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relatively new development. Here we examine how Synchrotron Radiation Micro X-Ray
Fluorescence (SR µXRF) provides insights into the chemical composition of insects trapped
in amber, while leaving the inclusions unaltered. By analyzing a series of ants
(Hymenoptera: Formicidae) that range from modern material, to Eocene Baltic amber, and
Late Cretaceous North Carolina amber, we investigate how variable preservation
influences the results obtained through SR µXRF analyses, as well as the various merits
and pitfalls associated with the application of this technique to amber inclusions. The initial
results from this line of research are encouraging. They provide new avenues to study
elements that are original to the specimens involved, as well as those generated through
decay, or introduced during taphonomic processes. This new technique also suggests a
range of complementary techniques that may allow future studies to pursue traces of
original colour and cuticular reinforcement in amber inclusions. Ultimately, this work
serves as an introduction to the underlying principles, strengths, and limitations associated
with applying SR µXRF in a palaeontological context.
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Abstract:
Synchrotron-based techniques offer a wealth of elemental, molecular, and structural insights in 
biological samples, but the application of these techniques to fossils is a relatively new 
development. Here we examine how Synchrotron Radiation Micro X-Ray Fluorescence (SR 
µXRF) provides insights into the chemical composition of insects trapped in amber, while 
leaving the inclusions unaltered. By analyzing a series of ants (Hymenoptera: Formicidae) that 
range from modern material, to Eocene Baltic amber, and Late Cretaceous North Carolina amber, 
we investigate how variable preservation influences the results obtained through SR µXRF 
analyses, as well as the various merits and pitfalls associated with the application of this 
technique to amber inclusions. The initial results from this line of research are encouraging. They 
provide new avenues to study elements that are original to the specimens involved, as well as 
those generated through decay, or introduced during taphonomic processes. This new technique 
also suggests a range of complementary techniques that may allow future studies to pursue traces 
of original colour and cuticular reinforcement in amber inclusions. Ultimately, this work serves 
as an introduction to the underlying principles, strengths, and limitations associated with 
applying SR µXRF in a palaeontological context.

Key words: synchrotron, x-ray fluorescence, fossil, preservation, Formicidae, amber, imaging, 
palaeontology

1. Introduction:
Synchrotron radiation has been utilized in the study of fossil insects for over a decade (Tafforeau 
et al., 2006). However, most of these analytical efforts have been focussed on morphology, 
making use of techniques such as synchrotron radiation x-ray microtomography (SR x-ray µCT). 
This technique has shed new light on fossil insects trapped in nearly opaque amber (Lak et al., 
2008), and on structures within insects and arthropods that are highly informative in terms of 
their evolutionary relationships, or palaeoecology (e.g., Kirejtshuk et al., 2009; Edgecombe et al., 
2012; Henderickx et al., 2013). A recent review of these efforts has been conducted by Soriano et 
al. (2010). 

To date, few studies have examined chemistry within fossil insects using synchrotron 
radiation. Fossils of vertebrates, such as avian and non-avian theropods, and reptiles have 
received most attention (e.g., Bergmann et al., 2010; Edwards et al., 2011; Wogelius et al., 2011). 
Because of the size of the samples involved, Synchrotron Rapid Scanning X-ray Fluorescence 
(SRS-XRF) has been the primary technique utilized to map elemental distributions. The state of 
the art for scanning larger specimens was recently reviewed in the work of Bergmann et al. 
(2012). Analyses of smaller fossils, such as insects, have been limited to work with Scanning 
Electron Microscopy (SEM), employing an Energy Dispersive Spectrometer (EDS) to probe 
exposed compression fossils. Examples of this style of research include studies that have 
searched for traces of vertebrate blood within the body cavities of biting insects in the Eocene 
Kishenehn Formation (Greenwalt et al., 2013), or examined mineral replacement within the 
insects of the Cretaceous Crato Formation, Brazil (Barling et al., 2015). 
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The focus on larger fossils in chemical mapping efforts utilizing synchrotron radiation 
has created a situation in which the samples approached with leading-edge techniques often lack 
the quality of preservation seen within amber deposits, because they are mainly compression 
fossils (carbon films) or partially replaced (e.g., permineralized or diagenetically altered skeletal 
material). Amber offers an unmatched degree of preservation, with some deposits preserving 
mummified or partially carbonized soft tissues that are tens of millions of years old (Henwood, 
1992a, 1992b; Grimaldi et al., 1994). The best examples of this degree of preservation are the 
uncommon findings of muscle, brain, and glandular tissue within Dominican amber insects 
(Henwood, 1992b; Grimaldi et al., 1994), and rare occurrences of muscle tissue preserved within 
Baltic amber insects (Van de Kamp et al., 2014). Previous works have examined tissues through 
‘crack-out’ studies, where the amber is split in order to sample the inner cavities of insect 
inclusions. These destructive techniques have provided exceptional scanning electron 
microscopy (SEM) images of various tissues, and have created the opportunity for Transmission 
Electron Microscopy (TEM) or chemical observations of extracted tissues (Henwood, 1992b; 
Grimaldi, 1994). However, these techniques rely on damaging specimens, and there are no 
definitive external indicators for soft tissue preservation before a specimen is split. Utilizing 
Synchrotron Radiation Micro X-Ray Fluorescence (SR µXRF) permits the exploration of fossils 
as small as insect inclusions. The technique also holds much promise for investigating other 
fossils with exceptional preservation at a micrometre scale (e.g., McNamara et al., 2010). 

To date, the closest approach to a non-destructive technique for examining the makeup of 
amber inclusions has been the use of Confocal Laser Scanning Microscopy (CLSM). This 
technique has been used to study fossil fungi and plant trichomes with great success (e.g., 
Speranza et al., 2010, Clark and Daly, 2010). However, CLSM relies heavily on autofluorescence 
of biological samples in amber. The range of energies utilized (and therefore molecules 
examined) is restricted by the wavelengths of laser light employed, and in many deposits the 
amber itself autofluoresces, producing a masking effect. SR µXRF does not suffer from these 
particular drawbacks, but the technique has its own limitations, which we describe below.

The samples used in this study are comprised of ants (Hymenoptera: Formicidae) ranging 
from recent exemplars to those found in Eocene Baltic amber (~50 Ma: Weitschat and Wichard, 
2010), and Cretaceous North Carolina amber (~83.6 to 72.1 Ma: Krynicki, 2013). This series of 
samples was chosen to examine the fidelity with which amber preserves the original chemistry of 
tissues and decay products. Modern analogues are compared to some of the oldest examples of 
soft tissue preservation available within amber (Baltic amber), and to insects that belong to the 
same family, but have progressed beyond the limits of soft tissue preservation (North Carolina 
amber). This is an effort to lay the groundwork for analyses of additional elements across a wider 
range of amber deposits and fossil taxa. It is also an attempt to introduce the palaeontological 
community to the underlying principles, strengths, and caveats associated with using this form of 
chemical analysis in fossil samples. 

2. Materials & Methods:
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2.1. Samples and Preparation
Each amber sample was embedded in mineralogical grade epoxy and cut with a water-cooled 
lapidary saw, so that the amber layer between the surface and the insect was between one and 
two millimetres thick. Subsequently, each specimen was polished with a series of lapidary 
wheels and wet sanding baths, until the amber layer was as thin as possible without creating any 
risk of causing damage to the insect (total specimen thickness was approximately two 
millimetres in most cases). The overlying amber layer varied in thickness from sample to sample, 
due to specimen and limb orientations, but this layer was typically in the range of tens to 
hundreds of micrometres in thickness. In cases where the insect’s appendages were directed 
toward a polished surface in the preparation, a thicker layer of overlying amber was left in place 
in an attempt to prevent infiltrations and damage to the samples. Once the amber pieces reached 
the target size and before the data acquisition, they were cleaned using isopropanol: otherwise, 
there was no other chemical pre-treatment. SR µXRF measurements were taken from the epoxy 
surrounding the samples, in order to ensure that no trace metals were present within the 
mountant, and that the polishing and handling process had not introduced contaminants that may 
influence sample observations.
 Comparative ant samples were prepared by inserting modern ants into the same epoxy 
resin that was used for amber embedding (Epo-Tek 301). Two treatments were attempted (live 
and dead embedding), to observe any differences in interaction with resin. This was meant to 
simulate different scenarios in which ants could end up trapped in resin, and to investigate any 
differences in tissue impregnation as a result of these interactions. Once the resin solidified, the 
samples were prepared with the same steps as the amber specimens. Museum specimens 
included in this study came from the Royal Saskatchewan Museum Palaeontology Collections, 
Regina, SK, Canada (RSM, P specimen prefixes); and the Division of Entomology, University of 
Kansas Natural History Museum , Lawrence, Kansas (SEMC, NC 272-276).

2.2. Data Acquisition
The specimens were mounted using carbon tape, upon an aluminum sample holder at the Soft X-
ray Micro-characterization Beamline (SXRMB), at the Canadian Light Source (CLS) (Fig. 1). 
Because the use of lower energy x-rays on this beamline requires experiments conducted in 
vacuum (due to their low penetration in air), more than one specimen was often mounted at a 
time, in order to save time at the beamline.
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Fig. 1 - Modern ant samples mounted in an epoxy block, on aluminum sample holder (each ant is 
near a corner of the carbon tape).

The analytical technique chosen was SR µXRF, a form of x-ray fluorescence 
spectroscopy where a sample is irradiated with x-rays, which interact with electrons, giving them 
energy enough so they can move from lower to higher energy levels of atoms, or even be 
completely removed from the atom (ionization process). When this happens, an electron 
occupying a higher energy level will migrate to the vacant lower energy state, emitting a photon 
with energy equivalent to the difference between the two energy states involved in the process 
(Fig. 2). Given that the each atom has a well defined and unique set of energy levels, the emitted 
photon will then act as a fingerprint of the atom in question. In a polyatomic sample, the 
resulting data is an energy spectrum with a series of peaks. Each of these peaks corresponds to a 
characteristic energy carried by photons emitted from a given atom, so that different elements 
can be identified in the sample. In addition, the intensity of each peak is proportional to the 
concentration of the corresponding element in the sample.
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Fig. 2 - The X-Ray Fluorescence (XRF) process. An x-ray photon excites an electron in the atom 
(left). Another electron, from a more energetic layer, occupies the empty space, releasing a 

characteristic photon.

Using the default SXRMB beamline software, the scanning area in each sample was 
selected to cover the whole insect embedded in it; therefore the map size depended on the size of 
each ant (in some cases, when the area to be covered was deemed to be too large, the 
measurements were split between two maps of the specimen). In order to collect the data 
necessary to build an elemental map, each sample was moved in such a way that the x-ray beam 
probed “points” in the selected area in a series of well defined steps (~10 μm) (Fig. 3), with each 
“point” being typically ~10 μm in diameter. The fluorescence spectrum of each of these points 
was collected and used to produce the maps, as described in section 2.3. Table 1 shows the 
measurement parameters for each sample measured.
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Fig. 3 - Mapping with the SXRMB beamline software.

Table 1 - Data acquisition parameters for all samples analyzed.

Sample Step size (µm) Map size (mm) Acquisition 
time (s)

Beam  energy 
(eV)

Modern ant 50.0 x 50.0 2.50 x 3.50 3.0 7200
Modern ant (dead) 60.0 x 60.0 2.60 x 1.90 2.0 7200
Baltic amber 6 40 x 40 4.00 x 2.90 4.0 7200
Baltic amber 13 45.0 x 45.0 2.40 x 3.20 3.0 7200
Baltic amber 8 40.0 x 40.0 2.40 x 2.10 3.0 7200
North Carolina amber 40.0 x 40.0 3.40 x 1.40

3.85 x 1.80
3.0 7200
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2.3. Data Analysis Methodology
The methodology used to produce each map is discussed in this section. 

A spectrum from a point in a given elemental map is shown in Fig. 4. As previously 
discussed, different peaks refer to different elements. In order to generate the maps, an algorithm 
was written using the CERN Root Data Analysis framework (Brun and Rademakers, 1996). This 
software plots each spectrum and fits each peak using a Gaussian curve, as depicted in the Fig. 4 
for calcium. Similar results can be obtained using the freely available software package PyMCA 
(Solé et al., 2007).

 
Fig. 4 - Spectrum from a single point in the map. The calcium peak is fitted with a Gaussian 
curve. The area under this fitted peak is used to generate a point for the map of the element 

(calcium in this figure). The green arrows show the different peaks identified with an automated 
peak-finder algorithm.
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In order to translate the spectral data into a map that highlights chemical distributions, the 
area under the peak corresponding to an element of interest is calculated using fitting parameters 
for each spectrum (point) measured in the scanning procedure, resulting in a set of areas. 
Corrections to the value of these areas are made to account for the variations in the intensity of 
the synchrotron radiation beam during data collection (since the usual data acquisition takes 
between 6 and 8 hours, the beam intensity can change significantly between the first and last 
collected spectra, as can be observed in Fig. 5). The corrections are introduced by dividing the 
values of each computed area by the beam current at the time when each corresponding spectrum 
was collected. Each resulted area is then used as a representative of the concentration at each 
point in the distribution map of that element in the sample.

Fig. 5 - Change in the beam current over the time elapsed to produce one chemical map. The 
sudden rise in intensity at about 20000 seconds is due to a beam injection procedure performed 

by the CLS accelerator group. Only the data acquisition time is considered in the figure. The 
time intervals elapsed while moving the sample stage between two different points in the map are 

not taken into account (no data acquisition occur during these intervals).
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The elemental maps are bi-dimensional histograms where each point (similar to a pixel) 
corresponds to a position on the irradiated side of the sample. The relative concentrations of each 
element are represented using a colour scheme ranging from cold (towards blue) to warm 
(towards red) indicating low to high values, respectively. In some cases, a few points have 
concentrations much above the others, making it difficult to visualize the general elemental 
distribution in the sample. To solve this problem, one can plot the logarithm of the normalized 
areas instead of their original values. The difference between these two approaches can be noted 
in Fig. 6.

Fig. 6 – Maps of an ant (specimen Ba 6, P3000.015) with a “hot spot” (area coloured in red) at 
about (-2.5, 3.1) mm as shown using the absolute values of the normalized areas (left), and using 

the logarithm of the normalized areas (right). The logarithm makes the small variations in 
concentrations more visible, thus providing more details relative to the distribution of an element 

(iron in this case) in the sample.

3. Results/Discussions:

3.1. Modern Ant

Elemental maps were plotted for the two specimens of modern ants as described in 2.1. The 
maps, using logarithmic values for the normalized areas when necessary, are shown in Figures 7 
and 8. Figure 7 depicts the ant that was introduced to resin while still alive, while figure 8 shows 
the results for the ant that was encapsulated after death but prior to significant drying.
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Fig. 7 - Maps for the live modern ant compared to its optical microscope image.
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Fig. 8 - Maps for the dead modern ant compared to its optical microscope image.

255

256

257

258

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2337v1 | CC BY 4.0 Open Access | rec: 4 Aug 2016, publ: 4 Aug 2016



The epoxy material used does not change the measured chemical composition of the ant 
since the elements in its composition cannot be detected within the energy range used in the 
measurements with SR µXRF in the SXRMB beamline. The one exception is chlorine, which is 
an impurity in the resin, but also it is not an element of interest within the insects. These 
properties were verified by the measurement of a single point spectrum targeting the resin, which 
provided no signal that could change the results presented herein. The presence of chlorine 
almost exclusively in the resin can be seen on the maps, where it shows high concentrations 
everywhere except in positions where the epoxy layer is very thin, (i.e., directly above the insect 
inclusion). However, the thickness of the layer of epoxy (or amber) does play a role on the 
resulting maps. As exemplified in Fig. 7, the fact that the ant is not positioned parallel with the 
surface of the epoxy block, and perpendicular in relation to the beam, affects the results. In these 
chemical maps, only the head of the ant is visible, because this is the part of the body with the 
thinnest layer of epoxy overlying it. This particular analytical artefact is due to two penetration 
effects: 1) the thicker the epoxy layer, the less x-rays will reach the ant in the first place; and, 2) 
once the x-rays reach the ant, the fluorescence photons still have to travel through the epoxy in 
order to reach the detector, so a thicker layer will attenuate this signal as well. These two effects 
together may reduce the number of photons detected to the point where they are overwhelmed by 
background and noise counts, and a measurement cannot be made. Since the thickness effect is 
also present in amber samples, every effort should be made to orient insect inclusions parallel to 
the upper sampling surface, and to achieve an overlying layer that is as thin as possible without 
damaging the specimens in order to obtain the clearest mapping results possible.

Although the effects of the thickness of the epoxy and amber layers on the quality of the 
data are similar, the compositions of the two materials are different, with the epoxy containing a 
larger amount of chlorine than the amber, as can be noted by comparing the results presented in 
Fig. 7 and 8 with the results discussed in section 3.2. This difference should not heavily influence 
analytical results in palaeontological studies because, as mentioned before, the distribution of 
chlorine is not of particular interest within the insect inclusions, but it can be used to determine 
physical properties of the amber itself. For example, the distribution of chlorine can be 
informative in amber samples that have been embedded in epoxy for stabilization. In this case, 
cracks that have been infilled by epoxy would show a much higher concentration of chlorine 
than the adjacent areas.

3.2. Baltic Amber
Three specimens of ants in Baltic amber (P3000.015, P3000.016 and P3000.017) were mapped 
and the plots are shown in Figs. 9, 10 and 11 (in logarithm scale). The maps in Fig. 9 were 
generated using the data collected with an older version of the SXRMB beamline data 
acquisition software. This older version did not provide the user with the data to plot each 
spectrum, but only the area under the peaks corresponding to each selected element for each 
point in the map. The consequence of this procedure was that only the maps for the elements 
chosen at the data acquisition time were reconstructed, and that there was no control over the 
algorithm used to produce the maps.
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Fig. 9 - Maps for P3000.015 (specimen Ba 6) compared to its optical microscope image.
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  Fig. 10 - Maps for P3000.016 (specimen Ba 8) compared to its optical microscope image.
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Fig. 11 - Maps for P3000.017 (specimen Ba 13) compared to its optical microscope image.

308

309
310

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2337v1 | CC BY 4.0 Open Access | rec: 4 Aug 2016, publ: 4 Aug 2016



All the specimens show a clear distribution of iron, which seems to be the best preserved 
element. Differences in concentrations, however, can be due to several factors such as: relative 
position of the insect relative to the x-ray beam direction; different levels of preservation within 
different parts of the insect; presence of different tissues and/or organs or decay products. It is, 
thus, useful to incorporate at least one additional imaging technique that can add detailed 
structural and positional information regarding the insect. For this purpose and as an extension of 
the current study, we are currently collecting and analysing data using Synchrotron Radiation X-
ray micro-CT to assess the preservation of different tissues in some of the ant specimens 
examined herein. This will allow us to overlay chemical and structural data to further the studies 
presented in this work.

Iron is a material with biological relevance for insects. It is present in large quantities 
while insects are alive, and it is also retained as a product of their soft tissue decay after death. 
The main difference between biologically sourced iron and that introduced during diagenesis is 
its oxidation state. Although this is a possibility that has yet to be explored, it seems probable 
that synchrotron radiation could also be used to infer the source of elements within fossils by 
means of using X-ray Absorption Near Edge Structure (XANES), which provides information 
about the chemical state of the elements. This analysis can usually be made at the same 
beamlines where SR µXRF is performed. A major caveat for the use of XANES to infer the 
presence of original iron is that some minerals, such as pyrite, also contain ferrous iron.

Although XRF mapping is not usually a quantitative method, it provides valuable 
distribution information that in general can outclass others provided by more conventional 
methods for insect inclusions. It is also mostly non-destructive (it requires the amber to be 
modified, but not the insect), and non-invasive. Minimal sample preparation is required, with the 
main concern related to the thickness of the amber layer between the insect and the x-ray beam. 
Potential exists to use this technique in a semi-quantitative fashion, but this would require 
comparisons between the samples being analyzed and standards (an example of such an attempt 
can be seen on Tolhurst et al., 2015). However, it is difficult to envision this approach in the 
context of non-destructive amber research, because of the range of sample thicknesses, 
orientations, and chemical heterogeneity that are present within this setting.

3.3. North Carolina Amber
The North Carolina amber specimen (NC 272-276) contains five partial ant inclusions, one of 
which was mapped (Fig. 12). The choice of the inclusion to be mapped was made based on 
preliminary x-ray images provided by a benchtop µCT (Cooper Lab, University of 
Saskatchewan). The ant selected was the specimen that showed the greatest contrast in the 
benchtop analyses.
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Fig. 12 - Maps for NC 272-276 compared to its optical microscope image. These maps are 
collages of the results of two scans, in different areas of the insect. The white rectangles 

represent the non-mapped areas. This method reduces the time it takes to measure the whole 
insect.
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Although it is possible to see somewhat of an iron distribution, the insect is not as clearly 
outlined as those seen in the elemental maps for the Baltic amber specimens, making the 
interpretation of the results more difficult. This difference can be explained by the state of 
preservation of the insect. Compared to the Baltic amber specimens, the specimens found in 
North Carolina amber are much older, and the exoskeletons are not so well preserved. In the 
Cretaceous material, each exoskeleton has become carbonized, and broken up into sheets of 
cuticle that have a much lower concentration of iron. Even without chemical data, it is possible 
to see that the insects have been heavily altered when compared to the specimens measured in 
3.2. However, it appears as though some traces of the iron content within their original cuticle 
stayed trapped within their carbonized remains.

Another obstacle encountered in the SR µXRF analysis of the North Carolina amber 
sample (which decreases the quality of the collected data), is the fact that the amber piece has a 
curved outer surface. In this case, there was no way in which the amber piece could be polished 
flat without damaging the insect inclusions. The problem with round samples is that not only is 
the amber layer on top of the insect variable in thickness due to sample curvature, but the beam 
can only be focused at one distance when the data for the map are being collected. A rounded 
outer surface means that the beam focal distance should change in order to maintain focus on the 
exoskeleton. Since the focal distance did not change during the course of our scans, there may be 
additional uncertainties to the results of the scan. In particular, variable thickness and focal 
distances may lower the quality of the measurements, or even add structures that do not reflect 
real differences in the distribution of the elements, but rather geometric effects.

4. Conclusions:
Measuring chemical properties of amber inclusions in a non-destructive and non-invasive way is 
possible using synchrotron radiation, as long as the insect is well preserved, and can be prepared 
in an appropriate manner. In all of the well-preserved insects that we have examined to date, a 
good iron distribution can be observed, and this distribution appears to be directly related to the 
original cuticle, tissue, or decay products of the insect.

Moving forward, the best measurements will be the result of making sure the insect is as 
flat as possible in relation to the x-ray beam and that the sample is polished parallel to the insect. 
Curvatures or angles can interfere with beam focusing and beam penetration, and thus generate 
uncertainties and distribution patterns that are not reflective of the insect itself. When 
considering which samples to analyze through SR µXRF, factors such as age, diagenetic history, 
deposit type, and inclusion type, among others should be taken into account. These factors can 
affect the preservation state of the insect, and they can dramatically alter the possibility of 
obtaining good measurements from fossil specimens.
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Future work will include chemical state analyses, using synchrotron techniques such as 
XANES, so it will be possible to determine if the iron being measured is introduced, a product of 
decay, or if it is original to the insect. Also, a different beamline, which can reach higher levels of 
energy, could provide insights into the distribution of copper and zinc, which could give 
information about the insect with respect to its cuticular reinforcement or colour, for example. 
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