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 24 

Abstract 25 

Dive duration in air-breathing vertebrates is thought to be constrained by the volume of oxygen 26 

stored in the body and the rate at which it is consumed (i.e., <oxygen store/usage hypothesis=). 27 

The body mass-dependence of dive duration among endothermic vertebrates is largely 28 

supportive of this model, but previous analyses of ectothermic vertebrates show no such body 29 

mass-dependence. Here we show that dive duration in both endotherms and ectotherms largely 30 

support the oxygen store/usage hypothesis after accounting for the well-established effects of 31 

temperature on oxygen consumption rates. Analyses of the body mass and temperature 32 

dependence of dive duration in 181 species of endothermic vertebrates and 29 species of 33 

ectothermic vertebrates show that dive duration increases as a power law with body mass, and 34 

decreases exponentially with increasing temperature.  Thus, in the case of ectothermic 35 

vertebrates, changes in environmental temperature will likely impact the foraging ecology of 36 

divers.  37 

Key Words:  diving behavior, metabolic theory, metabolism, thermal ecology, oxygen storage, 38 

allometry, scaling 39 
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Introduction 41 

The length of time that air-breathing vertebrate divers can remain submerged is an 42 

important constraint on their foraging activities, and perhaps ultimately on their fitness (Butler & 43 

Jones 1982; Kooyman 1989; Stephens et al. 2008; Andrews & Enstipp 2016).  Consequently, 44 

vertebrates display a wide variety of behavioral, morphological, and physiological adaptations to 45 

enhance dive capacity.  For example, endothermic vertebrates that dive show a relatively high 46 

capacity to store oxygen, use anaerobic metabolism, and reduce oxygen demand in non-vital 47 

tissues to prolong dive duration (Boyd 1997; Butler & Jones 1997; Kooyman & Ponganis 1998). 48 

Despite such specialization, maximum dive duration in endotherms varies somewhat predictably 49 

with body mass based on the amount of oxygen stored in the body and the rate at which oxygen 50 

is consumed (Butler & Jones 1982; Schreer et al. 1997; Halsey et al. 2006a; Halsey et al. 2006b; 51 

Stephens et al. 2008). However, the extent to which dive duration may similarly very with body 52 

mass in ectotherms as predicted by the oxygen store/usage hypothesis is less clear. Recent 53 

studies concluded that ectotherms fail to conform to expectations, and attributed this to 54 

ectotherms possessing characteristics that weaken any allometric constraints associated with 55 

diving (e.g., the ability to use aquatic respiration to supplement oxygen stores, and to enter 56 

thermally-induced hypo-metabolic states, to extend dives) (Brischoux et al. 2008; Campbell et al. 57 

2010). Yet, the potentially confounding effects of temperature on oxygen consumption rates and 58 

thus dive duration have not yet been examined in vertebrate ectotherms. 59 

Here we present broad-scale analyses of dive duration in both endothermic and 60 

ectothermic vertebrates. We compare the predicted body mass and temperature dependence of 61 

dive duration based on the oxygen store/usage hypothesis to analyses of extensive empirical data 62 

compiled from the literature. The model and results presented here build on previous work in 63 
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endotherms (Butler & Jones 1982; Kooyman 1989; Stephens et al. 2008) to examine the 64 

relationship in ectotherms, particularly with respect to temperature.  65 

We begin by examining the predicted body mass and/or temperature dependence of dive 66 

duration based on the oxygen store/usage hypothesis. This hypothesis stipulates that dive 67 

duration (tD) is a function of the total amount of oxygen carried by an organisms on its dive 68 

(TO2) divided by the rate at which that oxygen is used (i.e. its metabolic rate, B) (Butler & Jones 69 

1982; Kooyman 1989). Thus, 70 

tD = TO2 / B      [1] 71 

where oxygen storage capacity scales approximately linearly with body mass (M) and is 72 

independent of temperature (Lindstedt & Calder 1981; Stephens et al. 2008; Campbell et al. 73 

2010) such that: 74 

TO2 = aM
1      [2] 75 

, where a is a constant that describes the amount of oxygen that can be stored per gram of body 76 

mass (Lindstedt & Calder 1981; Campbell et al. 2010).  Oxygen consumption rate in Eq. 1, 77 

however, has both a body mass and temperature dependence such that:   78 

B = c • Md •e0.12Tc     [3] 79 

, where c is a constant describing the amount of oxygen consumed per unit body mass, d 80 

describes the scaling of oxygen consumption rate with body mass (M), and e0.12Tc   describes the 81 

exponential temperature dependence of oxygen consumption rate that is roughly equivalent to a 82 
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Q10 of 2.5 (Charnov & Gillooly 2003). Thus, we expect that the oxygen store/usage hypothesis 83 

should have both a body mass and temperature dependence such that:  84 

tD = a • c-1
 • Mb-d •e 

-
 
0.12Tc    [4] 85 

Note that the body mass dependence of oxygen consumption rate may differ between 86 

endotherms and ectotherms (Gillooly et al. 2016), and thus the body mass dependence of dive 87 

duration may also differ. The effect of temperature on oxygen consumption rate, though, appears 88 

to be more similar in both groups (Gillooly et al. 2001). We evaluate the body mass and 89 

temperature dependence of dive duration from Eq. 4 for a diverse assortment of mammals, birds, 90 

reptiles, and amphibians (Appendix 1).  91 

Methods 92 

Data collection 93 

Data on median and maximum dive duration, body mass, and temperature were obtained 94 

from previously published studies for 181 species of endotherms and 29 species of ectotherms 95 

(Appendix 1). Leatherback turtles (Dermochelys coriacea) were excluded from consideration 96 

since they are functionally endothermic (Penick et al. 1998; Southwood et al. 2005; Bostrom & 97 

Jones 2007), and direct measures of body temperature were not available. The body temperature 98 

of this species may be as much as 18°C higher than ambient temperatures (Frair et al. 1972).  99 

For ectotherms, we used direct estimates of body temperature when available, but 100 

otherwise we used ambient environmental temperatures as a proxy for body temperatures. For 101 

endotherms, we used species-specific estimates of body temperatures for mammals and birds 102 

when available, or the mean body temperature of species from the same genus (Clarke & Rothery 103 
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2008). If both of these estimates were not available, we used the mean body temperatures of 104 

birds (41.5 oC) and mammals (37 oC) (Clarke & Rothery 2008)(Appendix 1). For body mass, we 105 

used the values of study subjects, or if unavailable, estimates of adult body masses from other 106 

sources (Appendix 1).  107 

Analyses 108 

We evaluated the body mass and temperature dependence of median and maximum dive 109 

duration using Bayesian generalized linear mixed-models (Lunn et al. 2000; Bolker et al. 2009) 110 

implemented in R package MCMCglmm (Hadfield 2010).  In performing these analyses, we 111 

accounted for any non-independence due to shared evolutionary history by including a vertebrate 112 

supertree recently constructed by (Gillooly et al. 2016), and by treating species as a random 113 

effect. This approach also accounted for effects of species sample sizes. To evaluate statistical 114 

models, we calculated conditional R2 values for each model (Nakagawa & Schielzeth 2013), and 115 

assessed model assumptions using diagnostic tests associated with phylogenetic analyses 116 

(Paradis et al. 2004; Kembel et al. 2010). 117 

To best assess the temperature-dependence of median and maximum dive duration, we 118 

first performed analyses on the entire dataset. This dataset includes individuals of the same 119 

species measured at different temperatures. To best assess the mass-dependence of dive duration, 120 

we performed an additional set of analyses that was largely restricted to one point per species 121 

except when body mass differed substantially between males or females of a species, or between 122 

juveniles and adults.  For this second set of analyses, median and maximum dive durations were 123 

normalized to 30°C for all species by assuming a Q10 of 2.5 for oxygen consumption rate 124 

(Gillooly et al. 2001; White et al. 2006).  125 

 126 
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Results and Discussion 127 

Results show support for the body mass and temperature dependence of dive duration 128 

predicted by the oxygen store/usage hypothesis ((Butler & Jones 1982; Kooyman 1989); Eq. 4). 129 

With respect to body mass, analysis of the full dataset showed that median and maximum dive 130 

duration increased as a power law with body mass in both ectothermic and endothermic 131 

vertebrates (Table 1).  While scaling exponents varied from 0.09-0.42 depending on the group in 132 

question, the 95 % confidence intervals of these scaling exponents included the 0.25-0.33 value 133 

one would expect or dive duration (Table 1, Eq. 4) based on the linear scaling of oxygen storage 134 

and the 2/3-3/4 power scaling of oxygen consumption rate(White et al. 2006; Gillooly et al. 135 

2016). Moreover, when the dataset was restricted largely to one point per species, and adjusted to 136 

a common temperature, the scaling exponents for median and maximum dive duration ranged 137 

from only 0.21 to 0.31, in closer agreement with expectations from the oxygen store/usage 138 

hypothesis (Table 2; Eq. 4). With respect to ectotherms, then, our results differ from previous 139 

studies showing no body mass dependence of dive duration (Brischoux et al. 2008; Campbell et 140 

al. 2010). We speculate that this is because we explicitly accounted for the effects of 141 

temperature.  142 

A comparison of the body mass-dependence of dive duration in endothermic and 143 

ectothermic vertebrates shows both similarities and differences-both of which are qualitatively 144 

consistent with the oxygen store/usage hypothesis.  First, body mass explained between 63-68 % 145 

in temperature-adjusted median and maximum dive duration in both groups. However, the 146 

scaling exponents for these relationships in ectotherms (0.21, 0.22) were slightly lower than 147 

those of endotherms (0.31, 0.34; Figure 1, Table 2). This observation is consistent with work 148 

showing that the body mass scaling of oxygen consumption rate is steeper in ectotherms 149 
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(exponents: 0.84-0.90) than in endotherms (0.70-0.74)(Gillooly et al. 2016). Similarly, the 150 

relatively high intercepts of the dive duration-body mass relationships in ectotherms as compared 151 

to endotherms are consistent with well-established differences in the oxygen consumption rates 152 

of ectotherms and endotherms. On average, the oxygen consumption rates of endothermic 153 

vertebrates are approximately 1-2 orders of magnitude higher than ectotherms (Gillooly et al. 154 

2001; Brown et al. 2004). As such, endotherms would be expected to use their oxygen stores 155 

more quickly than ectotherms, and have dive durations roughly an order of magnitude lower than 156 

ectotherms-as was observed (Fig. 2). 157 

Still, perhaps more surprising here is the observation that dive duration varies 158 

systematically with temperature.  Note that while temperature has previously been shown to 159 

affect the dive duration of individual species (Storch et al. 2005) (Priest & Franklin 2002), no 160 

broad-scale analysis of temperature on dive duration have been previously undertaken.  The 161 

temperature dependence of the oxygen store/usage hypothesis described by Eq. 4 has not been 162 

fully appreciated since the hypothesis has largely been applied to endotherms. Our results show 163 

that, at least in ectotherms, median and maximum dive duration decreases with increasing 164 

temperature as e-0.11 and e 
-0.13, respectively (Table 1, Figure 2)-similar to that described by Eq. 4. 165 

This equates roughly to a Q10 of 2.5 such that dive duration will decrease by roughly 2.5-fold for 166 

every 10 oC increase in temperature. Thus, increases in environmental temperature could 167 

substantially reduce foraging time for ectothermic divers, and thus potentially affect individual 168 

fitness and population viability.  The effect of any such increase would be most acute at warmer 169 

temperatures, where a smaller increase in temperature could have a greater effect on dive 170 

duration (see Dillon et al. 2010).  171 

 172 
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Together, these results point to the utility of the oxygen store/usage hypothesis for 173 

explaining some similarities and differences in dive duration among diverse vertebrates.  Still, a 174 

deliberately simplified model such as this is perhaps most useful as a point of departure for 175 

examining species-specific adaptations for diving-both physiological and behavioral. Accounting 176 

for the effect of body mass and temperature on dive duration should be helpful in evaluating the 177 

benefit of such adaptations. More broadly, the model and results presented here demonstrate how 178 

considering the physiological effects of body size and temperature can reveal important insights 179 

into behavioral ecology (Hayward, Gillooly, & Kodric-Brown 2012). 180 

 181 

 182 

 183 

 184 

 185 

 186 

 187 

 188 

 189 

 190 

 191 

 192 
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Table 1: Body mass and temperature dependence of dive duration in vertebrates. Outputs 193 

from generalized linear mixed-models relating dive duration (median or maximum, in minutes) 194 

to body mass (natural log-transformed, in grams) and temperature (°C). Conditional R2 values 195 

are reported, along with the slopes and intercepts of the relationships, and the sample sizes (N; 196 

with number of species). Results shown here represent the full dataset with multiple individuals 197 

for many species. 198 

Model 
Resp. 
Var. 

Intercept (95% CI) ln(Mass) (95% CI) Temp. (95% CI) R
2
 N (species) 

Ectotherms Med.   4.00 (1.78,5.83) 0.19 (0.06,0.32) -0.13 (-0.16,-0.09) 0.72 267 (29) 

 
Max.   5.88 (3.42,8.21) 0.09 (-0.09,0.26) -0.11 (-0.13,-0.09) 0.81 267 (29) 

Endotherms Med.  -1.65 (-7.51,3.79) 0.42 (0.35,0.49) -0.06 (-0.20,0.08) 0.72 738 (181) 

 
Max.   0.52 (-4.71,6.37) 0.34 (0.30,0.42) -0.07 (-0.21,0.07) 0.62 738 (181) 

All  Med.   2.34 (0.94,3.82) 0.37 (0.31,0.42) -0.14 (-0.16,-0.11) 0.38 1005 (210) 

  Max.   3.34 (1.98,4.56) 0.32 (0.27,0.38) -0.12 (-0.14,-0.10) 0.28 1005 (210) 

 199 

 200 

 201 

 202 

 203 

 204 

 205 

 206 

 207 

 208 

 209 

 210 

 211 

 212 
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Table 2: Body mass dependence of temperature-adjusted dive duration in vertebrates. 213 

Outputs from generalized linear mixed-models relating temperature-adjusted dive duration 214 

(median or maximum) to body mass (ln-transformed, in grams) for ectothermic (amphibians and 215 

reptiles) and endothermic (mammals and birds) vertebrates. Conditional R2 values are reported, 216 

along with the slopes and intercepts of the relationships, and sample sizes (N; with number of 217 

species). 218 

Model 
Res. 
Var. 

Intercept (95%) ln(Mass) (95% CI) R
2
 N (species) 

Ectotherms Med. 0.12 (-1.88,2.34) 0.22 (0.02,0.42) 0.68 28 (28) 

 
Max. 2.05 (-2.26,6.36) 0.21 (-0.08,0.55) 0.67 28 (28) 

Endotherms Med. -2.49 (-3.94,-0.90) 0.34 (0.23,0.42) 0.63 187 (165) 

 
Max. -1.02 (-2.51,0.42) 0.31 (0.24,0.39) 0.68 187 (165) 

All  Med. -1.47 (-2.72,-0.26) 0.30 (-0.21,0.41) 0.33 215 (193) 

  Max. 0.02 (-1.30,1.57) 0.31 (0.22,0.42) 0.22 215 (193) 

  219 
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Figure 1:  The body mass dependence of dive duration in vertebrates. The natural logarithm 220 

of median (left) and maximum dive duration (min.; right) as a function of the natural logarithm 221 

of body mass (g) for air-breathing endothermic (birds and mammals; closed points, solid line) 222 

and ectothermic vertebrates (reptiles and amphibians; open points, dashed line). Data were 223 

normalized to 30 oC assuming a Q10 of 2.5. Most points represent a single species (see Methods, 224 

and Table 2 for statistics).   225 

 226 

 227 

 228 

 229 

 230 

  231 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2334v1 | CC BY 4.0 Open Access | rec: 3 Aug 2016, publ: 3 Aug 2016



Hayward et al. Constraints on Vertebrate Dive Duration 

13 
 

Figure 2: The temperature dependence of dive duration in vertebrates. The natural 232 

logarithm of body mass-corrected median (left) and maximum (right) dive duration as a function 233 

of temperature (oC) for endothermic (birds and mammals; closed points) and ectothermic 234 

vertebrates (reptiles and amphibians; open points, dashed line).  Many species are represented by 235 

multiple points, as described in the methods (see Table 1 for statistics). 236 

 237 

 238 

 239 

 240 

 241 

 242 

 243 
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