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ABSTRACT

Identification and quantification of microorganisms is an important step in studying the alpha and

beta diversities within and between microbial communities respectively. Both, identification and

quantification of a given microbial community can be carried out using whole genome shotgun

sequences with less bias than using 16S-rRNA sequences. However, shared regions of DNA among

reference genomes and taxonomic units pose a significant challenge in assigning reads correctly to

their true origins. The existing microbial community profiling tools commonly deal with this problem

by either preparing signature-based unique references or assigning an ambiguous read to its least

common ancestor in a taxonomic tree. The former method is limited to making use of the reads

which can be mapped to the curated regions, while the later suffer from the lack of uniquely-mapped

reads at higher (more specific) taxonomic ranks. Moreover, even if the tools exhibited generally

good performance in calling the organisms present in a sample, there is room for improvement in

calling the correct relative abundance of the organisms. We present a new method Species Level

Identification of Microorganisms from Metagenomes (SLIMM) which addresses the above issues by

using coverage information of reference genomes to remove unlikely genomes from the analysis

and subsequently gain more uniquely-mapped reads to assign at higher ranks of a taxonomic tree.

SLIMM is based on a few, seemingly easy steps which lead to a tool that outperforms state-of-the-

art tools in run-time and/or memory usage while being on par or better in computing quantitative

and qualitative information at the species level.

Keywords: Taxonomic Profiling, Metagenomics, Microbial Communities, Microorganisms,

NGS Data, Microbiology

INTRODUCTION

Due to the need to study species diversity of a single microbial community (i.e. alpha diversity)

and the degree to which a composition of microbial community changes (i.e. beta diversity) (Whit-

taker, 1960), identification and quantification of microorganisms from shotgun-metagenomic reads

obtained by Next Generation Sequencing (NGS) has become an area of growing interest in the field

of microbiology. The publication of numerous taxonomic profiling tools within the last decade only

shows how appealing the subject is. Lindgreen et al. (2016) considered 14 different sequence classi-

fication tools based on different approaches in a recent review of such methods.

Turning metagenomic raw reads into the relative abundance of multiple groups of microorgan-

isms (clades) residing on the sample from which the environmental DNA was extracted and se-

quenced is a complicated task for several reasons. To mention a few: 1) shared (homologous) regions

of genome sequences across multiple microorganisms make an assignment of reads to their potential

origin difficult, 2) the range of variation in the abundance of individual groups of microbes in the

sample can be high which makes it difficult to detect the least abundant ones and to differentiate

noise from true signal, 3) the high degree of variation in publicly available genome sequence lengths

of different microbes makes the quantification non-trivial (Brady and Salzberg, 2009).

In the past benchmarking of taxonomic profiling tools was done at the genus or lower level of

the taxonomic tree. This is due to the shortcomings of many earlier tools to report species level

taxonomic profile with acceptable accuracy. But a species level resolution of microbial communities

is desirable and more modern tools do address this (Piro et al., 2016; Lindner and Renard, 2015;
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Lindgreen et al., 2016; Francis et al., 2013). For this reason, all the benchmarks in this study are

done at the species level.

In general, two distinct approaches have been widely used to tackle the challenge of ambiguous

reads that originate from genomic locations shared among multiple groups of organisms. The first

approach is to prepare a signature-based database with sequences that are unique to a clade. In

this approach, taxonomic clades are uniquely represented by sequences that do not share common

regions with other clades of the same taxonomic rank. Even if this approach will make use of the

fraction of metagenomic data from the sequencer, it can guarantee to have only a unique assignment

of sequencing reads to a clade. Tools like MetaPhlAn2 (Truong et al., 2015), GOTTCHA (Freitas

et al., 2015) and mOTUs (Sunagawa et al., 2013) use this approach. The second approach works

using the full set of reference sequences available as a database and assigning ambiguous reads to

their least common ancestor (LCA) in a taxonomic tree. Kraken (Wood and Salzberg, 2014), a k-

mer based read binning method, is an example of such an approach. Both approaches have certain

advantages and disadvantages. The former has an advantage in speed and precision, but is limited

to utilizing the reads that can be mapped uniquely to the curated regions. The later approach, on

the other hand, suffers from the lack of uniquely-mapped reads at higher (more specific) taxonomic

ranks since they are assigned to the LCA.

Based on the final output of a method there are two categories of metagenomic classification

tools, a read binning method and a taxonomic profiling method. A read binning method assigns

every single read to a node in a taxonomic tree, whereas a taxonomic profiling method tries to report

which organisms or clades are present in the sample with or without having to assign every read to

a corresponding taxon. There is an overlap between the two categories such that some read binning

methods can be taxonomic profilers too.

GOTTCHA uses a signature-based database specific to a given taxonomic rank and it is highly

optimized for low false discovery rate (FDR). Kraken uses instead a database comprising a hash

table of k-mers and their corresponding node in a given taxonomic tree. Then it assigns reads based

on where the majority of its k-mers are located in the tree and whenever there is no clear vote by the

k-mers of the read, it will assign it to its least common ancestor. Kraken is a very fast read binning

method, which is also often used to do taxonomic profiling. mOTUs uses single copy universal

marker genes to achieve a species level abundance resolution of microbial communities. Even if the

tools exhibited generally good performance in calling the organisms present in a sample, there is a

room for improvement in calling the correct relative abundance of the called organisms.

In the following, we present a new method we call Species Level Identification of Microorgan-

isms from Metagenomes (SLIMM), which addresses the above limitations. At preprocessing stage,

we gather as many as possible reference sequences of a group of interest (Archaea, Bacteria, Viruses

or any combination of these) and downsize and compile taxonomic information of the gathered se-

quences. The taxonomic information is stored in the form of SLIMM database (SLIMMDB). Then

we use a read mapper to align metagenomic reads against the gathered reference sequences, which

we consider as a preprocessing step that often is done for numerous other analyses (we will report

on timing with and without preprocessing). SLIMM works on the resulting BAM/SAM alignment

file. First, SLIMM uses coverage information both by the reads that mapped on different reference

sequences and by reads uniquely-mapped to a reference sequence to remove unlikely genomes from

the analysis similar to an approach taken by Lindner et al. (2013). This, in turn, allows us to sub-

sequently gain a larger number of uniquely-mapped reads in relation to the reduced set of genomes

which we can assign at higher ranks of a taxonomic tree. We will show that this simple approach

has indeed positive effects. The second step is to assign the remaining non-uniquely-mapped reads

to the lowest common ancestor. Overall SLIMM is based on a few, seemingly easy steps resulting

in a tool that outperforms state-of-the-art tools in run-time and/or memory usage while being on par

or better in computing quantitative and qualitative information at the species level which we show

in the results section. Following the recommendation in (Piro et al., 2016) with caution, we have

carried out digital normalization on the raw reads (Brown et al., 2012) which discards low quality

and redundant reads. It works by removing reads belonging to or (would result in) high coverage

depth. In our experience, the digital normalization showed a negligible improvement in calling the

correct organisms.

METHOD

Nonredundant Reference genomes database

Reference genomes from NCBI GenBank (ftp://ftp.ncbi.nlm.nih.gov/genomes/genbank/) and Ref-

Seq (ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq) archives, downloaded on 21.05.2016, are used for
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the method we described here. SLIMM is not limited to these public databases provided that there is

a proper mapping from sequence identifiers to a taxonomic id and a taxonomic tree that represents

all the sequences in the database. For this study, we considered microbes under the super-kingdom

of archaea and bacteria. But one can also easily integrate viruses into the database by using the

provided SLIMM preprocessing tool. Before downloading all the genomes we checked for redun-

dancy by counting the number of available files for each species of interest. If multiple genomes

are present for downloading, then we choose one in the order of 1) RefSeq 2) Complete Genome

and 3) Draft Genome. This enabled us to have as many species as possible represented by their

best reference genome available so far. After downloading sequences, we checked if every genomic

file downloaded contains only a single fasta entry. If not, we take their concatenation separated by

a contiguous sequence of ten N’s so that reads will not map at the joining point by accident. The

final result is a reference genome library of organisms of interest group(s), which contains a sin-

gle representative sequence per species. In order to cope with dynamically expanding reference

genomes library, we implemented a feature as SLIMM preprocessing tool that can seamlessly up-

date the reference genome database. In this way, we get two databases that we call small DB and

large DB. Small DB contains 2163 species only with complete genomes while large DB contains

13192 species including those with only draft genomes available.

(a) The SLIMM algorithm

(b) SLIMM Pipeline

G1 �

G2 7

G3 7

G4 �

uniquely-mapped reads Shared Reads

bin 1 bin 2 bin 3 bin 4 bin 5 bin 6 ...

(c) Reference filtering based on coverage information

Figure 1. Overview of the SLIMM methodology: (a) : SLIMM takes two inputs i.e the SLIMMDB and an alignment file

in either SAM or BAM format and outputs statistics about each reference sequences in the database. Then SLIMM uses

coverage information to leave out reference sequences from consideration and recalculate the statistics again. We use this, in

turn, to get read counts that are uniquely-mapped to a clade at a given taxonomic rank. (b): The preprocessing module of

SLIMM downloads/updates all available genomes of interest group (Archaea, Bacteria, Viruses or any combination of them)

and tags the sequences with their corresponding taxonomic information. A read mapper is then used to map the WGS reads

to these reference sequences. Then SLIMM algorithm works on the mapping results and produces taxonomic profile reports.

(c) an illustration of how SLIMM does reference filtering based on coverage information: G2 and G3 could not pass the

filtering steps because they did not have enough coverage by uniquely-mapped reads and all reads respectively.

Read mapping against a database of interest

SLIMM requires an alignment/mapping file in SAM or BAM format as an input. The alignment

file can be obtained by aligning the short shotgun metagenome sequencing reads against a library

of reference genomes of interest. To do so, one can use a read mapper of choice. Nevertheless

the pipeline could benefit from a faster but yet accurate read mapper as this preprocessing step
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is relatively time consuming. We make the read mapping program output secondary alignments

because 1) it is very likely to have a sequencing read mapped to multiple targets, 2) a read might

have multiple best hits and 3) the best hit of a read might not be its true origin. SLIMM uses

coverage landscape information as shown in figure (1c) to resolve this. We tried bowtie2 (Langmead

and Salzberg, 2012) and Yara Siragusa (2015) in our first experiments, because they are fast read

mappers with multi-threading options. Since Yara is several factors faster, does not employ heuristics

and its resulting alignments produced better profiles in some of the cases, we used it as default

mapper for this study.

Collecting coverage information of each reference genomes

We first identify which reads are mapped to which reference genomes and separate reads, which are

uniquely mapped to a single reference sequence (these include reads that are mapped to multiple

places in a single reference) from those which are mapped to multiple reference sequences. At this

stage, SLIMM collects information like the number of reference genomes with mapping reads, the

total number of reads and the average read length, which will later be used for discarding reference

genomes. Then we map reads into bins of specific width across each reference genome based on

their mapping location. The default bin width is computed as the average length of sequencing reads

present in the input mapping file and there is a possibility to set it to a different value. Higher bin

width can result in faster runtime, but could also lead to underrepresentation of coverage information

depending on the overall coverage depth. We repeat the filtration procedure, this time, using only

uniquely-mapped reads. The bin number corresponding to a read mapped to a reference is defined

by the center position of its mapping location divided by the width of the bins (integral part only).

The bin number of a read mapping to a reference starting from locstart all the way to locend is given

by:

binNumber =

�

locstart + locend

2×w

�

(1)

where w is the width of bins a reference is partitioned into. After binning is done, coverages based

on mapping reads and uniquely-mapped reads are calculated based on their corresponding binning.

Coverage information of each reference sequence is represented by coverage percentage (%Cov) and

coverage depth (CovDepth) as shown in equations 2 and 3 respectively.

%Cov =
|bins2|

|bins|
×100 (2)

CovDepth =

|bins|

∑
i=1

(
∑

Nbin
j=1 readLength

w
)

|bins|
(3)

where |bins2| is the number of non-zero bins, |bins| is the total number of bins in the reference,

Nbin is the number of reads in a bin, readLength is the number of bases in a read, and w is the width

of a bin.

Discarding unlikely genomes based on coverage landscape

We discard reference sequences that have coverage percentage below a threshold. The threshold is

calculated based on a given percentile (default 0.001) of all coverage percentages of the genomes. In

other words after sorting the reference sequences based on their coverage percentage in descending

order we take the top N sequences that cover 99.999 % of the sum of all coverage percentages. This

is done both for coverage percentage by reads that mapped on multiple references and uniquely-

mapped reads. This will eliminate many genomes even if they have a lot of reads mapping to them

as long as they do not have a good enough coverage. This method was also proven to eliminate

reference sequences that acquire a stack of reads only in one or two bins across their genomes. This

could be explained either by a sequencing artifact from the mock community metagenome dataset

or a conserved region in the genome among distant relatives.

Recalculating reads uniqueness after discarding unlikely genomes

After discarding reference sequences, SLIMM calculates the uniqueness of reads again. This can

increase the number of uniquely-mapped reads assigned to higher-level clades in a taxonomic tree.

The recalculation of uniquely-mapped reads is shown to improve the abundance estimation of a

taxon (clade).
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Assigning reads to their LCA and calculating abundances at a given rank

After recalculating the uniqueness of reads we assign non-uniquely-mapped reads to their LCA taxon

based on the NCBI taxonomic tree downloaded from ftp://ftp.ncbi.nih.gov/pub/taxonomy. Instead of

using the whole NCBI taxonomic tree we use a reduced subtree produced by the SLIMM preprocess-

ing tool. Since we report only for a given major taxonomic ranks namely superkingdom (domain),

phylum, class, order, family, genus and species, the reduced tree contains only these taxonomic

ranks. We also discarded the branches of the tree that are out of the interest groups i.e. Archaea and

Bacteria for this study. This saves a significant amount of computational time as assigning a read

to its LCA is computationally expensive. We also propagate the number of uniquely-mapped reads

at a node to any of its ancestors. Then we calculate the relative abundance of each taxonomic unit

at a given rank as the uniquely-mapped reads that are assigned to it divided by the total number of

uniquely mapped reads at the rank (equation 4). We also report an aggregated coverage depth of

each clade defined as in equation 5.

RelAbclade =
Nclade

Nmapped

(4) CovDepthclade =
∑

Nclade
i=1 readLength

∑
Nchild
i=1 re f Length

(5)

RelAbclade is the relative abundance of a clade, Nclade is the number of reads that are assigned to

a clade, Nmapped is the total number of reads that are mapped to any clade, CovDepthclade is coverage

depth of a clade, readLength is the number of bases in a read, and ∑
Nchild
i=1 re f Length is the sum of

reference lengths of children of a clade that contribute at least one read.

RESULTS AND DISCUSSION

Datasets

For this study, we assembled 18 different metagenomic datasets of varying origins and simulation

strategies. The datasets contain 1) mock community metagenomes from two different studies that are

sequenced using Illumina Genome Analyzer II 2) simulated metagenomes that resemble community

profile of an existing metagenome as identified by MetaPhlAn2 (Truong et al., 2015) 3) simulation of

randomly created microbial communities with a varying number of organisms and range of relative

abundances. We used NeSSM (Jia et al., 2013) to do the simulations. 4) Medium complexity CAMI

(The Critical Assessment of Metagenome Interpretation) challenge toy datasets that are publicly

available at https://data.cami-challenge.org/participate. We believe that this collection of datasets

can represent most of metagenomic communities that a taxonomic identifier will have to handle.

We used 3 mock community datasets, 2 from the Human Microbiome Project (HMP) (HMP,

2012) containing genomes of 22 microorganisms and 1 from the study (Shakya et al., 2013) contain-

ing genomes of 64 microorganisms. The 2 datasets from HMP are the similar in the species they

contain, they only differ in the abundance distribution. One contains an even abundance distribu-

tion of the microorganisms whereas the other contains a differing abundance distribution of the 22

microorganisms.

For simulated datasets resembling an existing community we chose: 1) a metagenome obtained

from the human gut sample during the HMP (HMP, 2012) 2) a freshwater metagenome dataset

from Lake Lanier (Oh et al., 2011). We used MetaPhlAn2 (Truong et al., 2015) - a well known

metagenomic profiling tool based on use clade-specific marker genes. Then we used the reported

profile as a basis for the simulation.

For randomly created microbiomes, we considered three communities with randomly selected

member organisms. The number of organisms in these communities is 50, 200, 500. Then we chose

three different ranges of relative abundances i.e. even, [1-100] and [1-1000]. This provided us with

a total of 9 randomly created metagenomes with varying complexity both in terms of diversity and

in abundance differences. The different settings of metagenomic datasets are important to make sure

that the tested methods work with a wide range of input datasets. To resemble an actual metagenome

and to make the taxonomic profiling more difficult, we contaminated all the simulated datasets with

real world metagenomic reads sequenced by Illumina MiSeq, after removing the reads that could be

mapped to any of prokaryote genome available. Details of all the datasets used for evaluation can be

found in the supplementary material.

Performance Comparison.

We compared the runtime and accuracy of SLIMM with other existing taxonomic profiling tools. We

considered GOTTCHA, mOTUs and Kraken as recent and frequently used reference-based shotgun
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metagenome classification tools for comparison. For Kraken we created a Kraken database corre-

sponding to both small DB and large DB. We use large DB only for the CAMI datasets as these

datasets contain species that have only their draft genomes available. GOTTCHA and mOTUs use

their own curated database. Table 1 shows the average runtime and the average peak memory usage

of the tools across runs on the 14 different datasets, excluding the CAMI datasets, used in this study.

We used a machine with 32 (Intel(R) Xeon(R) CPU 3.30GHz) processors and 378GB of memory.

The CAMI datasets are not included in the runtime and memory comparison because we could not

run Kraken with large DB on the same machine because it required 500GB of memory. Instead we

run Kraken on a cluster for these particular datasets. Without the time needed for the preprocessing

SLIMM is proven to be faster than any of the other tools considered while using an intermediate

memory footprint. With the preprocessing, Kraken is faster but uses much more memory. SLIMM

is faster than GOTTCHA and mOTUs. The individual runtime per dataset can be found in the sup-

plementary information.

Table 1. Runtime and Memory Comparison of SLIMM against existing methods

Alignment + SLIMM Kraken GOTTCHA mOTUs

Avg. Runtime (Seconds) 422.1 + 61.0 157.4 1727.1 1526.6

Peak Memory (GB) 5.2 102 4 1.6

We used different accuracy measures namely precision(specificity), recall (sensitivity) and F1-

Score to compare the accuracy of each tool with SLIMM. The definition of the accuracy measures

is given below.

precision =
T P

T P+FP
(6) recall =

T P

T P+FN
(7)

F1 = 2 ·
precision · recall

precision+ recall
(8)

Where TP=true positives (species which are in the samples and called by the tools), TN=true nega-

tives (species which are not in the samples and not called by the tools), FP=false positives (species

which are not in the samples and yet called by the tools) and FN=false negatives (species which are

in the samples but not called by the tools)

Table 2. Comparison of SLIMM against different tools in terms of precision and recall on species levelThe highest values in

each row are marked bold for both precision and recall. precision is defined as number of species that are called and are in

the sample (true positives) divided by the number of species that are called (true positives + false positives). Whereas recall

is defined as number of species that called and are in the sample (true positives) divided by the number of species that were

in the sample (true positives + false negatives). * GOTTCHA and mOTUs have unfairly lower recall and F1 values due to

their own database which does not contain the complete set of references for the corresponding datasets

Precision Recall F1

Type Dataset SLIMM Kraken GOTTCHA mOTUs SLIMM Kraken GOTTCHA mOTUs SLIMM Kraken GOTTCHA mOTUs

Mock

MG01 0.8923 0.6264 0.9808 1.0000 0.9355 0.9194 0.8226 0.8065 0.9134 0.7451 0.8947 0.8929

MG02 0.9545 0.8400 1.0000 1.0000 1.0000 1.0000 0.9524 0.8571 0.9767 0.9130 0.9756 0.9231

MG03 0.9524 0.6897 1.0000 1.0000 0.9524 0.9524 0.8571 0.4286 0.9524 0.8000 0.9231 0.6000

Mimic.Sim
MG04 1.0000 0.4250 0.6000 0.9474 1.0000 1.0000 0.6176 0.5294 1.0000 0.5965 0.6087 0.6792

MG05 1.0000 0.6650 0.8714 0.9630 1.0000 1.0000 0.4656 0.1985 1.0000 0.7988 0.6070 0.3291

Rand.Sim

MG06 0.9783 0.4352 0.6897 0.8718 0.9375 0.9792 0.8333 0.7083 0.9574 0.6026 0.7547 0.7816

MG07 0.9783 0.4352 0.6964 0.9091 0.9375 0.9792 0.8125 0.6250 0.9574 0.6026 0.7500 0.7407

MG08 0.9783 0.4299 0.7143 0.8824 0.9375 0.9583 0.8333 0.6250 0.9574 0.5935 0.7692 0.7317

MG09 0.9929 0.7220 0.8396 0.9286 0.9211 0.9737 0.5855 0.3421 0.9556 0.8291 0.6899 0.5000

MG10 0.9930 0.7178 0.7949 0.9574 0.9276 0.9539 0.4079 0.2961 0.9592 0.8192 0.5391 0.4523

MG11 0.9928 0.7164 0.8058 0.9464 0.9079 0.9474 0.5461 0.3487 0.9485 0.8159 0.6510 0.5096

MG12 0.9855 0.8284 0.7333 0.9773 0.9315 0.9589 0.0377 0.1473 0.9577 0.8889 0.0717 0.2560

MG13 0.9855 0.8237 0.8095 0.9811 0.9315 0.9281 0.0582 0.1781 0.9577 0.8728 0.1086 0.3014

MG14 0.9851 0.9857 0.8000 0.9811 0.9041 0.9452 0.0548 0.1781 0.9429 0.9650 0.1026 0.3014

CAMI

MG15 0.9261 0.7644 0.7397 0.8000 0.8191 0.7990 0.2714* 0.1206* 0.8693 0.7813 0.3971* 0.2096*

MG16 0.8377 0.7027 0.6883 0.8462 0.8040 0.7839 0.2663* 0.1106* 0.8205 0.7411 0.3841* 0.1956*

MG17 0.9302 0.7608 0.4531 0.7368 0.8040 0.7990 0.1457* 0.1407* 0.8625 0.7794 0.2205* 0.2363*

MG18 0.8223 0.6996 0.4839 0.7778 0.8141 0.7839 0.1508* 0.1407* 0.8182 0.7393 0.2299* 0.2383*

Table 2 shows the result of performance comparison among SLIMM and existing metagenomic

classifiers using 18 different datasets described above. SLIMM outperforms all of the tools in 13

out of the 18 cases in precision. SLIMM and Kraken showed good results in recall. SLIMM came

in second place outperforming Kraken occasionally. But Kraken produced more false positives to

attain this recall, hence the lower numbers in precision. GOTTCHA performed well with the HMP

datasets while it underperformed in the rest of the datasets in general. mOTUs does not perform well

in all of the datasets. F1-Score is also provided in the table as a measure of good balance between
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precision and recall. SLIMM outperforms all the other tools both in precision and F1-Score 17 of

the 18 cases while kraken is slightly better in recall in the majority of the cases.
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Figure 2. PR Curves: Comparison of SLIMM against existing methods (a and b) PR curves SLIMM vs Existing

Methods: True Positive Rate(TPR)/recall drown against precision. SLIMM showed the highest performance. GOTTCHA

didn’t discover any false positives but is low in recall. (c and d) PR curves different variants of SLIMM: SLIMM i.e.

SLIMM-DG (with digital normalization), SLIMM-NF (without filtration step based on coverage landscape),

SLIMM-NF-DG (without filtration but with digital normalization) and SLIMM using alignment produced by the read

mapper Bowtie2.

We did a PR curve analysis for the HMP mock community dataset with uneven distribution of

relative abundances of member organisms and one of the CAMI challenge datasets. We sorted the

predicted species by predicted abundance in decreasing order to draw the PR curves. The PR curves

(figure 2a) shows that SLIMM has a better recall rate than the other tools while staying precise.

SLIMM’s ability to predict the correct abundances of organisms better than existing methods

is shown by scatter-plots in figure 3a and 3b by plotting the real abundance of organisms against

their predicted abundance by different tools for one of the CAMI challenge datasets and one of

the randomly simulated datasets. From these plots, it can be clearly seen that SLIMM predicts the

abundance more accurately. Even though it is not originally developed for abundance estimation, the

next best tool is Kraken which slightly overestimates the true abundance. mOTU and GOTTCHA

do not perform well at predicting the abundances.

Violin plots are simmilar to box plots, but they also show the density distribution of different data

points. The violin plots in figure 3c and 3d show how divergent the abundance predicted by different

tools is from the actual true abundance. In the plots we can see that SLIMM has very low divergence

from the real abundance. For the randomly simulated dataset, SLIMM has an average absolute dif-

ference of 0.00073 and Kraken has an average absolute difference of 0.00116 which is 159% higher

compared to SLIMM. For the same dataset, GOTTCHA and mOTUs have average absolute defer-

ence of 0.00206 and 0.00273 respectively. SLIMM also got the most correct (closer) abundances

with absolute differences of first quantile (Q1)=0.00002 and third quantile (Q3)=0.00016. Kraken is

the second best tool in this regard with values Q1=0.00018, Q3=0.00065.

We have also investigated the positive effects of the filtering step in SLIMM. We run SLIMM

with the filtration turned off and compare the results with a normal run of SLIMM. Figure 2c shows

that the filtration step leads to better results. It is also interesting to note that SLIMM’s filtration

step effectively reduces the divergence from the true abundance. Figures 3c and 3d show that

SLIMM’s filtration step produced closer abundances i.e. quantiles of absolute differences between

real and predicted abundances are (Q1=0.00002, Q2=0.00004, 0.00016) with filtration compared to

(Q1=0.00002, Q2=0.00006, 0.00082) without filtration. More plot for other dataset can be found in

the supplement.

In conclusion, we described a method that results in a simple, fast and scalable tool for taxonomic

profiling and abundance estimation which utilizes coverage information of individual genomes to

filter out those that are unlikely to be in the sample. This is done by discarding genomes with

relatively low coverage percentage by uniquely-mapped reads and mapping reads in general. Such

simple yet important filtration step makes SLIMM capable of calling organisms with high recall rate
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Figure 3. Predicting abundances correctly (a) and (b): Abundances predicted by different tools compared to the real

abundance used for simulation. SLIMM predicted the abundances more accurately than the other tools. Kraken

overestimates the abundance. GOTTCHA and mOTUs did not perform well in predicting the abundances. (c) and (d):

Violin plots showing that SLIMM has the lowest divergence from true abundances

while remaining precise. We showed that SLIMM methodology resulted in more accurate taxonomic

profiling as well as predicting the individual abundance of member organisms more accurately than

the other tools.
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