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19 ABSTRACT

20 Phage-therapy is a promising alternative against pathogenic, multiple drug resistant bacteria. In 

21 this work we propose an algorithm to determine the optimal bacteriophage dose able to minimize 

22 a population of Pseudomonas aeruginosa. Reverse engineering was used to determine the kinetic 

23 parameters; subsequently, a bi-level optimization platform was implemented for a model based 

24 on evolutionary programming. Our prediction of optimal dose was tested in vitro with planktonic 

25 cultures of P. aeruginosa. From the data obtained, we conclude that reverse engineering and 

26 stochastic simulations are a useful approach to find optimal phage doses against pathogenic 

27 bacteria, an important step for the implementation of phage-therapy.

28

29

30 Keywords: Mathematical modeling, Phage-therapy, Optimal dose, Pseudomonas aeruginosa,

31

32

33

34

35

36

37

38 1. INTRODUCTION

39 The treatment of intra-hospital infections (nosocomial infections) has turned out to be an 

40 enormous challenge as the current microorganisms display high capability to resist multiple 

41 varieties of antibiotics. A number of bacterial resistance mechanisms against antibiotics exist 
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42 with some examples including:  diffusional limitation provided by an exopolysaccharide matrix 

43 from biofilm assembly,[1] active site mutations where an antibiotic is no longer capable of 

44 binding to the cell wall and toxic molecule ejection through efflux pumps and transmembrane 

45 proteins,[2] among others.

46 Hospitals and more specifically Intensive Care Units are generally considered epicenters of 

47 antibiotic resistance and the principal sources of outbreaks of multiple drug-resistant bacteria.[3] 

48 For this reason, biomedical communities have been urged to investigate new anti-bacterial 

49 treatments such as the next generation drugs and therapies with improved spectrums against 

50 resistant microorganisms.[4] Approaches based on bacteriophages (or phages), known as phage-

51 therapy, constitute an interesting alternative due to the ease of isolating phages capable of 

52 targeting antibiotic resistant bacteria. Also, viruses evolve with their host allowing them to infect 

53 phage-resistant cells when they would appear. Regarding the diffusional obstacles, antibiotics in 

54 general have to overcome several hurdles due to the presence of exopolysaccharides when the 

55 biofilm phenotype is present; phages, on the other hand, are in theory capable of efficiently 

56 penetrating the biofilm so the infection would be deeply inhibited.[5] The mechanism exploited in 

57 phage therapy is the obligatorily lytic life cycle when the viral particles recognize the bacterial 

58 cell surface, followed by reversible and irreversible binding and the injection of its DNA or RNA 

59 from phage capsid into the host. Once the phage genome has shut down, most of the host's 

60 proteins are amplified inside the cell using its host's molecular machinery and consequently viral 

61 progeny are formed. Finally, cell lysis occurs resulting in progeny exiting the cell and repeating a 

62 new infective cycle.[6] P. aeruginosa is one of the principal causes of acquired infections and 

63 mortality in hospitals.[7] This microorganism is highly adaptive, considered an opportunist 

64 nosocomial pathogen and constitutes a high risk microorganism because of its virulence and 
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65 resistance to most antibiotics currently available.[8]  Moreover, it affects different organs and 

66 anatomical sites such as the upper respiratory tract, lungs, heart valves, urinary tract, surgical 

67 tract and open wounds.[7] 

68 The advent of mathematical biology has allowed a greater understanding of the underpinnings of 

69 several biological events with important applications for disease control. In order to get a better 

70 comprehension of the dynamics of the infection process deterministic and stochastic modeling 

71 was applied to predict the behavior of the phages infecting a planktonic population of several 

72 bacterial species.[9-12] Deterministic approaches are commonly used and assume that the species 

73 in the system change continuously and deterministically over time and are based on ordinary 

74 differential equations (ODES). These models describe the dynamics of the system in terms of the 

75 species present, and parameters related with the rates of change in the concentration of these 

76 species.[12] From this approximation, it's possible to make an evaluation of the parameters that 

77 have an influence on the rate of the infective process (kinetic parameters). Stochastic models are 

78 based on random collisions among reacting species, making them useful to simulate or predict 

79 events in biological systems such as metabolic regulation systems and genetic networks. The 

80 stochastic approach allows modeling phage-host infection in which the effects of noise, 

81 variations, and uncertainty are reflected in the system dynamics.[13] 

82  Once the dynamics of the infection are understood, the search space or feasible region can be 

83 predicted to find the optimum therapeutic dose that would allow for controlling the pathogen and 

84 mitigate the occurrence of phage-resistance.[14] To do so, it’s necessary to establish an 

85 optimization algorithm with an efficient searching capacity, satisfactory robustness and low 

86 computational demand. Our group has prior experience with using Monte Carlo-based 

87 algorithms to find the global optimum and one such example was simulated annealing to find the 
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88 quencher dose in P. aeruginosa quorum sensing networks.[15] Contrary to deterministic 

89 optimization, most of stochastic methods are not gradient based so either stochastic or 

90 deterministic models can be used as a template to find the optimum. 

91 Different authors have studied the bacteriophage-host dynamics from only one or the other of the 

92 two approaches. Cairns et al. studied Campylobacter and bacteriophage interactions using a 

93 kinetic model based on ODES.[16] Jain et al used five different deterministic models to evaluate 

94 the infection dynamics of phage MS2 in its host Escherichia coli.[12] Arkin et al used a stochastic 

95 kinetic analysis to investigate the mechanism that causes the lysis-lysogeny decision circuit of 

96 phage λ in E. coli.[10] In a more recent study, Bardina et al made a stochastic formulation to study 

97 bacteriophage treatments for infections.[17] All these works have been made to understand the 

98 dynamics of phage-bacteria systems and calculate the parameters that affect the specific case of 

99 study. 

100 Here in this study we proposed and applied an optimization platform, based on deterministic and 

101 stochastic-derived models built from previous experimental data to find the optimal dosage able 

102 to diminish a P. aeruginosa population. The experimental validation of the predicted dose was 

103 performed in three different ways: First, elucidating the behavior in vitro of the infection process. 

104 Second, evaluating the extrapolable characteristic of the dose to other phage-bacteria systems. 

105 And third, corroborating the optimal value of the dose performing a challenge test.

106

107 2. MATERIALS AND METHODS

108 2.1. Microorganism, growth medium and experimental curves acquisition 

109 In this study, three Pseudomonas aeruginosa strains resistant to multiple antibiotics (named P. 

110 aeruginosa P1, P3 and P4, kindly donated by Dr. Claudia Echeverri from Hospital Federico 
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111 LLeras Acosta, Ibagué, Colombia) were used. The three strains were used to isolate lytic 

112 bacteriophages; among them, three were selected for the assays (named F1, F2 and F3) 

113 (unpublished results). Bacterial strains were conserved by ultra-low freezing at -80°C in 10% 

114 glycerol. Bacteriophages were maintained in Salt Medium buffer, SM (Composition: 0.05 mol/L 

115 of Tris-HCl pH 7.5, 0.1 mol L-1 of NaCl, 10 mol/m3 MgSO4, gelatin at 1% w/v) at 4°C. 

116 In order to establish the bacterial growth kinetics, two different sets of experiments were done in 

117 triplicate; first, individual growth curves for strains of P. aeruginosa P1, P3 and P4 were 

118 performed. Each strain was inoculated in 3 cm3 of minimal salt medium (MSM) (composition per 

119 liter: KH2PO4 3.5 g, (NH4)2HPO4 1.0 g, MgSO4 1.2 g, glucose 5.0 g, trace elements solution 12.0 

120 cm3; trace elements solution composition per liter: iron citrate III 60 mg, EDTA III 8.4 mg, 

121 CoCl2.6H2O 2.76 mg, MnCl2.4H2O 15 mg, zinc acetate 8.4 mg, Na2MoO4.2H2O 2.67 mg, H3BO3 

122 3.3 mg, CuCl22H2O 1.5 mg). Cultures were grown overnight at 200 rpm and 37°C. Three 

123 hundred μl of the overnight culture was transferred to 30 cm3 of MSM; these day cultures were 

124 incubated for 20 hours at 200 rpm and 37°C. Then, 3 cm3 of the day cultures were transferred to 

125 30 cm3 of MSM and were incubated at 37°C and 200 rpm, and for the duration of 18 hours  

126 optical density, colony forming units per cubic centimeter (CFU/cm3) and glucose concentrations 

127 (BioSystems® glucose kit) were measured. This data corresponds to what is will now be referred 

128 to as uninfected cultures. Second, to determine the effect of bacteriophages on the bacterial 

129 strains, each strain was grown as described above to the logarithmic phase; then, 200 μl of phage 

130 F1 at a concentration of 105 PFU/cm3approximately (PFU, plaque forming units), was added to 

131 the bacterial cultures. Cultures were followed for 18 hours in triplicate where the optical density, 

132 viable cell concentration and glucose concentration, as already described for the uninfected 

133 cultures, were measured.  
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134 2.2. Deterministic mathematical models

135 In order to model the infection process in P. aeruginosa, six deterministic models were 

136 formulated, each one making different assumptions about the system.

137 Model 1.  This model classifies bacteria cells as uninfected and infected. The population density 

138 increases only due to the growth of uninfected cells.[12]

139
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149 Where x is the density of uninfected cells/bacterial survivors, y is the density of phage-pregnant 

150 cells , p is the supernatant or free phage density, s is the substrate (glucose) concentration, μx is 

151 the growth rate of uninfected cells, k1 is the infection rate, k2 is the death rate of uninfected cells, 

152 k3 is the rate of lysis of infected cells, k4 is the rate at which progeny phage are produced, k5 is 
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153 the rate at which supernatant phage particles degrade, yx/s is the yield factor relating production of 

154 uninfected bacterial cells to substrate consumed, μmax,x is the maximal growth of uninfected cells, 

155 and Ks,x is the Monod constant for uninfected cells. The uninfected cell density corresponds to 

156 the counts of viable cells in culture, measured in CFU/cm3; the infected cell density is the 

157 difference between the counts in CFU/cm3 of the infected culture and those of uninfected 

158 cultures (comparing a phage infected flask to a control flask). Free phage densities for the 

159 different cultures were obtained based on the profiles provided during the solution of the set of 

160 differential equations for each model.

161

162 Model 2. Here, moreover uninfected cells, infected cells display growth at the same rate. This 

163 model is derived from Model 1. 

164
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173
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174 Model 3. In this model, uninfected and infected cells grow at different rates; equations derived 
175 from this assumption follows:
176
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193

194 Where μy is the growth rate of infected cells, μmax,y is the maximal growth rate of infected cells, 

195 Ks,y is the Monod constant for infected cells, and yy/s is the yield factor relating production of 

196 infected bacterial cells to substrate consumed.

197
198 Model 4. Here, only uninfected cells grow; and are split in two different populations: susceptible 
199 to the phage (z), and resistant to the phage (R). Resistant cells display growth.
200

201 zkPzkz
dt
dz

z 21                                     (17)
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202
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223
224
225 Model 5. In this model, only uninfected cells grow, and are split in two different populations: 

226 susceptible to the phage (z), and resistant to the phage. Resistant cells display growth.  The lysis 

227 of infected cells is unleashed after 480 min. 

228
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245 Where U is 0 when t ≤ 480 min and 1 when t > 480min.
246
247

248 Model 6. Finally, for model six, uninfected and infected cells grow at different rates; and lysis of 

249 infected cells occurs after 480 min. 

250
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262

263

264 Simulated annealing and genetic algorithms were used to perform the parametric regression from 

265 experimental data with an estimated phage dose of 1x105 PFU/cm3 using the System biology 

266 toolbox in Matlab®.[18]  Finally the three individual models that best described each system in 

267 vitro (P. aeruginosa P1, P3 and P4 infected with phage F1) were merged to create a petri net 

268 capable of describing the infection dynamics of F1 infecting these three strains in unison (Fig. 1).  

269

270 2.3.  Determination of the optimal dose

271 The optimization problem consisted of finding the optimum initial phage dose and the time in 

272 which bacteria must be exposed to phages to minimize the population of each strain tested 
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273 (initial time of infection) using the global model built from each interaction analyzed. The 

274 optimization problem can be posed as:

275  

276
)0(4)0(3)0(1 ,,,min

ppp xxxtiPD                                  (34)

277

278                               (35)
)ti(4)ti(3)ti(1 ,,1.0. ppp xxxts 

279

280 where ti is the time where the total bacterial population is minimized, xp1(0), xp3(0), xp4(0) are the 

281 initial conditions of living cells for each P. aeruginosa strain and xp1(ti), xp3(ti), xp4(ti) represent the 

282 cell population for each strain at ti and PD is the initial phage dose.

283

284 2.4.  Stochastic modeling for optimal dose validation in silico
285
286 We previously emphasized the need for validating the predicted dose in biological systems due 

287 to the presence of uncertainty and variation.  It is known that this noise could lead to the 

288 appearance of dispersion in the population besides the objective function dispersion, so the dose 

289 reported by our platform cannot represents the actual dose to eradicate the presence of the 

290 pathogen.

291 To assess this, we performed stochastic simulations by numerically solving the master equation 

292 based on the Gillespie algorithm. A review of the main features of the master equation formalism 

293 and the Gillespie algorithm is given by Gillespie, 1977.[13]  Briefly, the master equation is used to 

294 describe the evolution of a system over time that can be in one particular state at a given time 

295 point and then switch between states and be treated probabilistically. With the Gillespie 
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296 algorithm it's possible to simulate the temporal behavior of a system by calculating the 

297 probability of each discrete event occurring, and the resulting changes in the number of each 

298 species participating. For each simulation that was done, it gave a representative case of the 

299 timing and the sequence of events of phage infection in individual bacteria. In order to obtain 

300 statistical significance and a more accurate representation of the system multiple runs with the 

301 same initial conditions were done.  For our purposes petri nets were derived from a merged 

302 deterministic model (Fig. 1) and one hundred thousand runs were performed with the optimum 

303 dose predicted by the genetic algorithm. For this, we deployed two different virtual clusters in 

304 three computer rooms with 35 computers each. All computers had an Intel Core 2 Duo 1.8 GHz 

305 processor and 4GBs of RAM. Virtual machines were assigned with both cores and 1 GB of 

306 RAM.

307

308 2.5.  Experimental validation of the optimal dose
309
310 The predicted dose was experimentally validated in vitro in order to test the accuracy of the 

311 computational models. To achieve this, each strain was grown in MSM to logarithmic phase, 

312 established by the deterministic models: P. aeruginosa P1 was grown up to 109 CFU/cm3, P. 

313 aeruginosa P3 up to 108 CFU/cm3, P. aeruginosa P4 up to 106 CFU/cm3. At the desired cell 

314 density, each bacteriophage was added, separately, at a concentration of 107 PFU/cm3. The 

315 cultures were monitored for 1100 minutes where optical density and bacterial survivors were 

316 measured. 

317 Additional tests were also performed with the P4 strain and the phage F1 to assess the potential 

318 difference in kinetics with varied phage doses above and below the optimal dose. P4 was grown 

319 in MSM to logarithmic phase, as described earlier, in two different cultures and the phage were 
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320 added at a final concentration of 106 PFU/cm3  and 108 PFU/cm3, respectively. Cultures were 

321 monitored for 1100 min and optical densities and bacterial survivors were measured. 

322 All the experiments explained in this section were carried out in triplicate.

323
324
325 3. RESULTS AND ANALYSIS
326
327 3.1.  Phage-strain individual models
328
329 Models 1 through 6 were tested against experimental data using least squares sum, to determine 

330 which assumptions described the dynamics best (Table 1). Interestingly, we found kinetic 

331 parameters and model fitness were dependent on the strain analyzed. For P. aeruginosa P1 and 

332 P3 infected with phage F1, the model that best described the infection process was Model 6. , 

333 Model 2 best described the infection process of P. aeruginosa P4 infected with phage F1 

334 however. This is likely because P. aeruginosa P1 and P3 uninfected cells grew at different rates 

335 (infected cells had a different growth rate since the number of infected cells is calculated as the 

336 total cell population minus the uninfected cells), and a decline in the population of uninfected 

337 cells of P. aeruginosa P4 wasn't observed (Fig. 2), meaning infected cells weren't as prevalent. 

338 Model selection and parameterization is strongly influenced by the strain due to differences in 

339 interaction dynamics, the mechanisms of infection and/or bacterial resistance to phage F1. 

340 According to our data,  P4 continues to grow as an uninfected culture, indicating that this strain 

341 had weaker respond  to phage F1 (Fig. 2). We believe that this difference is based on dissimilar 

342 adsorption rates and parameters, DNA injection, DNA replication, progeny assembly, among 

343 others, which were not taken into account in this case. We observed that the infection process is 

344 also dependent on the length of the eclipse phase, which suggested that it was dependent on the 

345 bacterial strain. For example, P. aeruginosa P3 displayed a clear lytic process after 1500 minutes 
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346 (Fig. 2B) whereas lysis in P. aeruginosa P1  took place in a shorter period of time (around 500 

347 minutes) (Fig. 2A). No lysis was observed with P. aeruginosa P4 and the cells continued to 

348 grow.

349 In Table 2 the kinetic parameters for each system shown in accordance with the model that best 

350 fit. These parameters were used later to feed the model for optimal dose calculations. 

351 Additionally an indentifiability analysis of all six models was made using GenSSI, a Matlab 

352 toolbox for studying structural identifiability using iterative lie derivatives and identifiability 

353 tableaus.[19] With this analysis we could determine that models 1, 2, 3, 4, and 6 are globally 

354 identifiable (results not shown), which means there is only one solution for the parameters of 

355 each model using our experimental data. The model five has two non-identifiable parameters: k2 

356 and k6. However, these parameters are easy to obtain directly from experimental data as is 

357 described in Jain et al, 2006. [12] Furthermore, this model didn’t fit any of the experimental data 

358 and was not used for calculating the optimized phage dose.  

359

360 3.2. Optimal phage dose

361 Evolutionary programming was used to calculate the optimum dose. This algorithm was chosen 

362 for a number of reasons including being less demanding of computational resources and its 

363 natural relation with biological systems, as it is based on Darwinian evolution. The system 

364 assumed the presence of the three P. aeruginosa strains, aiming to simulate a clinical infection 

365 caused by any one of the three strains. Genetic algorithm parameters were heuristically 

366 determined using a gene probability of 0.5 and a tolerance of 0.001. We initially obtained the 

367 model for each strain in order to elucidate the mechanism without considering the possible 

368 interactions among strains. Then, we fused them together and proposed a Petri net that represents 
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369 the communication between each model (Fig. 1). We obtained thirteen ordinary differential 

370 equations, which relate the initial population for each strain, the initial phage dose, and the length 

371 of infection.  The differential equation system was used to feed kinetic parameters previously 

372 found and was coupled with the genetics algorithm platform and the optimal dose was evaluated. 

373 With a treatment time of 1,100 min the genetic algorithm predicted an optimal dose for the phage 

374 concentration of 6.50 × 107 PFU/cm3. Numerical integration of the ordinary differential 

375 equations using the Runge Kutta fourth order method predicts that the bacterial survivors of P. 

376 aeruginosa P1 would decrease from 1.2×105 to 8.4 ×102 CFU/ cm3, P. aeruginosa P3 from 5 × 

377 108 CFU/cm3 to 2 × 103 CFU/cm3, P. aeruginosa P4 from 9 ×106 CFU/cm3 to 3×103 CFU/cm3 

378 (results not shown). The mixed population model (P1, P3, and P4) would be reduced from 1.4 × 

379 109 CFU/cm3 to 2.16 × 105 CFU/cm3 (Fig. 3). 

380

381 3.3. Phage dose stochastic validation

382 Master equations of each biological system were numerically solved based on the Guillespie 

383 algorithm with a software, developed by our group, called Bacterium Simulator Grid.[20] 1,000 

384 simulations were performed aiming to obtain a representative sample and statistical distribution 

385 of the population. Due to a change in the scale (from macro-scale to micro-scale) it was 

386 mandatory to modify the initial conditions for each strain; resulting in 150 individuals being 

387 selected as the initial conditions for each strain. Optimal phage dose was also scaled to 430 free 

388 phage particles. Population histograms displayed a unimodal distribution of the population 

389 (results not shown) and an efficient action of the phage based on the small dispersion obtained 

390 (Standard deviation= ± 5.12 cells at time= 2,000 s). The host population decreased by an order of 

391 magnitude after an infection time of 2,000 s (equivalent to 33.33 min) (Fig. 4). Interestingly, we 
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392 found a positive correlation between the uninfected cells dispersion and time, suggesting that the 

393 viral inoculation should take place in early stages, similar to a prophylactic application, in order 

394 to avoid dispersion of the bacteria. The early presence of the phage would also lower the phage 

395 dose needed to eliminate the pathogen.

396

397 3.4. Phage dose experimental validation

398 In order to elucidate the behavior of the system in vitro using the optimum phage dose predicted 

399 infection curves were assayed. P. aeruginosa P1, P3, and P4 strains were grown as explained 

400 before and phage F1 was added in the optimum dose in early stages of bacterium growth based 

401 on our stochastic predictions. After 1,100 min, the bacterial survivors of all strains were reduced 

402 similarly to the predictions of our model. P. aeruginosa P1 cells decreased from 2.95 ×106 

403 CFU/cm3  to 4.25×103 CFU/cm3, P. aeruginosa P3 decreased from 1.17 × 108 CFU/cm3 to 2.1 × 

404 103 CFU/cm3, P. aeruginosa P4 from 3.17 × 107 CFU/cm3 to 3.87×102 CFU/cm3. These results, 

405 as well as simulations, indicate that the phage is most effective against P3 strain and it is able to 

406 diminish populations of the other two strains. In Table 3 a comparison between simulation 

407 results and the experimental data with optimal dose is shown. The simulation results were 

408 corroborated and the optimum phage dose was validated; by using reverse engineering and 

409 utilizing stochastic simulations it is possible to find optimal phage doses against pathogenic 

410 bacteria. This optimization approach can help reduce wet laboratory trials, saving time and 

411 resources.

412 To test if the obtained optimal dose could be extrapolated to different phages, infection curves of 

413 P1, P3 and P4 were conduct using phages F2 and F3 (Results not shown). The total population 

414 reduction was calculated as the difference between the total population of the control curve 
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415 (uninfected) at 1100min and the total population of the infection curve at 1100 min (Table 4).  

416 Results showed that, with these phages when added to the culture at an optimal dose of 6x107 

417 PFU/cm3, the population of all three P. aeruginosa strains was reduced by seven orders of 

418 magnitude or mores. 

419 To challenge the optimal dose we assayed two additional phage doses, one above and one below 

420 the optimal dose, using strain P. aeruginosa P4 and phage F1 (Fig. 5). With a phage dose of 106 

421 PFU/cm3, one log unit below the predicted optimal dose, the population of bacteria was reduced 

422 as expected. Similar behavior is also observed in infections using a phage dose one log unit 

423 above the optimal dose predicted (108 PFU/cm3). In this scenario, our hypothesis pointed to a 

424 bigger reduction of bacteria population, or at least one obtained with the optimal dose. 

425 Nevertheless, the results indicate at the beginning of an infection a reduction of the bacteria 

426 population was experienced but at around 420 min phage-resistance occurred. It has been 

427 demonstrated in previous phage-host systems that a threshold exists where the overabundance of 

428 phage puts selective pressure on their host to resist them, in turn causing the phages to be 

429 ineffective.[21, 22, 23]  This can be explained by different mechanisms: first, due the high number of 

430 viral particles, the capacity of them to be adsorbed on the bacteria surface is reduced.[21] As a 

431 consequence, the phage dies in the early stages of the infection process resulting in no viable 

432 phage progeny being assembled. This phenomenon is called lysis from without.[24] Second, at 

433 high PFU the bacteria can rapidly acquire certain resistance to the phages resulting in an abortive 

434 infection.[21] This phenomenon is due in part because using higher MOIs (MOI, multiplicity of 

435 infection) results in one generation of progeny being successfully produced which can result in a 

436 rapid development of resistance.[25] This resistance is caused by specific factors and avenues that 
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437 are required for productive phage infection being altered in such a way that inhibit phage-

438 mediated lysis of the host.[21] 

439 Previous publications have reported phage densities utilized for effective bacterial treatments: 

440 shouldn't be too low, less than 107 PFU/cm3, because there  won't be enough phage particles to 

441 lyse enough of their host growing in logarithmic phase;[26, 27] and shouldn't be too high, higher 

442 than 108 PFU/cm3,  which often results in poor pharmacodynamic effects.[26, 27] 

443 According to our study we can say computer models coupled with in vitro testing are indicative 

444 that predicted optimal dose is consistent with the behavior of the infection curves that have been 

445 previously reported. [21, 26, 27]  

446

447 4. CONCLUSIONS

448 The mathematical modeling of viral infections in P. aeruginosa allowed us to analyze the 

449 dynamics and kinetics of our phage-host system. The combined use of deterministic and 

450 stochastic kinetics helped us to elucidate the evolution of the population with two frameworks: 

451 the law of mass action and stochastic kinetics. The optimal dose predicted for phage F1 

452 effectively reduced bacterial populations, and it also was applied to other two other phages (F2 

453 and F3); which indicates that our models can describe different phage-host systems. The optimal 

454 dose is in the range of effectiveness reported, which was in the range of 107-108. Our results 

455 validate that phage therapy is a viable alternative to control P. aeruginosa and with appropriate 

456 mathematical modeling the behavior of the phage-host interaction can be predicted. Our data was 

457 shown to be effective using a single phage type and a future project our group should study is the 

458 behavior of a system using phage cocktails to delay the appearance of phage-resistant cells. 

459
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518 Figure 1. Global petri net for P. aeruginosa  P1, P3 and P4 merged model. Kab represents the 

519 kinetic parameter a for strain b (e.g., K31 means kinetic parameter K3 for P. aeruginosa P1). xa 

520 and ya means uninfected and infected cells for strain a respectively. (e.g., x1 uninfected cells for 

521 P. aeruginosa P1 and y1 is infected cells for P. aeruginosa P1). Circles and rectangles represent 

522 coins and transitions respectively.

523 Figure 2. Model predictions in comparison with experimental data for uninfected cells of P. 

524 aeruginosa P1 (A), P. aeruginosa P3 (B), P. aeruginosa P4 (C). The infections were performed 

525 with phage F1.

526 Figure 3. Total uninfected cells profile obtained by the simulation for the merge model mixing  

527 P. aeruginosa P1, P3 and P4 strains. Optimal dose of phage F1 was used to achieve infection.

528 Figure 4. Uninfected cells profile for the merged model (P. aeruginosa P1, P3, and P4) based on 

529 the stochastic kinetics model. Mean and standard deviation was calculated from 100 000 runs.

530 Figure 5. Challenge test with a dose above and below the optimal dose predicted.  P. aeruginosa 

531 P4 infected with a dose of 106 PFU/cm3 of phage F1compared with the positive control (P4 

532 without any phage) (A). P. aeruginosa P4 infected with a dose of 108 PFU/cm3 of phage F1 

533 compared with the positive control (P4 without any phage) (B).

534 Nomenclature:

535 F1  Phage F1

536 F2  Phage F2

537 F3  Phage F3
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538 k1  Infection rate (min· phage particles/cm3)-1

539 k2 Death rate of uninfected cells (min)-1

540 k3  Rate of lysis of infected cells (min)-1

541 k4  Rate at which the phage progeny was produced (PFU/cell min)

542 k5  Rate at which the free phage particles were degraded (min)-1

543 k6  Dead rate of resistant cells (min)-1

544 Ks,R  Monod constant for uninfected cells resistant to the phage (mol/m3 glucose)

545 Ks,x  Monod constant for uninfected cells (mol/m3 glucose)

546 Ks,y  Monod constant for infected cells (mol/m3 glucose)

547 Ks,z  Monod constant for uninfected cells nonresistant to the phage (mol/m3 glucose)

548 P1 Pseudomonas aeruginosa P1

549 P3 Pseudomonas aeruginosa P3

550 P4 Pseudomonas aeruginosa P4

551 P  Free phage density (PFU/cm3)

552 PD Initial phage dose (PFU/cm3)

553 R  Uninfected cells resistant to the phage (CFU/cm3)

554 s  Substrate density (mol/m3)
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555 ti  Time where the bacterial population is minimized (min)

556 U  Step function. U is 0 when t ≤ 480 min and 1 when t > 480min
557

558 x  Uninfected cell density (CFU/cm3)

559 x1  cell population of P1 at ti  (CFU/cm3)

560 x3  cell population of P3 at ti (CFU/cm3)

561 x4 cell population of P4 at ti (CFU/cm3)

562 xp1(0)  Initial condition of living cells for P. aeruginosa P1 (CFU/cm3)

563 xp3(0)  Initial condition of living cells for P. aeruginosa P3 (CFU/cm3)

564 xp4(0)  Initial condition of living cells for P. aeruginosa P4 (CFU/cm3)

565 y  Infected cell density (CFU/cm3)

566 yR/s  Yield factor relating production of uninfected cells resistant to the phage, to substrate 

567 consumed (CFU/grams of glucose)

568 yx/s  Yield factor relating production of uninfected bacterial cells to substrate consumed 

569 (CFU/grams of glucose)

570 yy/s  Yield factor relating production of infected bacterial cells to substrate consumed 

571 (CFU/grams of glucose)

572 yz/s  Yield factor relating production of uninfected cells nonresistant to the phage, to substrate 

573 consumed (CFU/grams of glucose)
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574 z  Uninfected cells nonresistant to de  phage (CFU/cm3)

575

576 Greek symbols

577 μmax,R  Maximal growth of uninfected cells resistant to  the phage (min-1)

578 μmax,x  Maximal growth of uninfected cells (min-1)

579 μmax,y  Maximal growth of infected cells (min-1)

580 μmax,z  Maximal growth of uninfected cells nonresistant to  the phage (min-1)

581 μR Growth rate of uninfected cells resistant to the phage (min-1)

582 μx         Growth rate of uninfected cells (min-1)

583 μy         Growth rate of infected cells (min-1)

584 μz Growth rate of uninfected cells nonresistant to the phage (min-1)

585
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Table 1(on next page)

Table 1. Experimental- simulation fitness evaluation for each P. aeruginosa strain
organized form the best fit to the worst fit for each strain.
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1 Table 1. Experimental- simulation fitness evaluation for each P. aeruginosa strain organized form the best fit to the worst fit for each strain. 

2

P1 P3 P4

Model Squares sum Model Squares sum Model Squares sum 
6 1.01 x 1010 6 2.69 x 1017 2 4.19 x 1016

3 1.74 x 1010 2 3.37 x 1017 1 7.94 x1016

1 1.77 x 1010 1 4.62 x 1017 5 1.32 x 1017

2 1.85 x 1010 3 4.85 x 1017 3 4.17 x 1017

5 2.26 x 1010 5 9.21 x 1018 6 5.85 x 1017

4 2.8 x 1010 4 9.53 x 1018 4 1.40 x 1019
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Table 2(on next page)

Table 2. Kinetic parameters for the best fit deterministic phage-strain models for P.
aeruginosa P1, P3 and P4
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1

2 Table 2. Kinetic parameters for the best fit deterministic phage-strain models for P. aeruginosa P1, P3 

3 and P4

Parameter P1 P3 P4

Model six Model six Model two

k1 (min· phage particles/cm3)-1 1.000 65 1 1.5

k2 (min)-1 0 0 0

k3 (min)-1 0.01 0.01 0.01

k4 (PFU/cell x min) 0.16 0.16 0.16

k5 (min)-1 0 0 0

k6 (min)-1 0 0 0

Ks,x (mol/m3 glucose) 0.007 0.007 1

Ks,y (mol/m3 glucose) 10 10 14.99

Yx/s (cells/grams of glucose) 20 001.1 257 877 257 877

Yy/s (cells/grams of glucose) 969 000 688 938 688 938

µmax,x (min-1) 0.004 0.016 0.003

µmax,y (min-1) 0.001 0.002 0.005

4
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Table 3(on next page)

Comparison between the results in the reduction of Pseudomonas aeruginosa P1, P3,
and P4 strains population in the simulation and in the experimental validation at time
point 1100 min. The total population reduction was calculated as the difference
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1 Table 3. Comparison between the results in the reduction of Pseudomonas aeruginosa P1, P3, 

2 and P4 strains population in the simulation and in the experimental validation at time point 1100 

3 min. The total population reduction was calculated as the difference between the  total 

4 population of the control curve (cells growing without phage infection) at 1100min and the total 

5 population of the infection curve at 1100 min

Strain Total population reduction 
(CFU/cm3) in simulation results

Total population reduction 
(CFU/cm3) in experimental 

validation results

Difference in order 
of magnitude 

between results
P1 1.19 x 105 2.95 x 106 1
P3 5 x 108 1.17 x 108 0
P4 9 x 106 3.17 x 107 1

6
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Table 4(on next page)

Table 4. Total population reduction of Pseudomonas aeruginosa P1, P3 and P4 with
phages F2 and F3 (Optimal dose extrapolation) at time point 1100 min. The total
population reduction was calculated as the difference between the total population of th
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1

2 Table 4. Total population reduction of Pseudomonas aeruginosa P1, P3 and P4 with phages F2 

3 and F3 (Optimal dose extrapolation) at time point 1100 min. The total population reduction was 

4 calculated as the difference between the total population of the control curve (cells growing 

5 without phage infection) at 1100min and the total population of the infection curve at 1100 min

6

Strain Phage Total population reduction 
(CFU/cm3)

F2 5.03 x 107
P1

F3 4.51 x 107

F2 4.85 x 108
P3

F3 3.15 x 109

F2 4.41 x 108
P4

F3 6.7 x 108

7

8

9
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Figure 1
Global petri net for P. aeruginosa P1, P3 and P4 merged model. Kab represents the
kinetic parameter a for strain b (e.g., K31 means kinetic parameter K3 for P. aeruginosa
P1). xa and ya means uninfected and infected

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2359v1 | CC BY 4.0 Open Access | rec: 15 Aug 2016, publ: 15 Aug 2016



Figure 2
Model predictions in comparison with experimental data for uninfected cells of P.
aeruginosa P1 (A), P. aeruginosa P3 (B), P. aeruginosa P4 (C). The infections were
performed with phage F1.
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Figure 3
Model predictions in comparison with experimental data for uninfected cells of P.
aeruginosa P1 (A), P. aeruginosa P3 (B), P. aeruginosa P4 (C). The infections were
performed with phage F1.
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Figure 4
Model predictions in comparison with experimental data for uninfected cells of P.
aeruginosa P1 (A), P. aeruginosa P3 (B), P. aeruginosa P4 (C). The infections were
performed with phage F1.
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Figure 5
Total uninfected cells profile obtained by the simulation for the merge model mixing P.
aeruginosa P1, P3 and P4 strains. Optimal dose of phage F1 was used to achieve
infection.
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Figure 6
Uninfected cells profile for the merged model (P. aeruginosa P1, P3, and P4) based on
the stochastic kinetics model. Mean and standard deviation was calculated from 100
000 runs.
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Figure 7
Challenge test with a dose above and below the optimal dose predicted. P. aeruginosa
P4 infected with a dose of 106 PFU/cm3 of phage F1compared with the positive control
(P4 without any phage) (A). P. aeruginosa P4 infected
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Figure 8
Challenge test with a dose above and below the optimal dose predicted. P. aeruginosa
P4 infected with a dose of 106 PFU/cm3 of phage F1compared with the positive control
(P4 without any phage) (A). P. aeruginosa P4 infected
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