneous predictions, which makes it attractive to combine them to
enhance prediction confidence. We therefore define a consensus filter as follows: In a first step, we evaluate which predictions
coincide between two methods. We then keep only the consensus subset for further performance evaluation.

Prediction certainty Each prediction made by the majority prediction rule is associated with uncertainty. We define the
prediction certainty as |µ � 0.5|⇥ 2, where µ denotes the majority prediction as discussed above. We further normalise the
certainty of each predictor by the highest certainty it reports for any genome. The result is a relative certainty value that always
ranges from 0 (maximally uncertain) to 1 (maximally certain). Note that this value does not reflect the type of prediction
(pathogen or non-pathogen). Normalisation is not a necessary step but aids visualisation in Figure 4.

4 RESULTS
In the following, we discuss the results of a five-fold cross validation study on the entire data set of pathogenic and non-pathogenic
species and compare the performance of PaPrBaG with that of the other methods tested. Training the PaPrBaG classifier led
to promising results that could not be notably improved by further parameter tuning or feature selection efforts. Across all
cross-validation folds, the out-of-bag training error was 0.24 and the error of the (imbalanced) test data set was 0.22. Furthermore,
the area-under-curve (AUC) of the training reads was 0.84 and of the test reads 0.79. Hence, the classification problem generalised
well to independent data. The degree of certainty of a read prediction can be measured by the prediction probability. Certainty
increases continuously from noisy predictions at probabilities around 0.5 to very accurate predictions at probabilities close to 0
or 1. Thus, we could confirm that prediction probability is indeed related to prediction certainty.

Comparison of read information content
Each method initially provides predictions for all individual reads. In PaPrBaG, the majority of trees either votes for a pathogenic
or non-pathogenic origin of a given read. For the other tools, the prediction is either a match to a pathogen, a non-pathogen or no
match at all. An overview of the per-read results are given in Figure 2. PaPrBaG always makes a prediction, but numerous false
negative and false positive predictions exist. Bowtie2, Pathoscope2 and Kraken can only make predictions over a minority of all
reads. Kraken-16 and BLAST are able to map the majority of reads, but still leave a considerable fraction unmapped. All other
methods also make false predictions, in particular false positives. As the bottom plot reveals, there are almost as many false
positive as true negative predictions. This problem reflects the imbalanced training data set, which has been addressed explicitly
in the design of PaPrBaG.

Phenotype prediction by majority vote
Ultimately, the goal of all approaches discussed here is the inference of an organism’s phenotype directly from sequencing reads.
Due to the high number of false predictions in all approaches (see Figure 2), the presence of a single read matching to a pathogen
is obviously not a sufficient criterion for overall phenotype prediction. An elementary prediction metric was introduced by the
majority prediction rule in section Methods. It compares the amount of read evidence for the presence of a pathogen and a
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Figure 2. Read predictions for all pathogens (top) and
all non-pathogens (bottom). Each bar shows the number of
reads predicted to be of pathogenic (red), non-pathogenic
(blue) or unknown (gray) origin. The left-most bars show the
ground truth. Strikingly, Bowtie2, Pathoscope2 and Kraken
fail to classify the majority of the reads. Kraken-16 and
BLAST still miss a considerable fraction of reads whereas
the machine-learning based approaches always return a
prediction. All methods show true and false predictions to
a varying extent. While PaPrBaG shows similar errors for
both pathogens and non-pathogens, all other methods suffer
from a substantial bias. Few reads from pathogens are falsely
classified as non-pathogenic. Conversely, in the case of non-
pathogens, the number of falsely classified reads is similar to
or even exceeds the number of correctly classified reads.

TPR TNR ACC F1 MCC
PaPrBaG 0.91 0.70 0.88 0.93 0.54
Bowtie2 0.95 0.66 0.91 0.95 0.61

Pathoscope2 0.94 0.72 0.91 0.95 0.62
Kraken 0.97 0.64 0.93 0.96 0.66

Kraken-16 0.99 0.19 0.89 0.94 0.37
BLAST 0.96 0.60 0.92 0.95 0.61

Bowtie2 All strains 0.96 0.60 0.91 0.95 0.58
Pathoscope2 All strains 0.96 0.66 0.92 0.95 0.63

NBC 0.99 0.23 0.90 0.94 0.41
Bowtie2 + PaPrBaG 0.97 0.77 0.95 0.97 0.71

Pathoscope2 + PaPrBaG 0.97 0.81 0.95 0.97 0.74
BLAST+ PaPrBaG 0.97 0.74 0.95 0.97 0.70
Kraken + PaPrBaG 0.97 0.76 0.95 0.98 0.73

Pathoscope2 + Kraken 0.97 0.69 0.94 0.97 0.70
Pathoscope2 + NBC 0.99 0.44 0.95 0.98 0.60

Bowtie2 + Kraken + PaPrBaG 0.98 0.78 0.96 0.98 0.75

Table 1. Prediction statistics for majority
prediction rule (TPR = True positive rate, TNR
= True negative rate, ACC = Accuracy, F1 =
F1-score, MCC = Matthews-correlation co-
efficient). The first set of entries shows the
performance of the individual methods. Bowtie
All Strains and Pathoscope All Strains represent
a variation where the reference data set con-
tains all strains of a species in the training set.
Below the horizontal line, we show results for
the combination of methods with the consensus
filter. In these cases, the performance is given
for those genomes that have predictions agree-
ing between two or more individual classifiers.
Overall, combining PaPrBaG with Bowtie2 and
Kraken yields the best performance.

non-pathogen and assigns the better-supported phenotype. Note that, in this classification scheme, the uncertainty originating
from the large number of unmapped reads has been ignored. Hence, conclusions are drawn based on the information from an
average of 6% (Bowtie2, Pathoscope2), 14 % (Kraken) and 78 % (BLAST) of all available reads. For Bowtie2 and Pathoscope2,
89 test sets have less than 100 mapped reads and two produce no mapped read at all. Conversely, PaPrBaG and NBC provide
predictions for all reads. We discuss a different performance metric that explicitly considers the unmapped reads in the minimum
detection threshold evaluation below.

The classification results for all organisms are shown in Table 1. Most organisms are classified correctly by all methods, with
accuracy values ranging from 0.88 to 0.93. This demonstrates that it is indeed possible to infer the pathogenicity phenotype of a
novel species solely based on sequencing data. Further, the different methods show different degrees of specificity and sensitivity.
Since the test data set is largely imbalanced, the Matthews Correlation Coefficient (MCC) is more appropriate to compare the
performance between different methods. As Table 1 shows, Kraken performs best followed by Pathoscope2, Bowtie2, BLAST
and PaPrBaG. Kraken-16 and NBC yield strongly biased predictions and have a lower MCC. We additionally evaluated the
performance of Bowtie2 and Pathoscope2 with a larger reference database containing all strains of all training species. Here,
the classifications become more sensitive and less specific, which reflects the larger bias towards pathogens in the training set.
Overall, the effect of the larger database is small. Another interesting question is whether or not PaPrBaG can predict the correct
phenotype in cases where closely related species have a different phenotype. We therefore reassessed the cross-validation results
for all test species found in genera with both HP and non-HP members (in the training data set of the respective fold). Across all
folds, we obtain an accuracy of 90 % (46/51 species). Similar performance is observed in a second test, focusing on cases where
the training data set does not contain any member of the same genus (89 %, 71/80). For the most difficult scenario - all training
species from the same genus having the opposite label - PaPrBaG can correctly predict the phenotype in only 2 out of 9 cases,
though. Still, overall this suggests that PaPrBaG, in most cases, makes correct predictions even for closely related species from
genera with mixed phenotype.

Consensus filter
The heterogeneous prediction results of the individual classifiers suggest it might be worthwhile to combine them. Accordingly,
we have introduced the consensus filter in section Methods. It filters and evaluates predictions that coincide between different
classifiers. The lower part of Table 1 shows the performance of selected combinations of methods. Combining PaPrBaG with
either Bowtie2, Pathscope2, Kraken or BLAST leads to a substantial improvement of classification over any of the individual
methods. We find accuracy values above 0.95 and MCC values above 0.7. Combining PaPrBaG with Bowtie2 and Kraken
achieves the highest performance, closely followed by PaPrBaG with either Kraken or Pathoscope. The single best combination
without PaPrBaG, Pathoscope2 + Kraken, yields good results, but is outperformed by the combinations including PaPrBaG.
The combination Pathoscope2 + NBC has a lower MCC than Pathoscope2 alone. Other combinations of Bowtie2, Pathoscope2,
Kraken, BLAST and NBC without PaPrBaG showed no substantial improvements and have been omitted from Table 1. As
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Figure 3. Classification performance for different genome
coverages. As coverage decreases, so does the performance
of Bowtie2, Pathoscope2 and Kraken. Conversely, BLAST
and PaPrBaG still deliver sound results at coverages as low
as 0.001. The triangles show results for the consensus filter
when combining PaPrBaG and Kraken. It achieves high
performances at all coverage levels, however, at the cost of
filtering out more and more data.
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Figure 4. Fidelity of prediction certainty. Each prediction
is associated with uncertainty. Here, we pooled predictions
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PaPrBaG achieves the highest MCC among all methods
compared.
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the read mapping tools make highly overlapping predictions, they also tend to make the same errors. Conversely, PaPrBaG
behaves differently and makes unique predictions. In conclusion, although combining two or more classifiers does not increase
the overall performance, it increases prediction confidence for a subset of the data. Therefore, it is favorable to perform different
and heterogeneous classification steps when maximum confidence is desired.

Coverage dependency
The results discussed so far were based on test genomes sequenced with a coverage of 1. However, in an experimental situation
the coverage may be well below 1, in particular for metagenomic data. In the following, we elucidate how classification
performance depends on the coverage of the test genomes. Since fluctuations may play a more important role for low coverages,
we averaged over 100 simulation repeats. The corresponding results are shown in Figure 3. The performance of BLAST and
PaPrBaG is rather stable over the entire range of coverages. Both are still reasonably sensitive even at extremely low coverages
of about 0.001. The same holds for Kraken-16 and NBC albeit with a lower MCC across all coverages. Kraken’s performance
substantially decreases for coverages lower than 0.05. Bowtie2 and Pathoscope2 only work well for high coverages; below 0.1,
their performance decreases rapidly. As discussed above, for Kraken, Bowtie2 and Pathoscope2 only a small amount of reads
can be mapped at all at a coverage of 1. Hence, a reduction of the number of reads means that it becomes more and more likely
that no read can be mapped to the reference at all. Consequently, their performance drops to the noise level. Also shown are
the results obtained after applying the consensus filter. Combining Kraken and PaPrBaG leads to confident predictions at all
coverage levels.

Prediction certainty
Each prediction made by the majority prediction rule is associated with a confidence. We can quantify this as prediction certainty,
as explained in the section Methods. Figure 4 shows the performance of the different classifiers at different certainty levels.
It reveals that the performances of PaPrBaG, Kraken and BLAST increase strongly with prediction certainty. Predictions of
PaPrBaG with certainty values between 0.75 and 1 achieve the highest MCC of 0.85. Note moreover that for the other approaches
the prediction certainty is almost always found at high values. Thus, for these approaches there is a smaller performance gain
when comparing very certain to average predictions. Hence, we can conclude that a high prediction certainty is related to a
particularly high prediction performance for PaPrBaG.

Minimum detection threshold
All performance evaluations above were based on the majority prediction rule. There, the overall prediction is determined by the
majority of the individual read predictions. However, the basis for these predictions can be small: for the read mappers only a
few hundred reads (a few percent of all reads) may map to any of the reference genomes. In these cases, e.g. a small number of
contaminant reads may falsify the prediction result. Therefore, we further studied the effect of varying the minimum detection
threshold. Generally, choosing a higher threshold should lead to increased prediction confidence. Figure 5 summarises results in
terms of informedness. For low detection thresholds most methods attain high sensitivity and specificity, and therefore high
informedness. However, for detection thresholds around 0.1, requiring 10 % of all reads to support a phenotype, only PaPrBaG
and BLAST reach an informedness above 0.5. Conversely, the informedness of Bowtie2, Pathoscope2 and Kraken drops below
0, i.e. their predictions are at noise level. Increasing the detection threshold further, fewer and fewer predictions can be made and
eventually the informedness of all methods approaches -1. However, at most threshold levels, PaPrBaG exhibits the highest
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Figure 5. Classification with minimum detection thresh-
old. Predictions are only made for read sets where the read
evidence supporting a phenotype exceeds the detection
threshold (given relative to the total number of reads). Ini-
tially, most approaches show high informedness, which is a
joint measure of sensitivity and specificity defined as I = TPR
+ TNR �1. As the detection threshold is increased above 0.1,
the methods Bowtie2, Pathoscope and Kraken yield insuf-
ficient numbers of reads with phenotype evidence and they
are no longer informative. Only PaPrBaG and BLAST show
an informedness above 0.5. For most values of the detection
threshold, PaPrBaG remains the method with the highest
informedness.

Method Pre-processing Prediction Post-processing

PaPrBaG 180 29 0
Bowtie2 0 14 78
Pathoscope2 0 15 2
Bowtie2 All Strains 0 165 105
Pathoscope2 All Strains 0 169 12
Kraken 990 62 33
Kraken-16 1833 18 48
BLAST 0 498 1
NBC 0 13901 311

Table 2. Comparison of run times. All tools except
NBC were run in single-threaded mode on an SMP
machine with 48 cores and 256 GB RAM. Given
are the median times (in seconds) for a complete
genome prediction as well as for the required pre-
and post-processing steps. Bowtie2 and Pathoscope2
are the fastest methods, followed by Kraken and
PaPrBaG. Note that Kraken takes particularly long
to load its database.

informedness. Hence, when it is desired that a high number of reads support a phenotype, PaPrBaG is the most informative
method.

Prediction run times
Table 2 lists the median run times for a complete genome prediction, respectively. While prediction with PaPrBaG is relatively
fast, feature extraction and loading the trained random forest consumes a considerable amount of time. The fastest method is
read mapping with Bowtie2. However, post-processing the mapped reads takes time. Note that this step is not part of Bowtie2
itself and hence has not been optimised for speed. Pathoscope2 requires additional filtering of read mapping results, which leads
to faster post-processing. Mapping reads to the larger reference database containing all training strains increases the run times
considerably. Prediction with Kraken takes unexpectedly long. It benefits from its high speed only for larger read sets. Note
that pre-processing here includes the time-consuming step of loading the Kraken database, as well as the the relatively slow
translation module. Finally, BLAST is relatively slow, and NBC is the slowest method by far.

5 DISCUSSION
In this contribution, we investigated the potential of predicting the phenotype of unknown pathogenic and non-pathogenic
species directly from sequencing reads. To that end, we developed a novel method that combines feature extraction with random
forest prediction, PaPrBaG. Furthermore we generated a new data set of bacterial genomes for which we could infer reliable
pathogenicity information via a rules-based protocol. PaPrBaG as well as several other alignment-based and compositional
approaches were extensively tested on this new data set. We evaluated the performance of all methods under the majority rule
and with flexible detection threshold. Furthermore, we elucidated the potential of combining methods.

It is notable that all methods achieved high accuracy for the difficult task of new species classification. Remarkably, PaPrBaG
belonged to the few tools that could achieve solid predictions across a wide range of coverages. In contrast to most approaches, it
yields reliable predictions for genomic coverages as low as 0.001. At high coverages, PaPrBaG performed competitive and in
particular it performed better than composition based approaches.

For a reliable pathogen identification it is desirable to obtain relevant information from as many reads as possible. Whereas
most methods could match only a small fraction of reads to pathogens or non-pathogens, PaPrBaG always makes a prediction.
This proved to be key when requiring a certain minimum fraction of read evidence for prediction. In this evaluation PaPrBaG
was found to be the most informative approach. The reliability of a prediction is also related to the prediction certainty. In this
work, we could show that when selecting the most certain predictions, PaPrBaG achieved the best performance of all methods
discussed.

Whereas the existing tools are based on taxonomic classification, PaPrBaG is a conceptually novel approach. It is a binary
classifier that learns directly from a set of genome sequences of pathogenic and non-pathogenic species. Therefore, it is not
surprising that the predictions of PaPrBaG are more diverse compared to the other approaches. In particular, PaPrBaG makes
unique true and false predictions, which is beneficial when using a consensus approach. Combining the existing approaches with
PaPrBaG led to particular high performance, better than any individual classifier.

It is furthermore interesting that although PaPrBaG was trained on sequencing reads that cover only a small fraction of the
training genomes, the approach worked strikingly well. Hence, PaPrBaG is able to make solid predictions while it sees much
less of the training data than the other methods.

In terms of run times, PaPrBaG runs much faster than BLAST and NBC though it is not optimised for speed like Bowtie2
and Kraken. Nevertheless, the pure prediction times are competitive with Bowtie2 and Kraken. The main bottleneck of PaPrBaG
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is the extraction of features from sequencing reads. However, this step could be further optimised, e.g. choosing genomic
features only would result in a considerable speed-up. As our analysis has shown, considering a larger reference database leads
to a strong increase of prediction times. An advantage of PaPrBaG is that the feature extraction times would remain constant.
Additionally, larger training data size can be handled with pruning the trees in the random forest.

Apart from the applications of PaPrBaG in the classification of genomes, one can also envision its potential in a metagenomic
context, e.g. for the analysis of clinical samples. In particular, its solid performance at very low coverages may give PaPrBaG a
key role. A potential workflow would proceed as follows. Initially, fast tools designed for similar sequences such as Bowtie2 and
Kraken can identify reads belonging to known references of bacterial, human or viral origin. In a next step, PaPrBaG can be
used to scan the remaining set of unmapped reads for hints of pathogenicity. In particular, confident predictions are very likely
to be true predictions as well. Thus, PaPrBaG can supply additional information about the sample that would otherwise not
be accessible. Finally, further information about these very confident predictions could be gathered by a very sensitive protein
BLAST or PSI-BLAST, which would be prohibitive on the entire read set. Hence, in such a metagenomic setting the role of
PaPrBaG would be to prioritise the reads with highest associations to pathogens for further downstream analysis.

This work strongly depends on reliable phenotype information. We introduced a strategy within PaPrBaG to overcome the
pathogen bias. Nevertheless, PaPrBaG as well as the other methods have higher sensitivity than specificity and it would be
interesting to see how the methods would work with higher numbers of labeled bacterial species, in particular non-pathogens.
Moreover, we presume that the newly created data set can stimulate further development of pathogenicity prediction workflows.

It is worth mentioning that the approach pursued by PaPrBaG is not restricted to the classification of the complex phenotype
pathogenicity. It is rather a general workflow for the classification of labeled genomes, potential further applications range from
bacterial host and habitat prediction, taxonomic classification to human and microbial read separation.
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Hatem, A., Bozdağ, D., Toland, A. E., and Çatalyürek, Ü. V. (2013). Benchmarking short sequence mapping tools. BMC
Bioinformatics, 14:184.

Hogan, J. M., Holland, P., Holloway, A. P., Petit, R. A., and Read, T. D. (2013). Read classification for next generation
sequencing. In ESANN 2013 proceedings : European Symposium on Artificial Neural Networks, Computational Intelligence,
pages 485–490, Bruges, Belgium. The European Symposium on Artificial Neural Networks.

Holtgrewe, M. (2010). Mason - A Read Simulator for Second Generation Sequencing Data. Technical Report FU Berlin.
Hong, C., Manimaran, S., Shen, Y., Perez-Rogers, J. F., Byrd, A. L., Castro-Nallar, E., Crandall, K. A., and Johnson, W. E.

(2014). PathoScope 2.0: a complete computational framework for strain identification in environmental or clinical sequencing
samples. Microbiome, 2:33.

Human Microbiome Project Consortium (2012a). A framework for human microbiome research. Nature, 486(7402):215–221.
Human Microbiome Project Consortium (2012b). Structure, function and diversity of the healthy human microbiome. Nature,

486(7402):207–214.
Iraola, G., Vazquez, G., Spangenberg, L., and Naya, H. (2012). Reduced Set of Virulence Genes Allows High Accuracy

Prediction of Bacterial Pathogenicity in Humans. PLoS ONE, 7(8):e42144.

9/10PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2379v1 | CC BY 4.0 Open Access | rec: 19 Aug 2016, publ: 19 Aug 2016



PaPrBaG: A random forest approach for the detection of novel pathogens from NGS data

Juhas, M. (2015). Horizontal gene transfer in human pathogens. Critical Reviews in Microbiology, 41(1):101–108.
Kanehisa, M., Goto, S., Sato, Y., Kawashima, M., Furumichi, M., and Tanabe, M. (2014). Data, information, knowledge and

principle: back to metabolism in KEGG. Nucleic Acids Research, 42(Database issue):D199–205.
Kawashima, S. and Kanehisa, M. (2000). AAindex: Amino Acid index database. Nucleic Acids Research, 28(1):374.
Langmead, B. and Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nature methods, 9(4):357–359.
Leimeister, C.-A., Boden, M., Horwege, S., Lindner, S., and Morgenstern, B. (2014). Fast alignment-free sequence comparison

using spaced-word frequencies. Bioinformatics, 30(14):1991–1999.
Li, H. and Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics,

25(14):1754–1760.
Lindner, M. S. and Renard, B. Y. (2015). Metagenomic profiling of known and unknown microbes with microbeGPS. PloS One,

10(2):e0117711.
Ma, B., Tromp, J., and Li, M. (2002). PatternHunter: faster and more sensitive homology search. Bioinformatics, 18(3):440–445.
Malley, J. D., Kruppa, J., Dasgupta, A., Malley, K. G., and Ziegler, A. (2012). Probability machines: consistent probability

estimation using nonparametric learning machines. Methods of Information in Medicine, 51(1):74–81.
Mande, S. S., Mohammed, M. H., and Ghosh, T. S. (2012). Classification of metagenomic sequences: methods and challenges.

Briefings in Bioinformatics, 13(6):669–681.
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